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Consistent description ofNN and pN interactions using the solitary boson exchange potential

L. Jäde
Theoretische Kernphysik, Universita¨t Hamburg, Luruper Chaussee 149, D-22761 Hamburg, Germany

~Received 13 February 1998!

A unified description ofNN and pN elastic scattering is presented in the framework of the one solitary
boson exchange potential~OSBEP!. This model already successfully applied to analyzeNN scattering is now
extended to describepN scattering while also improving its accuracy in theNN domain. We demonstrate the
importance of regularization ofpN scattering amplitudes involvingD isobars and derivative meson-nucleon
couplings, as this model always yields finite amplitudes without recourse to phenomenological form factors.
We find an empirical scaling relation of the meson self-interaction coupling constants consistent with that
previously found in the study ofNN scattering. Finally, we demonstrate that the OSBEP model does not
contradict the soft-pion theorems ofpN scattering.@S0556-2813~98!00907-8#

PACS number~s!: 13.75.Cs, 13.75.Gx, 11.10.Lm, 21.30.2x
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I. INTRODUCTION

In low- and medium-energy hadron-hadron physics,
NN andpN interactions play a most significant role in o
understanding of the dynamics of strong interactions. In t
energy regime, specific effects of quantum chromodynam
~QCD! are hidden in effective degrees of freedom such
baryon and meson fields. There are a number of mo
which address this problem, of which there exist QCD
spired approaches whose aim is to connect phenomen
fundamental QCD features, such as chiral symmetry. W
this approach,NN @1–4# and pN @5,6# interactions have
been sought with means that led to fundamental insights s
as thepN low-energy theorems. But to date, none of the
QCD inspired models give an accuracy in description of
perimental data as that provided by phenomenological bo
exchange@7–13# or inversion potential investigations@14–
17#. It seems that chiral symmetry is not a dominant factor
theNN andpN scattering observables up to elastic thresh
@18#. Nonetheless, even a chiral symmetry breaking phen
enological approach should be based on concepts w
eventually connect to a chiral symmetry maintaining mod
As our analysis will show, chiral symmetry is restored in t
boson exchange model in the limitmp→0.

A useful exercise is to interpolate between the QCD
spired and the accurate phenomenological hadron-hadro
teraction models. We do so using the one solitary bo
exchange potential~OSBEP! in application toNN scattering
@19#. The basic idea is to parametrize the effects of ch
symmetry via nonlinear terms in the meson Lagrangian w
a structure equivalent to the linears model. In contrast to
that linears model, we do not impose symmetry conditio
on coupling constants and masses. Rather we take thes
tities as free parameters so breaking chiral symmetry to s
extent. Then, we solve the decoupled nonlinear meson
equations analytically and quantize the quasiclassical s
tions, so definingsolitary mesons, to obtain the propagator
Proper normalization of the meson fields then ensures tha
self-energy diagrams remain finite. A notable result of t
approach is that the coupling constants and masses obe
empirical scaling law; one which is similar to the symme
constraints of chiral models. Our hope is that this scaling
can be related to some underlying symmetry eventually.
PRC 580556-2813/98/58~1!/96~12!/$15.00
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The OSBEP model has been determined successfull
np andpp interactions@20#. Thus we now seek its extensio
to provide a consistent model for bothNN andpN interac-
tions. To do so, we must include theD isobar specifically
and use a chiral symmetry conserving pseudovector~PV!
pNN meson-baryon coupling rather than the pseudosc
~PS! coupling used previously@20#. As a consequence, th
proper normalization in the OSBEP model has to be adjus
to provide finite results for the self-energy diagrams invo
ing D isobars and derivative meson-baryon vertices. The r
of the parameters which enter theNN potential even yields
an improvement to the quality of the original model fit. B
the major achievement is that we now have a unified fram
work for bothNN andpN interactions.

Consistent application of a potential model inNN as well
aspN interactions has long been an unresolved puzzle.
major concern is that thepNN form factor differed in analy-
ses of these systems. TheNN data demand a rather har
cutoff mass~e.g.,LpNN51.7 GeV in the Bonn-B potentia
@21#!, and that value cannot be reconciled with the mu
softer cutoff necessary to fitpN data below 1 GeV. Schu¨tz
et al. @13# conjecture the reason to be that the form fact
depend on all momenta in the external legs of the vertic
However, Holzwarth and Machleidt@22# state that it is im-
possible to describeNN andpN interactions consistently if
one uses an analytical parametrization such as the mono
form of most boson exchange models, and instead propo
Skyrme-model form factor which might be appropriate f
both systems. However, to our knowledge, no poten
model involving a form factor parametrization exists to da
that not only sensibly describes both systems but also giv
sufficiently accurate fit to scattering data.

As indicated above, we have found a unifiedNN andpN
potential built upon the OSBEP model for the form facto
Since all self-energy diagrams are regularizedby construc-
tion in this model, it is corollary that finite scattering ampl
tudes result for both scattering systems. More important,
to NN as well aspN data have given a consistent parame
set which provides an agreement with the data as good
found using the best conventional and separateNN or pN
models. A notable feature of our result is the low number
parameters we have to specify. There are no adjustable c
96 © 1998 The American Physical Society
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PRC 58 97CONSISTENT DESCRIPTION OFNN AND pN . . .
masses in our model and many possible parameters o
meson nonlinearities are not as they are interrelated b
simple scaling relation which leaves the pion self-interact
coupling constant only as adjustable parameter. Besides
the only parameters we have, therefore, are the meson-m
and meson-baryon coupling constants which are not fixed
experiment or symmetry relations.

After we give an overview of the main concepts of t
OSBEP model in Sec. II, we show in Sec. III how the prop
normalization serves to yield finite scattering amplitudes.
also introduce the scaling law for the masses and s
interaction coupling constants in Sec. III. After that, w
briefly sketch the application inNN scattering in Sec. IV.
Finally, in Sec. V, we present thepN solitary boson ex-
change potential and in Sec. VI we compare the results
NN and pN phase shifts given by this unified model wi
those obtained using conventional models and empir
phase shift analyses. Additionally, we address the problem
chiral symmetry by calculating scattering lengths as funct
of the pion mass and show that our model does not contra
the Weinberg-Tomozawa relations.

II. THE OSBEP MODEL

Motivated by the linears-model approach@23#, we as-
sume that nonlinear self-interactions for each meson fi
(b5p,h,r,v,s,d) entering the boson exchange potent
lead to meson Lagrangians

Lb5
1

2
~]mFb]mFb2mb

2Fb
2 !2

l1
b

2p12
Fb

2p12

2
l2

b

4p12
Fb

4p121Lint . ~2.1!

Note that by choosing proper values forl1
b , l2

b , andp, one
can retain the structure of the linears model. For conve-
nience, spin and isospin indices are dropped. The Lagran
Lint contains meson-meson as well as meson-baryon ver
which enter theNN andpN scattering amplitudes and wi
be discussed below.

The main assumption now is that ast→6`, the meson
fields only decouple fromexternalsources and thus the non
linear self-interaction current has to appear in the field eq
tion for each Fourier component

]m]mFb~x,k!1mb
2Fb~x,k!1l1

bFb
2p11~x,k!

1l2
bF4p11~x,k!50. ~2.2!

Quasiclassical solutions can be obtained by the metho
base functions@24#. Essentially, one makes the ansatzF
5F(w), where w are free wave solutions of the Klein
Gordon equation. This reduces Eq.~2.2! to an ordinary dif-
ferential equation which is solved by direct integration a
the solutions can be expressed as a power series inw. As a
naive quantization rule, inserting free wave operators
w(x,k) gives thesolitary meson fieldswith

Fb~x,k!5 (
n50

`

Cn
1/2p~wb!bb

nwb
2pn11~x,k!, ~2.3!
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where

wb~x,k![
1

A2vkVDk
~b!

ab~k!e2 ikx. ~2.4!

Here,V is the volume of the system andvk5(kW21mb
2)1/2.

Note that we have used a factor 1/ADk
(b), a Lorentz-invariant

function ofk, which is of use in the proper normalization o
the solitary meson fields that we give later in Sec. III. T
coefficientsCn

a(x) are Gegenbauer polynomials andwb and
bb are functions of the coupling constants and the orderp of
the self-interaction, namely,

wb5
1

bb

l1
b

4~p11!mb
2

, ~2.5!

where

bb5AS l1
b

4~p11!mb
2 D 2

2
l2

b

4~2p11!mb
2
. ~2.6!

After solution of the field equations the interactions betwe
mesons and baryons are treated perturbatively, and we
sume thatLint contains the following couplings.

Scalar meson-baryon coupling (b5s,d):

Lmbb
~s! ~x!52gb :C̄~x!C~x!:F̃b~x!. ~2.7!

Pseudovector meson-baryon coupling (b5p,h):

Lmbb
~pv !~x!5

gb

2M
:C̄~x!g5gmC~x!:]mF̃b~x!. ~2.8!

Vector meson-baryon coupling (b5r,v):

Lmbb
~v ! ~x!5gb :C̄~x!FgmF̃b

m~x!1
kgb

2M
smn]mF̃b

n ~x!GC~x!:,

~2.9!

where

smn5
i

2
@gm ,gn#.

pND coupling:

LpND~x!5
gpND

mp
C̄~x!T̂W @xDgmgnCD

n ~x!1CD
m~x!#]mF̃W p~x!

1H.c. ~2.10!

spp coupling:

Lspp~x!5
gspp

2mp
F̃s~x!]mF̃W p~x!]mF̃W p~x!. ~2.11!

rpp coupling:

Lrpp~x!5grppF̃W r
m~x!@F̃W p~x!3]mF̃W p~x!#. ~2.12!

In these couplingsC(x) are nucleon isospinors and, fo
isovector mesons, the operatorF̃b(x) has to be replaced by

tWF̃W b(x). To avoid double counting, the vertex operator is
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weighted projection of the sum over all Fourier compone
of the solitary meson field given in Eq.~2.3!, i.e.,

F̃b~x!5 (
N,N8,kW

1

AN8!
uN8,k&^N8,ku

3[Fb(x,k)1Fb
†(x,k)] uN,k&^N,ku

1

AN!
.

~2.13!

Since the propagator is used as the probability for a soli
meson to move between the interaction verticesx andy, we
must define it using the fields defined in Eq.~2.13! by

iPb~x2y!5^0uTF̃~x!F̃~y!u0&. ~2.14!

Inserting Eq.~2.3! into Eq.~2.13! one obtains the momentum
space amplitude@19#

iPb~k2,mb!5 (
n50

`

@Cn
1/2p~wb!#2

bb
2n

~2V!2pn

3
~2pn11!2pn22

Dk,n
~b!2pn11~kW21Mn,b

2 !pn
iDF~k2,Mn,b!,

~2.15!

with the Feynman propagator being

iDF~k2,Mn,b!5
i

k22Mn,b
2

, ~2.16!

and a mass spectrum given by

Mn,b5~2pn11!mb .

The normalization,Dk,n
(b) in the propagator Eq.~2.15!, is ob-

tained from the normalizationDk
(b) in Eq. ~2.4! by substitut-

ing

km→
1

2pn11
km.

It is useful at this point to introduce dimensionless coupl
constantsab , a1

b , anda2
b , respectively,

ab5
bb

~2mbV!p
,

a1
b5

l1
b

4~p11!mb
2~2mbV!p

,

a2
b5

l2
b

4~2p11!mb
2~2mbV!2p

. ~2.17!

The final amplitude, which we define to be thesolitary me-
son propagator, then is
s

ry

iPb~k2,mb!5 (
n50

`

@Cn
1/2p~wb!#2

3
~mb

pab!2n~2pn11!2pn22

Dk,n
~b!2pn11~kW21Mn,b

2 !pn
iDF~k2,Mn,b!,

~2.18!

with

wb5
a1

b

Aa1
b22a2

b
. ~2.19!

For p51/2, one gets the amplitude for scalar fields wh
with p51 the amplitude is that for pseudoscalar particl
Vector mesons requirep to be 1 and each term of the sum
multiplied with a Minkowski tensor,

f n
mn5S 2gmn1

kmkn

Mn,v
2 D . ~2.20!

III. PROPER NORMALIZATION

The proper normalization constant in Eq.~2.18! is now
fixed by physical boundary conditions. First, we impose
constraints familiar from renormalization theory, i.e., t
propagator has to have a pole of residuei at the on-shell
point,k25mb

2 . In addition, we assume that~i! all amplitudes
are Lorentz invariant,~ii ! Dk

(b) is dimensionless and large
than unity,~iii ! the fields vanish when the interaction va
ishes, and, most important,~iv! all self-energy diagrams ar
finite. This leads to the ansatz

Dk
~b!5H 11F S 1

a1
b4~p11!~2mb!pD 2/p

1S 1

a2
b4~2p11!~2mb!2pD 1/pG

3~AkW21mb
22k0!2J Npn

~b!

.

~3.1!

In the case that there is only one nonlinear term in the
grangian (a2

b[0), the term in Eq.~3.1! containinga2
b is to

FIG. 1. pND vertex correction.
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PRC 58 99CONSISTENT DESCRIPTION OFNN AND pN . . .
be deleted. The exponentNpn
(b) can be chosen for each meso

type to yield finite scattering amplitudes. At this point, it
crucial to note that assuming a momentum-dependent
malizationDk

(b) for the fields in Eq.~2.3! alwaysgives finite
self-scattering amplitudes for all interactions. Even in ca
where the interaction is nonrenormalizable in standard m
els, such as with massive spin-1r and v mesons, our
method can be applied. On the other hand, an ene
dependent normalization affects the canonical commuta
relations in coordinate and momentum space. The equal-
commutator of the field operator and its conjugate mom
tum is no longer ad function d(xW2xW8) in coordinate space
as in conventional field theoretical models, but approach
finite value for xW5xW8 and vanishes otherwise. This can
interpreted as a finite particle size due to the self-interact
Another important point of the model is that causality
preserved since the equal-time commutators of the fields
main unchanged, i.e.,

@Fb~xW ,t;k!,Fb~xW8,t;k!#5@F̃b~xW ,t !,F̃b~xW8,t !#50.

To determineNpn
(b) one has to consider the most diverge

self-energy amplitude for each type of meson. For scalar
vector mesons, this is the first correction to the two-po
function, Eq.~2.14!. Whereas for scalar mesons it is suf
cient to choose

Dk
~s!5O~k2!⇒Npn

~s!51,

for vector mesons one has to use

Dk
~v !5O~k4!⇒Npn

~v !52,

due to the additional momentum dependence in Eq.~2.20!.
For the pion however, thepND vertex correction~see Fig.
1! is the most divergent amplitude. The combination of d
rivative coupling in Eq.~2.10! and theD propagator which
grows linearly with momentum, requires a strong normali
tion for the pion. Therefore we have to choose

Dk
~ps!5O~k6!⇒Npn

~ps!53,

FIG. 2. Feynman-diagrams for thepN interaction.
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to obtain finite results for all self-energy diagrams inNN and
pN interactions. The meson masses and normalizations u
are listed in Table I. Note that in our former work@19,20#,
Npn

(ps)51 sufficed since we used PS coupling for thepNN
and hNN vertex and theD isobar was not treated. Thi
modification now demands a refit of the parameters ente
theNN potential to maintain~or improve upon! the accuracy
of fits to data.

IV. APPLICATION TO NN INTERACTIONS

The concept of theNN solitary boson exchange potenti
is very similar to the Bonn-B OBEP@21#. It has been de-
scribed in detail in Refs.@19# and@20#. The inclusion of the
D isobar and the PV coupling for thepNN andhNN verti-
ces do not significantly change the actual form of the pot
tial. The D intermediate states do not contribute in the o
boson exchange approximation and the PV coupling on-s
is identical to, and off-shell is very similar to the PS couplin
when the potential is evaluated in the Blankenbecler-Su
~BbS! reduction of the Bethe-Salpeter equation@9#. Negative
energy states do not contribute. We note also that Machl
@21# has shown that by slightly changing the parameters,
possible to obtain equally good results for the Bonn-B p
tential using either the PS or PV coupling. We confirm th
result and obtain fits of similar quality with both PS and P
coupling. The most important modification in theNN poten-
tial is to change the proper normalization exponentNpn

(b) of
the pseudoscalar mesons (p and h). The question arises
whether the empirical scaling relation for the self-interacti
coupling constants and masses, found in a previous comp
son of the solitary meson propagator to the Bonn-B fo
factors@19#, remains valid. Using the strong normalizatio
Npn

(b)53 for p and h, a similar analysis indicates that th
scaling relation generalizes to

ab

ANpn
~b!

5
ap

ANpn
~p!S mp

mb
D p

, ~4.1!

and thus still serves to minimize the number of parame
we need to specify. Note that we simplified the model
setting a2

b50 so thatab5a1
b is the only self-interaction

parameter for all mesons. In the linears model, which mo-
tivated our ansatz for the nonlinear terms in the meson
grangian, chiral symmetry also demandsa2

b50 for pseudo-
scalar and vector mesons. On the other hand, this does
apply for scalar mesons. However, the scalars meson in the
potential model serves as a parametrization of two-pion

TABLE I. Meson masses and proper normalizations associa
with OSBEP.

b p h r v s d

mb @MeV# 138.03a 548.8 769 782.6 550b 983
Npn

(b) 3 3 2 2 1 1

aFor the pp potential, we used the neutral pion massmp0

5134.9764 MeV.
bFor theT50 np potential, we adoptedms5720 MeV from the
Bonn-B potential.
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100 PRC 58L. JÄDE
change. It is not a fundamental particle as considered in
s model. The second scalar meson,d only contributes a
little.

V. THE pN SOLITARY BOSON EXCHANGE POTENTIAL

The structure of thepN boson exchange potential wa
adopted from the work of Pearce and Jennings@11#. The only
changes arise for the form factors which can be dropped
to the proper normalization of the solitary meson fields a
the three-dimensional reduction of the scattering equatio
account for solitary mesons in the intermediatepN states.

Using the Lagrangians in Eqs.~2.7!–~2.12!, the diagrams
in Fig. 2 can be evaluated using standard Feynman ru
attaching a factor 1/ADk

(p) @Eq. ~3.1! with Npn
(p)53] to each

vertex with an external pion of momentumk, and replacing
the standard Feynman propagator in thes- andr-exchange
diagrams by the solitary meson propagator, Eq.~2.18! for the
s andr mesons, respectively. To describe a self-interact
pion in the intermediate state one has to modify the tw
particle propagator of the Bethe-Salpeter~BS! scattering
equation

T~pm8 ,pm ,s!5V~pm8 ,pm ,s!

1E d4q

~2p!4
V~pm8 ,qm ,s!G~qm ,s!T~qm ,pm ,s!,

~5.1!

where pm , qm , and pm8 are the momenta of the incoming
intermediate, and outgoing nucleon, respectively. The
coming particles are on their mass shell, i.e.,

p05ApW 21M2[eN and k05AkW21mp
2 [ep .

In the center of mass~c.m.! system one gets

s5~pm1km!25~pm8 1km8 !25~eN1ep!2,

and the pion momenta will be omitted since

km5~As2p0 ,2pW ! and km8 5~As2p08 ,2pW 8!.

The BS propagator then becomes

G~qm ,s!5 iPp~pm1km2qm!SF~qm!. ~5.2!

It is important to note that in Eq.~5.2! the solitary meson
propagator is used for the intermediate pions instead of
Feynman propagator. Due to the proper normalizati
iPp(km) now carriesby constructiona sufficiently strong
decay with increasing momentum to regularize all diagra
so that phenomenological form factors are not needed.

In the model of Pearce and Jennings@11#, there are two
different reduction schemes for the four-dimensional eq
tion, Eq.~5.1!. We use the ‘‘smooth-propagator’’ formalism
since it has the correct one-body limit@25#. The
Blankenbecler-Sugar reduction does not have this prope
While this is not a major problem for equal-mass syste
such asNN scattering, it may cause problems in a study
pN scattering. In conventional models, the reduction is p
formed using the substitution@11#
e

ue
d
to

s,

g
-

-

e
,

s

-

ty.
s
f
r-

iDF~pm1km2qm!SF~qm!→d~q02eN!Gsm
lin ~qW ,s!,

where

Gsm
lin ~qW ,s!5

2p

As

g0eN2gW qW 1M

pW 22qW 21 i e
. ~5.3!

This propagator is transformed to describe solitary mes
simply by setting

iPp~km![ iDF~km!Fp~km!5
i

k22mp
2

Fp~km!,

and from Eq.~2.18!, one gets

Fp~k0 ;ukW u!5 (
n50

`
~mpap!2n~2n11!2n22

Dk,n
~p!2pn11@kW21~2n11!2mp

2 #n

3
k22mp

2

k22~2n11!2mp
2

. ~5.4!

Recall that the proper normalization constant was desig
to yield in iPp(km), a pole with residuei at k25mp

2 . Thus

Fp(k0 ;ukW u)51 at the pion pole. The reduction of the Beth
Salpeter equation, Eq.~5.1!, for solitary mesons can now b
performed in analogy to the development of Eq.~5.3! by the
substitution

iPp~pm1km2qm!SF~qm!→d~q02eN!Gsm~qW ,s!,

where

Gsm~qW ,s!5
2p

As
Fp~ep ;uqW u!

g0eN2gW qW 1M

pW 22qW 21 i e
. ~5.5!

Inserting Eq.~5.5! into the Bethe-Salpeter equation, Eq.~5.1!
and performing a partial wave decomposition@11#, the one-
dimensional scattering equation for the partial waveT matrix
results (p denotesupW u and l stands for$L,T,J%)

Tl ~p8,p,s!5Vl ~p8,p,s!

1E
0

`

q2dqVl ~p8,q,s!Gsm~q,s!Tl ~q,p,s!,

~5.6!

where

Gsm~q,s!5
M

~2p!3As

Fp~ep ;q!

p22q21 i e
. ~5.7!

Explicit forms for the pseudopotentials,Vl , corresponding
to the Feynman amplitudes in Fig. 2, evaluated with
model of Pearce and Jennings, are listed in Ref.@11#. The
OSBEP pseudopotentials then are obtained by replacing
form factors with 1/ADk

(p) for each pion leg of momentum
km and by substituting the Feynman propagators with
solitary meson propagators in thes- andr-exchange ampli-
tudes. Phase shifts are then calculated from the on-sheT
matrix on defining the density of states by
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discGsm~q,s!52
2p i

p2
r~p!d~p2q!,

and with Eq.~5.7! to have

r~p!5
pM

~2p!32As
Fp~ep ;q!,

so that defining

t l ~p!52pr~p!Tl ~p,p!

the phase shifts can be specified by

d l ~p!5arctan
Imt l ~p!

Ret l ~p!
.

VI. RESULTS

We calculated theNN andpN phase shifts separately an
compared the results with the latest single-energy phase
analyses; SM97@26# for NN and SM95@27# for pN scatter-
ing, respectively. Since there are no phenomenological f
factors in our model and the scaling law relates all me
nonlinearities to the pion self-interaction coupling const
ap , that constant and the meson-baryon and meson-m
coupling constants were the only parameters we adjuste
achieve fits to data. Of these parameters, the tensor-ve
ratio k and the pion self-interaction coupling constantap are

TABLE II. The optimal parameter values of our OSBEP mod
The parameters influencing phase shift calculations for theNN and
pN scattering systems are indicated.

Name Value NN pN

gp
2 /4p 13.75~fixed! x x

ap 0.7471 x x
kr 3.3982 x x
gh

2/4p 0.0745 x
gr

2/4p 1.6725 x
gv

2 /4p 22.499 x
gs0

2 /4p 12.2415 x
gs1

2 /4p 8.9523 (np) x
gs1

2 /4p 8.8461 (pp) x
gd

2/4p 1.4172 x
grppgr/4p 5.7047 x
gsppgs/4p 20.7434 x
gpND

2 /4p 0.213954~fixed! x
xD -0.1829 x

TABLE III. Bare and renormalized values for nucleon andD
masses and coupling constants. The bare values are used i
pseudopotentials for the nucleon andD pole diagrams in theP11

andP33 channel, respectively.

M @MeV# gp
2 /4p MD @MeV# gpND

2 /4p

bare 1346.51 1.8687 1027.80 0.0437
dressed 938.926 13.75 1232 0.2139
ift

m
n
t
on
to
tor

involved with both potentials. Hence those two play a cruc
role in the determination of our optimal parameter set
values. We noticed that, when thepN data alone are consid
ered, a rather low value ofap ~around 0.4! is favored. Alone,
the NN system is much better described with a value ofap

of about 0.7. However, this larger value can be reconci
with the pN data. To do so one must set the value ofk as
low as possible without losing much accuracy in fits to t
NN data.

We emphasize a good fit of theNN phase shifts as they
are determined more accurate than are thepN phases and
stay from a larger database. Therefore, first we adjusted
parameters of the model to find a fit to theNN data. It turned
out to be even better than in our earlier work@20#. Then, we
used the remaining parameters in apN analysis to perform a
fit with respect to the SM95 phase shift analysis@27#. We
used those in preference to the Karlsruhe-Helsinki pha
@28# as the SM95 data have associated error bars which a
us to make a weighted fit. The ultimate parameter set va
are listed in Table II. From those values note that thepNN
coupling constant is smaller than the value ofgp

2 /4p514.4
previously used. The first indication that such should be
came from a Nijmegen analysis@29# which suggestsf pNN

2

50.0745 and thusgp
2 /4p513.79 when our values for the

pion and nucleon masses are used. Also, Arndt and
workers with their analysis ofpN scattering@30# have de-
duced a similar value. We confirmed that Arndt result in
independent analysis@31# and so we fixed thepNN coupling
constant to that value, viz.

gp
2

4p
513.75. ~6.1!

.

the

TABLE IV. x2/datum for the OSBEP and several potent
models. Data andx2 values for the Nijm93 and Paris potential we
taken fromSAID @35#.

Model No. of parameters npa ppb Total

OSBEP 8 2.9 6.7 4.1
Nijm93 15 5.6 2.2 4.5
Bonn-B 15 12.1 5.8c 10.1
Paris '60 12.5 2.3 9.2

aEnergy bin 1–300 MeV~2713 data points!.
bEnergy bin 1–300 MeV~1292 data points!.
cpp versiongs1

2 /4p58.8235, see Ref.@20#.

TABLE V. The properties of the deuteron.

Bonn-B @21# OSBEP Exp. Ref.

EB @MeV# 2.2246 2.22459 2.22458900(22) @36#

md 0.8514a 0.8456a 0.857406(1) @37#

Qd @ fm2# 0.2783a 0.2728a 0.2859(3) @38#

AS @ fm21/2# 0.8860 0.8788 0.8802(20) @38#

D/S 0.0264 0.0256 0.0256(4) @39#

r rms @ fm# 1.9688 1.9554 1.9627(38) @38#

PD @%# 4.99 6.00

aMeson exchange current contributions not included.
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FIG. 3. np phase shifts. The Arndt SM97@35# phase shifts~circles! are compared with the phase shifts calculated using the Nijm93@7#
~dotted!, Bonn-B @21# ~dashed!, Paris@8# ~dash-dotted! potentials, and with our OSBEP~solid!.
e lf-

t

.

ThepND coupling constant is then fixed by the quark-mod
relation @32#

gpND
2

4p
5

72

25S mp

2M D 2 gp
2

4p
.

lIt should be noted that the large value of the pion se
interaction coupling constant (;0.7) can only be used in the
pN potential if thepND coupling constant is set to tha
quark model value. If one uses the valuegpND

2 /4p50.36, as
chosen for most otherpN potentials, the fit is much worse
Another important feature in Table II is the sign of thespp
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FIG. 4. SYM np phase shifts for the coupled3SD1 and 3PF2 channels with notation as in Fig. 3.
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coupling constant. In the work of Pearce and Jennings@11#,
this coupling is positive and very large (gsppgs/4p
5143.6), which may be caused by the rather low cut
mass (;500 MeV! they use in the form factor of thesNN
andspp vertices. Such a cutoff is very abrupt. Furthermo
using a model based on correlated two-pion exchange
rived from dispersion relations, Schu¨tz et al. @13# found the
sign of the productgsppgs should be negative.

Since theD and nucleon pole diagrams are iterated in
pN scattering equation, one has to use the bare values
masses and coupling constants in the kernel of the inte
equation for theP33 andP11 channels, respectively. In prin
ciple, these values are related to the physical ones by
renormalization procedure@33#. We simplified the model by
finding the bare values that optimize the fit to the phase sh
f

,
e-

e
for
al

he

ts

in the relevant channels. First, we adjusted the other par
eters to fit the phase shifts in the nonresonant channels. A
that, there was but one bare mass and coupling constan
the nucleon andD which reproduced the phase shifts in th
P11 and P33 channels, respectively. By this procedure,
principle the bare parameters were functions of the ot
parameters too. The results are given in Table III. The val
of the parameters in Table II involved with theNN potential
are very similar to those found using our original~pureNN!
potential@20#. The proper normalizations of thep andh are
the only features that vary, it is not surprising that the on
significant change in the parameter values is that for
hNN coupling constant the present result being considera
less than the former value of 0.702@20# and that for the
self-interaction coupling constantap , the present resul
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FIG. 5. SYM pp phase shifts. The Arndt SM97@35# phase shifts~circles! are compared with the results of calculations made using
Nijm93 @7# ~dotted!, Bonn-B ~dashed, see Ref.@20#!, Paris@8# ~dash-dotted! potentials, and with our OSBEP~solid!.
g
on

the
being much larger than found with the fit usingNpn
(ps)51

~thereap50.44065@20#!. However, the generalized scalin
law, Eq. ~4.1!, keeps the vector and scalar self-interacti
coupling constants close to the values determined by
older fit.

We have used OSBEP to fitNN phase shifts~to 300



ade

PRC 58 105CONSISTENT DESCRIPTION OFNN AND pN . . .
FIG. 6. pN phase shifts. The SM95@27# ~dots! and KH80@28# ~squares! phase shift analyses compared with results of calculations m
by Pearce and Jennings@11# ~dashed!, Schütz et al. @13# ~dotted!, and with our OSBEP model~solid!.
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MeV! for numerous angular momentum channels and to
pN phase shift data in allS andP channels to a momentum
of 500 MeV/c. Excellent fits have been obtained as is e
dent from Table IV in which thex2/datum with respect to
the world’s NN database are listed in comparison to tho
found with standard models. A byproduct is that OSB
yields excellent results for the properties of the deuter
They are listed in Table V wherein comparison is made w
the experimental values and with those associated with
Bonn-B force.
t

-

e

.
h
e

The phase shifts for diverse channels are compared
data and the predictions of standard models in Figs. 3–5
NN scattering and in Fig. 6 forpN scattering. In Fig. 3 the
np phase shifts for uncoupled channels~to 3F3) are shown.
The OSBEP results are as good as if not better than thos
the standard models with rare exception. That is also the c
with the coupled channels in Fig. 4. Finally, in Fig. 5, w
show thepp phase shifts to which OSBEP does as well
the conventional potential calculations.
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TheS andP wave channel phase shifts forpN scattering
as given by OSBEP and two other model calculations
compared with data in Fig. 6. The OSBEP results are ag
good and of a quality comparable to that found with the ot
model results.

However, while the OSBEP fit to theNN data is very
satisfactory, providing at least the same quality as conv
tional models with a minimum number of the parameters,
pN fits could be further improved. Especially, in theS11
channel, inclusion of theN* (1535) resonance would con
tribute by increasing the value of the phase shifts at ener
above 400 MeV@34#. We note also that the width of theD
resonance in theP33 channel predicted by OSBEP is not
accurate as those found with the conventional models.
resonance is produced mainly from the background poten
and not just from theD pole diagram alone and which re
flects in the rather low value of the bareD mass listed in
Table III. At the same time, the background potential has
compensate for the negligible effect of theN* (1535) in the
S11 channel phase shifts. Inclusion of this resonance in
model would simultaneously improve the fit to theP33 chan-
nel data. Note that thepN data fit was performed using th
SM95 phase shifts~dots! with their error bars as experimen
tal input to a search. Thus, the OSBEP phases must de
from the KH80 phase shifts values~squares! in theP13 chan-
nel.

To test whether the model restores chiral symmetry in
limit mp→0, we calculate theS-wave scattering lengths an
compare them with the Weinberg-Tomozawa relations

a15
1

3
~aS11

12aS31
!5O~mp

2 !

and

a25
1

3
~aS11

2aS31
!5O~mp!

derived from the soft-pion theorems. The scattering leng
are plotted as a function of the pion mass in Fig. 7. It
obvious that both slopes follow the Weinberg-Tomozawa
lations nicely and thus the model of solitary mesons does
contradict the soft-pion theorems.

VII. SUMMARY AND OUTLOOK

In this work we have shown that the one solitary bos
exchange potential OSBEP can be extended to describ
multaneouslyNN and pN scattering data. With this ap
proach, we have no problem in having a consistent desc
tion of both systems. There is no incompatibility of thepNN
form factor in particular. Since our solitary boson exchan
method regularizes the self-energy diagramsa priori, the
model enabled us to obtain consistently finite scattering
plitudes forNN as well aspN scattering. Additionally, we
were able to retain the empirical scaling relation which
ready was successfully applied in a precise analysis ofNN
e
in
r

n-
e

es

e
al
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e

te

e

s

-
ot

n
si-

p-

e
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scattering alone. This relation serves to significantly red
the number of parameters existent in our model below t
required with all other methods. The model phase sh
agree very well with those found using the latestNN andpN
phase shift analyses and, with the properties of the deute
The accuracy of the fits are comparable to those given
conventional potential models forNN andpN, respectively.

In the future we hope to apply this model in analyses
pion production processes. It is well known that a prop
description of the very accurate data near threshold dema
a NN final state interaction as well as apN T matrix that are
consistent with each other. The solitary boson exchange
tential fulfills this need. Use of OSBEP to analyzepp scat-
tering is another interesting aim. It would be a serious t
for this model to see if the dynamics of solitary mesons
compatible with such data and if the model can maintain
consistency we have found by studying theNN and pN
systems.

Finally we note a need to perform a refined simultaneo
fit to NN andpN and the calculation ofpN scattering ob-
servables. Since the simultaneous fit toNN andpN data is
very time consuming, the phase shifts shown here were
tained first by fitting theNN data and then by adjusting th
remaining three parameters to fit thepN data. Therefore, the
quality of fit to theNN phases is better than that to thepN
ones. However, the accuracy of our results convince us
the solitary boson exchange potential works consistently
NN andpN interactions.
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FIG. 7. S-wave scattering lengths frompN scattering calcula-
tions made using OSBEP as a function of the pion mass.



s
in

D

. C

el-

,

F.

.

ev.

C

on

H.

II

PRC 58 107CONSISTENT DESCRIPTION OFNN AND pN . . .
@1# T. H. R. Skyrme, Nucl. Phys.31, 556 ~1962!.
@2# J. Wambach, inQuantum Inversion Theory and Application,

edited by H. V. von Geramb, Vol. 427 of Lecture Notes
Physics~Springer, New York, 1994!.
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