PHYSICAL REVIEW C VOLUME 58, NUMBER 2 AUGUST 1998

Canonical form of transition matrix elements
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The calculation of complicated transition matrix elements between multiquasiparticle states can be essen-
tially simplified by transforming them in a canonical form. This method allows the extension of the basis space
of generator coordinate studies aiming to include orthogonal quasiparticle excitations into the commonly
considered basis set of collective states. Furthermore, it is shown that the neglect of the exchange contribution
of multipole forces may lead to dangerous pole terms in nondiagonal matrix elements.
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I. INTRODUCTION a direct and transparent manner which is otherwise quite
complicated[1]. The formulas are formally simple and the
The self-consistent Hartree-Fock-BogoliubotHFB)  numerical effort is considerably lowered by dimensional re-
theory is the appropriate tool to determine the static meaguction.
field properties of interacting many-body fermion systems.
In order to comprehend the collective dynamics of such sys-Il. CANONICAL FORM OF TRANSITIONAL BRACKETS
tems as well as for the restoration of broken symmetries one , . .
needs to superimpose various HFB states. In this respect the FOr the subsequent consideration it is useful to specify
generator coordinate methéGCM) [1] provides the appro- both Bogoliubov(“multiquasiparticle”) :sta_tes forming the
priate framework to incorporate both collective and singleP'@ and the ket vector of a brackgZ|Z') in the Thouless
particle dynamics into a unified coherent quantum-"€Presentatiofi7]
mechanical formulation. The GCM is known to be a very

*
powerful and successful method to describe microscopically (Z| = N* (2)(Z,| eMZ' Zuae k',
large amplitude collective motion such as, e.g., pair vibra-
. : " ) N
tions, shape coexistence, and shape transitees Refs[2— |Z/>:N(Z/)el/22kkr z kk'cl:rck"ZO). (1)

4]). The rigorous application of the GCM requires that we
have stable and efficient algorithms for obtaining the operaty the above equations, andc,” denote then (even fer-

tor brackets, in particular, the Hamiltonian kerd&|H|Z')  mion annihilation and creation operators to thevacuum,
and the overlapsZ|Z') between arbitrarily chosen HFB g  the statdz,) satisfying

states|Z) and |Z') with any configuration. To have such

algorithms at our disposal would allow us to perform the (Zo|Ck+=0, ClZoy=0. 2
GCM as though it were a shell model diagonalization. The

typical basis set of generator statg9 contains quasicon- The factors\* (2) and N(2') are for the normalization of
tinuous *“collective” excitations, i.e., a sequence of nonor-the Bogoliubov stategl). The antisymmetric Thouless ma-
thogonal HFB states is formed by shifting a collective vari-trix Z in Eqg. (1), and likewiseZ’ are obtainable from the
able such as, e.g., the deformation parameter, pair gap, etknown Bogoliubov amplitudes) andV using the relation
within a chosen interval. When also including excited HFB[1,7]

states into the GCM basis, i.e., discrétethogonal quasi-

particle excitations from the ground state configuration, the Z=(VU™H*. ©)

coupling of collective and single particle degrees of freedom _ ) S

can be taken into account. The UV amplitudes determine the quasiparticle operators
The techniques given in the literatur®,6] are not suffi-

cient to e\{aluate_ the above bracke_ts b_etween_ HI_:B s_tates ai*=2 (UkiC:+VkiCk) (4)

when also including orthogonal quasiparticle excitations into K

the GCM basis set since the formulas imply pole terms for

zero overlap between the two HFB states involved. Becausehich provide an equivalent definition of the HFB stgf,

of these divergencies the nondiagonal matrix elements of &d. (1), as the quasiparticla vacuum to the operators;

factorized multipole interaction are wrong when neglecting=(a;")*, i.e.,|Z)=a;a,- - -a,|]Z=0). The UV matrices are

exchange contributions. There are also difficulties in consissommonly calculated by solving the general HFB equations

tently determining the phases of the overlaps and operatdd].

matrix elements which are of crucial importance for actual The ¢ vacuum(2) can be any HFB state and does not

GCM diagonalizations. need to be the bare vacuum for real particles. The freedom of
With the methods described below it is possible to calcuthis choice enables one to use the representatidhsor

late the necessary operator brackets including their phases systems with both even and odd numbers of particles. An
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appropriate vacuum of an odd system is, for instance, ongansitional fermion operatorgd; ,d;"} below which indeed
particle excited from the bare vacuum. In order to get thebrings both states in the bracket|Z’') simultaneously to
Thouless matriceZ andZ’ through the matrix inversion in the desired canonical fort).

Eq. (3) both states need to have sufficent overlaps with the Before this general canonical basis transformation is ex-

chosen vacuunz,) because it holds thatf. Eq. (6)] plicitly given we derive some useful relations for complex
o nXn matricesA andB. SupposeéA andB possess a symme-
|de| 2= (Z,|Z)| = |M(2)]. try with respect to transpositioggsymmetry or antisymmetry,
Hence, the vacuum overlap of the considered states shouﬁdmllar relations exist for hermitean conjugaon
be numerically well definedsay larger than 10°) to get A=aA, B=BB, a,B==1, "AHEA“ @

stable results. A good choice for the vaculifp) is a state

close enough to both stat&sandZ’. Since HFB states are, Then we find for the produdf = AB the following identities:
in general, calculated with the help of parametrized mean

field potentials one can simply construct a reasonably over- EA=ABA=aBAE, BE=BAB=apEB. (8
lapping vacuum by appropriately shifting its field parameters

relatively toZ andZ’, e.g., by changing their potential shape On the supposition that the produet= AB can be diagonal-
or pairing gaps. This method also normally works for or-ized by a nonsingular transformati@ i.e.,

thogonal states whek&|Z')=0. The latter case happens, in
particular, for a symmetry-forbidden bracket implying states ES=Se e=&dy, ©
of different parity or signature, etc. T_here one needs to haygne obtains from Eq®)

a vacuum that breaks the symmetry in question to get a finite

overlap to both state& andZ'. For cranking states of good ea—aBae=0 a=S IAG L
but different signature, for instance, such an appropriate ' ’
vacuum is given by a signature-breakitigded cranking be—aBeb=0, b=%BS (10)

state[8]. In practice, it is trivial to find a proper vacuum for
two HFB states but the search for a common vacuum for &jncee is diagonal the matrix elements of EG.0) read
bundle of states might become more involved.
The Bloch-Messiah theoref®] enables one to bring the (ej—aBea=(e,—aBe)b; =0, (17
state|Z) in a BCS-like canonical form ) b —0 unl the e | bev th .
i.e., a;=b;,=0 unless the eigenvalues obey the symmetr
|Z>:Hi(ui+vidi+dii)|zo> (5) re|ati6l;]ei:|kaﬁek_ g Y Y Y
_ The above results are used to bring the antisymmétric
reflecting the pair structurei ,G) of HFB states and their matrices @:B: - 1) to a canonical form. For this purpose
simple BCS-like occupation amplitudes andu;= \/1_Ui2- the product matrix
With the careful choice of the vacuum sta#,) discussed
above allu; become nonzero as implicitly assumed in Eq. E=Z2"Z', (12

(3). Noting that @:")>=0 we can obviously also write the ,
product stgate{S) SS' ; simple Thouless stat?a/ well-known to be the key terifi,12] of the bracket§Z|Z'),
must be diagonalized. Concerning the numerical perfor-
—(TLUY2T (140 Ju-dt & mance of this basic diagonalizati¢®) we remark that since
12)= (L) L (1+ v, /u;d dJ_)|ZO> this method was proposed by Neergard andsWa2] no
ill-conditioned cases were found in the numerous practical
applications. Otherwise, by optionally changing the refer-
which has rather convenient cross-diagonal amplities ~©"¢€ Vacuum sta,— Z, theZ matrices of the tirf‘CKEtS can
= 8jfv; /u; compared to the statd). The great advantage of Pe modified asZ—Z=(UyZ+V,)(U,+V,Z) " where
the canonical state5), (6) is that they lead to a diagonal (U1.V) are the HFB amplitudes of the new vacuuy.
density matrixp;,;=(Z|d;"d;,|Z) and a cross-diagonal pair Therefore, with a proper choice of these amplitudes one can
tensorr; =(Z|d;*d,}|Z). Hence, the calculation of expecta- always remedy possible diagonalization problems.

) ; : . . The resulting matrixS [cf. Eq. (9)] yields the desired
tion values is extremely simple when using the canomcabasis transformations of the fermion operators
form (6). The above Bloch-Messiah theorem, however, does ’
not facilitate the calculation of the overlapg|Z’) and re- ~
lated operator brackets. This is because each |&Zateas, in dﬁzE Silcy di=> Sic, (13
general, its own seftd; ,d;"} of canonical operators. Hence,
the canonicatl operators of the bra vectdZ| and those of _
the ket vectoZ’) cannot be supposed to be the same. The =2 Sadi, =2 Sq'di. (14)
latter problem is solveédby constructing a particular set of
These transformations are canonical, i.e., they preserve the
fermion commutation relations but they are in general non-
1An equivalent but a bit more lengthy derivation to the sameunitary ones. In fact, the operato§” and d; do form a
subject was independently given by Burzynski and Dobaczewskbiorthogonal fermion basigl1] but they can be manipulated
[10]. as familiar Hermitean conjugated operators since the

4T
= (IL;u) Y2214 97| Z,), (6)
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vacuum(2) is simultaneously @ vacuum|cf. Eq. (13)]. In Note that the above expression provides diréctlye
particular, the evaluation of contractions can be done in th@hase of the overlapz|Z') which is not given by Onishi's
same manner, i.e., by shifting the fermion operators left odeterminantal expressidf,5]. The knowledge of the correct
right to the corresponding bra or ket vacu@ifiherefore, we overlap phases is of crucial importani?] for the perfor-

do not change the notations in spite of the fact that only fomance of GCM calculations when superimposing sets of
Z=27' do the above fermion operators get Hermitean conjunonorthogonal quasiparticle states.

gated.
When transcribing the Thouless exponents of the bra and IIl. OPERATOR BRACKETS
ket vector in Eq(1) into the canonical basid4) one obtains ) .
the following Z matrices: The operator brackets can be easily calculated using a
similar blocking technique as that applied in REf3]. We
Zt zt=5"1z7¥§1 7' ,77=57'S. (15  define blocked canonical states as
The transformations conserve the antisymmetry and, in par- 2’ 1.2, - - ) =MZ) 4 (14270 d5)[Zo)
ticular, the zero diagonal elements. (19
Neergard and Wat [12] proved that the matrixE o o
=Z7%Z7' has twofold degenerate eigenvalddswe order the  which imply the blocked orbitalsj¢,j1),(j2,j2), - - . . No-

eigenvalues as well as eigenvectors in the mafimto a  tice the useful properties
sequence of degenerate pairs then according t¢18g both

12 . _ . +_
matrices(15) get simultaneouslthe canonical X2 cross- dj|z 'J>_<Z’J|dj =0. (20
diagonal block structure where each bI__ock implies only twoand the identities from Eq€17)
nonzero elementszi=-z; (here i=i—1=1.3,...,2
—1). Thus, one becomes <Z|dj+=<Z,jIGTZ;’j—, dj|zr>zzr”ﬂj¢|z,,j>,
Zj=zi0i, zj=7'idi, e=e=zz;z (16 (z|d;=(z,jld;, d[z")=d"|Z",j). (21)
where for definiteness we introduced the notati@mdi for By appropriate replacemenﬂ;:\dJr and the subsequent

the pair of states belonging to degenerate eigenvadyes shifting of d operators from the bra to the ket vector and vice
=e€j. Accordingly, we shall refer in what follows to the pair versa the operators reduce aanumbers and blocked over-
indexi=1,3,...,2—1 for labeling the corresponding pairs |aps. This method is demonstrated for the pair operator
(12), (34),....Hence, in analogy to Eq6) the canonical —g+ d

Thouless representatlon of both the bra and the ket vector,

(Z|=N* (2)(Zo|€¥ 319 = N* (2)(Zo| T (1+ 25 i), =(Z.jlZ( 87~ d,—fd,-*z’ﬂ)IZ',D
12')=M2)e T8 4 Z)= M2 )T (1+2' 7T )| Zo). 20 (212")
17 = 5;,Z5D(2*.2') (22

Again we emphasize that the bra vector is formally obtained
by Hermitean conjugation but, in general, the amplltuzfgs

belong to the inverse transformatigby).
Now, the simple canonical product forti7) can be ex-

where Dj(z*,z") analogously to Eq.(18) denotes the
j- blocked overlap. Treating the density operajg(j’,j)
=d,"d;, in the same way gives

ploited for any bracket. The basic quantity is the overlap (z|did;/|2")=5,,.6,D;(z*,2"). (23
; ) o i Y i’
bracket(Z|Z'). By using the pair-diagonal structure of
andz’, Eq. (16), one obtains One recognizes that the transitional dengityand the pair
N e density r get generally diagonal and cross diagonal, respec-
(Z|2')=D(z*,2") tively, as in the cas&=2Z’. Hence, the above expressions

are much simpler than the ones in the literatiirk

* !
=N (HMZ') <Z°|H”(1+Z“ i) There is another important advantage: E@R),(23) en-

counter no problem for zero overlap, i.€Z|Z'Y=0, which

* (1+275g, OL)|Z°> to the formulas in the literature do. Acfc?rlding to E@8) a
=N*(2MENT(1+Z52' D) zero overlap appears only if one or more factors-€) in
the product vanish or equivalently if at least one of the ei-

=N (2N ZHTi(1+e). (18)  genvalues,; of the matrixE, Eq.(12), satisfiese;=—1. Let

us suppose the terin=iy belongs to a zero factor. Then, the

2The freedom in choosing the normalization of the eigenve@prs
Eq. (7), has no effect to the physical matrix elements. “This phase is the same as that obtained by Neergard and
SAccidental higher degeneracies do not change the conclusions.Wuist [12].
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brackets(22),(23) of the density and pair matrix produce . (Z|ct el |z (Z|ciclZ")

only for the termj=i, a nonzero value when the operator Ci ¢y )EW, (cicp)= Y
takes off the zero factor from the overlap product. The same

arguments apply for the two-body matrix elements. For com- N ,

pleteness we give the resulting formulas for the two-body (cFe)= (Zlciedz") (28)

operator brackets involving four fermion operators, i (Z|Z")

<z|di+di+,dj+dj+,|z'>:zi*i—z'jj{)ij(z*,z’)gir, Sip one can apply the Wick theorem as usual. Using previous
methodq 1,6] the above divisiofZ|Z') in Eq. (28) is real-

—zi’%z’i/i—,D”,(z*,z’)ﬁij—ﬁi/j—/ ized by inverting the corresponding overlap matrix and,

therefore, it fails for orthogonal states with zero overlap.

+zi*ifz’i,i—,Di,j,(z*,z’)6ij_r6i,j_, This numerically dangerous behavior of the generalized

(24) Wick expansion is completely avoided when applying the

above canonical representati¢??),(23). As discussed be-
fore the only difference between brackets of the orthogonal

(Z|d"d;\d dj)|Z" ) =25e;Dyj(2*,2') 87 8. states is the fact that any nonzero contributions remain only
* . o e if the existing zero factors (e,) in the overlap product
—z;€,:D4i/(2%,2") 661 (16) are “bridged” by the operator which leads to the re-
% . B duced overlaps in Eq$21)—(27). This is because the essen-
+tz,5eDii(25,2) & 6y, tial effect of anyn-body operator is just to block overlap
(25) factors for those termg,, . . . ,j, on which it is acting. Thus,

the canonical form of operator brackets behaves as a well-
defined smooth function of the overlap value.

tdld.d. |z V=22 D (25,2') 87 8 . ; .
(Zldd;, did; [2")=z;2'; 7:Dy(2*.2') 677 & Unfortunately, the zero denominator in the generalized

(8180 —8i8::1) Wick expansion(28) is causing problems so far not noticed
SRR in the literature. It is a common practice to calculate the
xe[Di(z*,2')=Dj(z*,2")]. diagonalexpectation values of the multipole-multipole inter-

(26) action in the factorization approximation, i.e., by neglecting

the exchange contributions. This approximation may lead to

Here the analogous notatiod;; for a doubly reduced severe errors in the GCM calculations when nondiagonal
ij

overlap productcf. Eq. (18)] is used. Note thaD; =Di matrix elements of such factorized forces also come into

—0. The above reduction technique takes fully care of the?/@y: such as, e.g., in the self-consistent pairing plus quadru-
antisymmetrization of the two body matrix elements. pole model[14]. A typical case in this respect is the mono-

One realizes that all brackets reduce generally to paireBOIe pairing force
indices and a factorized form which is easy to evaluate. This
implie§ not qnly a formal simplification but the_ numerical V=P*P, P+=32 cicty. (29)
effort is considerably lowered too. In ER4), for instance, 4%
from all the (}) terms on the left-hand side onl}'f) non-
zero terms survive to be calculated on the right-hand sideAccording to the factorization approximation one takes into
This means that the above-mentioned dimension is reduceatcount only the direct term in the Wick contraction of the
by approximately a factof;n? due the pairwise interaction pairing force, i.e.,
in this representation. Considering, for example, a quartic

interaction term one has (z|P™|Z")

<Z|V|Z'>%|W|2<Z|Z'>- (30)

ZIA*Z"y=(z Hi%., di dd d |z’ o . .
(ZIHH27)=( |i'i%j, L AR 12) The bracket is in the convenient squared form of the pair
operator contraction multiplied by the overlap. Apparently,
_ 40 40 40 \_x ' in the limit (Z|Z')—0 the total matrix element is diverging
= H>—H-—~+H>>)z-z-D;(z*,Z'). . ha

.EJ: ( i o 'J'J) e il ) because of the second order pole in the square. This is an
essential contrast to the case of one-body operators which

imply only a simple pole canceled by the overlap.

Due to the transitional canonical basis only the paired part of C9n5|der|ng the same case in the canonical assone
. ; . i obtains schematically
the interaction matrix element contributes.

(27)

IV. POLE TERMS OF WICK CONTRACTIONS P+:i2]_ pj di'd;, P=% P (32)

The common method used to evaluate the operator brack-
ets (Z|F|Z') between nonorthogonal HFB statéstZ’' is  Substituting the canonical expressiofis), (22), (23) into
the generalized Wick theorem derived by Balian and Blochthe Wick contraction28) the complete pairing matrix ele-
[11]. Defining the generalized contractions as ment reads
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[T 7sr es. es Our calculationg15] have shown that the neglect of the
ZIV|Z'y= - — exchange contribution leads in other cases to a violation o
pljpkm i ) kk€mk ~1mim k jk h t b t I d th t | t f
ijkm 1+e 1vec 1+e l+e the rotational symmetry of the interaction. Thus, for instance,
p the factorized matrix element of the quadrupole interaction
x(2)z"), (32 e « .
between states of opposite signature becomes nonzero in
where the direct and the exchange terms appear in thgontradiction to the required symmetry.
bracket. Obviously, all denominators referring to different

pairs (,i)# (k,k) cancel out with corresponding factors in V. CONCLUSIONS

the overlap productZ|Z’)=Il;(1+e), Eq. (18). However, The above tools permit an effective treatment of the large
for the contribution {,i)=(k,k) there remains in both the amplitude collective motion when choosing an appropriate
direct and exchange terms a first order singularity at (lbundle of HFB mean field states as the basis for the GCM
+¢€))—0, i.e., for zero overlap. Remembering the relationdiagonalizations. Thereby, the mean field parameters

ei=zi*i—z’i7, Eg. (16), those odd terms in the bracket can be=¢,,&4,A, ..., for shaping the potential well and pairing
summed to properties supply a natural grid of variables for describing
the motion on an energy surface:
(Z)V|Z') Apip (Zr:_Z,ir+ei2)<z|Z’> (Z(p)H|Z(p))
(1+e)—0~aPiiPi— 5 E(p)=Hlz* 2 _ _
(1+e) (P)=HIZ"(P).2(P)]= "7 5 Zio))

:4piTEﬁi<Z|Z'>- (33  With the above developed formalism one can construct the
l1+eg GCM Hamiltonian kernelH[z*(p),z'(p’)] and overlap
functionD[z*(p),z’(p')] in a straightforward manner. Fol-
lowing the same spirit of previous GCM studigl we ex-
sion (26) containing the pole-free reduced overlaps HencespeCt that the common treatment of the energetically lowest
. energy surfacde(p) might not be sufficient. At parameter

T s beteelpinip whee an avored leve crossing signls  hiden
9 9 %nfiguration change, the approaching excited energy surface

COr}};"glg;ogearlfég?e?nuZrtigetg?nvmzkocrgir::rmt;cr)g;t'ment of th E®{(p) needs to be included in order to describe the relevant
. P . ary . %onfiguration mixing. In this way an extended subspace can
particle number projection. The essential two body matri

element entering the projection integral is

The first order pole drops exactly when multiplied by the

*be formed implying both discrete quasiparticle excitations

via “rapid” configuration changes as well as “soft” modes,
2m ' the latter being related to more smooth variations of mean

f do(HFB|Ve N¢|HFB), (34 field parameters outside their self-consistent values. The per-
0 formance of these more ambitious calculations is consider-

whereN is the particle number operator agds the angle of ably facilitated by the techniques presented above.

the gauge rotation. When neglecting the exchange contribu- It was shown that a S.Ol'd calpulaﬂon pf general mqtnx
tion the remaining pole is the canonical denominator elements of the two body interaction must include both direct

and the exchange contributions in order to exclude divergen-
(U2 +v2e=2i¢) (35  cies. Thus, the familiar factorization of multipole forces can
only be applied for diagonal terms, or else possible pole
which becomes zero far,~v; at o= /2, i.e., for quasipar- contributions may cause severe errors. Similar problems oc-
ticle orbitals close to the Fermi level. The existing standardcur in the particle number projection.
codes for calculating mean field properties should care for The first calculationg15] with the developed technique
the exchange term when calculating particle number proeoncerning the signature bifurcation of a rotational band into
jected energies. Without precaution the dangerous (®8e  two signature branches are under way. In this approach one
may originate strange jumps in the calculated potential enmeets the above-mentioned situation where the inclusion of a
ergy surfaces when changing the input parameters or corgquasiparticle excitation is necessary in order to describe the

figurations and approaching by chance the valyesy; . signature changing magnetic transitions.
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