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Consistent description ofNN and «rN interactions using the solitary boson exchange potential
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A unified description ofNN and 7N elastic scattering is presented in the framework of the one solitary
boson exchange potentidd SBEB. This model already successfully applied to analji#¢ scattering is now
extended to describeN scattering while also improving its accuracy in tRé&l domain. We demonstrate the
importance of regularization ofN scattering amplitudes involving isobars and derivative meson-nucleon
couplings, as this model always yields finite amplitudes without recourse to phenomenological form factors.
We find an empirical scaling relation of the meson self-interaction coupling constants consistent with that
previously found in the study ol N scattering. Finally, we demonstrate that the OSBEP model does not
contradict the soft-pion theorems @i\ scattering[S0556-28138)00907-§

PACS numbgs): 13.75.Cs, 13.75.Gx, 11.10.Lm, 21.3&x

I. INTRODUCTION The OSBEP model has been determined successfully in
np andpp interactiong 20]. Thus we now seek its extension

In low- and medium-energy hadron-hadron physics, theo provide a consistent model for botN and 7N interac-
NN and wN interactions play a most significant role in our tions. To do so, we must include the isobar specifically
understanding of the dynamics of strong interactions. In thadnd use a chiral symmetry conserving pseudove(®)
energy regime, specific effects of quantum chromodynamics:NN meson-baryon coupling rather than the pseudoscalar
(QCD) are hidden in _effective degrees of freedom such agpg coupling used previouslj20]. As a consequence, the
baryon and meson fields. There are a number of model§roper normalization in the OSBEP model has to be adjusted
which address this problem, of which there exist QCD in- nrovide finite results for the self-energy diagrams involv-

fsplrded apﬁ)rtl)acg%s fwhtose aim 'r‘:’ to C?]nnf’Ct phenomevr:/z?\ 199 A isobars and derivative meson-baryon vertices. The refit
undamental Q eatures, such as chiral symmetry. 'trbf the parameters which enter theN potential even yields

this approach NN [1-4] and N [5,6] interactions have an improvement to the quality of the original model fit. But

been sought with means that led to fundamental insights such major achievement is that we now have a unified frame-

as thewN low-energy theorems. But to date, none of theseWork for bothNN and 7N interactions.

QCD inspired models give an accuracy in description of ex- . . . .
perimental data as that provided by phenomenological boson Congstent gppllcatlon of a potential modelNiN as well
exchangd 7—13 or inversion potential investigatiofd4— @S 77N mterac'ugns has long been an unre.solved'puzzle. The
17]. It seems that chiral symmetry is not a dominant factor inajor concern is that theNN form factor differed in analy-
theNN and =N scattering observables up to elastic thresholdSes Of these systems. TN data demand a rather hard
[18]. Nonetheless, even a chiral symmetry breaking phenomeutoff mass(e.g., A ;yy=1.7 GeV in the Bonn-B potential
enological approach should be based on concepts whid?1]), and that value cannot be reconciled with the much
eventually connect to a chiral symmetry maintaining modelsofter cutoff necessary to fitN data below 1 GeV. Schz
As our analysis will show, chiral symmetry is restored in theet al. [13] conjecture the reason to be that the form factors
boson exchange model in the linmt,— 0. depend on all momenta in the external legs of the vertices.
A useful exercise is to interpolate between the QCD in-However, Holzwarth and Machleid2?2] state that it is im-
spired and the accurate phenomenological hadron-hadron ipossible to describBIN and 7N interactions consistently if
teraction models. We do so using the one solitary bosomne uses an analytical parametrization such as the monopole
exchange potentidDSBEB in application toNN scattering  form of most boson exchange models, and instead propose a
[19]. The basic idea is to parametrize the effects of chiralSkyrme-model form factor which might be appropriate for
symmetry via nonlinear terms in the meson Lagrangian wittboth systems. However, to our knowledge, no potential
a structure equivalent to the linear model. In contrast to model involving a form factor parametrization exists to date
that linearo model, we do not impose symmetry conditions that not only sensibly describes both systems but also gives a
on coupling constants and masses. Rather we take these eufficiently accurate fit to scattering data.
tities as free parameters so breaking chiral symmetry to some As indicated above, we have found a unifiedl and 7N
extent. Then, we solve the decoupled nonlinear meson fielgotential built upon the OSBEP model for the form factors.
equations analytically and quantize the quasiclassical soluSince all self-energy diagrams are regularizgdconstruc-
tions, so definingsolitary mesonsto obtain the propagator. tion in this model, it is corollary that finite scattering ampli-
Proper normalization of the meson fields then ensures that ailides result for both scattering systems. More important, fits
self-energy diagrams remain finite. A notable result of thisto NN as well as7N data have given a consistent parameter
approach is that the coupling constants and masses obey aat which provides an agreement with the data as good as
empirical scaling law; one which is similar to the symmetry found using the best conventional and sepahiié or 7N
constraints of chiral models. Our hope is that this scaling lawmodels. A notable feature of our result is the low number of
can be related to some underlying symmetry eventually. parameters we have to specify. There are no adjustable cutoff
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masses in our model and many possible parameters of thehere

meson nonlinearities are not as they are interrelated by a

simple scaling relation which leaves the pion self-interaction K)= 1 a (ke ik 2.4
coupling constant only as adjustable parameter. Besides that, epx.K)= 2kaDf<B) B ' :
the only parameters we have, therefore, are the meson-meson

and meson-baryon coupling constants which are not fixed biyere, v is the volume of the system and,= (k2+m )2

ex%tnment or symmetry relatlor;sth . ts of th Note that we have used afactom, a Lorentz-invariant
OSBEeFr’ Vrr\gidgel}/?n aslgvlfr\v/\'lz\’;hzw ire1 Sn;imllf?lg(\j\??hz oro € function ofk, which is of use in the proper normalization of
Propery, o solitary meson fields that we give later in Sec. Ill. The
normalization serves to yield finite scattering amplitudes. We oefficientsC3(x) are Gegenbauer polynomials ang and
also introduce the scaling law for the masses and self® 9 poly i
b; are functions of the coupling constants and the oplef

interaction coupling constants in Sec. lll. After that, Wethﬁe self-interaction, namel

briefly sketch the application ilNNN scattering in Sec. IV. Y,

Finally, in Sec. V, we present theN solitary boson ex- 1 kf

change potential and in Sec. VI we compare the results for Wp=r——"", (2.5
NN and 7N phase shifts given by this unified model with bg 4(p+1)m3

those obtained using conventional models and empirical

phase shift analyses. Additionally, we address the problem othe

chiral symmetry by calculating scattering lengths as function N 2 N

of the pion mass and show that our model does not contradict bs \/( 1 ) - ) (2.6)
the Weinberg-Tomozawa relations. 4(p+ 1)mf3 4(2p+ 1)m2

After solution of the field equations the interactions between

mesons and baryons are treated perturbatively, and we as-
Motivated by the linearr-model approaci23], we as- sume that;, contains the following couplings.

sume that nonlinear self-interactions for each meson field Scalar meson-baryon coupling€ o, 6):

(B=m,n,p,w,0,6) entering the boson exchange potential

Il. THE OSBEP MODEL

lead to meson Lagrangians LisheX0)==05: T ()W (x):D(x). 27
1 \E Pseudovector meson-baryon couplin®=, n):
L=5(9,P P 5= madF) - 2p+2q>2P+2
, L0 = S (X) 757, W (0:04B4(x). (28
he PP L. (2.1

4p+2 Vector meson-baryon couplingB€& p, w):
Note that by choosing proper values tof, \5, andp, one LX) =05:F(X) },Mq)n(x)Jr “9p Y (X)}\p(x):,
can retain the structure of the linear model. For conve-
nience, spin and isospin indices are dropped. The Lagrangian 2.9
Lin contains meson-meson as well as meson-baryon verticgg,are
which enter theNN and 7N scattering amplitudes and will
be discussed below.

The main assumption now is that &s> +%, the meson T =5V vl
fields only decouple fronexternalsources and thus the non-
linear self-interaction current has to appear in the field equa- @NA coupling:

tion for each Fourier component
JrNA—

Lona(¥)= \P(X)T[xw Y, WL () +WE(x)]3,D ()

3,0 D (%, K) +M5D g(x,k) +NFPEPT(x,k)
+NED4PTL(x,k)=0. (2.2 +H.c. (210

Quasiclassical solutions can be obtained by the method of omm coupling:

base functiond24]. Essentially, one makes the ansaiz Qmm

=®d(¢), where ¢ are free wave solutions of the Klein- Lymn(X)= om. D, (X)d, &, ()P, (x). (2.1

Gordon equation. This reduces H.2) to an ordinary dif-

ferential equation which is solved by direct integration and  p«# coupling:

the solutions can be expressed as a power series s a o R -

naive quantization rule, inserting free wave operators for Lyrn(X) =0y ma®l(X)[P (X)X, D (X)]. (2.12

o(x,K) gives thesolitary meson fieldsvith

In these couplingsl (x) are nucleon isospinors and, for
isovector mesons, the operafbrﬁ(x) has to be replaced by

[

D 4(x,K)= >, CH2P(wg)b%e2P " 1(x,k), 23 Lz
pK) ngo n (We)Pgeg ™ (x.K) @3 7® 4(x). To avoid double counting, the vertex operator is a
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weighted projection of the sum over all Fourier components

of the solitary meson field given in EQ.3), i.e.,
Bp0= 3 —~=IN' KN
NN’k JN'E
><[q>ﬂ(x,k)+q>g(x,k)]|N,k><N,k|i.
JNI
(2.13

Since the propagator is used as the probability for a solitary

meson to move between the interaction verticesdy, we
must define it using the fields defined in £§.13 by

iPs(x—y)=(0|T®(x)®(y)|0). (2.14

Inserting Eq(2.3) into Eq.(2.13 one obtains the momentum

space amplitudg19]

2n

. - b
IP5(k%mg) = 2 [CR™(w) 2 w5

(2pn+1)2pPn-2

niAF(kZan,ﬁ):

DZPM LK+ M7 )P
(2.15
with the Feynman propagator being
iIAe(k2Mp )= ——, 2.1
F( n,ﬂ) k2— Mﬁlﬁ ( 6)

and a mass spectrum given by
M, =(2pn+1)mg.

The normalizationD(kf? in the propagator E¢2.15), is ob-
tained from the normalizatiob (") in Eq. (2.4) by substitut-
ing

o ®
k H2pn+1k

It is useful at this point to introduce dimensionless coupling

constantsyg, of, andas, respectively,

bg
a[;:—,
(2mgV)P
B
of= M ,
4(p+1)m3(2mgV)P
)\B
B_ 2
ah= . 2.1
® 4(2p+1)m2(2meV) %P 219

The final amplitude, which we define to be thelitary me-
son propagatorthen is

PRC 58
ipﬁ(kz,mﬁ)=n§=‘,o [CY?(w,)]2
(mgaﬁ)zﬂ(zpm1)2F>“—2_A oy
Df([y?gZpﬂ-*—l(lzZ_’_Mﬁ’ﬁ)pn | F( y n,B)a
(2.18
with
of
(2.19

Wg=—F—F77—.
B B
\/afz—az

For p=1/2, one gets the amplitude for scalar fields while
with p=1 the amplitude is that for pseudoscalar particles.
Vector mesons requing to be 1 and each term of the sum is
multiplied with a Minkowski tensor,

BKY

(2.20

n

f’”z( —gtr+

Ill. PROPER NORMALIZATION

The proper normalization constant in E@.18 is now
fixed by physical boundary conditions. First, we impose the
constraints familiar from renormalization theory, i.e., the
propagator has to have a pole of residuat the on-shell
point, k?= mz. In addition, we assume thé) all amplitudes
are Lorentz invariant(ii) D(kB) is dimensionless and larger
than unity, (i) the fields vanish when the interaction van-
ishes, and, most importar(iy) all self-energy diagrams are
finite. This leads to the ansatz

D<k5>={1+

1 2lp
(af4<p+1)<2mﬁ>p)

3.9

1 1/p
+(a§4<2p+1><2mﬁ>2") ]

N(B)
pn
X (VK2 + mg—ko)z] .

In the case that there is only one nonlinear term in the La-
grangian ¢5=0), the term in Eq(3.1) containinga’ is to

FIG. 1. #NA vertex correction.
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be deleted. The exponeNﬁ,‘;) can be chosen for each meson TABLE |. Meson masses and proper normalizations associated
type to yield finite scattering amplitudes. At this point, it is With OSBEP.

crucial to note that assuming a momentum-dependent nor=
malizationD{#) for the fields in Eq(2.3) alwaysgives finite
self-scattering amplitudes for all interactions. Even in casesn, [Mev]  138.0% 5488 769 7826 530 983
where the interaction is nonrenormalizable in standard modg(s) 3 3 2 2 1 1
els, such as with massive spind and  mesons, our —
method can be applied. On the other hand, an energy¥or the pp potential, we used the neutral pion mass,
dependent normalization affects the canonical commutatios 134.9764 MeV.

relations in coordinate and momentum space. The equal-tinﬁFor the T=0 np potential, we adoptedr, =720 MeV from the
commutator of the field operator and its conjugate momenBonn-B potential.

tum is no longer & function 5()?— >Z’) in coordinate space,

as in conventional field theoretical models, but approaches & obtain finite results for all self-energy diagrams$\iNl and
finite value forx=x' and vanishes otherwise. This can be 7N interactions. The meson masses and normalizations used

interpreted as a finite particle size due to the self-interactior®'® listed in Table I. Note that in our former wofk9,20),

i ) - . ) — i i i
Another important point of the model is that causality is Npn — L Sufficed since we used PS coupling for th&IN
preserved since the equal-time commutators of the fields réind 7NN vertex and theA isobar was not treated. This

T n p o g )

main unchanged, i.e., modification now demands a refit of the parameters entering
R ) R, the NN potential to maintairfor improve upohthe accuracy
[P (X, 1K), D a(X", 1K) =[P g(X,1), D (X", 1) ]=0. of fits to data.

To determineNf)ﬁ) one has to consider the most divergent
self-energy amplitude for each type of meson. For scalar and
vector mesons, this is the first correction to the two-point The concept of th&N solitary boson exchange potential
function, Eq.(2.14). Whereas for scalar mesons it is suffi- is very similar to the Bonn-B OBEP21]. It has been de-
cient to choose scribed in detail in Refd.19] and[20]. The inclusion of the

D — O(K?)=NE = 1 A isobar and the PV coupling for theNN and »NN verti-

k — pn— ces do not significantly change the actual form of the poten-
tial. The A intermediate states do not contribute in the one
boson exchange approximation and the PV coupling on-shell

D=0 k4)=>N§)”n)= 2, is identical to, and off-shell is very similar to the PS coupling
when the potential is evaluated in the Blankenbecler-Sugar
due to the additional momentum dependence in 0. (BbS) reduction of the Bethe-Salpeter equatj@h Negative
For the pion however, theeNA vertex correctionsee Fig. energy states do not contribute. We note also that Machleidt
1) is the most divergent amplitude. The combination of de{21] has shown that by slightly changing the parameters, it is
rivative coupling in Eq.(2.10 and theA propagator which possible to obtain equally good results for the Bonn-B po-
grows linearly with momentum, requires a strong normaliza-tential using either the PS or PV coupling. We confirm this
tion for the pion. Therefore we have to choose result and obtain fits of similar quality with both PS and PV
coupling. The most important modification in theN poten-
tial is to change the proper normalization exponﬁ{ﬁ) of
the pseudoscalar mesons (@nd 7). The question arises
whether the empirical scaling relation for the self-interaction
. N ' coupling constants and masses, found in a previous compari-
N N ! son of the solitary meson propagator to the Bonn-B form
A L factors[19], remains valid. Using the strong normalization,
! N =3 for  and », a similar analysis indicates that the
., . / scaling relation generalizes to

IV. APPLICATION TO NN INTERACTIONS

for vector mesons one has to use

D= O0(K)=NP? =3,

g %q (mw)p @.1)
W e |

Y N \ and thus still serves to minimize the number of parameters
\ \ \ we need to specify. Note that we simplified the model by
N \ Y oP setting a5=0 so thatag= a4 is the only self-interaction

" n ' parameter for all mesons. In the linearmodel, which mo-
’ ‘ / tivated our ansatz for the nonlinear terms in the meson La-

! / 1 grangian, chiral symmetry also demamd%zo for pseudo-

scalar and vector mesons. On the other hand, this does not

apply for scalar mesons. However, the scataneson in the

FIG. 2. Feynman-diagrams for theN interaction. potential model serves as a parametrization of two-pion ex-
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change. It is not a fundamental particle as considered in the iA Tk —a )S S(Qn— lin g s
o model. The second scalar mesah,only contributes a PPt K= 0,)Sr(0,) = do~ ) Gom(9),

little. where
V. THE =N SOLITARY BOSON EXCHANGE POTENTIAL " (G.5)= 27 yoen— yq+M 5.3
sm ! = "2_ 22 . .
The structure of therN boson exchange potential was Vs pP-gi+ie

adopted fro'm the work of Pearce and Qenn[ngs. The only This propagator is transformed to describe solitary mesons
changes arise for the form factors which can be dropped dtégmply by setting
to the proper normalization of the solitary meson fields an
the three-dimensional reduction of the scattering equation to i
account for solitary mesons in the intermediatd states. iP(k,)=1Ag(k,)F(k,)= ﬁFW(kM),

Using the Lagrangians in Eq&.7)—(2.12), the diagrams k®—mg
in Fig. 2 can be evaluated using standard Feynman rules, dqf Ea 2.1 ¢
attaching a factor 1/Dk("5 [Eq. (3.2) with ij,?=3] to each 2nd'rom q.2.18, one gets
vertex with an external pion of momentukn and replacing . * (m,a,)?"(2n+1)2"2
the standard Feynman propagator in theand p-exchange F (koK)= (Mzentir gz > o
diagrams by the solitary meson propagator, @qL8 for the n=0 Dyn [k*+(2n+1)"m7]

o andp mesons, respectively. To describe a self-interacting K2 m?
pion in the intermediate state one has to modify the two- X— 7 (5.4)
particle propagator of the Bethe-Salpet@S) scattering k?—(2n+ 1)2me
equation
Recall that the proper normalization constant was designed
TP, P S) =P, ,Pu.S) to yield iniP .(k,), a pole with residué atk?=m?. Thus
d*q F.(ko;|k|)=1 at the pion pole. The reduction of the Bethe-
+ f ——W(p),.0,,,5)G(d,.5)T(q, .0, .S), Salpeter equation, E@5.1), for solitary mesons can now be
(2m)* performed in analogy to the development of E§3) by the
(5.1) substitution
wherep,,, q,, andp;, are the momenta of the incoming, iP (Pt ky=0,)Se(a,)— 8(do— €n)GsnlQ.S),

intermediate, and outgoing nucleon, respectively. The in

; . . ! where
coming particles are on their mass shell, i.e.,

= = - 2 - Vo€ —';/(i+M
po=Vp*+M?=ey and ko= VK2 +mZ=e,. Gsn(0.8)= —=F (e ild) 0 —=——. (55
Vs p’—q’+ie
In the center of mas&.m,) system one gets
&.m) sy g Inserting Eq.(5.5) into the Bethe-Salpeter equation, E§.1)
s=(p,tk,)?=(p,tk,)?=(ent€,)?, and performing a partial wave decompositidri], the one-
dimensional scattering equation for the partial wavaatrix
and the pion momenta will be omitted since results o denotegp| and/ stands fof{L,T,J})
ku=(\S=po,—p) andk;=(Vs—py,—p’). T,(p',p,8)=V,(p'.p,S)
The BS propagator then becomes + JO q2dqV,(p',9,5)Ger(9,8) T (. p,S),
G(9,,8)=1P(p,+k,—0d,)S(q,). (5.2
(5.6
It is important to note that in Eq5.2) the solitary meson
propagator is used for the intermediate pions instead of th¥/here
Feynman propagator. Due to the proper normalization, M F_(e.:q)
iP.(k,) now carriesby constructiona sufficiently strong Gen(9,8) = ASLAN ] (5.7
decay with increasing momentum to regularize all diagrams (27)3s p?—q?+ie

so that phenomenological form factors are not needed.

In the model of Pearce and Jennirfd4], there are two Explicit forms for the pseudopotential¥/, , corresponding
different reduction schemes for the four-dimensional equato the Feynman amplitudes in Fig. 2, evaluated with the
tion, Eq.(5.1). We use the “smooth-propagator” formalism model of Pearce and Jennings, are listed in REf]. The
since it has the correct one-body limif25]. The OSBEP pseudopotentials then are obtained by replacing the
Blankenbecler-Sugar reduction does not have this propertform factors with 1;(/Dk(”5 for each pion leg of momentum
While this is not a major problem for equal-mass systems* and by substituting the Feynman propagators with the
such asNN scattering, it may cause problems in a study ofsolitary meson propagators in tie and p-exchange ampli-
7N scattering. In conventional models, the reduction is pertudes. Phase shifts are then calculated from the on-3hell
formed using the substitutioil] matrix on defining the density of states by
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TABLE Il. The optimal parameter values of our OSBEP model.
The parameters influencing phase shift calculations folNtNeand
7N scattering systems are indicated.
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TABLE IV. y?/datum for the OSBEP and several potential
models. Data ang? values for the Nijm93 and Paris potential were
taken fromsaD [35].

Name Value NN 7N Model No. of parameters  np? pp° Total
g% /4m 13.75(fixed) X X OSBEP 8 2.9 6.7 4.1
o, 0.7471 X X Nijm93 15 5.6 2.2 4.5
K, 3.3982 X X Bonn-B 15 12.1 538 10.1
gf,/47-r 0.0745 X Paris ~60 12.5 2.3 9.2
2
/4 1.6725 X
9’5 i 4Energy bin 1-300 Me\WY(2713 data poinjs
g, /4T 22.499 X b . -
5 14 122415 « Energy bin 1-300 Me\(1292 data poinjs
ggo ' °pp versiong? /47=8.8235, see Ref20].
g5 l4m 8.9523 fip) X 1
02 lAm 8.8461 pp) X _ _ : :
g2/1477 1.4172 N involved with both potentials. Hence those two play a crucial
2 ' role in the determination of our optimal parameter set of
9, an0pl4T 5.7047 X : -
values. We noticed that, when theN data alone are consid-
OonnOqldm —0.7434 X .
2" 1 0.213954(fixed) « ered, a rather low value @f ; (around 0.4is favored. Alone,
3“NA & ' 0.1829 « the NN system is much better described with a valuexgf
A =U.

) 2i
disGsn(Q,S) = — FP(DW(D‘Q),

and with Eq.(5.7) to have

=P F (e
p(p _(277)32\/5 w€7:0),

so that defining
7(p)=—7p(P)T(p.p)
the phase shifts can be specified by
Im7,(p)

5,.(p)= arctanw.

VI. RESULTS
We calculated th&IN and 7N phase shifts separately and

of about 0.7. However, this larger value can be reconciled
with the 7N data. To do so one must set the valuexoés
low as possible without losing much accuracy in fits to the
NN data.

We emphasize a good fit of tHéN phase shifts as they
are determined more accurate than are i phases and
stay from a larger database. Therefore, first we adjusted the
parameters of the model to find a fit to tN& data. It turned
out to be even better than in our earlier wpa0]. Then, we
used the remaining parameters imrll analysis to perform a
fit with respect to the SM95 phase shift analyg?§]. We
used those in preference to the Karlsruhe-Helsinki phases
[28] as the SM95 data have associated error bars which allow
us to make a weighted fit. The ultimate parameter set values
are listed in Table II. From those values note that #i¢N
coupling constant is smaller than the valueg§f47r= 14.4
previously used. The first indication that such should be so
came from a Nijmegen analysj&9] which suggests?,,
=0.0745 and thug?/47=13.79 when our values for the
pion and nucleon masses are used. Also, Arndt and co-
workers with their analysis ofrfN scattering[30] have de-
duced a similar value. We confirmed that Arndt result in an

compared the results with the latest single-energy phase shiftdépendent analysi81] and so we fixed therNN coupling

analyses; SM9726] for NN and SM9527] for 7N scatter-

constant to that value, viz.

ing, respectively. Since there are no phenomenological form

factors in our model and the scaling law relates all meson
nonlinearities to the pion self-interaction coupling constant
a,., that constant and the meson-baryon and meson-meson

2

coupling constants were the only parameters we adjusted to

achieve fits to data. Of these parameters, the tensor-vector

ratio k and the pion self-interaction coupling constaftare

TABLE lll. Bare and renormalized values for nucleon afid

masses and coupling constants. The bare values are used in tE

pseudopotentials for the nucleon aAdpole diagrams in thé;
and P33 channel, respectively.

M [MeV]  g%/4mr My [MeV]  gi\u/4m
bare 1346.51 1.8687 1027.80 0.0437
dressed 938.926 13.75 1232 0.2139

g

—T -13.75. (6.2

4

TABLE V. The properties of the deuteron.
Bonn-B[21] OSBEP Exp. Ref.
3 [MeV] 2.2246 2.22459  2.22458900(22) [36]

iy 0.8514 0.84568  0.857406(1) [37]
Qq [fm?] 0.278% 0.2728 0.2859(3) [38]
Ag [fm~17?] 0.8860 0.8788 0.8802(20) [39]
D/S 0.0264 0.0256 0.0256(4) [39]
F rms [fM] 1.9688 1.9554 1.9627(38) [38]
Pp [%] 4.99 6.00

aMeson exchange current contributions not included.
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FIG. 3. np phase shifts. The Arndt SMY85] phase shiftgcircles are compared with the phase shifts calculated using the Nijmp3
(dotted, Bonn-B[21] (dashegl Paris[8] (dash-dottef potentials, and with our OSBE®olid).

The wNA coupling constant is then fixed by the quark-modellt should be noted that the large value of the pion self-

relation[32]

Oona 72(

m,\2 g%
4 _E

2M/ 4z

interaction coupling constant{0.7) can only be used in the
7N potential if the #NA coupling constant is set to that
quark model value. If one uses the valyfg,,/47=0.36, as
chosen for most othetrN potentials, the fit is much worse.
Another important feature in Table Il is the sign of ther 7
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FIG. 4. SYMnp phase shifts for the couple@SD,; and PF, channels with notation as in Fig. 3.

coupling constant. In the work of Pearce and Jennjids in the relevant channels. First, we adjusted the other param-
this coupling is positive and very largeg{,.9,/47  eters to fit the phase shifts in the nonresonant channels. After
=143.6), which may be caused by the rather low cutoffthat, there was but one bare mass and coupling constant for
mass (~500 MeV) they use in the form factor of theNN  the nucleon and which reproduced the phase shifts in the
ando 7 vertices. Such a cutoff is very abrupt. Furthermore,P1; and P33 channels, respectively. By this procedure, in
using a model based on correlated two-pion exchange derinciple the bare parameters were functions of the other
rived from dispersion relations, Sdawet al. [13] found the  parameters too. The results are given in Table Ill. The values
sign of the producy, ..d, should be negative. of the parameters in Table Il involved with tiNdN potential
Since theA and nucleon pole diagrams are iterated in theare very similar to those found using our origitpire NN)
7N scattering equation, one has to use the bare values f@otential[20]. The proper normalizations of the and 5 are
masses and coupling constants in the kernel of the integrahe only features that vary, it is not surprising that the only
equation for theP33 and P4, channels, respectively. In prin- significant change in the parameter values is that for the
ciple, these values are related to the physical ones by theNN coupling constant the present result being considerably
renormalization procedur@3]. We simplified the model by less than the former value of 0.7020] and that for the
finding the bare values that optimize the fit to the phase shiftself-interaction coupling constant ., the present result
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law, Eq. (4.1, keeps the vector and scalar self-interaction
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FIG. 5. SYM pp phase shifts. The Arndt SMY85] phase shiftgcircles are compared with the results of calculations made using the
Nijm93 [7] (dotted, Bonn-B (dashed, see Relf20]), Paris[8] (dash-dottefpotentials, and with our OSBEolid).

being much larger than found with the fit usingf?=1

coupling constants close to the values determined by the
(therea,=0.44065[20]). However, the generalized scaling older fit.

We have used OSBEP to fiiN phase shifts(to 300
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FIG. 6. wN phase shifts. The SM927] (dotg and KH80[28] (squaresphase shift analyses compared with results of calculations made
by Pearce and Jenning$1] (dasheg, Schuz et al.[13] (dotted, and with our OSBEP modékolid).

MeV) for numerous angular momentum channels and to fit The phase shifts for diverse channels are compared with
7N phase shift data in ab andP channels to a momentum data and the predictions of standard models in Figs. 3—5 for
of 500 MeV/c. Excellent fits have been obtained as is evi- N scattering and in Fig. 6 forrN scattering. In Fig. 3 the
dent from Table IV in which the(zldatum With_respect to np phase shifts for uncoupled channéis 3F ) are shown.

the worlq SNN database are listed in comparison to thoseThe OSBEP results are as good as if not better than those of
found with standard models. A byproduct is that OSBEIDthe standard models with rare exception. That is also the case
yields excellent results for the properties of the deuteron. . e exception. .

hWlth the coupled channels in Fig. 4. Finally, in Fig. 5, we

They are listed in Table V wherein comparison is made wit X )
the experimental values and with those associated with the"oW thepp phase shifts to which OSBEP does as well as

Bonn-B force. the conventional potential calculations.
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The S andP wave channel phase shifts faiN scattering 0.08
as given by OSBEP and two other model calculations are
compared with data in Fig. 6. The OSBEP results are again
good and of a quality comparable to that found with the other
model results.

However, while the OSBEP fit to thBIN data is very —  0.04
satisfactory, providing at least the same quality as conven- g

tional models with a minimum number of the parameters, the :

0.06

7N fits could be further improved. Especially, in ti8; 0.02 -
channel, inclusion of théd* (1535) resonance would con-

tribute by increasing the value of the phase shifts at energies

above 400 MeV[34]. We note also that the width of the 0.00 F—e~=¢-— 4

resonance in th®;; channel predicted by OSBEP is not as I TO--e..

accurate as those found with the conventional models. The —0.02 . &+ "f\\o\ )
resonance is produced mainly from the background potential o ' 50 ‘ 20 ' 60 ' 80
and not just from the\ pole diagram alone and which re- m, [MeV]

flects in the rather low value of the bade mass listed in

Table IlI. At the same time, the background potential has to  FIG. 7. Swave scattering lengths fromN scattering calcula-

compensate for the negligible effect of thé& (1535) in the  tions made using OSBEP as a function of the pion mass.

S;;1 channel phase shifts. Inclusion of this resonance in the

nmec:d dez;t\z/avokllgtj?\gltt?rr:;l?luzgtgr}ﬁr\?v\;ith:nfgrtr(r)]etzz@agi?want_he scattering alone. This relation serves to significantly reduce

. . : . P 9 the number of parameters existent in our model below that

SM95 phase shiftgdotg with their error bars as experimen- uired with all other methods. The model phase shifts

tal input to a search. Thus, the OSBEP phases must devial&Y ) " P

from the KH80 phase shifts valuésquaresin the 5 chan- agree very well with those found using the lati$t and 7N

nel phase shift analyses and, with the properties of the deuteron.
To test whether the model restores chiral symmetry in thd N€ accuracy of the fits are comparable to those given by

limit m_—0, we calculate th&wave scattering lengths and conventional potential models f&¢N and 7N, respectively.

compare them with the Weinberg-Tomozawa relations In the future we hope to apply this model in analyses of
pion production processes. It is well known that a proper

) description of the very accurate data near threshold demands
a;=3(as, +2as,)=0O(m7) aNN final state interaction as well assN T matrix that are
consistent with each other. The solitary boson exchange po-
and tential fulfills this need. Use of OSBEP to analyzer scat-
tering is another interesting aim. It would be a serious test
for this model to see if the dynamics of solitary mesons are
a- :§(asn_ as, )=0(m,) compatible with such data and if the model can maintain the
consistency we have found by studying tNeN and 7N

derived from the soft-pion theorems. The scattering length§YSte€mS. _ _

are plotted as a function of the pion mass in Fig. 7. It is Finally we note a need to perform a refined simultaneous
obvious that both slopes follow the Weinberg-Tomozawa refit to NN and 7N and the calculation ofrN scattering ob-
lations nicely and thus the model of solitary mesons does ndi€rvables. Since the simultaneous fitN&l and 7N data is
contradict the soft-pion theorems. very time consuming, the phase shifts shown here were ob-
tained first by fitting theNN data and then by adjusting the
remaining three parameters to fit thé\ data. Therefore, the
quality of fit to theNN phases is better than that to thé\

In this work we have shown that the one solitary bosonones. However, the accuracy of our results convince us that
exchange potential OSBEP can be extended to describe she solitary boson exchange potential works consistently for
multaneouslyNN and 7N scattering data. With this ap- NN and N interactions.
proach, we have no problem in having a consistent descrip-
tion of both systems. There is no incompatibility of th&IN
form factor in particular. Since our soli_tary boso_n exchange ACKNOWLEDGMENTS
method regularizes the self-energy diagramriori, the
model enabled us to obtain consistently finite scattering am- The author would like to thank K. Amos from the Uni-
plitudes forNN as well as7N scattering. Additionally, we versity of Melbourne for intensive review of the manuscript.
were able to retain the empirical scaling relation which al-This work was supported in part by Forschungszentrim Ju
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