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In-beamy-ray andy-y coincidence measurements have been made for the very neutron-deficient nucleus
178%4g using the recoil-decay taggif@®DT) technique. The irregular yrast sequence observed up=th0%
indicates that the prolate intruder band, seen in heavier Hg isotopes near the neutron midshell, crosses the
nearly spherical ground-state band'8Hg abovel = 6%4. [S0556-28188)50512-2

PACS numbsdss): 21.10.Re, 27.76:q, 23.20.Lv, 25.70-z

In neutron deficient even-mass Hg isotopes the propertiggroton drip line and therefore the cross sections for any
of the weakly oblate ground-state band remain rather conheavy ion induced fusion-evaporation reaction required to
stant with decreasing neutron number until*f#Hg, where  produce it are of the order of a femb. Prompty rays from
the band is crossed by an intruding deformed band associaté@Hg were resolved from those arising from the dominant
with a prolate-deformed energy minimurh—3]. The prolate  background of fission and other reaction products using
states minimize their energies #?Hg [4] but they still lie  the characteristic properties of the decay of *"*Hg (E,,
above the ground stafé] which evolves from the oblate =6750keV, t;,=(18+10) ms[7]) in a RDT [8,9] mea-
shape towards a spherical shdfet, 6. surement.

Recently, yrast levels up t=12" in "®g were iden- The experiment was carried out at the Accelerator Labo-
tified [6] using the recoil-decay taggin&®DT) technique. In  ratory of the University of Jy\ekyla Excited states of"®Hg
accordance with the theoretical predictidls, a further in-  were populated via thé*Sm(°Ar,4n) fusion evaporation
crease in the excitation energy of the prolate band was otehannel. The®®Ar beam was delivered at an energy of 190
served. In the same experiment three relatively high-energimeV by the JYFL (Department of Physics, University
y rays were unambiguously assignedt8Hg. They were of Jyvaskyld) cyclotron. The target consisted of a single
tentatively associated with a2 cascade de-exciting the 500 ug/cn? self-supporting metallict*/Sm foil of 92.4%
lowest 27, 4, and 6" states in'"®g. On the basis of this enrichment. Prompty rays were detected by the
experimental information the question of a possible appearJUROSPHERE array consisting of 12 TESSA-tyf6] and
ance of a prolate structure #i%g still remained unresolved. 13 Eurogam Phase[L1] Compton suppressed Ge detectors.

In the present work we have carried out an improved in-The TESSA detectors were placed at angles of 78° and 101°
beam+y-ray spectroscopy study df®Hg to confirm the ten- and the Eurogam detectors at angles of 134° and 158° with
tative assignments of Reff6] and to probe further its yrast respect to the beam direction. The total photopeak efficiency
line towards higher spin. The nucleti€Hg lies close to the of the array for 1.3 MeVy rays was about 1.5%.

The gas-filled recoil separator RIT(ecoil ion transport
unit) [12] was used to separate fusion-evaporation residues
*Present address: Argonne National Laboratory, Argonnefrom the unwanted nuclei such as the primary beam and
lllinois 60439. fission products. RITU is a charge and velocity focusing

0556-2813/98/58)/30334)/$15.00 PRC 58 R3033 ©1998 The American Physical Society



RAPID COMMUNICATIONS

R3034 M. MUIKKU et al. PRC 58
. 1.0x10% .
- Pt
3 9 4 8.0x10°
E 10 s
w0
5 3 6.0x10
L 2 -\ S
4 € 42 W 4.0x10
S 5
© 2.0x10
7
€ . 0.0
2 °%r 0 20 40 60 80
m‘-‘ Time difference (ms) 250
=) 200
* Ll 1764 150

100

174 178
Pt 173py Hg 50

175Pt 177AU
176Au
/

5500 ' 5000
Energy (keV)

X 20

Counts
[=]

L
6500 7000 8

FIG. 1. Energy spectrum aof particles observed within a 100
ms time interval after the detection of a recoil at the same position
in the Si strip detector. In the inset the distribution of reeoiime
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differences for events in thE®Hg peak is shown. The solid line is af . 1
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random background from false correlations. ol _
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magnetic device, designed for collecting recoiling fusion-
evaporation residues with high efficiency. Separated fusion-
evaporation  residues were implanted into a
80 mnthorizonta) X35 mmvertica) Si strip detector cover- FIG. 2. (8) Energy spectrum ofy rays in coincidence with
ing about 70% of the recoil distribution at the focal plane.fysion-evaporation residues detected in the RITU focal plane Si
The Si detector was also used to detect the subsequent detector(b) y-ray energy spectrum obtained by gating with fusion-
decay of the implanted recoils. The transmission of theevaporation residues and tagging wiffiHg « decays.(c) Sum of
fusion-evaporation residues through RITU was determinedhe recoil-gated and-taggedy-y coincidence spectra gated on the
from the fraction of the strongesty coincidences in/%Pt  seven strongest transitions in the spectrungbof (d) Recoil-gated
[13] which were also in coincidence with recoils detected inanda-tagged coincidence spectrum gated on the 453 keV transition.
the focal plane Si detector. The value obtained was about
27%. Approximately 50% of thex particles emitted by the the inset of Fig. 1. Using the method described in R&4],
recoils were detected with full energy. At a typical beamthe value obtained was,,=(21+3) ms. This is consistent
intensity of 15 particle nA, limited by the Ge singles count- with the earlier value of,,,=(18%+10) ms reported in Ref.
ing rates, the total counting rate in the Si strip detector wa$7].
about 800 counts/s. The effective Si-detector granularity of The energy spectrum of rays obtained in coincidence
about 200 was sufficiently high to allow the selection of thewith detected recoils is shown in Fig&. It is dominated by
1781g recoils through correlation with their subsequerte-  y rays from %Pt produced in the 3fAr,2p2n) fusion-
cay. evaporation channel. Theserays are absent in Fig.(1,
Signals from the Si strip detector for the energy, positionwhich shows a recoil-gategtray spectrum obtained by cor-
and the detection time of the recoils aadparticles were relating with the'’®Hg « decay. In this spectrum there are
recorded. Individualy-ray energies andy-y coincidence seven strong line&400.9, 453.2, 500.5, 529.9, 551.0, 613.3,
events were collected when occurring in coincidence withand 756.4 keY which we firmly assign to originate from
detected recoils. 17%g. Three of thesé551.0, 613.3, and 756.4 keWvere
The events corresponding to the observation of a recoiseen by Carpentat al.[6]. In addition, there are clear peaks
together with a subsequentdecay at the same position in at energies of 195.5, 375.1, and 590.4 keV which can be
the Si detector within a maximum time interval of 100 ms assigned td’®Hg due to the fact that the RDT method pro-
were selected in the data analysis. The resultingarticle  vides a unique identification of the taggedays. In order to
energy spectrum is shown in Fig. 1. Thedecay peaks la- construct the level scheme, recoil-gatedagged-vy coin-
beled in this figure were identified using the known cidence data were required. Examples of coincidence spectra
a-particle energies of the other isotopes produced in this reare shown in the two lowest parts of Fig. 2: Figcias a sum
action. Approximately 240 hours of effective beam time of the coincidence spectra gated on the seven strongest peaks
yielded about 90 000 recordéd®Hg « decays from which of Fig. 2(b), and Fig. 2d) is a spectrum gated on the 453.2
the estimated cross section for the reactionkeV peak. The two spectra demonstrate that the 453.2, 500.5,
1445m(®8Ar,4n)1"%g is deduced to be about/b. The half- 551.0, 613.3, and 756.4 keyrays are emitted as a cascade.
life of 1"®Hg was determined from the spectrum of time dif-  The intensity ratio ofy rays observed by the Ge detectors
ferences between correlated recdifHg o pairs, shown in  at 134° and 158° to those observed by the 79° and 101° Ge
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FIG. 3. Level scheme ot"®*Hg deduced from the present data. | | | | | |
_The y-ray energ_ies are accurate to within 0.3 keV. T_he measu_red 00.1 02 03 0.4 05 06 07 0.8
intensities are given in parentheses next to the transition energies. E (MeV
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detectors was 1.285) for the knownE2 transitions in*"%Pt
marked in Fig. 2a). Ratios for the 551.0, 613.3, and 756.4  FIG. 4. Static moments of inertial{,) as a function ofy-ray
keV transitions in'’®Hg were extracted and they were within €1€ray; den_ved from tk_le experimental yrast level energies for the
the errors of the'’®t E2 transitions thus confirming their 19 @nd Pt isotones wittN=96 (the present work an@16]), N
E2 character. For the weaker 453.2 and 500.5 keV transi= 26 [6:13), andN=100[4,21}.
tions only tentativeE2 assignments were possible. These
arguments together witly-ray coincidence and intensity in- extracted using the VMvariable moment of inertjgparam-
formation were used to generate the decay scheme of Fig. 8ters and a prolate-oblate interaction strengbout 100
The placement and the cascade character of the 529.9 akdV) which reproduced thé’®Hg level scheme of Ref6].
400.9 keVy rays remains tentative. Allowing a larger interaction strengttabout 200 keY and

Our results confirm the earlier tentative assignments ofarying the VMI parameters did not significantly alter the
the *"®Hg level schemg6] up to the 6" level. Itis interesting  estimated unperturbed bandhead energy value. The extracted
to span the level-energy systematics of even-mass Hg isqa|ue is about 600 keV higher than iffHg revealing a rapid
topes down tc}75Hg._ The energies of the first exutea_zmd increase in the excitation energy of the prolate intruder struc-
4" states in'"®Hg lie higher than in any other Hg isotope e with decreasing neutron number.
except the closed-shell nucle#fHg, . In accordance with In the Nilsson-Strutinsky calculations at zero spin of Refs.

the th(_aoretical predictior[§],.t_he rise in tdhe 2 an(rj] 4* Ielvel 'li ,17], no well-developed prolate minimum but a shoulder in
etn(irgles fug%ests 'at t;ans?lanté\avar S a spherical grounfie potential energy curve was predicted. The corresponding
stale as already pointed out in o prolate configuration lies at about 1 MeV above a shallow

The similarity between the observed intruder prOIatenear-s herical ground state. At higher spin, because of its
bands in the even-mass Pt, Hg, and Pb isotopes close to the b 9 ' 9 pin,

neutron midshell is well knowri15]. In Fig. 4 the static large moment Of inertia, this _cc_)nfigl_Jration_ is expected to_be
moments of inertia d.,) derived from the experimental favored energetically, thus giving rise to irregular behavior
yrast-level energies for the Hg and Pt isotones wita96,  ©f the yrast band as observed in the present work.
98, and 100 are plotted as a functionefay energy. In this Thg tentat_|vely obser.ve.d non-yrast Ievels_could be due to
figure the appearance of the prolate band is manifested by tHiegative-parity states similar to those seen in even-mass Hg
change towards a slightly increasing and smoothly behavingo'fc’peS withA=186[18-20. Due to the intruding prolate
Jear. Similarities in theJg, values are especially striking Pands these negative-parity states in Hg isotopes close to the
between pairs of isotones. Furthermore, the values extractéteutron midshell lie higher above the yrast line and are
from the (10°) to (8") and (8") to (6") transitions therefore not observed.
observed in the present work are very close to the corre- ToO summarize, yrast states uplte 102 have been stud-
sponding values fot"*Pt [16]. The change inlg, at E,  ied in the very neutron-deficient nucledéHg using the
~0.5 MeV for the yrast line int"*Hg can be regarded as RDT technique. The experimental setup was sufficiently sen-
being due to a crossing prolate band, as seer{“®t [16]. sitive to allow the collection ofy-y coincidence data for this

In order to extract the energy difference between the asaucleus, which was produced with a cross section of about 5
sumed prolate and weakly-oblate bandheads from the preseab. The deduced yrast sequenceyafay transitions can be
data for 1"®Hg we used a simple two-band mixing model associated with a nearly-spherical ground state band which is
similar to that in Ref[15]. A value of about 1300 keV was crossed at=6#% by a prolate intruder band similar to those
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