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Solutions of the Faddeev-Yakubovsky equations for the four nucleon scattering states

F. Ciesielski and J. Carbonell
Institut des Sciences Nucle´aires, 53, Avenue des Martyrs, 38026 Grenoble, France

~Received 12 February 1998!

The Faddeev-Yakubowsky equations in configuration space have been solved for the four nucleon system.
The results with anS-wave interaction model in the isospin approximation are presented. They concern the
bound and scattering states below the first three-body threshold. The elastic phase shifts for theN1NNN
reaction in different (S,T) channels are given and the corresponding low-energy expansions are discussed.
Particular attention is paid to then1t elastic cross section. Its resonant structure is well described in terms of
a simpleNN interaction. First results concerning theS matrix for the coupledN1NNN-NN1NN channels
and the strong deuteron-deuteron scattering length are obtained.@S0556-2813~98!04607-X#

PACS number~s!: 21.45.1v, 11.80.Jy, 25.40.Hs, 25.10.1s
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I. INTRODUCTION

The four nucleon bound state calculations have, in the
years, reached a high level of accuracy and consistenc
least as far as the solutions of the corresponding equat
are concerned@1–4#. This situation contrasts with the 4N
scattering problem where despite some pioneering and
evant results@5–14#, there is a manifest lack of convergen
among the different groups and methods even when u
simple interactions. This problem is not only a general
tension of the three-body one in the sustained task of
nuclear few-body community to deal with increasingly co
plex systems, but we believe it constitutes a qualitative ju
in our understanding of nuclear systems. Indeed the c
tinuum spectrum of the 4N system~see Fig. 1!, with its rich
variety of thresholds and structures, provides a bridge
tween the relative simplicity of theA52,3 problems and the
complexity of many-body systems. Even when restricted
the energies below the first three-body breakup threshold
presence of several resonances at eachZ channel, the exis-
tence of the almost degeneratep1t and n13He thresholds
with, in the middle, the first 01 excitation of the4He ground
state make the understanding of theA54 chart in terms of
fundamentalNN interactions an exciting and redoubtab
theoretical challenge.

We present here the first solution of the Fadde
Yakubovsky~FY! equations in configuration space for th
four nucleon scattering problem. Although the results c
cerning the bound states~ 4He and 4He* ! will be discussed
in some detail, our main interest lies in the 4N continuum
spectrum, i.e., theN1NNN elastic scattering and its cou
pling to the first inelasticNN1NN threshold.

The resolution method is based on the angular momen
expansion of the FY amplitudes and the spline expansio
their radial parts. Orthogonal collocation is used to gene
a linear system which is solved by iterative procedures. T
scattering observables are extracted from a direct inspec
of the FY amplitudes in the asymptotic region, in a natu
extension of the methods developed for the three-body c
in Ref. @15#.

The results presented in this paper have all been obta
by using anS-wave NN interaction model and the isospi
symmetry hypothesis. The Coulomb and mass difference
PRC 580556-2813/98/58~1!/58~17!/$15.00
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fects are thus not included. This choice, guided by meth
ological reasons, allows a presentation of the formalism
methods in a relatively simple framework. Is is remarkab
however, that such a simple model provides a very go
description of low-energy scattering observables even if
in then1t case, they are not totally trivial. Some first resu
including realistic interactions have already been repor
elsewhere@16# and will be the subject of subsequent pub
cations.

The paper is organized as follows. In the next section
describe the general formalism and the simplifications a
ing in the case of four identical particles. This section co

FIG. 1. TheA54 chart with the more relevant thresholds a
resonances (Jp,T). The vertical axis represents a mass scale;
horizontal one distinguishes the different values of the elec
chargeZ.
58 © 1998 The American Physical Society
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PRC 58 59SOLUTIONS OF THE FADDEEV-YAKUBOVSKY . . .
tains also the spin, isospin, and angular momentum alge
In Sec. III we give some details of the numerical metho
used. In Sec. IV the results will be presented. They inclu
the 4He ground and first excited state, the elastic ph
shifts, and low-energy parameters for theN1NNN reaction
and theN1NNN→NN1NN first inelastic channel. The en
ergies are restricted below the three- and consequently f
body breakup. Conclusions and perspectives will be give
the last section.

II. THE FORMALISM

A. Faddeev-Yakubovsky equations

With the aim of solving the Schro¨dinger equation forN
particles interacting via a pairwise potentialVi j

~E2H0!C5(
i , j

Vi j C ~1!

Yakubovsky @17#, generalizing Faddeev’s work forN53
@18,19#, wrote a set of equations whose solutions verify E
~1! and which provides a proper mathematical scheme
account for the variety of physical situations involved~see,
e.g., Fig. 2!. In the N54 case, the FY equations can b
obtained by first splitting the total wave functionC in the
usual Faddeev amplitudesC i j associated with each interac
ing pair:

C5(
i , j

C i j 5C121C131C141C231C241C34,

and requiring them to be a solution of the system of coup
equations

~E2H0!C i j 5Vi j (
k, l

Ckl ~2!

or equivalently in its integral form

C i j 5G0Vi j C ~3!

with

FIG. 2. Different asymptotics to be accounted for in a 113
collision.
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G05~E2H0!21.

Each amplitudeC i j is in its turn split in three parts, the
FY amplitudes, corresponding to the different asymptotics
the remaining two particles:

C i j 5C i j ,k
l 1C i j ,l

k 1C i j ,kl , i , j ,k, l ~4!

and obeying the following system of coupled equations:

~E2H02Vi j !C i j ,k
l

5Vi j ~C ik, j
l 1C ik,l

j 1C ik,l j 1C jk,i
l 1C jk,l

i 1C jk,i l !,

~E2H02Vi j !C i j ,l
k

5Vi j ~C i l , j
k 1C i l ,k

j 1C i l ,k j1C j l ,i
k 1C j l ,k

i 1C j l ,ik!,

~E2H02Vi j !C i j ,kl5Vi j ~Ckl,i
j 1Ckl, j

i 1Ckl,i j !, ~5!

in which an amplitudeCa.b,g
d , not defined by Eq.~4!, has

to be understood as being identical toCba,g
d . Any solution

of this system of 18 coupled equations, called the FY eq
tions, is a solution of Eq.~2! and consequently of the initia
problem~1!. Its advantage lies in the possibility to define f
system ~5! appropriate boundary conditions ensuring t
unicity of the solution. Indeed when one of the particles, e
labeled byl , is out of reach of the interaction, all the amp
tudes in Eq.~5! tend to zero exceptC i j ,k

l and circular per-
mutations oni jk which obey

~E2H02Vi j !C i j ,k
l 5Vi j ~C ik, j

l 1C jk,i
l !. ~6!

This system of equations, resulting from Eq.~5!, is equiva-
lent to the 3N Faddeev equations for the particles (i jk ). In a
similar way, when the (i j ) and (kl) clusters are free from
interaction the only nonvanishing amplitudes areC i j ,kl and
Ckl,i j and their corresponding equations in Eq.~5! tends to

~E2H02Vi j !C i j ,kl5Vi j Ckl,i j . ~7!

It is worth noticing that the FY amplitudes can be writte
in terms of the Faddeev amplitudes in the form

C i j ,k
l 5Gi j Vi j ~C ik1C jk!,

C i j ,kl5Gi j Vi j Ckl , ~8!

where

Gi j 5~E2H02Vi j !
21

and, according to Eq.~3!, in terms of the total wave function

C i j ,k
l 5Gi j Vi j G0~Vik1Vjk!C,

C i j ,kl5Gi j Vi j G0VklC. ~9!
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60 PRC 58F. CIESIELSKI AND J. CARBONELL
Disregarding the internal degrees of freedom~such as
spin, isospin!, the natural basis for the configuration space
provided by the positions of the different particles

urW1rW2rW3rW4&5urW1& ^ urW2& ^ urW3& ^ urW4&. ~10!

In order to remove the center of mass motion, it is use
to introduce the relative Jacobi coordinates. Two sets of
cobi coordinates can be defined for each of the 4! arran
ments (i jkl ). One ofK type,

xWK~ i jkl !5A2m i , j

m
~rW j2rW i !,

yW K~ i jkl !5A2m i j ,k

m
S rWk2

mirW i1mjrW j

mi1mj
D ,

zWK~ i jkl !5A2m i jk ,l

m
S rW l2

mirW i1mjrW j1mkrWk

mi1mj1mk
D , ~11!

and one ofH type,

xWH~ i jkl !5A2m i , j

m
~rW j2rW i !,

yW H~ i jkl !5A2mk,l

m
~rW l2rWk!,

zWH~ i jkl !5A2m i j ,kl

m
S mkrWk1mlrW l

mk1ml
2

mirW i1mjrW j

mi1mj
D ,

~12!

in which m is an arbitrary mass taken as a reference
ma,b is the reduced mass of clustersa andb. However, some
of these 48 coordinate sets are redundant. For instance t
obtained by exchangingi↔ j in a K set ori↔ j or/andk↔ l
in the H set are equivalent. This yields 18 (12K16H) arbi-
trary and physically nonequivalent Jacobi sets, as man
FY amplitudes. Any of these coordinate sets, suitably co
pleted with the center of mass coordinateRW , constitutes an
equivalent description of the four particles configurati
space. That provides 18 coordinate sets and the corresp
ing bases for the configuration space, equivalent to Eq.~10!,
that will be written in the form uxWKyW KzWK( i jkl )RW & or
uxWHyW HzWK( i jkl )RW &. The degrees of freedom related to t
center of mass motion separate in nonrelativistic dynam
and will be hereafter omitted. Although each FY amplitu
could be in principle expressed in terms of any of the
bases, only one of them is appropriate for expanding it.
will denote the resulting components by

F i j ,k
l ~xW ,yW ,zW ![^xWKyW KzWK~ i jkl !uF i j ,k

l &,

F i j ,kl~xW ,yW ,xW ![^xWHyW HzWH~ i jkl !uF i j ,kl&.

The bases described above have to be completed to acc
for other degrees of freedom such as spin, isospin, etc.
ther details about the formalism and the relation between
different bases sets can be found, e.g., in Ref.@20#.
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B. Identical particles

In the case of four identical particles, the 18 FY amp
tudes can be obtained by the action of the transposition
mutation operatorsPi j on two of them, arbitrarily chosen
provided that one is ofK type and the other one ofH type.
We have takenK[C12,3

4 and H[C12,34. The four-body
problem is solved by determining the twoK,H amplitudes
which satisfy the following equations:

~E2H02V!K5V@~P231P13!~«1P34!K

1«~P231P13!H#, ~13!

~E2H02V!H5V@~P13P241P14P23!K1P13P24H#,
~14!

where«561 depending on whether the particles are bos
or fermions. The asymptotic equations, i.e., the equivalen
Eqs.~6!, ~7! are in this case

~E2H02V!K5«V~P231P13!K, ~15!

~E2H02V!H5VP13P24H. ~16!

The total wave function is then given by

C5C1131C212 ,

C1135@11«~P131P23!#@11«~P141P241P34!#K,
~17!

C2125@11«~P131P231P141P24!1P13P24#H.
~18!

Each amplitudeF5K,H is considered as a function of it
natural set of Jacobi coordinatesxWF ,yW F ,zWF , defined, respec-
tively, by Eqs. ~11! and ~12! with ( i jkl )5(1234) andm
5mi :

xWK5rW22rW1 ,

yW K5A4

3
S rW32

rW11rW2

2
D ,

zWK5A3

2
S rW42

rW11rW21rW3

3
D ,

xWH5rW22rW1 ,

yW H5rW42rW3 ,

zWH5&S rW31rW4

2
2

rW11rW2

2
D .

They are expanded in angular momentum variables
each coordinate according to
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FIG. 3. Spin, isospin, and an
gular momentum coupling
schemes used for theK and H
Faddeev-Yakubovsky amplitudes
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^xWyWzWuF&5(
a

E E E dx̂dŷdẑ
fa~x,y,z!

xyz
Ya~ x̂,ŷ,ẑ!,

~19!

whereYa are generalized tripolar harmonics containing sp
isospin, and angular momentum variables and the funct
fa , the reduced radial FY components, are the unknow
The labela represents the set of intermediate quantum nu
bers defined in a given coupling scheme and includes
specification for the type of amplitudes~K or H!. We have
used the following couplings, represented in Fig. 3:

K amplitudes:

$@~ t1t2!tx
t3#T3

t4%T^ „$@ l x~s1s2!sx
# j x

~ l ys3! j y
%J3

~ l zs4! j z
…Jp,
n

Th
.

,
ns
s.
-
e

H amplitudes:

@~ t1t2!tx
~ t3t4!ty

#T^ „$@ l x~s1s2!sx
# j x

@ l y~s3s4!sy
# j y

% j xy
l z…Jp,

~20!

where si and t i are the spin and isospin of the individu
particles and (Jp,T) are, respectively, the total angular m
mentum, parity, and isospin of the four-body system. Ea
componentfa is thus labeled by a set of 12 quantum num
bers to which the symmetry properties of the wave funct
impose the additional constraints: (21)sx1tx1 l x5« for K
and (21)sx1tx1 l x5(21)sy1ty1 l y5« for H. The total par-
ity p is given by (2) l x1 l y1 l z in both coupling schemes.

The radial equations for the componentsfa are obtained
by projecting each of Eqs.~13!, ~14! in its natural configu-
ration space basisuxWF ,yW F ,zWF&. Several steps further@20# we
end with a system of coupled integrodifferential equatio
which, most generally, can be written in the form
(
a8

D̂aa8fa8~x,y,z!5(
a8

Vaa8~x!(
a9

F f a8a9fa9~xa8a9
f ,ya8a9

f ,za8a9
f

!

1E
21

11

duha8a9~x,y,z,u!fa9~xa8a9
h ,ya8a9

h ,za8a9
h

!

1E
21

11

duE
21

11

dvga8a9~x,y,z,u,v !fa9~xa8a9
g ,ya8a9

g ,za8a9
g

!G ~21!
-

ial
the

the
.

with

D̂aa85S E1
\2

m
DaD daa82Vaa8~x!,

Da5]x
22

l x~ l x11!

x2 1]y
22

l y~ l y11!

y2 1]z
22

l z~ l z11!

z2 .

The functionsf a8a9 ,ha8a9 ,ga8a9 contain all the spin, iso-
spin, and angular momentum couplings. The argume
xa8a9

f ,xa8a9
h ,xa8a9

g ,..., arefunctions of (x,y,z,u,v) in the
more general case, and are detailed in the Appendix.
system of equations~21! has been explicitly written in Ref
@21# for the case of four identical bosons.
ts

e

The FY components for the different (S,T) channels in
the S-wave approximation, i.e., with all orbital angular mo
menta in expansion~19! equal to 0, are listed in Table I. In
this table, the symbols→ and ; denote, respectively, the
amplitudes corresponding to an asymptoticN1NNN or
NN1NN channel.

Note that, contrary to the 3N problem, the number of FY
components appearing in Eq.~21! is infinite even when the
pair interaction is restricted to a finite number of part
waves. This divergence comes only from the existence of
l z additional degree of freedom in theK-like amplitudes.

C. Boundary conditions

For all the physical problems we have considered,
boundary conditions can be written in the Dirichlet form
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62 PRC 58F. CIESIELSKI AND J. CARBONELL
The use of reduced radial FY componentsfa in Eq. ~19!
imposes for any kind of solution the regularity conditions

fa~x,y,0!5fa~x,0,z!5fa~0,y,z!50. ~22!

For the bound state problem these conditions are compl
by forcing the componentsfa to vanish on the hypercub
@0,xN#3@0,yN#3@0,zN#, i.e.,

fa~x,y,0!5fa~x,y,zN!5fa~x,0,z!5fa~x,yN ,z!

5fa~0,y,z!5fa~xN ,y,z!50. ~23!

For the scattering problems the boundary conditions
implemented by imposing at large enough values ofz the
asymptotic behavior of the solutions. Thus, for theN

TABLE I. Faddeev-Yakubovsky components for (S,T) 4N
states in theS-wave approximation. The listed quantum numbe
are those defined by the coupling schemes~20!. The symbols→
and ; emphasize, respectively, the asymptoticN1NNN and NN
1NN channels.

S50 (Jp501) T50

K tx T3 l x sx j x l y j y J3
p3 l z j z

→ 1 1/2 0 0 0 0 1/2 1/21 0 1/2
→ 0 1/2 0 1 1 0 1/2 1/21 0 1/2

H tx ty l x sx j x
px l y sy j y

py j xy l z

1 1 0 0 01 0 0 01 0 0
; 0 0 0 1 11 0 1 11 0 0

S51 (Jp511) T50

K tx T3 l x sx j x l y j y J3
p3 l z j z

→ 1 1/2 0 0 0 0 1/2 1/21 0 1/2
→ 0 1/2 0 1 1 0 1/2 1/21 0 1/2

0 1/2 0 1 1 0 1/2 3/21 0 1/2

H tx ty l x sx j x
px l y sy j y

py j xy l z

0 0 0 1 11 0 1 11 1 0

S50 (Jp501) T51

K tx T3 l x sx j x l y j y J3
p3 l z j z

→ 1 1/2 0 0 0 0 1/2 1/21 0 1/2
→ 0 1/2 0 1 1 0 1/2 1/21 0 1/2

1 3/2 0 0 0 0 1/2 1/21 0 1/2

H tx ty l x sx j x
px l y sy j y

py j xy l z

1 1 0 0 01 0 0 01 0 0

S51 (Jp511) T51

K tx T3 l x sx j x l y j y J3
p3 l z j z

→ 1 1/2 0 0 0 0 1/2 1/21 0 1/2
→ 0 1/2 0 1 1 0 1/2 1/21 0 1/2

1 3/2 0 0 0 0 1/2 1/21 0 1/2
0 1/2 0 1 1 0 1/2 3/21 0 1/2

H tx ty l x sx j x
px l y sy j y

py j xy l z

1 0 0 0 01 0 1 11 1 0
0 1 0 1 11 0 0 01 1 0
ed

re

1NNN elastic case we impose atzN the solution of the 3N
problem for all the quantum numbersaa corresponding to
the open asymptotic channela

faa
~x,y,zN!5taa

~x,y!, ~24!

where the functionstaa
(x,y) are the Faddeev amplitudes o

the 3N problem. Indeed, at large values ofz and for energies
below the first inelastic threshold, the solution of Eq.~15!
factorizes into a bound state solution of the 3N Faddeev
equations and a plane wave in thez direction with momen-
tum ka , whereas the solution of Eq.~16! vanishes. One then
has, e.g., for anS wave,

faa
~x,y,z!;taa

~x,y!sin~kaz1da! ~25!

and the scattering observables are directly extracted from
logarithmic derivative of theK amplitude in the asymptotic
region:

ka cot~kaz1da!5
1

faa
~x,y,z!

]zfaa
~x,y,z!. ~26!

Provided we are in the asymptotic domain, the phase sh
thus extracted have to be independent of (x,y,z) and of the
amplitude indexaa . This provides a strong numerical tes
An additional advantage of this procedure is that it avo
any cumbersome multidimensional integrals.

In the presence of several open channels, such aN
1NNN and NN1NN, e.g., several resolutions are neede
The boundary conditions~24! are simply generalized in the
form

faa
~x,y,zN!5laf aa

~x,y! ~27!

in which la are arbitrary real numbers and the functionsf aa

coincide withtaa
if a is aN1NNN channel or are analogou

to the Faddeev amplitudes for Eq.~16! if a is a NN1NN
channel.

Equation~24! is generalized in the following way:

waa
~x,y,z!5S 2taĥ2~kaz!

1(
a8

ta8Ana8ka8
naka

Saa8ĥ
1~kaz!D f aa

~x,y!,

~28!

whereĥ6 are the regularized Hankel functions@22#, andna
is a multiplicity number for the channela ~na54 for 113
andna53 for 212 channels! due to the symmetry proper
ties of the total wave function~see, e.g., Ref.@23#!. The
coefficientst ~amplitudes of the incoming waves! and the
S-matrix elements are the unknowns. They are obtained
identifying with the asymptotic form~28! the values
faa

,]zfaa
at zN for different solutions corresponding to dif

ferent choices ofl’s whose number equals the number
channels. We remark that the momentaka appearing in Eqs.
~25!, ~26!, ~28! are the conjugate variables of thez-Jacobi
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FIG. 4. Representations of some asymptotically nonvanishing amplitudes forn1t elastic scattering:~a! zero-energy,~b! positive kinetic
energy. On left, isosurfaces; on right, sections inx variable. The asymptotic factorization between an independent pattern on thx,y
coordinates and thez-variable motion appears clearly.
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coordinates. They are related to the center of mass kin
energy Ea of channel a according toEa5\2ka

2/m. The
physical momenta, conjugate to the physical intercluster

tances, areqa5A3
2 ka or qa5&ka depending whethera cor-

responds to a 113 or 212 channel.
By the definition ~28! one has unitarity (SS†51) and

symmetry (Si j 5Sji ) relations. Working with real solutions
these properties are related~unitarity implies symmetry!.
However, none of them is a trivial consequence of
method used but a strong test of numerical accuracy.

In order that the factorizability takes place the asympto
3N or 2N12N states have to be calculated with the sa
numerical scheme as that used to solve the four-body p
lem. This means in practice that they are exact solution
Eqs. ~15! or ~16!, once thez dynamics are removed. B
doing so, the factorization property, valid only in Cartesi
coordinates, is an exact numerical property and leads
stable local results. This behavior is illustrated in Fig. 4
which the FY amplitudes for anN1NNN elastic scattering
at q50 andq.0 are represented.

III. NUMERICAL METHODS

The numerical methods used are based on the Her
spline expansion, orthogonal collocation@24#, and iterative
procedures for solving the linear system. An important s
in their solution is the tensor trick@1,25–27#.

We look for the solutionsfa of the integrodifferential
system ~21! in the form of a tensor product of one
dimensional cubic Hermite splinesSi :
tic

s-

e

c
e
b-
of

to

ite

p

fa~x,y,z!5 (
i 50

2Nx11

(
j 50

2Ny11

(
k50

2Nz11

ca i jkSi~x!Sj~y!Sk~z!

~29!

defined on grids of nonequidistantNq11 points Gq
5$q0 ,q1 ,...,qN% whereq[x,y,z. A grid Gq will be defined
by giving the number of intervalsNq , the end pointqN , and
the constant scaling factor between two consecutive inter
Aq . We will use the following notationG[$Nq ,Aq ,qN%,
often extended to multidomain grids according toG
[$Nq1 ,Aq1 ,qN1 ;Nq2 ,Aq2 ,qN2 ;¯%.

The boundary conditions are easily implemented us
the properties of the spline functions~value and derivative
equal to 0 or 1 at the grid points!. They result in fixing the
values of some of the unknown coefficientsca i jk in the ex-
pansion ~29!. By exchanging the indices of the two la
spline functions in each variable the solution takes the fo

fa~x,y,z!5(
i 51

2Nx

(
j 51

2Ny

(
k51

2Nz

ca i jkSi~x!Sj~y!Sk~z!

1(
i 51

2Nx

(
j 51

2Ny

f a i j Si~x!Sj~y!S2Nz11~z!, ~30!

where f a i j are the coefficients of the asymptotic functio
f a(x,y) defined in Eq.~27!. In the cases of a closed chann
or a bound state these coefficients are zero.

Collocation points associated with the three-dimensio
grid are used to generate a linear system, theca i jk being the
unknowns. The integral terms in Eq.~21! are calculated with
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a Gaussian quadrature rule with typicallyNu ,Nv56 – 12
points in each angular variableu andv. In order to limit the
number of parameters we have chosenNu5Nv5Ng .

The number of unknowns is given byN58NxNyNzNc ,
where Nc5NK1NH is the number of FY components. A
rough estimation for the extreme cases of a four bos
bound state and of a scattering state in a realistic prob
leads to valuesNc52 – 100, Nx ,Ny520– 30, Nz520– 40,
and consequently to a number of unknowns going fromN
;104 to N;106. This implies the use of a dense matrix wi
;1012 coefficients. Direct methods are not appropriate
solving such huge linear systems, and we have used itera
techniques, which avoid any storage or inversion of the m
trix. The basic feature of any iterative method is to obtain
solution of the linear system only by iterative application
the matrix to an initial vector. This implies a complete ca
culation of the matrix elements each time it is necessary,
requires the intensive use of parallel computers.

In the case of scattering states, the boundary condit
~27!, responsible for the second term in Eq.~30!, generate a
source term in Eq.~21! leading to a regular linear system o
the type D(E)cW5@F1G1H#cW1bW , where the different
D,F,G,H matrices are reminiscent of th
Daa8 , f aa8 ,gaa8 ,haa8 operators. For brevity we will write
the system in the formAcW5bW .

The numerical method we have chosen to solve this s
tem is the generalized minimum residual algorith
~GMRES! @28#. GMRES is a prototype of the so-calle
Krilov subspaces projection methods. Its aim is to minim
the residuerW5bW 2AcW of an approximate solutioncW , starting
from a trial vectorcW0 and looking for its correctioncW2cW0 in
the Krilov subspaceK5$rW0 ,ArW0 ,A2rW0 , . . . ,Ap21rW0% such
that the residuerW is orthogonal toL5AK. When the dimen-
sion p increases, the residue of the approximate solutiocW
can be brought to an arbitrary small value, called toleran
In most of the practical cases, a tolerance between 1023 and
1026 is sufficient.

GMRES is a powerful tool when the problem is well co
ditioned, which is almost never true in a realistic case. T
way out is to ‘‘precondition’’ the system, i.e., to solve th
equivalent problemM 21AcW5M 21bW instead ofAcW5bW . The
closer toA the matrixM is, the better the preconditioning
Our choice was to take the matrixM equal toD. As pointed
out in Refs.@24,29,1# its tensor structure, optimized by th
choice of Cartesian coordinates, allows an easy invers
Our preconditioning technique gives us a converged re
after.30 matrix applications, for all the considered physic
cases and independently of the dimension of the matrix.
amples of convergence curves, i.e., the evolution of the r
due modulus at each step, are shown in Fig. 5.

In the case of the bound state, the asymptotic behavio
the wave function and FY amplitudes leads to a singu
systemD(E)cW5@F1G1H#cW that will be rewritten for con-
venience in the formA8cW5EcW , the energyE being an eigen-
value. It is well known that iterative methods are appropri
for extracting a few eigenvalues, but only those with larg
modulus. With the three-dimensional boxlike boundary co
dition ~23!, the existence of overwhelming highly positiv
eigenvalues leaves no hope of obtaining directly the bind
energy.
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A crafty trick is to solve the eigenproblemD21(E)@F

1G1H]cW5lcW , whereE is now a parameter@30,24#. The
valueE will be an eigenvalue of the initial problem when th
spectrum$l% contains 1. Furthermore, it can be shown
variational considerations that the more excited the state~in-
cluding the nonphysical box states!, the smaller the corre-
spondingl. Thus the eigenvalues of physical interest can
obtained with methods like the implicit restarted Arnoldi a
gorithm ~IRA! @31#. We notice that the full inversion ofD,
including the two-body potential, gives a better condition
spectrum$l% than an inversion of its kinetic term alone, an
avoids some of the awkward negative eigenvalues gener
by the repulsive part of the potential. IRA is a generalizati
of the power method and gives the first eigenvalue in 10–
matrix applications. It is also based on Krilov subspaces,
approximates the eigenvalues ofA8 by those of the restric-
tion of A8 to the space spanned byk vectors
xW0 ,xW1 , . . . ,xW k21 , xW0 being a trial arbitrary vector. Neverthe
less, this method requires several calculations for differ
values of the energy and becomes numerically unstable w
using highly repulsive two-body potentials, such as the int
atomic 4He-4He one@32#.

A more robust technique was finally adopted, often
ferred to as shift-invert method. The initial problem is wr
ten in the form (A82E0)21cW5jcW and this technique con
verges to the energy closest toE0 . It gives very good results
with a well-balanced mixture of IRA and GMRES. IRA i
used to quickly obtain the dominant eigenvaluej0 and pro-
vides the energyE5E011/j0 . The real difficulty lies in the
generation of the corresponding Krilov subspace. It is ob
ously impossible to invert (A82E0) since theF,G,H matri-
ces are contained inA8. The stepxW k115(A82E0)21xW k is
then performed by a GMRES resolution of the equivale
linear system (A82E0)xW k115xW k . This technique present
considerable interest especially for excited states which
easily obtained, independently of the previous converge
of the less excited ones.

FIG. 5. Residue modulus obtained with GMRES vs the dim
sion of the Krilov subspace, i.e., the number of matrix applicatio

for different numbersn of unknowns. The linear systemAcW5bW is

normalized such thatibW i51. The initial guess is chosen to be 0W .
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IV. RESULTS

The results presented in this section have been obta
with the spin-dependentS-wave interaction MT I–III:

Vs~r !5Vr

exp~2m r r !

r
2Va

exp~2mar !

r
.

The potential parameters and the value\2/m
541.47 MeV fm2 are the same as those used, e.g., in R
@1,33,34# and are slightly different from those given in th
original version@30#. Despite its bare simplicity, this poten
tial turns out to be very efficient in describing the bulk
low-energy properties in the few-nucleon systems. We w
first examine what we call theS-wave approximation, i.e.
the fact that aside from the zero angular momentum of
interaction pair, all the angular momenta variables in exp
sion ~19! are set equal to zero. The convergence with resp
to the l y ,l z expansion will be examined in a second step.

A. Bound states

In the 4N system, the bound states exist only for theS
5T50 channel. In theS-wave approximation the number o
FY components is limited toNc54 (NK5NH52) ~see
Table I!. The binding energies and rms radius for the grou
(4He) and first excited (4He* ) states are given in Table II
The corresponding grids areG1 with Ng512 andG1* with
Ng56, given in Table III. The estimated accuracy in t
binding energies is 0.01 MeV but we notice that much le
expensive calculations can provide a precise result as w
e.g., the gridG2 with Ng58 gives also a binding of 30.30

TABLE III. Grids used for 4N ground (4He) and first excited
(4He* ) states.

grid G1

x 20 1.30 10.0
y 15 1.25 12.0
z 15 1.25 15.0

grid G2

x 15 1.30 10.0
y 10 1.25 12.0
z 10 1.25 15.0

grid G1*

x 08 1.30 08.0 05 1.10 20.0
y 07 1.30 10.0 05 1.10 30.0
z 07 1.20 10.0 13 1.10 80.0 10 1.00 150.

TABLE II. Binding energies~MeV! and rms radius~fm! for the
4N ground (4He) and first excited (4He* ) states. Our results for the
4He binding energy agree very well with the best existing calcu
tions. The triton parameters are also mentioned for completene

4He @1# 4He @34# 4He 4He* 3H

B 30.31 30.29 30.30 8.79 8.53
rms 1.44 4.95 1.72
ed
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MeV. In the ground state we remark that there is good agr
ment with the best existing calculations@1,34#.

The first excitation which, experimentally, corresponds
a Jp501 resonance 0.40 MeV above thep1t threshold
@35#, appears in this model as a loosely bound state.
binding energy with respect to theN1NNN threshold~E
528.535 MeV in this model! is 0.257 MeV. A similar re-
sult was found in Ref.@7# in which different versions of the
one term separable Yamaguchy potential gives a binding
ergy varying from 0.07 to 0.40 MeV, depending on the
different D-state contributions. This 01 first excitation has
been widely considered in the literature as being a breath
mode @36–38#. Our conclusion is, however, different. W
have calculated the regularized two-body correlation fu
tions defined by

Cax
~x!5 (

a8~ax85ax!

E E dydzuCa8~x,y,z!u2, ~31!

whereCa8(x,y,z) represents the total wave function com
ponent in thea8 quantum numbers, and whereax denotes
the subset of quantum numbersa relative to thex variable
( l x ,sx , j x ,tx). The summation in Eq.~31! is performed onto
one of the two bases,K or H. Once the total wave function
is normalized, the correlation functions are normalized
cording to

(
ax

E dxCax
~x!51. ~32!

The results are displayed in Fig. 6. The separated con
butions from the singlet and triplet state are plotted for~a!
triton, ~b! 4He ground state, and~c! 4He first excited state.
The difference between the correlation functions for t
ground and excited states is remarkable, both in the sh
and in the separated singlet-triplet contributions. For the
cited state one can distinguish the superposition of two st
tures with two different length scales, the short-distance p
being similar to the triton one. This suggests a 113 structure
for the 4He excited state, as can be more clearly seen in
~d! where the results of~c! are compared with those of th
triton suitably normalized. Contrary to what would happen
a breathing mode, the short distance behavior of the nucle
is that of an unperturbed triton with the fourth nucleon bei
simply a remote spectator.

By modifying the MT I–III potential strength we failed to
pull the state out of the bound region, the three-body thre
old moving in the same direction. It seems very difficult f
a pure strong interaction to generate a first excitation in
continuum. The right position of this resonance is, howev
a crucial point in any attempt to describe the low-energy d
~e.g., p1t! @20#. The effect of Coulomb interactions coul
be enough. However, the inclusion of anad hoc repulsive
four-body termV(r)5V0e2r2

can also achieve the sam
result.

The preceding results are only slightly modified by t
inclusion of higher partial waves in the FY expansion. T
effects of these contributions can be seen in Table IV. Th
smallness shows the validity of theS-wave approximation.
These results have been obtained using the gridG2 with

-
s.
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FIG. 6. Two-body correlation
functionsCax

(x) for ~a! triton, ~b!
4He ground, and~c! first excited
states. Solid~dashed! line denotes
the triplet ~singlet! contributions.
In ~d!, the results of4He first ex-
cited state are compared to the tr
ton correlation function suitably
scaled.
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Ng58 for the ground state andG1* with Ng56 for the first
excitation for which the corresponding triton binding ener
is B358.513 MeV.

B. Elastic N1NNN scattering

A crucial point in our method is to ensure the prop
description of the 3N asymptotic state. This is used to fix th
grid parameters for thex,y variables. In order to exhibit the
stability of our results, we will compare the phase shifts o
tained with several tritons corresponding to increasing
merical accuracies. The considered grids, detailed in Ta
V, are T4 with Ng56 and a binding energyB
58.593 MeV, T8 with Ng58 andB58.527 MeV, andT10
with Ng58 andB58.535 MeV. We recall that the precis
value for the 3N binding energy isB58.535 MeV. The grid
parameters for thez variable depends substantially on th
relative kinetic energy. A zero energy calculation require
relatively large value ofzN but very few points inside are
sufficient to describe an asymptotic linear behavior. On
contrary as far as the energy increases, the value ofzN can be
decreased but the oscillations in the relative wave functi
demand an increasingly big number of points. A typical g
for the caseE50 is Gz[$10,1.20,19.0;03,1.00,34.0%.

TABLE IV. Nonzero angular momentum contributions to4He
and 4He* binding energies.

NK1NH l x l y l z B4 B4* B* 2B3

212 0 0 0 30.302 8.769 0.257
812 0 0,1 0,1 30.319 8.763 0.250
1613 0 0,1,2 0,1,2 30.324 8.770 0.257
r

-
-
le

a

e

s

We have shown in Table VI the phase shifts for differe
(S,T) channels as a function of the center of mass ene
For all of them, we have arbitrarily chosen, as in Ref.@5#, the
determinationd(E50)5180°. For theS50 case the com-
parison between gridsT4 andT8 has been made, showing
good stability despite the fact that gridT4 gives only a poor
description of the asymptotic state. As it has been alre
emphasized in Sec. II, the key point in our approach to
scattering problem lies in the coherence between
asymptotic state and the numerical solution of the 4N prob-
lem, rather than in a very precise description of it. The
sults corresponding to gridT8 are considered as converged

A zero energy calculation directly provides us with th
scattering length. The results, given in Table VII, show
high stability with respect to grid variations~T8 andT10! and
our estimated accuracy is given in column 3. These val
are in agreement with the existing published calculatio
@13#. For T51 they are close to those obtained in Ref.@5#

TABLE V. The gridsT4 , T8 , T10 used for the tritons 4, 8, 10.

grid T4 : B358.593 MeV

x 08 1.30 14.0 01 18.0
y 07 1.20 19.0 02 1.00 29.0

grid T8 : B358.527 MeV

x 12 1.30 14.0 01 18.0
y 10 1.20 19.0 02 1.00 29.0

grid T10: B358.535 MeV

x 18 1.20 14.0 02 1.00 18.0
y 15 1.10 19.0 04 1.00 29.0
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TABLE VI. N1NNN phase shifts~deg!, as a function of the
center of mass kinetic energy~MeV!, in different (S,T) channels.
In the S50 case, the results with different grids are shown.

Ec ~MeV! d ~deg.!

S50, T51 T4 T8

0.05 169.97 169.95

0.1 165.85

0.5 148.99

1.0 137.13 137.07

2.0 121.79

3.0 111.27

4.0 102.93 102.82

5.0 96.18 96.13

6.0 90.18 90.24

S50, T50 T4 T8

0.01 165.17 164.05

0.02 159.17 157.66

0.05 147.73

0.07 142.29

0.1 135.72 132.98

0.2 120.52

0.3 109.52 106.95

0.5 95.81

0.7 85.57

1.0 74.08 71.05

2.0 49.92 47.16

3.0 34.71 32.07

4.0 23.60 21.04

S51, T51 T8

0.03 172.97

0.06 170.07

0.12 166.0

0.3 158.02

0.9 142.84

1.8 129.11

2.7 119.43

3.6 111.84

5.4 100.10

6.3 94.84

S51, T50 T8

0.01 176.46

0.02 174.99

0.05 172.09

0.1 168.83

0.5 155.23

1.0 145.35

2.0 132.06

3.0 122.53

4.0 114.96

5.0 108.68

6.0 103.24
although with the original potential parameters.
The remaining low-energy parameters have been

tracted from the phase shifts and are given in Table VIII
the different (S,T) channels. They are defined in the effe
tive range expansion,

g0~q!5q cot d~q!5x~q!F2
1

a
1

1

2
r 0q21v0q4G , ~33!

wherex(q)51 in the usual case but has to be modified
the presence of a near threshold singularity. According
Ref. @39#, we have taken the form~q0 real!

x~q!5
1

12~q/q0!2 . ~34!

The validity of the expansion~33! in the energy region
below the first inelastic threshold is displayed in Fig. 7. T
usual effective range approximation, i.e.,x(q)51 and theq4

contribution neglected in Eq.~33!, works very well in the
whole energy domain for all but the~S50, T50! channel, in
which the existence of a near threshold4He excited state
requires the explicit inclusion of the pole contribution~34!. It
is worth noticing that the contributions coming from thev0
term are very small and have been included only for co
pleteness. On the contrary the pole contribution, exist
only in the ~S50, T50! channel, is essential. Expansio
~33! provides a very accurate parametrization of theS-wave
scattering amplitude in all the energy region below t
breakup threshold.

We would like to emphasize here the coherence betw
the 4He* and the scattering results in the~S50, T50! chan-
nel. Inserting the effective range expansion~33! in the
S-wave scattering amplitude

f 0~q!5
1

g0~q!2 iq

produces an imaginary pole in the upper complexq plane
with value q* 50.095i . The corresponding energyE*

TABLE VII. N1NNN scattering lengths values in differen
(S,T) channels, in theS-wave approximation.

aST ~fm!

S T triton 8 triton 10 final value

0 1 4.13 4.13 4.13 6 0.01
1 1 3.73 3.73 3.73 6 0.01
0 0 14.78 14.76 14.76 6 0.02
1 0 3.25 3.25 3.25 6 0.01

TABLE VIII. Low-energy N1NNN parameters, in theS-wave
approximation.

S T a ~fm! r 0 ~fm! v0 (fm3) q0 (fm21) a @13#

0 1 14.75 6.75 0.462
1 1 3.25 1.82 0.231
0 0 4.13 2.01 0.308 0.505 4.0
1 0 3.73 1.87 .0 3.6
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FIG. 7. Effective range expansion,q being the center of mass momentum. The usual one~dashed curve! gives a quite accurate
description of the scattering amplitude, except in the~S50, T50! case. The full expansion~33! ~solid line! provides a perfect fit of the
calculated points.
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3 \2q*2/m50.25 MeV is in close agreement with the dire

calculation given in Table II.
A step beyond theS-wave approximation has been take

by keeping theS-wave interaction alone but allowing non
zero values in the angular momentum expansion of the
amplitudes. Table IX shows the sensibility of the scatter
lengths values when the maxima ofl y and l z vary from 0 to
2. In the particular interaction model we are considering,
number of channels describing the 3N asymptotic state re
mains the same whereas the number of channelsNc of the
4N problem considerably increases. These results have
obtained with the gridT8 andNg58 completed with a suit-
able z grid. The values are well converged withl y ,l z50,1
except in the~S50, T50! case, where the big value of th
scattering length makes this state rather sensitive to s
parameter variations.

The n1t cross section.Of particular interest is to apply
the preceding results to the description ofn1t cross section.

TABLE IX. Convergence of low energyN1NNN scattering
lengths, with respect to increasing internal angular momenta.

S T ly ,l z50 l y ,l z50,1 l y ,l z50,1,2 l y ,l z50,1,2,3

a Nc a Nc a Nc a Nc

0 0 14.78 4 14.86 10 14.72 16 14.72 22
1 0 3.25 4 3.08 17 3.08 31 3.08 45
0 1 4.13 4 4.10 12 4.10 20 4.10 28
1 1 3.73 6 3.63 23 3.63 41 3.63 59
Y
g

e

en

all

On the one hand this is a pureT51 channel, free from the
difficulties related to the Coulomb interactions. On the oth
hand, accurate low-energy scattering data exist@40#, showing
a structure at neutron laboratory energyTlab'4 MeV which
is supposed to be created by a series ofP-waves resonance
@35#. The calculations discussed in the preceding sec
have thus been completed up to the first three-body brea
threshold by the inclusion of the first negative parity sta
Jp502,12,22 corresponding ton1t relativeP waves. The
resulting total cross sections are plotted in Fig. 8. The c
tributions from n1t relative S and P waves are distin-
guished. We notice that the MT I–III model conserves se
rately L and S and consequently theJp502,12,22 states
coming fromL51, S51 are degenerate. The correspondi
cross sections differ only by statistical factors. The rema
ing Jp512 state comes from anL51, S50 coupling. In
view of these results, several remarks are in order.

~1! The scattering lengths obtained in theS-wave approxi-
mation ~Table VII! gives a slightly overestimated value fo
the zero energy cross sections(0)51.85 b. The experimen
tal extrapolated zero energy cross section iss~0!51.70
60.03 b @40,41#. However, the inclusion of higher partia
waves in the FY expansion~Table IX! significantly reduces
the S-wave approximation result tos(0)51.77 b in closer
agreement with experiment.

~2! The comparison of the separated spin contribution
not possible since the values of the spin-dependent scatte
lengths, summarized in Table X, are still controversial.

~3! Despite the simplicity of this model, the agreeme
with experimental data in the resonance region, is very go
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The n1t P-wave resonances are generated by anNN
S-wave interaction alone. An effective 113 P-wave poten-
tial is created due to the exchange mechanism between
four nucleon. We remark, however, that a first attempt
describe this cross section withl z51 in the K components
but keeping zero all the remaining angular momenta in
~19! failed. The incoming neutron seems thus to be m
sensible to the virtual excitations of the triton than to theNN
pair interactions themselves.

~4! We have calculated the contribution coming from t
n1t relativeD waves. They are given by the positive pari
statesL52, S50,1. The corresponding phase shifts at
MeV c.m. kinetic energy aredS50523.3° and dS515
22.4°, which contributes only a few mb to the total cro
section. The results displayed Fig. 8 can so be considere
fully converged in the MT I–III model.

C. First inelastic channel

The last point to be presented in this work concerns
reaction

FIG. 8. Then1t cross sections calculated with MT I–III po-
tential is compared to experimental data. Thes-wave contribution
(s, solid line! is slightly overestimated due to the overestimat
scattering lengths. Thep-wave contribution~p, solid line! domi-
nates in the resonance region and is responsible for the very
agreement~s1p thick line! with the experimental total cross se
tion ~crosses!. The L51, S51 contribution is split by statistica
factors into its Jp502,12,22 components~dot-dashed, dotted
dashed curves!, whereas theL51, S50 one corresponds to a pur
Jp512 ~dotted curve! partial wave.

TABLE X. Latest experimental results concerningn1t singlet
(a0) and triplet (a1) scattering lengths~in fm!.

a0 a1

3.91 6 0.12 3.6 6 0.1 @40#

4.98 6 0.29 3.13 6 0.11 @43#

2.10 6 0.31 4.05 6 0.09 @43#

4.453 6 0.10 3.325 6 0.016 @44#
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p13H→p13H

→n13He

→d1d.

In the isospin approximation employed throughout this wo
both n13He andp1t thresholds are degenerate and cor
spond to theN1NNN of the preceding section. The Pau
principle imposes for the deuteron-deuteron chan
(2)L1S1T511. If we assume the final stated1d to be in a
relative S wave one hasL5T50 andJp501,21. The Jp

521 state requires a relative angular momentuml z52 in
the initial N1NNN channel and it is expected to give sma
contribution at very lowd1d energy. We will consider only
the ~Jp501, T50! state.

TheS matrix is defined according to Eq.~28!. We present
in Table XI theS-matrix elements at several energies, chos
with respect to theNN1NN threshold.N1NNN is referred
to as channel 1,NN1NN as channel 2. The symmetry an
unitarity properties are there fulfilled at the level of 1023,
which corresponds to the accuracy of our results.

With the conventions used above, the scattering cross
tions in a given partial wave (Jp) in presence of severa
channelsa,a8,..., aregiven by

sa→a
~J! 5

p

qa
2

Ĵ

Sa1̂
•Sa2̂

u12Saau2, ~35!

sa→a8
~J!

5
p

qa
2

Ĵ

Sa1̂
•Sa2̂

uSa8au2, ~36!

where the notationĴ holds for 2J11. Sai
denotes the spin o

the colliding clusterai . The corresponding values wit
a,a8[N1NNN,NN1NN are given in Fig. 9~filled circles!.
We remark no accident in theN1NNN cross section when
the inelasticNN1NN threshold is open. TheNN1NN
→N1NNN cross section displays the usual 1/v law of the
inelastic process and the crossed channelN1NNN→NN
1NN the expectedAE law. The elasticd1d cross section
has been calculated neglecting Coulomb interactions wh
will make this quantity divergent. However, due to the a
sence of nearthreshold singularity, one can expect small
rections to the low-energy parameters obtained in this w
as in then1n versusp1p case.

Of particular interest is the extraction of the imagina
part of the strongd1d scattering length, a quantity whic
controls the fusion rate in the processd1d→n13He. This
can be done either from the linear behavior of thed1d
phase shiftsd2252(aR2 iaI)q2 ~with S225e2id22!, as dis-
played in Fig. 10, or from the inelasticity in the nondiagon
S-matrix element which behaves asuS12u2524aIq2(1
12aIq2). Both methods agree with high accuracy and le
to the following values:

aR514.9160.02 fm, ~37!

aI520.011560.0001 fm. ~38!

ice
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TABLE XI. N1NNN↔NN1NN S-matrix elements. TheN1NNN channel is labeled by 1, theNN
1NN one by 2.

Ec c.m. ~MeV! S matrix

N1NNN NN1NN S11 S12 S21 S22

4.1253 0.05 0.77210.634i 20.0047310.0472i 20.0047110.0470i 0.88220.468i
4.1753 0.10 0.78210.621i 0.00048810.0564i 0.00048610.0563i 0.77120.634i
4.2753 0.20 0.80210.594i 0.011010.0661i 0.011010.0661i 0.56620.821i
4.3253 0.25 0.81110.581i 0.016010.0690i 0.016110.0691i 0.47220.879i
4.3753 0.30 0.82010.567i 0.020910.0711i 0.021010.0713i 0.38220.921i
4.5753 0.50 0.85410.514i 0.039110.0748i 0.039310.0752i 0.065920.994i
5.0753 1.00 0.91910.381i 0.075910.0679i 0.075810.0678i 20.48020.871i
5.5753 1.50 0.96110.253i 0.10310.0508i 0.10210.0506i 20.78420.610i
6.0753 2.00 0.98310.133i 0.12010.0292i 0.12310.0301i 20.93420.335i
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We remark that a very small value ofaI which should be
only slightly modified once the Coulomb interaction
switched on. This small value is due to the small overlapp
between theK andH configurations which respectively gov
ern theN1NNN andNN1NN asymptotic states.

V. CONCLUSION

We have presented the first solution of Fadde
Yakubovsky equations in configuration space for the scat
ing states in the 4N system. They concern both theN
1NNN elastic scattering and its coupling to the first inela
tic NN1NN channel. The results presented here have b
obtained with anS-wave model interaction and in the isosp
symmetry approximation, i.e., neglecting the Coulomb a
mass difference effects.

The N1NNN elastic phase shifts have been calcula
for the different spin and isospin channels. The low-ene
parameters have been extracted and the validity of the e
tive range approximation in the energy region below
three-body break-up threshold has been analyzed. We
in particular found the importance of including the pole co

FIG. 9. Elastic and inelastic cross sections~solid curves!, in
fm2, for the coupled channelsN1NNN-NN1NN. They are inter-
polated between the calculated values~filled circles!. The energies
are given in the center of mass of the incident channel.
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-
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tribution in the~S50, T50! case due to the vicinity of the
first Jp501 excitation. We have also found that in th
framework of our model this 01 state is bound at 0.25 MeV
below the 3N threshold. The study of the two-body correl
tion functions showed that the structure of this state is a
13 configuration rather than a breathing mode, as is usu
accepted. The coherence between the binding energy of
state and the scattering results has been emphasized.

The n1t scattering cross section has been treated wit
special interest and the first negative parity states have b
included, to account for the structure experimentally o
served. The elastic cross section is well described by
simple MT I–III interaction, especially in the resonance r
gion. Then1t P-wave resonance is thus reproduced by
NN pure S-wave interaction. This shows the difficulty t
understand this structure in terms of theNN interaction
alone. It is created by the direct and exchange mechan
between the incoming neutron and the target nucleons.

The S matrix coupling theN1NNN andNN1NN chan-
nels has been obtained as well as the corresponding c
sections. The analysis of these results allows the extrac
of theNN1NN scattering length, whose imaginary part co
trols the fusion processd1d→n13He. Its value turned out
to be very small (aI.0.011 fm). Further applications of thi
formalism including Coulomb interactions and more realis
potentials are in process.
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IDRIS ~Institut du Développement et des Resources en
formatique Scientifique, CNRS!. We are grateful to the staf
members of these two organizations for their kind hospita
and useful advice.

APPENDIX

This appendix aims at the complete expression of
functions f ,g,h appearing in Eq.~21! in terms of the corre-
sponding quantum numbersa anda8. By projection onto the
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appropriateK andH basis, the right-hand side of Eqs.~11!
gives raise to integral terms as shown in Eq.~13!, involving
some very complicated functionsf ,h,g, generated by per
mutations operators.

1. Permutation operators

The permutation operatorsPi j are completely defined by
their action upon each ket of a complete basis. This bas
chosen to be an ordered quadrupletuq1q2q3q4&, where the
given i th value represents the state of thei th particle, includ-
ing the space, spin, and isospin degrees of freedom.
basis is a generalization of the one given in Eq.~10!. It is
assumed thatPi j corresponds to an exchange between thei th
and j th set of quantum numbers, e.g.,

P34uq1q2q3q4&5uq1q2q4q3&.

FIG. 10. Low-energy behavior of the deuteron-deuteron ph
shift d and determination of the scattering length. Its real or ima
nary partsaR or aI are deduced from the proportionality betwe
the real~solid curve! or imaginary~dashed curve! parts of the phase
shift and the center-of-mass momentumq2 .
ith
om
is

is

More complex permutations are then transparent, e.g.,

P23P34uq1q2q3q4&5uq1q4q2q3&.

The way the permutation operators act upon the coup
bases~K or H! can be deduced from this basic feature. In t
configuration space, e.g., a single operator results in a g
eralized rotation of the Jacobi coordinates. Note that beca
of the symmetry of the bases, the contribution of the ope
tors P13, P13P34, andP14P23 are identical to those ofP23,
P23P34, andP13P24.

2.H functions

All the permutation operations can be seen as, at m
two successive rotations, each of them involving only tw
coordinates, e.g., first of ally andz, thenx and one of the
preceding rotated coordinates. So it is convenient to use
functions appearing in the three-body problem@42#, defined
as follows.

Suppose we are to calculate the projection of a given
pression@Yl

x8
( x̂8)Yl

y8
( ŷ8)#LF(x8,y8), F being an arbitrary

function of x8 and y8, onto a bipolar-harmonic basi

@Yl x
( x̂)Yl y

( ŷ)#L , where the following relation holds:

S xW8

yW 8
D 5S a b

c dD S xW

yW
D . ~A1!

We defineH functions such that

E E dx̂dŷ@Yl x
~ x̂!Yl y

~ ŷ!#L* @Yl
x8
~ x̂8!Yl

y8
~ ŷ8!#LF~x8,y8!

5
1

2 E
21

1

duH l xl y ,l
x8 l

y8
L

~x,y,u!F~x8,y8!,

where, in the integral term,x8 andy8 are obtained from Eq.

~A1! with the constraint cos(x̂,ŷ̂)5u. These functions are
given, for example, by

e
-

H ll,l 8l8
L

~x,y,u!5 (
k,l 1 ,l 2 ,l1 ,l2 ,l 0 ,l0~ l 11 l 25 l 8,l11l25l8!

~2 ! l 81l81L1k
•al 1bl 2cl1dl2 l̂ 8l̂8k̂l̂ 0l̂0

3A ~2l 8!! ~2l8!! l̂ l̂

~2l 1!! ~2l 2!! ~2l1!! ~2l2!! S k l0 l

0 0 0D S k l0 l

0 0 0D S l 1 l1 l 0

0 0 0D
3S l 2 l2 l0

0 0 0 D H l l L

l 0 l0 kJ H l 1 l 2 l 8

l1 l2 l8

l 0 l0 L
J xl 11l1yl 21l2

~x8! l 8~y8!l8
Pk~u!,
where l̂ 52l 11 andPk stands for thekth-Legendre polyno-
mial.

Obviously, in the four-body case, one has to deal w
cumbersome recoupling, to isolate bipolar harmonics fr
the more complex coupling scheme~20!. Nevertheless all the
work can be built upon this basic function.

3. The only nonzerof function

f a,a8 is nonzero when botha anda8 are ofH type. Let us
define thenxaa8

f , yaa8
f , zaa8

f by
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S xWaa8
f

yW aa8
f

zWaa8
f
D 5S 0 1 0

1 0 0

0 0 21
D S xW

yW

zW
D .

f a,a8 is given by

f a,a85ta,a8d l z ,l
z8
ds

x8 ,sy
dsx ,s

y8
d l x ,l

y8
d l

x8 ,l y
d j x , j

y8
d j

x8 , j y
d j xy , j

xy8

~2 ! j x1 j y2 j xy1 l z,

where the isospin contributionta,a8 is ta,a85dtx ,t
y8
dt

x8 ,ty

(2)tx1ty2T.

4. h functions

There are two cases where theh functions can be nonzer
when the amplitudea8 is of K type.
a. a of K type

xaa8
h ,yaa8

h ,zaa8
h are then defined by

S xWaa8
h

yW aa8
h

zWaa8
h

D 5S 1

2

)

2
0

)

2
2

1

2
0

0 0 1

D S xW

yW

zW
D

and the complete expression forhaa8 is
ha,a8~x,y,z,u!5«ta,a8 (
l xy ,s

d l z ,l
z8
d j z , j

z8
dJ3 ,J

38
AH l x sx j x

l y s3 j y

l xy s J3

J AH l x8 sx8 j x8

l y8 s2 j y8

l xy s J3

J
3~2 !s11s22sx1s21sx82sAH s2 s1 sx

s3 s sx8
J xyz

xaa8
h yaa8

h zaa8
h H

l xl y ,l
x8 l

y8

l xy ~x,y,u!,

where

AH j 1 j 2 j 3

j 4 j 5 j 6

j 7 j 8 j 9

J 5A ĵ 13ĵ 6 ĵ 7 ĵ 8H j 1 j 2 j 3

j 4 j 5 j 6

j 7 j 8 j 9

J , ĵ 52 j 11, ta,a85~21! t11t22tx1t21tx82T38, dT3 ,T
38
AH t2 t1 tx

t3 T3 tx8
J

and with the constraint cos(x̂,ŷ̂)5u.

b. a of H type

xaa8
h ,yaa8

h ,zaa8
h are now defined by

S xWaa8
h

yW aa8
h

zWaa8
h

D 5S 2
1

)
0 2

&

)

0 1 0

&

)
0 2

1

)

D S xW

yW

zW
D

and the corresponding expression forhaa8 is

ha,a8~x,y,z,u!5«ta,a8 (
l yz8 ,J28

d l
x8 ,l y

ds
x8 ,sy

~2 ! j xy1 l z2J1 j y1J282J1 l x1 l z2 l yz8 AH l z j x J28

j y J jxy
J AH j x8 j y8 J38

j z8 J J28
J AH l y8 s1 j y8

l z8 s2 j z8

l yz8 sx J28
J

3AH l z l x l yz8

sx J28 j x
J xyz

xaa8
h yaa8

h zaa8
h H

l xl z ,l
y8 l

z8

l yz8 ~x,z,u!

with
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ta,a85dt
x8 ,ty

~2 !tx1ty2TAH tx8 t3 T38

t4 T tx
J

and the constraint cos(x̂,ẑ̂)5u.

5. g functions

There are two cases where theg functions can be nonzero: the amplitudea must be ofK type.

a. a8 of K type

It is necessary to define in this casexaa8
g ,yaa8

g ,zaa8
g and an intermediate coordinateyW 0 such that

S xWaa8
g

yW aa8
g

zWaa8
g

D 5S 1 0 0

0
1

3

2&

3

0
2&

3
2

1

3

D S xWaa8
g

yW 0

zW
D and S xWaa8

g

yW 0

zW
D 5S 1

2

)

2
0

)

2
2

1

2
0

0 0 1

D S xW

yW

zW
D .

The corresponding expression forgaa8 is

ga,a8~x,y,z,u,v !5
1

2
ta,a8 (

l xy ,s,l xy8 ,s8,l yz8 ,L,S,l

AH l x sx j x

l y s3 j y

l xy s J3

J AH l x8 sx8 j x8

l y8 s4 j y8

l xy8 s8 J38
J AH l xy s J3

l z s4 j z

L S J
J AH l xy8 s8 J38

l z8 s2 j z8

L S J
J

3AH l x8 l y8 l xy8

l z8 L l yz8
J AH l x8 l l xy

l z L l yz8
J ~2 !s11s22sx1s21s82SAH s2 s1 sx

s3 s sx8
J

3AH s2 sx8 s

s4 S s8
J xyz

xaa8
g yaa8

g zaa8
g H

l xl y ,l
x8l

l xy ~x,y,u!H
l l z ,l

y8 l
z8

l yz8 ~y0 ,z,v !

with the constraints cos(x̂,ŷ̂)5u and cos(ŷ0,ẑ̂)5v, and where

ta,a85~2 ! t11t22tx1t21T382TAH t2 tx8 T3

t4 T T38
J AH t2 t1 tx

t3 T3 tx8
J .

b. a8 of H type

We define againxaa8
g ,yaa8

g ,zaa8
g and an intermediate coordinateyW 0 in the following way:

S xWaa8
g

yW aa8
g

zWaa8
g

D 5S 1 0 0

0 2
1

)

&

)

0
&

)

1

)

D S xWaa8
g

yW 0

zW
D and S xWaa8

g

yW 0

zW
D 5S 1

2

)

2
0

)

2
2

1

2
0

0 0 1

D S xW

yW

zW
D .

The corresponding expression forgaa8 is now
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ga,a8~x,y,z,u,v !5
«

2
ta,a8 (

l xy ,s,l xy8 ,l yz8 ,L,S,l

AH l x sx j x

l y s3 j y

l xy s J3

J AH l x8 sx8 j x8

l y8 sy8 j y8

l xy8 S jxy8
J AH l xy s J3

l z s4 j z

L S J
J

3~2 ! l xy8 1S2J381L1S2JAH S lxy8 J38

l z8 J L J AH l x8 l y8 l xy8

l z8 L l yz8
J AH l x8 l l xy

l z L l yz8
J

3~2 !s11s32sx81sx1s32sAH sx8 s2 s

s4 S sy8
J AH s3 s1 sx8

s2 s sx
J xyz

xaa8
g yaa8

g zaa8
g H

l xl y ,l
x8l

l xy ~x,y,u!H
l l z ,l

y8 l
z8

l yz8 ~y0 ,z,v !

whereta,a85(2) t11t32tx81tx1t32T3A$ t4

tx8
T
t2

t
y8

T3%A$ t2

t3
ty

t1
tx

tx8% and with the constraints cos(x̂,ŷ̂)5u and cos(ŷ0,ẑ̂)5v.
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