
PHYSICAL REVIEW C AUGUST 1998VOLUME 58, NUMBER 2
Canonical form of transition matrix elements

F. Dönau
Institut für Kern- und Hadronenphysik, FZ Rossendorf, 01314 Dresden, Germany

~Received 11 February 1998!

The calculation of complicated transition matrix elements between multiquasiparticle states can be essen-
tially simplified by transforming them in a canonical form. This method allows the extension of the basis space
of generator coordinate studies aiming to include orthogonal quasiparticle excitations into the commonly
considered basis set of collective states. Furthermore, it is shown that the neglect of the exchange contribution
of multipole forces may lead to dangerous pole terms in nondiagonal matrix elements.
@S0556-2813~98!01508-8#

PACS number~s!: 23.20.Js, 21.10.Re, 21.60.Jz
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I. INTRODUCTION

The self-consistent Hartree-Fock-Bogoliubov~HFB!
theory is the appropriate tool to determine the static m
field properties of interacting many-body fermion system
In order to comprehend the collective dynamics of such s
tems as well as for the restoration of broken symmetries
needs to superimpose various HFB states. In this respec
generator coordinate method~GCM! @1# provides the appro-
priate framework to incorporate both collective and sin
particle dynamics into a unified coherent quantu
mechanical formulation. The GCM is known to be a ve
powerful and successful method to describe microscopic
large amplitude collective motion such as, e.g., pair vib
tions, shape coexistence, and shape transitions~see Refs.@2–
4#!. The rigorous application of the GCM requires that w
have stable and efficient algorithms for obtaining the ope
tor brackets, in particular, the Hamiltonian kernel^ZuHuZ8&
and the overlapŝ ZuZ8& between arbitrarily chosen HFB
statesuZ& and uZ8& with any configuration. To have suc
algorithms at our disposal would allow us to perform t
GCM as though it were a shell model diagonalization. T
typical basis set of generator statesuZ& contains quasicon
tinuous ‘‘collective’’ excitations, i.e., a sequence of nono
thogonal HFB states is formed by shifting a collective va
able such as, e.g., the deformation parameter, pair gap,
within a chosen interval. When also including excited HF
states into the GCM basis, i.e., discrete~orthogonal! quasi-
particle excitations from the ground state configuration,
coupling of collective and single particle degrees of freed
can be taken into account.

The techniques given in the literature@5,6# are not suffi-
cient to evaluate the above brackets between HFB st
when also including orthogonal quasiparticle excitations i
the GCM basis set since the formulas imply pole terms
zero overlap between the two HFB states involved. Beca
of these divergencies the nondiagonal matrix elements
factorized multipole interaction are wrong when neglect
exchange contributions. There are also difficulties in con
tently determining the phases of the overlaps and oper
matrix elements which are of crucial importance for act
GCM diagonalizations.

With the methods described below it is possible to cal
late the necessary operator brackets including their phas
PRC 580556-2813/98/58~2!/872~6!/$15.00
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a direct and transparent manner which is otherwise q
complicated@1#. The formulas are formally simple and th
numerical effort is considerably lowered by dimensional
duction.

II. CANONICAL FORM OF TRANSITIONAL BRACKETS

For the subsequent consideration it is useful to spe
both Bogoliubov~‘‘multiquasiparticle’’! states forming the
bra and the ket vector of a bracket^ZuZ8& in the Thouless
representation@7#

^Zu5N* ~Z!^Z0ue1/2(kk8 Z
kk8
* ck8ck,

uZ8&5N~Z8!e1/2(kk8 Z8kk8ck
1c

k8
1

uZ0&. ~1!

In the above equationsck and ck
1 denote then ~even! fer-

mion annihilation and creation operators to thec vacuum,
i.e., the stateuZ0& satisfying

^Z0uck
150, ckuZ0&50. ~2!

The factorsN* (Z) andN(Z8) are for the normalization of
the Bogoliubov states~1!. The antisymmetric Thouless ma
trix Z in Eq. ~1!, and likewiseZ8 are obtainable from the
known Bogoliubov amplitudesU and V using the relation
@1,7#

Z5~VU21!* . ~3!

The UV amplitudes determine the quasiparticle operators

ai
15(

k
~Ukick

11Vkick! ~4!

which provide an equivalent definition of the HFB stateuZ&,
Eq. ~1!, as the quasiparticlea vacuum to the operatorsai

5(ai
1)1, i.e., uZ&}a1a2•••anuZ50&. TheUV matrices are

commonly calculated by solving the general HFB equatio
@1#.

The c vacuum ~2! can be any HFB state and does n
need to be the bare vacuum for real particles. The freedom
this choice enables one to use the representations~1! for
systems with both even and odd numbers of particles.
872 © 1998 The American Physical Society
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PRC 58 873CANONICAL FORM OF TRANSITION MATRIX ELEMENTS
appropriate vacuum of an odd system is, for instance,
particle excited from the bare vacuum. In order to get
Thouless matricesZ andZ8 through the matrix inversion in
Eq. ~3! both states need to have sufficent overlaps with
chosen vacuumuZ0& because it holds that@cf. Eq. ~6!#

udetUu1/25u^Z0uZ&u5uN~Z!u.

Hence, the vacuum overlap of the considered states sh
be numerically well defined~say larger than 1023) to get
stable results. A good choice for the vacuumuZ0& is a state
close enough to both statesZ andZ8. Since HFB states are
in general, calculated with the help of parametrized me
field potentials one can simply construct a reasonably o
lapping vacuum by appropriately shifting its field paramet
relatively toZ andZ8, e.g., by changing their potential shap
or pairing gaps. This method also normally works for o
thogonal states wherêZuZ8&50. The latter case happens,
particular, for a symmetry-forbidden bracket implying sta
of different parity or signature, etc. There one needs to h
a vacuum that breaks the symmetry in question to get a fi
overlap to both statesZ andZ8. For cranking states of goo
but different signature, for instance, such an appropriatc
vacuum is given by a signature-breakingtilded cranking
state@8#. In practice, it is trivial to find a proper vacuum fo
two HFB states but the search for a common vacuum fo
bundle of states might become more involved.

The Bloch-Messiah theorem@9# enables one to bring th
stateuZ& in a BCS-like canonical form

uZ&5P i~ui1v idi
1dī

1
!uZ0& ~5!

reflecting the pair structure (i , ī ) of HFB states and thei
simple BCS-like occupation amplitudesv i andui5A12v i

2.
With the careful choice of the vacuum stateuZ0& discussed
above allui become nonzero as implicitly assumed in E
~3!. Noting that (di

1)250 we can obviously also write th
product state~5! as a simple Thouless state

uZ&5~P iui !
1/2P j~11v j /ujdj

1dj̄
1

!uZ0&

5~P iui !
1/2e(zi ī di

1d
ī

1

uZ0&, ~6!

which has rather convenient cross-diagonal amplitudesZi j
5d j ī v i /ui compared to the state~1!. The great advantage o
the canonical states~5!, ~6! is that they lead to a diagona
density matrixr i 8 i5^Zudi

1di 8uZ& and a cross-diagonal pa
tensort i i 85^Zudi

1di 8
1uZ&. Hence, the calculation of expecta

tion values is extremely simple when using the canon
form ~6!. The above Bloch-Messiah theorem, however, d
not facilitate the calculation of the overlaps^ZuZ8& and re-
lated operator brackets. This is because each stateuZ& has, in
general, its own set$di ,di

1% of canonical operators. Hence
the canonicald operators of the bra vector^Zu and those of
the ket vectoruZ8& cannot be supposed to be the same. T
latter problem is solved1 by constructing a particular set o

1An equivalent but a bit more lengthy derivation to the sa
subject was independently given by Burzynski and Dobaczew
@10#.
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transitional fermion operators$di ,di
1% below which indeed

brings both states in the brackets^ZuZ8& simultaneously to
the desired canonical form~6!.

Before this general canonical basis transformation is
plicitly given we derive some useful relations for comple
n3n matricesA andB. SupposeA andB possess a symme
try with respect to transposition~symmetry or antisymmetry
similar relations exist for hermitean conjugation!

Ã5aA, B̃5bB, a,b561, Ãi j [Aji . ~7!

Then we find for the productE5AB the following identities:

EA5ABA5abAẼ, BE5BAB5abẼB. ~8!

On the supposition that the productE5AB can be diagonal-
ized by a nonsingular transformationS, i.e.,

ES5Se, e5eid ik , ~9!

one obtains from Eq.~8!

ea2abae50, a[S21AS̃21,

be2abeb50, b[S̃BS. ~10!

Sincee is diagonal the matrix elements of Eq.~10! read

~ei2abek!aik5~ei2abek!bik50, ~11!

i.e., aik5bik50 unless the eigenvalues obey the symme
relationei5abek .

The above results are used to bring the antisymmetriZ
matrices (a5b521) to a canonical form. For this purpos
the product matrix

E5Z1Z8, ~12!

well-known to be the key term@1,12# of the bracketŝZuZ8&,
must be diagonalized. Concerning the numerical perf
mance of this basic diagonalization~9! we remark that since
this method was proposed by Neergard and Wu¨st @12# no
ill-conditioned cases were found in the numerous pract
applications. Otherwise, by optionally changing the ref
ence vacuum stateZ0→Z1 theZ matrices of the brackets ca
be modified as Z→Z̄5(Ũ1Z1Ṽ1)(Ũ11Ṽ1Z)21 where
(U1 ,V1) are the HFB amplitudes of the new vacuumZ1.
Therefore, with a proper choice of these amplitudes one
always remedy possible diagonalization problems.

The resulting matrixS @cf. Eq. ~9!# yields the desired
basis transformations of the fermion operators,

di
15( Sik

21ck
1 , di5( S̃ikck , ~13!

ck
15( Skidi

1 , ck5( S̃ki
21di . ~14!

These transformations are canonical, i.e., they preserve
fermion commutation relations but they are in general n
unitary ones. In fact, the operatorsdi

1 and di do form a
biorthogonal fermion basis@11# but they can be manipulate
as familiar Hermitean conjugated operators since thec

ki
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874 PRC 58F. DÖNAU
vacuum~2! is simultaneously ad vacuum@cf. Eq. ~13!#. In
particular, the evaluation of contractions can be done in
same manner, i.e., by shifting the fermion operators left
right to the corresponding bra or ket vacuum.2 Therefore, we
do not change the notations in spite of the fact that only
Z5Z8 do the above fermion operators get Hermitean con
gated.

When transcribing the Thouless exponents of the bra
ket vector in Eq.~1! into the canonical basis~14! one obtains
the following Z matrices:

Z1→z1[S21Z1S̃21, Z8→z8[S̃Z8S. ~15!

The transformations conserve the antisymmetry and, in
ticular, the zero diagonal elements.

Neergard and Wu¨st @12# proved that the matrixE
5Z1Z8 has twofold degenerate eigenvalues.3 If we order the
eigenvalues as well as eigenvectors in the matrixS into a
sequence of degenerate pairs then according to Eq.~11! both
matrices~15! get simultaneouslythe canonical 232 cross-
diagonal block structure where each block implies only t
nonzero elementszi ī 52zī i ~here i 5 ī 2151,3, . . . ,2n
21). Thus, one becomes

zi j 5zi ī d j ī , zi j8 5z8 i ī d j ī , ei5eĩ 5zi ī
* zi ī

8 ~16!

where for definiteness we introduced the notationi and ī for
the pair of states belonging to degenerate eigenvalueei
5eī . Accordingly, we shall refer in what follows to the pa
index i 51,3, . . . ,2n21 for labeling the corresponding pair
~12!, ~34!, . . . . Hence, in analogy to Eq.~6! the canonical
Thouless representation of both the bra and the ket vec
Eq. ~1!, is

^Zu5N* ~Z!^Z0ue(z
i ī
* dī di5N* ~Z!^Z0uP i~11zi ī

* dī di !,

uZ8&5N~Z8!e(z8 i ī di
1d

ī

1

uZ0&5N~Z8!P i~11z8 i ī di
1dī

1
!uZ0&.

~17!

Again we emphasize that the bra vector is formally obtain
by Hermitean conjugation but, in general, the amplitudeszi ī

*

belong to the inverse transformation~14!.
Now, the simple canonical product form~17! can be ex-

ploited for any bracket. The basic quantity is the over
bracket^ZuZ8&. By using the pair-diagonal structure ofz1

andz8, Eq. ~16!, one obtains

^ZuZ8&[D~z* ,z8!

5N* ~Z!N~Z8!^Z0uP i j ~11zi ī
* dī di !

3~11z8 j j̄ dj
1dj̄

1
!uZ0&

5N* ~Z!N~Z8!P i~11zi ī
* z8 i ī !

5N* ~Z!N~Z8!P i~11ei !. ~18!

2The freedom in choosing the normalization of the eigenvectorS,
Eq. ~7!, has no effect to the physical matrix elements.

3Accidental higher degeneracies do not change the conclusio
e
r

r
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d
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Note that the above expression provides directly4 the
phase of the overlap̂ZuZ8& which is not given by Onishi’s
determinantal expression@1,5#. The knowledge of the correc
overlap phases is of crucial importance@12# for the perfor-
mance of GCM calculations when superimposing sets
nonorthogonal quasiparticle states.

III. OPERATOR BRACKETS

The operator brackets can be easily calculated usin
similar blocking technique as that applied in Ref.@13#. We
define blocked canonical states as

uZ8, j 1 , j 2 , . . . &[N~Z8!P iÞ j 1 , j 2 , . . .~11z8 i ī di
1dī

1
!uZ0&

~19!

which imply the blocked orbitals (j 1 , j̄ 1),( j 2 , j̄ 2), . . . . No-
tice the useful properties

dj uZ8, j &5^Z, j udj
150. ~20!

and the identities from Eqs.~17!

^Zudj
15^Z, j udj̄zj j̄

* , dj uZ8&5z8 j j̄ d j̄
1uZ8, j &,

^Zudj5^Z, j udj , dj
1uZ8&5dj

1uZ8, j &. ~21!

By appropriate replacementsd
d1 and the subsequen
shifting of d operators from the bra to the ket vector and vi
versa the operators reduce toc numbers and blocked over
laps. This method is demonstrated for the pair operatot
5dj

1dj 8
1 :

^Zudj
1dj 8

1uZ8&5^Z, j udj̄zj j̄
* dj 8

1uZ8&

5^Z, j uzj j̄
* ~d j̄ j 82dj 8

1dj
1z8 j̄ j !uZ8, j &

5zj j̄
* d j̄ j 8^Z, j uZ8, j &

[d j̄ j 8zj j̄
* D j~z* ,z8! ~22!

where D j (z* ,z8) analogously to Eq.~18! denotes the
j -blocked overlap. Treating the density operatorr( j 8, j )
5dj

1dj 8 in the same way gives

^Zudj
1dj 8uZ8&5d j j 8ejD j~z* ,z8!. ~23!

One recognizes that the transitional densityr and the pair
densityt get generally diagonal and cross diagonal, resp
tively, as in the caseZ5Z8. Hence, the above expression
are much simpler than the ones in the literature@1#.

There is another important advantage: Eqs.~22!,~23! en-
counter no problem for zero overlap, i.e.,^ZuZ8&50, which
to the formulas in the literature do. According to Eq.~18! a
zero overlap appears only if one or more factors (11ei) in
the product vanish or equivalently if at least one of the
genvaluesei of the matrixE, Eq. ~12!, satisfiesei521. Let
us suppose the termi 5 i 0 belongs to a zero factor. Then, th

.

4This phase is the same as that obtained by Neergard
Wüst @12#.
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brackets~22!,~23! of the density and pair matrix produc
only for the termj 5 i 0 a nonzero value when the operat
takes off the zero factor from the overlap product. The sa
arguments apply for the two-body matrix elements. For co
pleteness we give the resulting formulas for the two-bo
operator brackets involving four fermion operators,

^Zudi
1di 8

1dj
1dj 8

1uZ8&5zi ī
* z8 j j̄ Di j ~z* ,z8!d i ī 8d j j̄ 8

2zi ī
* z8 i 8 ī 8Dii 8~z* ,z8!d i j̄ d i 8 j̄ 8

1zi ī
* z8 i 8 ī 8Di 8 j 8~z* ,z8!d i j̄ 8d i 8 j̄ ,

~24!

^Zudi
1di 8

1dj
1dj 8uZ8&5zi ī

* ejDi j ~z* ,z8!d i ī 8d j j 8

2zi ī
* ei 8Dii 8~z* ,z8!d i j̄ d i 8 j 8

1zi 8 ī 8
* eiDii 8~z* ,z8!d i j 8d i 8 j̄ ,

~25!

^Zudi
1di 8

1djdj 8uZ8&5zi ī
* z8 j 8 j̄ 8Di j ~z* ,z8!d i ī 8d j j̄ 8

1~d i j 8d i 8 j2d i j d i 8 j 8!

3ei@Di~z* ,z8!2Dii 8~z* ,z8!#.

~26!

Here the analogous notationDi j for a doubly reduced
overlap product@cf. Eq. ~18!# is used. Note thatDii 5Diī
50. The above reduction technique takes fully care of
antisymmetrization of the two body matrix elements.

One realizes that all brackets reduce generally to pa
indices and a factorized form which is easy to evaluate. T
implies not only a formal simplification but the numeric
effort is considerably lowered too. In Eq.~24!, for instance,
from all the (4

n) terms on the left-hand side only (2
n/2) non-

zero terms survive to be calculated on the right-hand s
This means that the above-mentioned dimension is redu
by approximately a factor110 n2 due the pairwise interaction
in this representation. Considering, for example, a qua
interaction term one has

^ZuĤ40uZ8&[^Zu (
i ,i 8, j , j 8

Hii 8 j 8 j
40 di

1di 8
1dj

1dj 8
1uZ8&

5(
i , j

~Hi ī j j̄
40

2Hi j̄ i j̄
40

1Hi j̄ ī j
40

!zi ī
* zj j̄

8 Di j ~z* ,z8!.

~27!

Due to the transitional canonical basis only the paired par
the interaction matrix element contributes.

IV. POLE TERMS OF WICK CONTRACTIONS

The common method used to evaluate the operator br
ets ^ZuFuZ8& between nonorthogonal HFB statesZÞZ8 is
the generalized Wick theorem derived by Balian and Blo
@11#. Defining the generalized contractions as
e
-
y

e

d
is

e.
ed

ic

of

k-

h

^ci
1ck

1&[
^Zuci

1ck
1uZ8&

^ZuZ8&
, ^cick&[

^ZucickuZ8&

^ZuZ8&
,

^ci
1ck&[

^Zuci
1ckuZ8&

^ZuZ8&
~28!

one can apply the Wick theorem as usual. Using previ
methods@1,6# the above division̂ZuZ8& in Eq. ~28! is real-
ized by inverting the corresponding overlap matrix an
therefore, it fails for orthogonal states with zero overla
This numerically dangerous behavior of the generaliz
Wick expansion is completely avoided when applying t
above canonical representation~22!,~23!. As discussed be-
fore the only difference between brackets of the orthogo
states is the fact that any nonzero contributions remain o
if the existing zero factors (11ei) in the overlap product
~16! are ‘‘bridged’’ by the operator which leads to the r
duced overlaps in Eqs.~21!–~27!. This is because the esse
tial effect of anyn-body operator is just to blockn overlap
factors for those termsj 1 , . . . ,j n on which it is acting. Thus,
the canonical form of operator brackets behaves as a w
defined smooth function of the overlap value.

Unfortunately, the zero denominator in the generaliz
Wick expansion~28! is causing problems so far not notice
in the literature. It is a common practice to calculate t
diagonalexpectation values of the multipole-multipole inte
action in the factorization approximation, i.e., by neglecti
the exchange contributions. This approximation may lead
severe errors in the GCM calculations when nondiago
matrix elements of such factorized forces also come i
play, such as, e.g., in the self-consistent pairing plus qua
pole model@14#. A typical case in this respect is the mon
pole pairing force

V5P1P, P15
1

4(k
ck

1c2k
1 . ~29!

According to the factorization approximation one takes in
account only the direct term in the Wick contraction of t
pairing force, i.e.,

^ZuVuZ8&'u
^ZuP1uZ8&

^ZuZ8&
u2^ZuZ8&. ~30!

The bracket is in the convenient squared form of the p
operator contraction multiplied by the overlap. Apparent
in the limit ^ZuZ8&→0 the total matrix element is divergin
because of the second order pole in the square. This i
essential contrast to the case of one-body operators w
imply only a simple pole canceled by the overlap.

Considering the same case in the canonical basis~14! one
obtains schematically

P15(
i j

pi j di
1dj

1 , P5(
km

p̄kmdmdk . ~31!

Substituting the canonical expressions~18!, ~22!, ~23! into
the Wick contractions~28! the complete pairing matrix ele
ment reads



t
n

in

(
on
be

he
re
ce
e
n

th
tri

ib

ar
fo
ro

en
co

e
of

ce,
ion
o in

rge
ate
CM

g
ing

the

-

est
r
en
face
ant
can
ns
,
an

per-
er-

rix
ect
en-
an
ole
oc-

e
nto
one
of a
the

876 PRC 58F. DÖNAU
^ZuVuZ8&5 (
i jkm

pi j p̄kmS zi ī
* d j ī

11ei

z8kk̄dmk̄

11ek
22

eid im

11ei

ekd jk

11ek
D

3^ZuZ8&, ~32!

where the direct and the exchange terms appear in
bracket. Obviously, all denominators referring to differe
pairs (i , ī )Þ(k,k̄) cancel out with corresponding factors
the overlap product̂ZuZ8&}P i(11ei), Eq. ~18!. However,
for the contribution (i , ī )5(k,k̄) there remains in both the
direct and exchange terms a first order singularity at
1ei)→0, i.e., for zero overlap. Remembering the relati
ei5zi ī

* z8 i ī , Eq. ~16!, those odd terms in the bracket can
summed to

^ZuVuZ8&~11ei !→0'4pi ĩ p̄ ī i

~zi ī
* z8 i ī 1ei

2!

~11ei !
2

^ZuZ8&

54pi ī p̄ ī i

ei

11ei
^ZuZ8&. ~33!

The first order pole drops exactly when multiplied by t
overlap. This is the result expected from the above exp
sion ~26! containing the pole-free reduced overlaps. Hen
when calculating any interaction matrix elements betwe
nonorthogonal HFB states one cannot neglect the excha
contribution arising due to the Wick contractions.

The same problem arises in the ordinary treatment of
particle number projection. The essential two body ma
element entering the projection integral is

E
0

2p

dw^HFBuVe2 iNwuHFB&, ~34!

whereN is the particle number operator andw is the angle of
the gauge rotation. When neglecting the exchange contr
tion the remaining pole is the canonical denominator

~ui
21v i

2e22iw! ~35!

which becomes zero forui'v i at w5p/2, i.e., for quasipar-
ticle orbitals close to the Fermi level. The existing stand
codes for calculating mean field properties should care
the exchange term when calculating particle number p
jected energies. Without precaution the dangerous pole~35!
may originate strange jumps in the calculated potential
ergy surfaces when changing the input parameters or
figurations and approaching by chance the valuesui'v i .
,
-

e

he
t

1

s-
,
n
ge

e
x

u-

d
r
-

-
n-

Our calculations@15# have shown that the neglect of th
exchange contribution leads in other cases to a violation
the rotational symmetry of the interaction. Thus, for instan
the factorized matrix element of the quadrupole interact
between states of opposite signature becomes nonzer
contradiction to the required symmetry.

V. CONCLUSIONS

The above tools permit an effective treatment of the la
amplitude collective motion when choosing an appropri
bundle of HFB mean field states as the basis for the G
diagonalizations. Thereby, the mean field parametersp
5«2 ,«4 ,D, . . . , for shaping the potential well and pairin
properties supply a natural grid of variables for describ
the motion on an energy surface:

E~p!5H@z* ~p!,z~p!#5
^Z~p!uHuZ~p!&

^Z~p!uZ~p!&
.

With the above developed formalism one can construct
GCM Hamiltonian kernelH@z* (p),z8(p8)# and overlap
functionD@z* (p),z8(p8)# in a straightforward manner. Fol
lowing the same spirit of previous GCM studies@4# we ex-
pect that the common treatment of the energetically low
energy surfaceE(p) might not be sufficient. At paramete
points p where an avoided level crossing signals a hidd
configuration change, the approaching excited energy sur
Eex(p) needs to be included in order to describe the relev
configuration mixing. In this way an extended subspace
be formed implying both discrete quasiparticle excitatio
via ‘‘rapid’’ configuration changes as well as ‘‘soft’’ modes
the latter being related to more smooth variations of me
field parameters outside their self-consistent values. The
formance of these more ambitious calculations is consid
ably facilitated by the techniques presented above.

It was shown that a solid calculation of general mat
elements of the two body interaction must include both dir
and the exchange contributions in order to exclude diverg
cies. Thus, the familiar factorization of multipole forces c
only be applied for diagonal terms, or else possible p
contributions may cause severe errors. Similar problems
cur in the particle number projection.

The first calculations@15# with the developed techniqu
concerning the signature bifurcation of a rotational band i
two signature branches are under way. In this approach
meets the above-mentioned situation where the inclusion
quasiparticle excitation is necessary in order to describe
signature changing magnetic transitions.
H.
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