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Solutions of the Faddeev-Yakubovsky equations for the four nucleon scattering states
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The Faddeev-Yakubowsky equations in configuration space have been solved for the four nucleon system.
The results with arB-wave interaction model in the isospin approximation are presented. They concern the
bound and scattering states below the first three-body threshold. The elastic phase shiftsNierNN
reaction in different §T) channels are given and the corresponding low-energy expansions are discussed.
Particular attention is paid to the+t elastic cross section. Its resonant structure is well described in terms of
a simpleNN interaction. First results concerning tBematrix for the coupledN+NNN-NN+NN channels
and the strong deuteron-deuteron scattering length are obtdB@s56-28138)04607-X]

PACS numbgs): 21.45+v, 11.80.Jy, 25.40.Hs, 25.10s

[. INTRODUCTION fects are thus not included. This choice, guided by method-
ological reasons, allows a presentation of the formalism and

The four nucleon bound state calculations have, in the lagnethods in a relatively simple framework. Is is remarkable,
years, reached a high level of accuracy and consistency apwever, that such a simple model provides a very good
least as far as the solutions of the corresponding equatiordescription of low-energy scattering observables even if, as
are concerned1-4]. This situation contrasts with theNd  in then+t case, they are not totally trivial. Some first results
scattering problem where despite some pioneering and reincluding realistic interactions have already been reported
evant result§5—14], there is a manifest lack of convergence elsewherg16] and will be the subject of subsequent publi-
among the different groups and methods even when usingations.
simple interactions. This problem is not only a general ex- The paper is organized as follows. In the next section we
tension of the three-body one in the sustained task of thdescribe the general formalism and the simplifications aris-
nuclear few-body community to deal with increasingly com-ing in the case of four identical particles. This section con-
plex systems, but we believe it constitutes a qualitative jump
in our understanding of nuclear systems. Indeed the con™ MeV)| nnnn
tinuum spectrum of the M system(see Fig. 1, with its rich - nnnp
variety of thresholds and structures, provides a bridge be-
tween the relative simplicity of th&=2,3 problems and the nnep
complexity of many-body systems. Even when restricted to 3755 - nppp
the energies below the first three-body breakup threshold, thi N
presence of several resonances at eacthannel, the exis- . )
tence of the almost degenerate-t and n+3He thresholds 1 . : I
with, in the middle, the first 0 excitation of the*He ground 2-
state make the understanding of the-4 chart in terms of 2
fundamentalNN interactions an exciting and redoubtable *7>° ] ,
theoretical challenge. nH >

We present here the first solution of the Faddeev- B 5 2
Yakubovsky (FY) equations in configuration space for the e p “He
four nucleon scattering problem. Although the results con-
cerning the bound staté$éHe and*He*) will be discussed ~ ,,c | poH
in some detail, our main interest lies in th&l Z£ontinuum
spectrum, i.e., th&N+NNN elastic scattering and its cou-
pling to the first inelastitNN+ NN threshold.

The resolution method is based on the angular momentun
expansion of the FY amplitudes and the spline expansion of 4
their radial parts. Orthogonal collocation is used to generate
a linear system which is solved by iterative procedures. The JT T
scattering observables are extracted from a direct inspectiol
of the FY amplitudes in the asymptotic region, in a natural
extension of the methods developed for the three-body case
in Ref.[15]. FIG. 1. TheA=4 chart with the more relevant thresholds and

The results presented in this paper have all been obtainadsonancesJ”, T). The vertical axis represents a mass scale; the
by using anS-wave NN interaction model and the isospin horizontal one distinguishes the different values of the electric
symmetry hypothesis. The Coulomb and mass difference ethargez.
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gon N Go=(E—Ho) ™.
Each amplitudel;; is in its turn split in three parts, the

FY amplitudes, corresponding to the different asymptotics of
he the remaining two particles:
e W=Vt Wl AWy, <) k< )
{00

g and obeying the following system of coupled equations:

(E_Ho_Vij)‘I’:j,k

=V (Wl TVl + Wi + Wi+ W+ i),

\O © (E—Ho_Vij)‘I’:(jJ

FIG. 2. Different asymptotics to be accounted for in &3

K ' K i
collision. =Vij (Wi W A VGV,

tains also the spin, isospin, and angular momentum algebra. (E—HO—Vij)\Ifij’klzvij(\IILI’i+\IIL|'J.+\IIKI’”.)’ (5)

In Sec. lll we give some details of the numerical methods

used. In Sec. IV the results will be presented. They includg, \which an amplitudelf5>ﬁ not defined by Eq(4), has

the_ “He ground and first excited state, the elastic_ Phase, he understood as being 'iaentical\licga . Any solution
shifts, and low-energy parameters for e- NNN reaction ¢ yhis system of 18 coupled equations, called the FY equa-
and theN+NNN— NN+ NN first inelastic channel. The en-

: , tions, is a solution of Eq(2) and consequently of the initial
ergies are restricted below the three- and consequently fou&- a2) a y

body breakup. Conclusions and perspectives will be given i
the last section.

roblem(1). Its advantage lies in the possibility to define for
ystem (5) appropriate boundary conditions ensuring the
unicity of the solution. Indeed when one of the particles, e.g.,
labeled byl, is out of reach of the interaction, all the ampli-

IIl. THE FORMALISM tudes in Eq.(5) tend to zero excep‘ﬁf!j’k and circular per-

A. Faddeev-Yakubovsky equations mutations orijk which obey
With the aim of solving the Schdinger equation folN o r | |
particles interacting via a pairwise potentia (BE=Ho= Vi) Wij = Vi (Wikej + Wi,i)- ©)

This system of equations, resulting from E§), is equiva-
(E-Ho)¥= Z: Vi ¥ 1) lent to the N Faddeev equations for the particlegk(). In a
. similar way, when theif) and (l) clusters are free from
Yakubovsky[17], generalizing Faddeev's work fok=3 interaction the only nonvanishing amplitudes dfg ,; and
[18,19, wrote a set of equations whose solutions verify Eq.V,ij and their corresponding equations in E§). tends to
(1) and which provides a proper mathematical scheme to

account for the variety of physical situations involveste, (E=Ho=Vip)¥ij i=Vij¥,ij - @)
e.g., Fig. 2. In the N=4 case, the FY equations can be
obtained by first splitting the total wave functioh in the It is worth noticing that the FY amplitudes can be written

usual Faddeev amplitudels;; associated with each interact- in terms of the Faddeev amplitudes in the form
ing pair:
W =G Vi (Wi + W),
V=> Wi =Wt Wit Wit Vst Vot Wy,

- ¥ij k=GijVij ¥, (8
and requiring them to be a solution of the system of coupled
equations where
L= — _\v. 1

and, according to Eq3), in terms of the total wave function
or equivalently in its integral form
[
Wi =GV, W 3) Vi k= GijVijGo(Vik + Vi) ¥,

with Wi =G VijGoVig V. 9
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Disregarding the internal degrees of freeddsuch as B. Identical particles
spin, isospin, the natural basis for the configuration space is

In the case of four identical particles, the 18 FY ampli-
provided by the positions of the different particles P P

tudes can be obtained by the action of the transposition per-
mutation operators?;; on two of them, arbitrarily chosen
provided that one is oK type and the other one ¢t type.

In order to remove the center of mass motion, it is usefulVe havg takerKE\P‘l‘Z@ and,HEq’ﬂB“" The four.-body
to introduce the relative Jacobi coordinates. Two sets of Jé:_)rqblem IS solved by dgtermmm_g the tvko,H amplitudes
cobi coordinates can be defined for each of the 4! arrangé’-"h'Ch satisfy the following equations:

|F1F2F3F4>:|F1>®|F2>®|F3>®|F4>- (10

ments (jkl). One ofK type, (E—Hg—V)K=V[(Pas+ P12 (s + Psy)K
. 2uij - - +&(Pyst+ P HI, (13
Kk =\ (5,1, (Past PadH]
L (E—Ho—V)H=V[(P13Pz4+P14P23)K+P13P24H].( )
S . 2,(L|J k| -~ miri+mjrj) 14
ijkl)=/ = | rg— :
yk(ijkl) m k m; -+ m,

wheree = = 1 depending on whether the particles are bosons
or fermions. The asymptotic equations, i.e., the equivalent of
)1 (12) Egs.(6), (7) are in this case

- Fi + m] F] + mka
r —
! m;+m; +my

] 20,
Ze(ijki) = 22

and one ofH type,

(E—Ho—V)K=¢eV(Pyst+P)K, (15

. 2umij - - (E=Ho—=V)H=VP13P>H. (16)
Xu(ijkl)= T(r,’_ri),

The total wave function is then given by

N L B
yn(ijkl)= T(rl_rk)a V=Vy,3+W;, 5,
R 205 1 W13=[1+8(P1at Paa)[1+&(P1st Post P3g IK,
Zu(ijk) = /= ,
Wy 5=[1+&(P1gt Posgt Pigt Poy) + P13Poy]H.
in which m is an arbitrary mass taken as a reference and (18)
M, p is the reduced mass of clustersind 8. However, some ] ] ) ) )
of these 48 coordinate sets are redundant. For instance tho§8Ch amplitudeb =K, H is considered as a function of its
obtained by exchanginig—j in aK set ori«j or/andk«l natural set of Jacobi coordinateg .,y .z , defined, respec-
in the H set are equivalent. This yields 18 K2 6H) arbi-  tively, by Egs.(11) and (12) with (ijkl)=(1234) andm

trary and physically nonequivalent Jacobi sets, as many asm;:
FY amplitudes. Any of these coordinate sets, suitably com-

Myl Miry myri+myr;

17

mk+ m, m; + m]
(12)

pleted with the center of mass coordin&e constitutes an X=Tp—T1,
equivalent description of the four particles configuration

space. That provides 18 coordinate sets and the correspond- - >

; ; . . - 4. rqt+r,
ing bases for the configuration space, equivalent to(Eg), e \ﬁ ( - ,
that will be written in the form |X«Yxz(ijkl)R) or 3 2

IXuYnZk(ijkl)R). The degrees of freedom related to the o
center of mass motion separate in nonrelativistic dynamics - \ﬁ . Mytrp+rg
and will be hereafter omitted. Although each FY amplitude 2

could be in principle expressed in terms of any of these

bases, only one of them is appropriate for expanding it. We - -
will denote the resulting components by Xy=r2=rq,
i kXY, 2) =Yz (KD D ), GumTats.

- - - -

Fg+ry ri+r,
2 2

ol ,k|(>zy)7,>z)5<>zH)7H£H(ij N )|(I)ij K-

The bases described above have to be completed to account
for other degrees of freedom such as spin, isospin, etc. Fur-
ther details about the formalism and the relation between the They are expanded in angular momentum variables for
different bases sets can be found, e.g., in [R2d]. each coordinate according to

->

ZH:\/E
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P ) (1,7, T, Y -3
(ixiy) T ‘.“(Jx Iy) iy / s
I n L ' { 2
’t;: ':; X Z y E, FIG. 3. Spin, isospin, and an-
P X “ i 1, g > gular  momentum  coupling
P — (1,8 j, o | Z schemes used for th& and H
e & "-\\ [ Faddeev-Yakubovsky amplitudes.
e , .
o zj)]d ° (jgy15) T
2 ( T3t4) T (tx ty) T
N ~ o~ Da(XY,2) nnn H amplitudes:
o) =3 [ | [ diayar 2By k3.0,
a Xyz [(t1tp), (tata), Ir® {[1x(5152) 6 1j [1y(S38a) o 1 }j. 1 Do
(19) X Yy X=X y=ly ixy

(20

whereY , are generalized tripolar harmonics containing spinwheres; andt; are the spin and isospin of the individual
isospin, and angular momentum variables and the functiongarticles and {", T) are, respectively, the total angular mo-
é., the reduced radial FY components, are the unknowngnentum, parity, and isospin of the four-body system. Each
The labela represents the set of intermediate quantum numcOmMponentp,, is thus labeled by a set of 12 quantum num-
bers defined in a given coupling scheme and includes thBers to which the symmetry properties 0+f tﬁ? wave function
specification for the type of amplitudék or H). We have IMPose the additional constraints:-)7"™" x=¢ for K

ot oy+7r,+l,
used the following couplings, represented in Fig. 3: and (—=1)™" " x=(=1)7v"""y=¢ for H. The total par-
g Ping P g ity m is given by (—)'x*Py+IZ in both coupling schemes.

The radial equations for the componegts are obtained

K amplitudes: by projecting each of Eqg13), (14) in its natural configu-
ration space basiSq ,Yq ,Ze). Several steps furthé20] we
{[(tata) 5 talr,talr® ({L1(S152) o, J; (1y8a)  Fy(1280)  am end with a system of coupled integrodifferential equations

which, most generally, can be written in the form

2 f f f
2 Daa’(ﬁa’(X,Y-Z):E Vaa’(X)E |:fa’a”¢a”(xa,ra,uyyararrazaran)
a! a/ a”
1 h h h
+ f . duh, o (X,¥,Z,U) dan(X s o sY gt g 1Zgy1 o)

+1 +1
+f duf dUga!aH(X,y,Z,u,U)¢a”(xgrarr|ygranyzgraﬂ) (21)
-1 -1

with The FY components for the differenS(T) channels in
the S-wave approximation, i.e., with all orbital angular mo-
- menta in expansiofl9) equal to 0, are listed in Table I. In
DM/:(E+ EAa)‘Saa'_Vaa/(X)! this table, the symbols- and ~ denote, respectively, the
amplitudes corresponding to an asymptohic- NNN or
NN-+NN channel.

Note that, contrary to thel problem, the number of FY
components appearing in E1) is infinite even when the
pair interaction is restricted to a finite number of partial
The functionsf ,/ ,»,h, 47, 9., contain all the spin, iso- waves. This divergence comes only from the existence of the
spin, and angular momentum couplings. The arguments, additional degree of freedom in thélike amplitudes.

2

PR (P R W DR RIS
a_ax__XZ_+(9y__yZ_+az__Z2_'

X, XN X9, ..., arefunctions of &,y,z,u,v) in the N
more general case, and are detailed in the Appendix. The C. Boundary conditions
system of equation&1) has been explicitly written in Ref. For all the physical problems we have considered, the

[21] for the case of four identical bosons. boundary conditions can be written in the Dirichlet form.
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TABLE I. Faddeev-Yakubovsky components foS,T) 4N +NNN elastic case we impose at the solution of the 8
states in theS-wave approximation. The listed quantum numbersproblem for all the quantum numbers, corresponding to

are those defined by the coupling scheni28. The symbols— the open asymptotic channel
and ~ emphasize, respectively, the asymptdtie- NNN and NN

+NN channels. ba, (XY, 20 =14 (XY), (24)
$=0 (I7=0") T=0 where the functions,_(x,y) are the Faddeev amplitudes of
K (R R PO ST I R VRN L PR P the 3N problem. Indeed, at large valuesoénd for energies
~ 1 12 0 0 0 0 12 12 0o 12 below the first inelastic threshold, the solution of E#5)
~ 0 12 0 1 1 0 12 12 o 12 factorizes into a bound state solution of th&l 3raddeev
_ equations and a plane wave in thalirection with momen-
Ho oneony oo 7y oy jY hy 1z tumk,, whereas the solution of E¢L6) vanishes. One then
1 1 0 0 0o 0 O 0" 0 o0 has, e.g., for ars wave,
~ 0 0 0 1 1 o 1 1* 0 0
«.(X,Y,2)~t, (X,y)SiN(Kyz+ & 25
S=1 @7=1%) T=0 b (4Y,2) ~ta (XY)SiN(KZ + 5,) (25
K o Tao oo 0 Ny 0y ™1, i, and the scattering observables are directly extracted from the
S 1 12 0o 0 o0 0 12 13/2 o 12 logarithmic derivative of th&k amplitude in the asymptotic
-~ 0 12 0 1 1 0 12 2 o 12 regon
0 12 O 1 1 0 12 312 0 1/2
L L H + = o oy 1 Yaé)-
H Ty oo o ly ey Yy L Ka COlkaz + 2a) ba,(X,Y,2) G2ba,(%:¥.2) (29
0 0 0 1 1 o0 1 1+ 1 0

Provided we are in the asymptotic domain, the phase shifts
thus extracted have to be independentxafy(z) and of the

K ™ T3 Ik oo ix Ny 0y 3P L amplitude indexa,. This provides a strong numerical test.
N 1 12 0 0 O 0 12 12 o0 12 An additional advantage of this procedure is that it avoids
~ 0 12 0 1 1 0 12 12 o 12 any cumbersome multidimensional integrals.
1 32 0 0 0 0 12 12 o0 1/2 In the presence of several open channels, suctNas
+NNN andNN+NN, e.g., several resolutions are needed.
Ho oo oy oo jir ly oy § by b The boundary condition€24) are simply generalized in the

1 1 0 0 0 o0 0 o* 0 0 form

— TmT_1+ —
S=1ET=1)T=1 Ba (%.Y:20) = Naf o (X,Y) 27)
K Tx T3 Ix Ox jx Iy jy J;TS Iz jz . . . )
R 1 12 0 0 o 0 12 12 0o 12 in which \, are arbitrary real numbers and the functlchgg
N 0O 12 0 1 1 0 1/2 1?2 0 12 coincide withtaa if ais aN+NNN channel or are analogous
1 32 0 0 0 0 12 12 0 112 to the Faddeev amplitudes for E(L.6) if a is a NN+NN
0 12 0 1 1 0 1/2 3/2 0 1/2 channel.
.W . Equation(24) is generalized in the following way:
H T Ty Iy oy i ly oy ]yy ixy 1z
1 0 0 0 0O 0 1 1" 1 0 A
0o 1 0 1 1 0 0 0 1 0 P, (XY, 2)=| —7ah " (Ka2)
i i b3 A g R |1
The use of reduced radial FY componewtg in Eq. (19) < o Nk, e (ka2) | fo (X,¥),

imposes for any kind of solution the regularity conditions
(28)
$a(%Y,0)=¢4(x,02)= ¢,(0y,2)=0. (22)
hereh™ are the regularized Hankel functiof@2], andn
For the bound state problem these conditions are completqvé a multiplicity num%uer flgr the chann:ﬂ (nl :hiz]for 1+§
. - a
by forcing the compongnt&a to vanish on the hypercube andn,=3 for 2+2 channelsdue to the symmetry proper-
[Oxn]X[OyN]X[020], i€, ties of the total wave functiorisee, e.g., Ref[23]). The
. B . coefficients7 (amplitudes of the incoming wavesnd the
Da(X.Y.0)= ba(X.Y.Zn) = ha(X,02) = da(X.YN.2) S-matrix elements are the unknowns. They are obtained by
=¢,(0Y,2)=,(Xy,Y,2)=0. (23  identifying with thg asymptoti(; form(28) the' valueg
b, 0204, atzy for different solutions corresponding to dif-
For the scattering problems the boundary conditions aréerent choices oi\’s whose number equals the number of
implemented by imposing at large enough valueszdhe  channels. We remark that the momekisappearing in Egs.
asymptotic behavior of the solutions. Thus, for the  (25), (26), (28) are the conjugate variables of tzeJacobi
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FIG. 4. Representations of some asymptotically nonvanishing amplitudestHoelastic scatteringia) zero-energy(b) positive kinetic
energy. On left, isosurfaces; on right, sectionsxivariable. The asymptotic factorization between an independent pattern onythe
coordinates and the-variable motion appears clearly.

coordinates. They are related to the center of mass kinetic 2Ny+1 2Ny+1 2N, +1
energy E, of channela according toE,=#%%k3/m. The b, (X,Y,2)= _Eo 2 kzo CaijkS(X)S;(Y)S(2)
i= = =

physical momenta, conjugate to the physical intercluster dis-
tances, arg,= \/gka or g,=v2k, depending whethex cor-
responds to a £ 3 or 2+2 channel. defined on grids of nonequidistan,+1 points G,

By the definition (28) one has unitarity $S=1) and  ={q,,q;,....qyn} Whereq=x,y,z. A grid G, will be defined
symmetry §;=S;;) relations. Working with real solutions by giving the number of interval,, the end poing, and
these properties are relatédnitarity implies symmetry  the constant scaling factor between two consecutive intervals
However, none of them is a trivial consequence of theA,. We will use the following notatiorG={Ng,A;,qn},
method used but a strong test of numerical accuracy. often extended to multidomain grids according ®

In order that the factorizability takes place the asymptotic={Ng;,Aq1,0n1;Ng2.Aq2.An2;" "}
3N or 2N+2N states have to be calculated with the same The boundary conditions are easily implemented using
numerical scheme as that used to solve the four-body prolihe properties of the spline functiorfgalue and derivative
lem. This means in practice that they are exact solutions océqual to 0 or 1 at the grid pointsThey result in fixing the
Egs. (15 or (16), once thez dynamics are removed. By values of some of the unknown coefficiemtg, in the ex-
doing so, the factorization property, valid only in Cartesianpansion (29). By exchanging the indices of the two last
coordinates, is an exact numerical property and leads tepline functions in each variable the solution takes the form
stable local results. This behavior is illustrated in Fig. 4 in

(29

which the FY amplitudes for aN+NNN elastic scattering 2Ny 2Ny 2N,
atq=0 andq>0 are represented. ¢“(X’y'z):i:21 121 kzl Caijk S (X)S(Y) Sk (2)
2N, 2N,
Ill. NUMERICAL METHODS +El 21 faij SIX)S(Y)Son,+1(2), (30)
=1 )=

The numerical methods used are based on the Hermite
spline expansion, orthogonal collocatip?4], and iterative ~wheref,; are the coefficients of the asymptotic functions
procedures for solving the linear system. An important sted ,(X,y) defined in Eq(27). In the cases of a closed channel
in their solution is the tensor trickl,25—-27. or a bound state these coefficients are zero.

We look for the solutionsp, of the integrodifferential Collocation points associated with the three-dimensional
system (21) in the form of a tensor product of one- grid are used to generate a linear system,cthg being the
dimensional cubic Hermite splines: unknowns. The integral terms in EQ1) are calculated with
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a Gaussian quadrature rule with typicaly,,N,=6-12 10° — 10° . ; ;
points in each angular variableandv. In order to limit the
number of parameters we have chod&p=N,=Nj. 102 | 1102 L i

The number of unknowns is given By=8N,N,N,N,
where N.=Ng+ Ny is the number of FY components. A . .
rough estimation for the extreme cases of a four bosons 10 110" ]
bound state and of a scattering state in a realistic problen n=10240
leads to valuedN.=2-100, N, ,N,=20-30, N,=20-40, 10° 1 q10°® ' '
and consequently to a number of unknowns going fiim Lo o 0 o2
~10*to N~1CP. This implies the use of a dense matrix with 10 10 '
~10'? coefficients. Direct methods are not appropriate for
solving such huge linear systems, and we have used iterativé 10% 107 + 1
techniques, which avoid any storage or inversion of the ma-g
trix. The basic feature of any iterative method is to obtain the § 10* L 0% L i
solution of the linear system only by iterative application of & n=104832 1n=239616
the matrix to an inif[ial vector. This implieg a complete cal- R R
culation of the matrix elements each time it is necessary, anc 0, 10 20 0 0 o 10 20 30
requires the intensive use of parallel computers. dimension of the Krilov subspace

In the case of scattering states, the boundary conditions
(27), responsible for the second term in E80), generate a FIG. 5. Residue modulus obtained with GMRES vs the dimen-

source term in Eq(21) leading to a regular linear system of sion of the Krilov subspace, i.e., the number of matrix applications,

the type D(E)5=[F+G+ H]E+ b, where the different for different numbersy of unknowns. The linear systemc=Db is
D,F,.G,H matrices are reminiscent of the normalized such thdib|=1. The initial guess is chosen to be 0

Dao rTaa’ s9aar Neor Operators. For brevity we will write o ) .
the system in the fornc=Db. A crafty trick is to solve the eigenproblem ™ *(E)[F

The numerical method we have chosen to solve this sys+ G+H]c=\c, whereE is now a parametef30,24. The
tem is the generalized minimum residual algorithmvalueE will be an eigenvalue of the initial problem when the
(GMRES [28]. GMRES is a prototype of the so-called Spectrum{\} contains 1. Furthermore, it can be shown by
Krilov subspaces projection methods. Its aim is to minimizevariational considerations that the more excited the state
the residug =b— AG of an approximate solutiog, starting cluding the nonphysical box stajeshe smaller the corre-

¢ ial torc and looking for it O — G | spondingh. Thus the eigenvalues of physical interest can be
rom a trial vectorc, and 10oking Ior ItS COIrection =Co IN - 5htained with methods like the implicit restarted Arnoldi al-

the Krilov subfpacelc={ro,Aro,A2ro, ... AP7rol such  gorithm (IRA) [31]. We notice that the full inversion db,
that the residue is orthogonal toL=AK. When the dimen- including the two-body potential, gives a better conditioned
sion p increases, the residue of the approximate solution SPectrum{i} than an inversion of its kinetic term alone, and
can be brought to an arbitrary small value, called tolerance2voids some of the awkward negative eigenvalues generated
In most of the practical cases, a tolerance betweerf #id by the repulsive part of the potential. IRA is a generalization
1078 is sufficient. of the power method and gives the first eigenvalue in 10-15

GMRES is a powerful tool when the problem is well con- Matrix applications. It is also based on Krilov subspaces, and
ditioned, which is almost never true in a realistic case. Theapproximates the eigenvalues Af by those of the restric-
way out is to “precondition” the system, i.e., to solve the tion of A" to the space spanned by vectors
equivalent problenM ~*Ac=M b instead ofAc=b. The  Xo.X1, ... Xk—1, Xo being a trial arbitrary vector. Neverthe-
closer toA the matrixM is, the better the preconditioning. less, this method requires several calculations for different
Our choice was to take the matiit equal toD. As pointed ~ Values of the energy and becomes numerically unstable when
out in Refs.[24,29,] its tensor structure, optimized by the Using highly repulsive two-body potentials, such as the inter-
choice of Cartesian coordinates, allows an easy inversiortomic “He-"He one[32].
Our preconditioning technique gives us a converged result A more robust technique was finally adopted, often re-
after =30 matrix applications, for all the considered physicalferred to as shift-invert metﬁhod.ﬁThe initial problem is writ-
cases and independently of the dimension of the matrix. Exten in the form A’ —Ey) lc=&c and this technique con-
amples of convergence curves, i.e., the evolution of the resiverges to the energy closestlg. It gives very good results
due modulus at each step, are shown in Fig. 5. with a well-balanced mixture of IRA and GMRES. IRA is

In the case of the bound state, the asymptotic behavior afised to quickly obtain the dominant eigenvaligeand pro-
the wave function and FY amplitudes leads to a singulavides the energ¥=Ey+ 1/£,. The real difficulty lies in the
systemD(E)c=[F + G+ H]c that will be rewritten for con- ~generation of the corresponding Krilov subspace. It is obvi-
venience in the form\’¢=EG, the energ)E being an eigen- ©USly impossible to invertA’ —Eo) since theF,G,H matri-
value. It is well known that iterative methods are appropriateces are contained iA\’. The stepx,.;=(A’—Eq) X is
for extracting a few eigenvalues, but only those with largesthen performed by a GMRES resolution of the equivalent
modulus. With the three-dimensional boxlike boundary condinear system A&’ —Eq)X,.1=Xx. This technique presents
dition (23), the existence of overwhelming highly positive considerable interest especially for excited states which are
eigenvalues leaves no hope of obtaining directly the bindingasily obtained, independently of the previous convergence
energy. of the less excited ones.
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TABLE IlI. Binding energiegMeV) and rms radiugfm) for the ~ MeV. In the ground state we remark that there is good agree-
4N ground (¢He) and first excited{He*) states. Our results for the ment with the best existing calculatiofik,34].
*He binding energy agree very well with the best existing calcula-  The first excitation which, experimentally, corresponds to
tions. The triton parameters are also mentioned for completenessg J7=0" resonance 0.40 MeV above thett threshold
[35], appears in this model as a loosely bound state. The

‘He[1]  *He[34] ‘He *He* °H binding energy with respect to thd+NNN threshold(E
B 30.31 30.29 30.30 8.79 g53 = —8.535MeV in this modeglis 0.257 MeV. A similar re-
ms 1.44 4.95 172  sultwas found in Ref{7] in which different versions of the

one term separable Yamaguchy potential gives a binding en-
ergy varying from 0.07 to 0.40 MeV, depending on their
IV. RESULTS different D-state contributions. This 0 first excitation has

o i . been widely considered in the literature as being a breathing
The results presented in this section have been obtaingg,ye [36—38. Our conclusion is, however, different. We

with the spin-dependerg-wave interaction MT I-III: have calculated the regularized two-body correlation func-
tions defined by
exp(— u,r exp(— war
Vo(r)=V, qrﬂ*r )_Va Krﬂa )
C, ()= 2 f f dyd4¥,..(x.y,2)[?, (31
The potential parameters and the valu&?/m o (ay=ay)

=41.47 MeV fnt are the same as those used, e.g., in Refs.

[1,33,34 and are slightly different from those given in the Where'¥,.(x,y,z) represents the total wave function com-
original version[30]. Despite its bare simplicity, this poten- Ponent in thea’ quantum numbers, and wheeg denotes
tial turns out to be very efficient in describing the bulk of the subset of quantum numbessrelative to thex variable
low-energy properties in the few-nucleon systems. We will(lx,ox,jx,7x). The summation in Eq31) is performed onto
first examine what we call th&wave approximation, i.e., one of the two base or H. Once the total wave function
the fact that aside from the zero angular momentum of thés normalized, the correlation functions are normalized ac-
interaction pair, all the angular momenta variables in expancording to
sion (19) are set equal to zero. The convergence with respect

to thely,I, expansion will be examined in a second step. 2 dxCaX(x)z 1 (32)
ax

A. Bound states

In the 4N system, the bound states exist only for ®e The results are displayed in Fig. 6. The separated contri-
—T=0 channel. In thé-wave approximation the number of butions fr(‘)lm the singlet and tr|plet45tat§ are plotted (&@r
FY components is limited toN.=4 (Nc=N,=2) (see Lriton, (b) “He ground state, an(t) “He first excited state.
Table ). The binding energies and rms radius for the groundThe difference between the correlation functions for the
(*He) and first excited4He*) states are given in Table 1. 9round and excited states is remarkable, both in the shape
The corresponding grids a@; with Ny=12 andG* with a_nd in the separated_ 5|_ngle_t-tr|plet contnbut!qns. For the ex-
Ng=6, given in Table Ill. The estimated accuracy in theC|ted state one can distinguish the superposition of two struc-

binding energies is 0.01 MeV but we notice that much Iesj}ures with two different length scales, the short-distance part
| 1

expensive calculations can provide a precise result as we elnr? S‘m"ar to_thg triton one. Th's suggestlsJa:Tstructure |
e.g., the gridG, with Ny=8 gives also a binding of 30.30 or the “He excited state, as can be more clearly seen in plot
(d) where the results ofc) are compared with those of the

TABLE IIl. Grids used for A ground ¢He) and first excited triton suitably normalized. Contrary to what would happen in

(“He*) states. a breathing mode, the short distance behavior of the nucleons
is that of an unperturbed triton with the fourth nucleon being
grid G, simply a remote spectator.
By modifying the MT I-Ill potential strength we failed to
x 20 130 10.0 pull the state out of the bound region, the three-body thresh-
15 125 120 old moving in the same direction. It seems very difficult for
z 15 125 150 a pure strong interaction to generate a first excitation in the
grid G, contingum. _Thg right position of this resonance is, however,
a crucial point in any attempt to describe the low-energy data
x 15 130 10.0 (e.g.,p+1t) [20]. The effect of Coulomb interactions could
10 125 12.0 be enough. However, the inclusion of ad hocrepulsive
z 10 125 15.0 four-body termV(p)zvoe*”2 can also achieve the same
grid G} result, . . o
! The preceding results are only slightly modified by the
Xx 08 1.30 080 05 1.10 200 inclusion of higher partial waves in the FY expansion. The
07 130 100 05 1.10 30.0 effects of these contributions can be seen in Table IV. Their

7 07 120 100 13 1.10 800 10 1.00 1500 Smallness shows the validity of tHewave approximation.
These results have been obtained using the @rjdwith
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015 In (d), the results of*He first ex-
cited state are compared to the tri-
- 331 —_— s1 (triton) ton correlation function suitably
1 —_ scaled.
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\ ")
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x (fm)
Ny=8 for the ground state an@} with Ny=6 for the first We have shown in Table VI the phase shifts for different
excitation for which the corresponding triton binding energy(S,T) channels as a function of the center of mass energy.
is B3=8.513 MeV. For all of them, we have arbitrarily chosen, as in RBf, the

determination(E=0)=180°. For theS=0 case the com-
parison between grid§, and Tg has been made, showing a
good stability despite the fact that grig, gives only a poor

A crucial point in our method is to ensure the properdescription of the asymptotic state. As it has been already
description of the Bl asymptotic state. This is used to fix the emphasized in Sec. Il, the key point in our approach to the
grid parameters for the,y variables. In order to exhibit the scattering problem lies in the coherence between the
stability of our results, we will compare the phase shifts ob-asymptotic state and the numerical solution of ti% grob-
tained with several tritons corresponding to increasing nulem, rather than in a very precise description of it. The re-
merical accuracies. The considered grids, detailed in Tablgults corresponding to griflg are considered as converged.
V, are T, with Ny=6 and a binding energyB A zero energy calculation directly provides us with the
=8.593 MeV, Tg with N =8 andB=8.527 MeV, andT,, scattering length. The results, given in Table VII, show a
with Ny=8 andB=8. 535 MeV. We recall that the precise high stability with respect to grid variatiori$ andT,0) and
value for the 3 binding energy i8=8.535 MeV. The grid our estimated accuracy is given in column 3. These values
parameters for the variable depends substantially on the are in agreement with the existing published calculations
relative kinetic energy. A zero energy calculation requires d13]. For T=1 they are close to those obtained in R&f|
relatively large value ofzy but very few points inside are
sufficient to describe an asymptotic linear behavior. On the TABLE V. The gridsT,, Tg, Ty used for the tritons 4, 8, 10.
contrary as far as the energy increases, the valug oan be

B. Elastic N+NNN scattering

decreased but the oscillations in the relative wave functions grid T, B;=8.593 MeV
demand an lnfregsmgll/ big number of points. A typical grid, 08 1.30 14.0 o1 18.0
for the caseE=0 is G,={10,1.20,19.0;03,1.00,34.0 y 07 100 190 02 100 290
TABLE IV. Nonzero angular momentum contributions tble grid Tg: B;=8.527 MeV
and “He* binding energies. X 12 1.30 14.0 o1 18.0
N+ N, I |y 3 B, B: B* B, y 10 1.20 19.0 02 1.00 29.0
grid T19: B3=8.535 MeV
2+2 0 O 0 30.302 8.769 0.257
8+2 0 01 0,1 30.319 8.763 0.250 X 18 1.20 14.0 02 1.00 18.0
16+3 0 012 0,12 30.324 8.770 0.257 vy 15 1.10 19.0 04 1.00 29.0
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TABLE VI. N+NNN phase shiftddeg, as a function of the
center of mass kinetic energiveV), in different (S,T) channels.
In the S=0 case, the results with different grids are shown.
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TABLE VII. N+NNN scattering lengths values in different
(S, T) channels, in th&-wave approximation.

agy (fm)
E.; (MeV) S (deg) S T triton 8 triton 10 final value
S=0,T=1 Ty Tg 0 1 4.13 4.13 413 =+ 0.01
1 1 3.73 3.73 3.73 = 0.01
0.05 169.97 169.95 0 0 1478 1476 1476 = 0.2
0.1 165.85 1 0 3.25 3.25 325 + 001
0.5 148.99
1.0 137.13 137.07
2.0 121.79 although with the original potential parameters.
3.0 111.27 The remaining low-energy parameters have been ex-
4.0 102.93 102.82 tracte_d from the phase shifts and are given in '!'able VIII for
50 96.18 96.13 the different §,T) 'channels. They are defined in the effec-
6.0 9018 9024 tive range expansion,
S=0,T=0 T T _ _ _ 11 2 4
! ’ 9o(@) =9 cot 5(q)=x(a)| — ;+ 5T +voq"|, (33
0.01 165.17 164.05
0.02 159.17 157.66 where x(q)=1 in the usual case but has to be modified in
0.05 147.73 the presence of a near threshold singularity. According to
0.07 142.29 Ref.[39], we have taken the forr, real
0.1 135.72 132.98 1
0.2 120.52 x(Q)=——. (34)
0.3 109.52 106.95 1~ (a/qo)
0.5 95.81 The validity of the expansioii33) in the energy region
0.7 85.57 below the first inelastic threshold is displayed in Fig. 7. The
1.0 74.08 71.05 usual effective range approximation, i.e(g) =1 and theg*
2.0 49.92 47.16 contribution neglected in Eq.33), works very well in the
3.0 34.71 32.07 whole energy domain for all but tH&=0, T=0) channel, in
4.0 23.60 21.04 which the existence of a near threshdldle excited state
requires the explicit inclusion of the pole contributi(3#). It
S=1,T=1 Ts is worth noticing that the contributions coming from thg
0.03 172.97 term are very small and have been included only for com-
' ' pleteness. On the contrary the pole contribution, existing
0.06 170.07 . ) . .
012 166.0 only in the (S=0, T=0) channel, is esser_mal. Expansion
(33) provides a very accurate parametrization of Sxeave
0.3 158.02 scattering amplitude in all the energy region below the
0.9 142.84 breakup threshold.
18 129.11 We would like to emphasize here the coherence between
2.7 119.43 the “He* and the scattering results in tf8=0, T=0) chan-
3.6 111.84 nel. Inserting the effective range expansi¢@3) in the
5.4 100.10 S-wave scattering amplitude
6.3 94.84
5=1,T=0 Ts fol@)= 5@ —iq
0.01 176.46 produces an imaginary pole in the upper compteplane
0.02 174.99 with value q*=0.095. The corresponding energ¥*
0.05 172.09
0.1 168.83 TABLE VIII. Low-energy N+NNN parameters, in th&-wave
0.5 155.23 approximation.
1.0 145.35
20 132.06 S T a(fm) ryo@m) wvo(fmd qo(fm™Y) a[13]
3.0 122.53 0 1 1475 6.75 0.462
4.0 114.96 1 1 3.25 1.82 0.231
5.0 108.68 0 0 4.13 2.01 0.308 0.505 4.0
6.0 103.24 1 0 3.73 1.87 =0 3.6
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FIG. 7. Effective range expansiow, being the center of mass momentum. The usual @ashed curyegives a quite accurate
description of the scattering amplitude, except in (8e0, T=0) case. The full expansiof83) (solid line) provides a perfect fit of the

calculated points.

=2 %2g*2/m=0.25 MeV is in close agreement with the direct On the one hand this is a pufie=1 channel, free from the

calculation given in Table II.

difficulties related to the Coulomb interactions. On the other

A step beyond th&-wave approximation has been taken hand, accurate low-energy scattering data é4}, showing
by keeping theS-wave interaction alone but allowing non- @ Structure at neutron laboratory eneffy,~4 MeV which

zero values in the angular momentum expansion of the
amplitudes. Table IX shows the sensibility of the scatterin
lengths values when the maximalgfandl, vary from O to

2. In the particular interaction model we are considering, th

number of channels describing th&l 3asymptotic state re-
mains the same whereas the number of chanNglsf the

-
%5]. The calculations discussed in the preceding section

supposed to be created by a serie®Pafiaves resonances

ave thus been completed up to the first three-body breakup
dhreshold by the inclusion of the first negative parity states
J7=0",1",2" corresponding to+t relative P waves. The
resulting total cross sections are plotted in Fig. 8. The con-

4N problem considerably increases. These results have be&iPutions fromn+t relative S and P waves are distin-

obtained with the gridl'g andN,=8 completed with a suit-
able z grid. The values are well converged wit,|,=0,1
except in the(S=0, T=0) case, where the big value of the
scattering length makes this state rather sensitive to sm
parameter variations.

The n+t cross sectionOf particular interest is to apply
the preceding results to the descriptiomeft cross section.

TABLE IX. Convergence of low energiN+NNN scattering
lengths, with respect to increasing internal angular momenta.

s T |,,=0 ly,I,=0,1 1,,,=012 1,,1,=01,23
a N a N a N a N

0 O 1478 4 1486 10 1472 16 1472 22

1 0 325 4 3.08 17 3.08 31 3.08 45

0 1 413 4 410 12 410 20 4.10 28

1 1 373 6 3.63 23 3.63 41 3.63 59

guished. We notice that the MT I-1ll model conserves sepa-
rately L and S and consequently thd™=0",1",2" states
coming fromL=1, S=1 are degenerate. The corresponding
afross sections differ only by statistical factors. The remain-
ing J7=1" state comes from ah=1, S=0 coupling. In
view of these results, several remarks are in order.

(1) The scattering lengths obtained in tBavave approxi-
mation (Table VII) gives a slightly overestimated value for
the zero energy cross sectiofi0)=1.85 b. The experimen-
tal extrapolated zero energy cross sectionoi®)=1.70
+0.03 b[40,41. However, the inclusion of higher partial
waves in the FY expansioffable 1X) significantly reduces
the S-wave approximation result to-(0)=1.77 b in closer
agreement with experiment.

(2) The comparison of the separated spin contribution is
not possible since the values of the spin-dependent scattering
lengths, summarized in Table X, are still controversial.

(3) Despite the simplicity of this model, the agreement
with experimental data in the resonance region, is very good.
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8.0 ' ' p+3H—p+3H
o5 [ —n+3He
—d+d.

20+

In the isospin approximation employed throughout this work,
e 15[ both n+°3He andp+t thresholds are degenerate and corre-
© spond to theN+NNN of the preceding section. The Pauli

principle imposes for the deuteron-deuteron channel

1.0 ¢ (—)-*S*T=+1. If we assume the final statet+ d to be in a
relative S wave one has =T=0 andJ"=0%,2". TheJ”

05 L =2" state requires a relative angular momentlys 2 in
the initial N+ NNN channel and it is expected to give small
contribution at very lond+d energy. We will consider only

0.0 the J"=0", T=0) state.

T, (MeV) The S matrix is defined according to E(R8). We present
in Table XI theS-matrix elements at several energies, chosen

FIG. 8. Then+t cross sectiorw calculated with MT I-1Il po-  with respect to th&dN+ NN thresholdN+NNN is referred
tential is compared to experimental data. wave contribution  to as channel INN+NN as channel 2. The symmetry and
(s, solid ling is slightly overestimated due to the overestimatedunitariw properties are there fulfilled at the level of—fo
scattering lengths. Thp-wave contribution(p, solid ling domi-  \which corresponds to the accuracy of our results.
nates in the resonance region and is responsible for the very nice \yjith the conventions used above, the scattering cross sec-
agreements+ p thick line) with the experimental total cross sec- tigns in a given partial waveJ() in presence of several

tion (crosses The L=1, S=1 contribution is split by statistical channelsa.a’ aregiven by
factors into itsJ™=0",1",2" components(dot-dashed, dotted, oy
dashed curvgswhereas thé. =1, S=0 one corresponds to a pure 3
T—=1" i 17'
J7=1" (dotted curvg partial wave. Ugjla:_z |1_Saa|21 (35)
S, -Sa
qa al a2
The n+t P-wave resonances are generated by NiN
S-wave interaction alone. An effective+13 P-wave poten- 3
tial is created due to the exchange mechanism between the s =T 1S, 42 (36)
. a—a’ 2 a'al 1
four nucleon. We remark, however, that a first attempt to a; S;l 2,

describe this cross section with=1 in the K components
but kec_aplng Zero all th_e remaining angular momenta in Eq\'/vhere the notatiod holds for 21+ 1. S, denotes the spin of
(19) failed. The incoming neutron seems thus to be more o i . .
sensible to the virtual excitations of the triton than tottig ~ the colliding clustera;. The corresponding values with
pair interactions themselves. a,a’'=N+ NNN,NN+ NN_ are given in Fig. 9filled plrcles.
(4) We have calculated the contribution coming from the W& remark no accident in thé+NNN cross section when
n-+t relativeD waves. They are given by the positive parity (€ inélasticNN+NN threshold is open. TheNN+NN
statesL=2, S=0,1. The corresponding phase shifts at 6—N+NNN cross section displays the usuab 14w of the
MeV c.m. kinetic energy areSs_o=—3.3° and g = inelastic process and the crossed charMelNNN—NN
—2.4°, which contributes only a few mb to the total cross T NN the expected/E law. The elasticd+d cross section

section. The results displayed Fig. 8 can so be considered 485 been calculated neglecting Coulomb interactions which
fully converged in the MT I—I1l model. will make this quantity divergent. However, due to the ab-

sence of nearthreshold singularity, one can expect small cor-
rections to the low-energy parameters obtained in this way,
C. First inelastic channel as in then+n versusp+p case.

The last point to be presented in this work concerns the Of particular interest is the_ extraction of the _imagir_lary
reaction part of the strongj+d sg:attermg length, a quantity wh|ch
controls the fusion rate in the process d—n-+3He. This
) _ ) can be done either from the linear behavior of thed

TABLE .X. Latest exper.lmental re;ults concerning-t singlet phase shiftsd,,= — (agr—ia,)d, (With Sy= eZiﬁzz), as dis-

(ao) and triplet &,) scattering length&in fm). played in Fig. 10, or from the inelasticity in the nondiagonal
S-matrix element which behaves alS;;|2=—4a,q,(1

2o & +2a,09,). Both methods agree with high accuracy and lead
3.91 + 0.12 3.6 + 0.1 [40] to the following values:
4.98 * 0.29 3.13 * 0.11 [43]
2.10 + 031 405 =+ 009  [43] ar=+4.91+0.02 fm, (37
4.453 + 0.10 3.325 + 0.016 [44]

a;=—0.0115-0.0001 fm. (38
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TABLE XI. N+ NNN—NN+NN Smatrix elements. Th& + NNN channel is labeled by 1, theN

+NN one by 2.
E. c.m.(MeV) S matrix

N-+NNN NN+NN S Si» So1 Sy,
4.1253 0.05 0.7720.634 —0.00473+0.0472 —0.004710.0470 0.882-0.468
4.1753 0.10 0.7820.621 0.000488+-0.0564 0.000486+0.0563 0.771-0.634
4.2753 0.20 0.8020.594 0.0110+0.0661  0.0110+0.0661 0.566-0.821
4.3253 0.25 0.8110.581 0.0160+0.0690  0.0161+0.0691 0.472-0.879
4.3753 0.30 0.8200.567 0.0209+0.0711  0.0210+0.0713 0.382-0.921
45753 0.50 0.8540.514 0.03914-0.0748  0.0393+0.0752 0.0659-0.994
5.0753 1.00 0.9190.381 0.0759+0.0679  0.0758+0.0678 —0.480-0.871
5.5753 1.50 0.9610.253 0.103+0.0508 0.102+0.0506 —0.784-0.610
6.0753 2.00 0.98830.133 0.120+0.0292 0.123+0.0301 —0.934-0.335

We remark that a very small value af which should be tribution in the(S=0, T=0) case due to the vicinity of the
only slightly modified once the Coulomb interaction is first J7=0" excitation. We have also found that in the
switched on. This small value is due to the small overlappingramework of our model this 0 state is bound at 0.25 MeV
between th& andH configurations which respectively gov- below the N threshold. The study of the two-body correla-
ern theN-+NNN andNN+ NN asymptotic states. tion functions showed that the structure of this state is a 1
+ 3 configuration rather than a breathing mode, as is usually
accepted. The coherence between the binding energy of this
state and the scattering results has been emphasized.

We have presented the first solution of Faddeev- Then+t scattering cross section has been treated with a
Yakubovsky equations in configuration space for the scatterspecial interest and the first negative parity states have been
ing states in the M system. They concern both td  included, to account for the structure experimentally ob-
+NNN elastic scattering and its coupling to the first inelas-served. The elastic cross section is well described by the
tic NN+ NN channel. The results presented here have beesimple MT I-Ill interaction, especially in the resonance re-
obtained with arB-wave model interaction and in the isospin gion. Then+t P-wave resonance is thus reproduced by a
symmetry approximation, i.e., neglecting the Coulomb andNN pure S-wave interaction. This shows the difficulty to
mass difference effects. understand this structure in terms of tiNN interaction

The N+NNN elastic phase shifts have been calculatedalone. It is created by the direct and exchange mechanism
for the different spin and isospin channels. The low-energyhetween the incoming neutron and the target nucleons.
parameters have been extracted and the validity of the effec- The S matrix coupling theN+NNN andNN-+NN chan-
tive range approximation in the energy region below thenels has been obtained as well as the corresponding cross
three-body break-up threshold has been analyzed. We hagections. The analysis of these results allows the extraction
in particular found the importance of including the pole con-of the NN+ NN scattering length, whose imaginary part con-
trols the fusion process+d—n+°He. Its value turned out
to be very small §,=0.011 fm). Further applications of this
formalism including Coulomb interactions and more realistic
potentials are in process.

V. CONCLUSION

elastic N+NNN
10 T \ T 04

NN+NN --> N+NNN
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APPENDIX
FIG. 9. Elastic and inelastic cross sectiofs®lid curve$, in

fm?, for the coupled channeN-+NNN-NN+NN. They are inter-
polated between the calculated val@Bled circles. The energies
are given in the center of mass of the incident channel.

This appendix aims at the complete expression of the
functionsf,g,h appearing in Eq(21) in terms of the corre-
sponding quantum numbessanda’. By projection onto the
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' ' More complex permutations are then transparent, e.g.,

s o

e P23P34/01020304) = 01940203)-
2 Sl | The way the permutation operators act upon the coupled
a.= 491 fm basegK or H) can be deduced from this basic feature. In the

configuration space, e.g., a single operator results in a gen-

T o020l a=0.01147 fm _ eralized rotation of the Jacobi coordinates. Note that because
w of the symmetry of the bases, the contribution of the opera-
tors P13, P13P34, andP44P,5 are identical to those dP,3,
P23P34, andP3Po,.
-0.40 ® real part b
¢ imaginary part (x100) 2. 'H functions
All the permutation operations can be seen as, at most,
069 50 0.05 0.0 two successive rotations, each of them involving only two
q, (fm™) coordinates, e.g., first of a}} andz, thenx and one of the

preceding rotated coordinates. So it is convenient to use the
FIG. 10. Low-energy behavior of the deuteron-deuteron phaséunctions appearing in the three-body problg42], defined
shift 5§ and determination of the scattering length. Its real or imagi-as follows.
nary partsag or a, are deduced from the proportionality between  Suppose we are to calculate the projection of a given ex-

the real(solid curve or imaginary(dashed curveparts of the phase pression[Y,;()A(’)Y| r()A/’)],_F(X’ .y'), F being an arbitrary

shift and the center-of-mass momentgm . y . . .
function of x’ and y’, onto a bipolar-harmonic basis

appropriateK andH basis, the right-hand side of Eqd.1) [Y|X(§<)Y|y(§/)]L, where the following relation holds:
gives raise to integral terms as shown in Etp), involving

some very complicated functiorfsh,g, generated by per- X' a b\/x
mutations operators. y’ “le d v (A1)
1. Permutation operators We define’H functions such that

The permutation operatoi®;; are completely defined by o R R ) R
their action upon each ket of a complete basis. This basis is J f dxdy[Y,X(x)Y, WY (XD)Y (YY) ILF(X'y")
chosen to be an ordered quadrugigtq,qsds), where the g g g
givenith value represents the state of titte particle, includ- 1 L o,
ing the space, spin, and isospin degrees of freedom. This =5 f_lduH|le‘|;|;(x,y,u)F(x Y,
basis is a generalization of the one given in ELD). It is
assumed tha®;; corresponds to an exchange betweenithe where, in the integral ternx’ andy are obtained from Eq.

andjth set of quantum numbers, e.
: a 9 (A1) with the constraint cox@) u. These functions are

P3401020304) =|01020403)- given, for example, by

L — I"+N"+L+K, gliplonhiqhol 75 7] 5
Hp e (Xy,u)= > () LT EYSSE IS N
K100, 00 M2 lg Aol +1o=1" N+ Xo=)")

\/ (211 (2R (k lo I)(k o )\)(Il Ay |0)
Ny lo o olo o olo o o

!

I PR
|2 Ao Ao\ [A | L 1 2 X|1+7\1y|2+)\2

)\l )\2 )\, ’ ,Pk(u),
0 0 O/l N k x)H" (yH

wherel =21+ 1 andP, stands for th&th-Legendre polyno- Work can be built upon this basic function.
mial.

Obviously, in the four-body case, one has to deal with
cumbersome recoupling, to isolate bipolar harmonics from f, ./ is honzero, when botlr anda’ are ofH type. Let us
the more complex coupling schert®0). Nevertheless all the ~define therx! ,, y'  z' by

3. The only nonzerof function
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)sz' 01 0 % a. a of K type
f -
Your | =1 0 0]}y x" ,.y" 2", are then defined by
zZ 00 -1/\z
f..q 1S given by 1 V3
~h E 7 0 -
foo= thar 0l |’5 Loy So. 0’01 17017 1.6) 761 i O i Xaa! X
f x Py Ixry xry Axedy dxedy Ixyrdxy >h _ 1/3 1 N
Ixtiy=lixy ™!z yaa" B — —=- 0 )_/)
(=) lymhy ™, Eza’ 2 2 7
where the isospin contributiot, ./ is t, =6, 16, - 0 0 1

T Ty
(=)

4. h functions and the complete expression fog,,/ is

There are two cases where théunctions can be nonzero
when the amplitudex’ is of K type.

Iy oy x N oy x
aa(xyzu aa E 5I |'5 '5J3,JéA Iy S3 jy A l)I’ S2 J)I’
Ixy g J3 Ixy (o J3
) S; S1 Oy Xyz
X (— Sl+52—ox+52+0'x—0'A H xy o X, ,U ,
(=) [53 . 0')’(] Xaﬁa’yaﬁa’zﬁaa' lXIY'ley( y,u)
where
i d2 s PRPRE Co
. . . A 2 4 . . . ~ ) 2 1 X
Aia s dep =Viudelde] I Is Jef, [=2j+1 tee=(-)h T, 5T3TA[t T r’}
L L 3 I3
I7 s o I7 18 o "
and with the constraint casf)=u.
b. @ of H type
x[‘m, ,yza, ,zza, are now defined by
1 V2
. e
Xaa’ 1f3 ‘/3 X
y'. =] o 1 o y
2 2o 1 z
V3 V3

and the corresponding expression fgy,, is

| J JI j/ J'/ Jl |>,/ Sl ]y

. . ’ ’ 3 ’ .y

ha,a’(X,y,Z,U)=8ta,a' 2 5I' | 50" N (_)JXy+IZiJ+]y+J27J+IX+IZ?|yZA -Z : H Z]A[ >/( / ']A IZ Sz ]Z
3 x’ y ly J Ixy Iz 3 % ' '

yz IyZ Ox ‘]2

XA —h—h—h—HII b I,(XZU)

X

!
Lo, |yz} Xyz ’

, .
Ox JZ Ix aa’yaa’zaa’

with
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Ttz Tg
t4 T Ty

and the constraint casg)=u.

5. g functions

There are two cases where thdunctions can be nonzero: the amplitudenust be ofK type.

a. a' of K type

It is necessary to define in this casg,,,y% .,z , and an intermediate coordinagg such that

1 0 0 1 V3

X, , 122X, X3, 2 2

)_/)ia/ = § T )-/)0 and 90 = \E B l

2 0o 22 1|\ z z 2 2

'3 3 0 0

The corresponding expression @y, is

1 Iy ox Ix e ox dx Ixy
gayar(X,y,Z,U,v): Eta,a’ E A Iy S3 jy A I)// Sy J),/ A IZ
Ixy 0y 0" ly7 LSA Ixy o J; |>,<y ey Jé L

|I |, I, A I Sz Sl g
X y Xy A X Xy (_)Sl+sz—ax+52+o'—SA X

! ! !
l; L 1y, l, L 1y, S3 o O

!

XA 2 0 O Xz O (x,y u)?—(l;Z (Yo,2Z,v)
09 .49 _ag 1 Y ' 0 yU
54 S 0—’ Xga’yga’zga’ |x|y'|),<)‘ MZ'Iylé

with the constraints cogf/)=u and cosy,,2)=v, and where

r
ta,a/ — ( _ )t1+t2 Tx+t2+T3 TA

t, 7 T3 to tp 7
SUA ‘.
t4 T T3 t3 T3 T,

X

b. &' of H type

We define again? , ,y¢ ,,z% , and an intermediate coordinagg in the following way:

)_()?wz’ 0 1 V2 )—()g ’ )—()g ’ E ?

0 S IR RS | 0 Y (A B B

200 . 2 1 z z 2 2
3 3 0 0 1

The corresponding expression gy, is now

Ny <y Xy

J3

Ny <y X,

’
Iy

!
IZ

g

S2
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I oy x |>,( 0-;( J>,< Ixy o J3

& . ’ ’ P! i
ga,a’(xay7zau7v):§ta,a’ 2 A Iy S3 Jy A Iy O-y Jy A IZ S4 ]Z
by oy lyzBSA L e 3 iy S iy L s J

X(_)I)’(y+st§+L+SfJA

S by B By 18 by
IS TS ) AT 1 Al VI T I
O'),( Sy U]A[ S3 S (T),(J Xyz

’
X(_)Sl+s3fa'x+ax+s3fa'A S ,
54 (Ty

H:X,y I,A(x,y,u)H'yz i (Yo,2,0),
NN

9 g g
S; o 0Oy Xaa’yaa’zaa’ Xyrx Me

~ ~ T ' . . = —
wheret, ,=(—)1* "ttt TSA{:XITZT?}A{:?Tl ™} and with the constraints cos§)=u and cosy,2)=v.
4 y y'x
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