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Microscopic analysis of extranuclear capture on the!®O(p,y)!’F reaction
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Starting from a fully microscopic calculation, tHéO(p, y)''F radiative-capture reaction is discussed in
detail. The generator-coordinate and microscdpimatrix methods are applied to the determination of the
bound states and phase shifts of 8@+ p system, where®0 is described by a closeal shell cluster. The
astrophysical factor is then calculated and compared with experiment. A study of its behavior at very low
energies leads to general quantal formulas forS$Hactor and for its logarithmic derivative at zero energy,
which are valid for all cases where capture dominantly occurs when both nuclei are far from each other. The
larger capture to the 1/2excited state is then explained by its lower binding energy without need for a special
halo effect. The logarithmic derivative at zero energy is shown to depend on a slowly varying function of the
bound-state Sommerfeld parameter and its different values for capture to theudd21/2 states are ex-
plained. The same expressions are applied to’Be(p, v)®B reaction.[S0556-28188)00307-(

PACS numbgs): 25.40.Lw, 21.60.Gx, 24.10.Cn, 24.50y

. INTRODUCTION study of the *O(p, y)''F reaction, performed with two ef-
fective nucleon-nucleon forces and to use it as a basis for
A precise knowledge of many radiative-capture reactiondiscussing different physical issues. The questions we want
rates is essential for astrophys[dg. Microscopic models of to answer are the following. How do the microscopic results
radiative-capture reactiorj€—4] can provide a realistic de- compare with experiment? What is their sensitivity to the
scription of astrophysica® factors down to very low ener- choice of the nucleon-nucleon force?.Can one understand
gies (see Refs[5-7] for reviews. They allow a parameter- and predict the very—_Iow—energy behawo_rs of héactors?
free study of capture reactions. In microscopic models!S thg ya S—fa_ctor rise relgted to the existence of a proton
antisymmetrization is exactly taken into account and thehalo in the excited state of F? .
whole information is deduced from an effective nuclear force, At oW energies, the capture process for some reactions

. . 8 .
[8,9]. Strangely, these models have not been applied yet to Iéke the present one or likéBe(p, 7)°B is mostly extra-
simple case, thé®0(p. y)''F reaction, which leads to inter- nuclear, i.e., takes place mostly when both nuclei are far

. J . . . away from each otheftypically at several tens of fin At
esting physical considerations. THEO(p,)''F reaction such large distances, the Coulomb force largely dominates
links different parts of the CNO cycle. It offers a clear ex- y ge a i u gely '

. . ; the nuclear interaction. Only two types of nuclear quantities
ample of applying the microscopic model. Th8O nucleus y yp g

. , , , X may then influence the capture cross section, i.e., the
is well described by a closeui shell configuration. The sim-  5gymptotic normalization constants of the bound stépes

pler potential or direct-capture moddl0,11] also fairly well  he related vertex constaptsand the elastic scattering
describes ”1173 energy dependence of the capture Cross Sggagths. The influence of the former has been discussed in a
tions to theF bound states. In fact, this reaction is one of , ,mper of papergsee Ref[12] and references thergjrbut
‘t‘he best examples O,f, a capture mechanism usually calleghe role of the latter is usually disregarded. With its simple
extranuclear captgre : At low energies, the capture processyhysical assumptions, tH8O(p, y)1'F reaction allows a de-
mostly occurs at distances much larger than e radius.  tajied analysis of these effects. It is also a useful tool to
A detailed analysis of this effect is timely. During the \5jigate indirect methods of determination of the astrophysi-
completion of this work, the interest for this reaction was.g| s factor by measuring asymptotic normalization con-
even increased by the issue of accurate new data which rggants, je., to test whether the knowledge of these constants
solve the capture components to t& ground state and to s syfficient to provide an accura@factor. The force sen-
its single excited state down to about 200 kEM]. These giijvity of these constants, which is an important problem for
data emphasize the contrasted energy dependences 8f thgnogel calculation§12], can also be studied on this reaction.
factors for capture to the 5/2ground state and 172excited In Sec. II, the microscopic model is described. In Sec. Il
state[10] which have not been explained yet with intuitive resyits about phase shifts, elastic cross sections and the
concepts. They also confirm the predicted @}ﬂ] that the  5giative-capture astrophysic8l factor are presented and
capture is stronger to the 172xcited state of 'F. Because compared with experiment. The low-energy behavior in the
of its low binding energy, this state has a larger spatial exgase of extranuclear capture is analyzed in a general context

tension than the ground state. The authors of REf] at- i, Sec. |v. Physical aspects are discussed in Sec. V. Con-
tribute the largesS factor for capture towards this state and cjyding remarks are presented in Sec. VI.

its low-energy rise to the existence of a proton halo in the

1/2* wave function. Although no precise definition of a Il. MICROSCOPIC MODEL

nuclear halo exists, this property is usually characterized by a

radius which is significantly larger than the standard nuclear

radius. A radiative-capture reaction corresponds to an electro-
The aim of this paper is to present a fully microscopic magnetic transition from an initial scattering state at the

A. Cross sections
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center-of-mass enerdy, towards a final bound state at en- g,fJf(p)=p*1u|fJf(p) — leprflw_ ng 1+ 124 2Kgp),

ergy —Eg. For anelectric multipole transition of multipo- p—
larity \, the capture cross section can be writtef&s )]
81 K2M+1 where the real numbergg andkg are respectively the Som-
oy = L4 merfeld parameter and the wave number of this bound state,
S h (211 1)(215+ 1) andW_, |, 1> is a Whittaker functior{13]. The asymptotic

normalization coefficient?,fjf plays an important role at low

+ + . . . .
X A+l i+l energies. The asymptotic form of a scattering-state relative
N2N+1)112 2li+1 wave function can be written as

[4m(2i+1)]"?g,5.(p)

=p MUy (p) — v Mkp) !

p—x

X2 WMl E)E @

wherek,=E, /Ac is the photon wave number artl,=E

+ Eg is the photon energy. The colliding nuclei have spins ><[cosﬁ|iJiF|i(kp)+sin5,iJiG|i(kp)], (6)

and |, leading to a channel spih. The orbital and total

angular momenta are respectivéjyandJ; for the final wave ~ WhereF, andG, are the regular and irregular Coulomb func-

function ¥* and I, and J; for the initial wave function tions [13]. In Eq. (6), v andk are respectively the relative
3 f o velocity and wave number of the relative motion, ahg is

W)(E). The operatocMg,,, appearing in the reduced ma- yho scattering phase shift. The unit-flux normalization is cho-

trix element is the electric multipole operator of ramkThe  sen consistently with Eq1).

initial and final wave functions appearing in Ed), and in A Slater determinant in the two-center harmonic-

particular the normalization oﬁffiil, will be defined in the oscillator model is defined as

next subsection. _ 1 16
By summing over the significant multipoles and initial Pr(R)=APo( =~ FRIP(T7R), @

states, one obtains the total capture cross section to a givewhereq)o(s) is a closed-shels*p'? Slater determinant and

final state. By eliminating the dominant part of Coulomb ®,(S) represents aPorbital (with spin and isospip cen-

penetration effects, one defines the astrophysidaictor tered atS. The subscripK = = 1/2 corresponds to the proton
spin projection. The internal wave functiods, and ¢, ap-
S(E)=2 S, (E)=Eexr(27r7;)z 2 E (T|E.§.H| . pearing in Eq(4) differ from ®(S) and® ,(S) l?y.a_Gauss-
oy ©f i 13 X DO ian center-of-masgc.m) factor. The vectorR joining the

2 oscillator centers is the generator coordinate. A common 0s-
cillator parameteb is used on both centers. This Slater de-

where 7(E) is the Sommerfeld parameter. terminant is then projected on the orbital and total angular

momenta as
B. Wave functions .
The system is described by a 17-body microscopic Hamil- cpIJ'V'(R) = _E (IIM —KK|IM)
tonian 41K
17 17
X | YMK(QR)®(R)AOR, 8
H:ingi—'_bjE:lVija 3 f i (Qr)Py(R)dQR (8)

whereR=(R,QR).
whereT; is the kinetic energy of nucleonhandVj; is the Initial and final wave functions are expanded as
interaction (including Coulomb and spin-orBitbetween
nucleonsi andj. Approximate solutions of Eq3) are re-
quired both at positive and negative energies.
The bound and scattering wave functions of the system

will be described by resonating_group wave functi@a:bas where N is the numper of selected generator COOfdinat-es.:.
The generator-coordinate values are usually chosen equidis-

M= Aol ¢,®Y(Q,)1Mgi5(p), (4  tant. Expression9) is equivalent to Eq(4) except for a
Gaussian c.m. factdinot written here for simplicitywhose
where ¢y is the internal wave function chosen for effect can be eliminated exactly and ea$By9]. The relative
%0 (1,=0), ¢, is the spin-isospin state of the protoh, ( function g;; depends on the coefficientﬁ1 which must be
=1/2), andp=(p,{1,) is the quantal relative coordinate be- derived from the Hamiltoniai.
tween the centers of mass of these clusters. The orbital mo- The expression§9) and (8) provide fair simple approxi-
mentuml coupled to the channel spir- 1/2 (which is omit-  mations of the!’F bound states at small separation distances
ted in this sectiopgives the total angular momentuln The  between the!®O and p clusters. However the asymptotic
parity of this state is £)'. properties of these bound states display a Gaussian decrease
The exact asymptotic form of a bound-state relative wavewvhich is not realistic at large distances since it disagrees with
function in Eq.(4) is given by Eq. (5). A similar problem occurs for scattering states whose

N
«IrﬁMznzl fl &IM(R,), (9)



PRC 58 MICROSCOPIC ANALYSIS OF EXTRANUCLEAR ... 547

oscillating asymptotic behavid@6) cannot be simulated by a Hamiltonian (3) and does not rely on experiment. It pos-
finite number of square-integrable functions. Express®)n sessesN poles obtained from approximately solving Eg.
will therefore only be used in a limited range @fvalues and  (10). The phase shift deduced froRy;(E) must be(almos})
the correct asymptotic form&) and (6) will be obtained independent of the value of the channel radius

with the help of the microscopiR-matrix method. The Bloch-Schrdinger equation provides bound-state
and scattering wave functions made of two pieﬂﬁ%ﬂt and
C. Microscopic R-matrix method W¥ which can now be used to calculate the radiative-

In the R-matrix formalism [14,3,9, the configuration CaPture matrix element appearing in E).

space is divided into two regions, separated at a distance

the “channel radius.” In the internal regiorp&a), the in- D. Matrix elements

ternal wave functionlfﬂ’i‘{'1t is described by approximatid®) The Bloch-Schrdinger equatior{10) is solved by projec-

in the microscopic cluster model, with full account of anti- tion on the basis state8). The cross sections are then cal-
symmetrization. In the external regiop¥a), the external culated with Eq.(1). Because of the split structure of the
wave function\Ifﬂy'gXt involves a relative wave functiog;,;  wave function, the matrix elements must be calculated in
approximated by its exact asymptotic forfh) or (6); the  several parts.

antisymmetrization and the nuclear interaction between The calculation of the different matrix elements of the

nucleons belonging to remote nuclei are neglected. overlap, kinetic, central and spin-orbit nuclear interactions,
The physics of the problem is deduced from the Bloch-and Coulomb interaction follows a standard proced@:6).
Schralinger equatiori14,3,9 Here we shall just briefly explain the calculation of thé&

transition matrix element. The first and most difficult part is
performed over the full configuration space with basis func-

_ IM _ M
(H+L-E)¥{ =LV et 19 fions (8). The microscopi€E1 operator reads
in which the left-hand sidé_HS) involves the wave function 17
PM in the internal region and the RHS involves the Mep,=eS (2=t (r.—Ry ) (13)
asymptotic form¥}'¥,; of the wave function. The Bloch op- Bl 2'1 2R Tt

erator £ is a surface operatofproportional to §(p—a)]
which imposes the continuity of the logarithmic derivatives
of the two components of the wave functifitb]. The inter-
nal and external wave functions are in addition related by th
continuity condition

wheret;; is the third component of the isospin operator of
nucleoni, r;, (u=Xx,Y, orz) is a component of its coordi-
%ateri, andR;,,, is a component of the c.m. coordinate.
With separate calculations for the one-body and c.m. parts of
this matrix element, one obtains
V@) =V E(a), (19
(Pr(R)| Mgy, | Pk (R"))

in which the RHS is known, except for a normalization fac- , ,
tor at negative energies or for a dependence on the scattering = —17&( R+ Ru)<q)K(R)|q)K(R )) Bk
matrix at positive energies. (14)

The main advantage of the microscopiematrix method
is that it provides theoreticdR-matrices which, for a single where the overlap is di b
channel, read as P 1S given by

N 2 (Pr(R)|DK(R"))
Yiav

Riu(E)= Zl E, E' (12 =exi{ —4(R—R")2/17?][1—exp( — R- R'/2b?)

’ 2
where y,;, is the reduced width amplitude associated with X(1+R-R'/2b%)]. (15)

pole E,;, . Contrary to the phenomenologicBtmatrix em-
ployed in fits of experimental data, this theoretiBamatrix = The reducedE1l matrix element between projected basis
is completely determined by the Schinger equation with  states is then given fdg=I1,—1 by

2J,+1
L(2l,—1)(21,+1)

v2(3 1 12
<‘1),Jf(R)||/V1E1||‘1’|J.i(R’)>:277'2(—1)|‘+JiJrI [ H'iJl P, (cos®)
i i e Jp 1 -1

1
X<(DK(R)|ME12|(I)K(R,)>dC056+f 1Pﬁ(C059)<‘DK(R)|ME1x|q’K(R’))d0050, (16)
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TABLE |. Potential parametersy or u and S, (in MeV fm?®) TABLE Il. Root-mean-square radiin fm), quadrupole moment

and asymptotic normalization constaig;, (in fm~*?). (in e fm?), and reducedE2 transition probabilityin W.u.) in the
YF spectrum.

N Potential moru S Cys2 Ca2

V2 MN Expt.

8 V2 0.59359 23.39 1.0935 91.15

10 V2 059370  23.45  1.0934 9114 (r3)¥¥5/2%) 2.67 2.65

8 MN 091790  33.77 09734  86.20 (r3)1/2") 2.79 2.77

10 MN 0.91728 33.92 0.9731 86.42 Q(5/2%) -8.0 -7.3 +(10x£2)
B(E2,1/2" —5/2") 23.6 19.1 25.60.5

where 6 is the angle betweeR andR’, P, is a Legendre
polynomial, andPll is an associated Legendre function. The
integration over in Eq. (16) is performed numerically with
a Gauss ql_Jadrature. . Different spectroscopic quantities are gathered in Table II.
The baS|§ s:tate€8)_, and there_fore the wave functia@), With N=8 basis states, the table would be identical except
are only valid in the internal region. Let us briefly sketch thefor bothB(E2) which would be smaller by 1.5%. The results
_obtained with MN are slightly smaller than those obtained
With V2. The agreement with the experimental quadrupole
moment[19] is reasonable if we assume that it is negative,

weakly bound 1/2 state, they are not much sensitive to the
choice of basis states. As discussed in Sec. V, they are sen-
sitive to the interaction choice.

states provides thE1l matrix elements over the internal re-

gion. This corregtion is simple S‘.”CG ar]tisymmetrizatior) Cahut the reducedE2 transition probability is somewhat too
be neglected. It involves a one-dimensional integral which i -/ The rms radius of the excited state is larger by about

fperforrfnehd Enrmerigall;;. Then lad%ing thhe exlact asyt:nptoti%_lz fm than the ground-state one, i.e., by 4%. The larger
orm of theE1l matrix elements leads to the values to be Useigrarance presented in RefL1] corresponds to the rms ra-

in Eqg. (1) from which theS factor is deduced with Eq2). di 2112 of th lati ti fthe | Iv bound ~
This one-dimensional integral involves the Whittaker andtollrJ]S'(p )" of the relative motion of the loosely bound pro
Coulomb fun_ctlons appearing in th_e asymptotic for.(5$ Elastic phase shifts obtained with both interactions and
and(6). Special care must be taken in the numerical integray — 10 are displayed in Fig. 1. The results wih=8 would

tion of this part of the correction since the low binding en- not be distinguishable except in the 3/2esonance whose
_ergies of the final states lead to a very slow decrease of thl%cation differs by less than 0.1 MeV. According to the gen-
integrand. eralized Levinson theorefi20], the phase shifts at zero en-
ergy are defined as(m;+n,;) wherem; is the number of
. RESULTS forbidden statesl in thes andp waves and O beyondnd
n;; is the number of bound states in the corresponding patrtial
The *°0 nucleus is well described by a closed-sisé4'”  \ave. The positive-parity phase shiftapper part are in
harmonic-oscillator configuration with the oscillator param-good agreement with those deduced from experini2,
eter b=1.76 fm which reproduces thé®0 radius(r®)"*>  except in the vicinity of the 3/2 resonance whose amplitude
=2.58 fm, corresponding to a charge radius of 2.71 fm. Twds not well reproduced by the MN forcéull lines) and
sets of generator coordinates have been selected in order fghose location is not well reproduced by the V2 fotdet-
test the sensitivity to this choicéi=8 values from 1.7 to  ted lines. A narrow 1/2° resonance and a broad 3/2eso-
10.1 fm with a step of 1.2 fm and =10 values from 0.9 to nance which have a more Comp”cated structure tm@].s.
9.9 fm with a step of 1.0 fm. The channel radius is taken in+ p do not appear on the negative parity phase skiifwer
both cases as 8.9 fm, but we have checked that the results %Qrﬁ The present phase shifts are Comparab|e to those ob-
stable enough with respect to variationsaofThe interest of  tained in Ref[22].
using theR-matrix method is striking here: our basis only  Elastic excitation functions at a laboratory angle of 166°
extends up to about 10 fm while integrals in matrix elementsbtained with both interactions are presented in Fig. 2 where
reach 300 fm. The basis states must only cover the regiothey are compared with data of R¢R3]. The MN cross
where the nuclear interaction and antisymmetrization besections agree on the average with experiment_ The Comp”_
tween the incoming proton ant?O are not negligible. cated structure due to the overlapping 3/2nd 3/2" reso-
Two effective nucleon-nucleon interactions are employedhances can not be reproduced by the present model. The V2
V2 (Ref.[16]) and Minnesotdhereafter referred to as MN, cross sections are rather poor mostly because the 1@o-
Ref.[17]). Their exchange parameter or u and their spin-  nance is not located at a correct energy.
orbit amplitudeS, [18] are slightly adjusted to reproduce the  Finally, let us come to radiative capture. Capture occurs
F bound spectrum, i.e., 5/2and 1/Z states respectively mostly through arE1 transition from the initialp wave to
located 0.6005 and 0.1052 MeV below threshold. The conthe finald5/2" ands1/2* bound states. The smdllcompo-
ditions of the calculations are given in Table I. With thOSEnents inE1l Capture are included in the calculation and we
parameters, the energies are reproduced within 0.1 ke\have checked tha2 capture leads to negligible contribu-
Since comparisons require fitting the energies, the paramions. Then, without any fit or effective charge, the astro-
eters are slighly different for the two sets of generator coorphysicalS factor is obtained as shown in Fig. 3. Strikingly,
dinates. The asymptotic normalization consta@is; de-  the capture towards the 172excited state is larger than the
fined in Eq.(5) are also displayed in Table |. Even for the capture towards the 5/2ground state. This will be discussed
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360
300
240
[=)
I 180
2]
120
60
0
E (MeV)
. . e FIG. 3. Astrophysicab factor for the'®O(p,y)'’F reaction as
e a function of the c.m. enerdy, calculated with the MNfull lines)
360 f a® i and V2 (dotted lineg forces. From bottom to top: 5/2ground-
00 o 3/ state, 1/2 excited-state and total captures. ExperimeStéctors
300 : i from Ref.[10] (total: crossesand Ref.[11] (5/2": squares, 1/2:
§ oa0 | g | circles, total: triangles
S— o
© MN interaction(full line) than with V2(dotted ling but both
180 -2 . . . .
calculations overestimate the data. Of course, this overesti-
120 | i mation affects the totas factors. This effect an8(0) values
will also be discussed in Sec. V.
60...|...|...|||||..|
0 2 4 6 8 10 IV. ANALYTICAL STUDY OF EXTRANUCLEAR

E (MeV) CAPTURE AT LOW ENERGIES

FIG. 1. Phase shifts,, for the 0+ p elastic scattering as a  The rise of theS factor at low energies is confirmed by
function of the c.m. energ for the 1/2°, 3/2", and 5/2 partial ~ €xperiment. Its origin can not easily be explained intuitively
waves(upper pait, and for the 1/2 and 3/2 partial waveglower ~ but arises from asymptotic properties of the Coulomb wave
pard calculated with the MN(full lines) and V2 (dotted liney  functions. Let us study this effect in the general case where
forces. Experimental phase shifts are from R2f]. external capture dominates, for two nuclei with mass num-

bersA; and A, (A=A;+A,), chargesZ,e and Z,e, and
in detail in Sec. V on the basis of a general analysis ofspinsl; andl,.
extranuclear capture performed in the next section. When the capture is essentially extranuclear, antisymme-

The shapes of the theoretical curves are in good agreerization and other short-distance effects can be neglected
ment with recent absolutgl1] and relative[10] data. For  and theS factor in Eq.(2) can be approximated as
ground-state capture, the absolute normalization seems to be
too small with MN and too large with V2. For the dominant

— 2\+1
capture to the 1/2 state, the normalization is better with the S‘fJf(E) =acNg k)

© 2
Jf u.fjfp%i(E)dp) R

600 where« is the fine structure constant is a cutoff radius,
500 | and
H Ojap = 166°
il A 2
400 No =87z, 22| 17,[ -
. A A

300

 (mb)

(N+1)(2N+1) (2Jf+1)(2|i+1)/lf A |i)2
200 | X

N2a+1n2 (2L +1D(21L+1){0 0 0
100 |20

(18)
°, ' . ' . ' 5 ' ., is anormalization factor. The asymptotic form wf; also
E, (MeV) depends on the channel spinin order to keep the notations
P

simple, we do not write this quantum number explicitly. A
FIG. 2. Excitation functions for thd®0+ p elastic scattering as Sum overl |Slunder3t09d in Eq(17). At very low energies,

a function of the proton energl, at a laboratory angle of 166°, the renormalized function

calculated with the MN(full lines) and V2 (dotted line$ forces. ~

Experimental cross sections are from Ref]. u;(E)=EY?exp(5)u,(E) (19
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weakly depends on energy. Since the phase shifts are ver 3000
small at these energies and since large distapcaie con-

sidered, the shape af mostly depends on the orbital mo-
mentuml. Its dependence on other quantum numbers car 2000 |
approximately be taken into account through some averags
of the different phase shifts corresponding fsee Eq(28)

below]. The overlap between the exponentially decreasing
wave functi0nu|fJf of the final bound state and the exponen-

1000

tially increasing wave functioﬁ,i of the low-energy scatter-

ing state peaks at large distances. For example, in the 0 - - - .
1%0(p, y)*F case, the maximum of the integrand in Etj7) 0 1 2 3 4 5
occurs near 18 fm for the ground state and near 67 fm for the n
1/2" state. . . .
Let us expand th& factor near zero energy as FIG. 4. FunctlonSZl,I,f [Eq (31) with X0:2] as a function Of)],
for the E1 transitionsl;=0—1;=1, |;=1—1;=0, |;=1—-1;=2,
S(E)=S(0)(1+s,E+--+), (200  andl;=2—l;=1.
where a precise value of the logarithmic derivative at the a J L 1?2
igi a=——(2:+1 2J,+1
origin =5 (2l >§i< RE N
S 21 X lim exp(277) 815, (E). 28)
S(0)\dE/, E—0
is important for a correct evaluation of reaction rates. This expression may depend anly, I, andJ;. Introduc-

First, let us calculat&(0). Tothis end, we introduce the N9 the resulting expressiof27) in Eq. (17) provides

“nuclear Bohr radius” S(0)= L 7ahcNg, (Eg/fic)2 1

Xr fr U|fJfP)‘+1/2[|2|i+1(2\/2P/aN)
0

an="h2uz,Z,e° (22
and the “nuclear Rydberg energy” or “Gamow energy”

2
En=1%2pay. (23 —4(ay lan)Ka 1 1(2V2play)]dp} . (29

Not surprisingly, when the Coulomb interaction dominates, o o _
nuclear analogs of the atomic units appear. From fef, ~ The same principle was applied in Rg25] for calculating
we establish a connection with the modified Bessel func(0) for the reactionHe(e,y)'Be, but with numerical
tions, wave functions foru,i(O) andu|fJf.

As confirmed in the next section, the second term in the

H -1/2 _ 12 _1/2
lim k™" exp(m ) F (kp)=m"p"2141(X) (24 prackets of Eq(29) is often very small when external cap-

£-0 ture dominates, becaudg(x) and K,(x) respectively be-
and have as increasing and decreasing exponentials for large val-
ues of their argumemnt. Neglecting this term and replacing
lim k™ Y2exp(— 77)G(kp) =27 Y2pY%K 5 . 1(X) U g, by its asymptotic forn{see Eq.5)] yields the expres-
E-0 sion
(25)
a
with S(0)= 35 aficagNe, (ayEp/80)* [ Cy g Ty (78) .
x=2(27kp)Y2=2(2play) Y2 (26) (30

In Eqg. (25), we follow the sign convention of Refl3], The dimensionless functions

where theK,, are positive functions, rather than the conven- o
tion of Ref.[24]. From these relations, the Iimit&fi(E) can Iy (= fx W+ 12X A X 251 14 (X)X
be approximated to first order with respect to scattering ° (3D
lengths as
with Xo=/8ry/ay mostly depend omy. For E1 transitions,
Uy (0)=(whil2)Y2p 15 4 1(X) —4(ay fag) Ky 4 1(X)]. they are depicted in Fig. 4 for the important casesO
(27) —>|f:1, |i:l—>|f:O, |i=l—>|f=2, and ||:2—>|f:1
Typical values ofk, are 1 for light systems and 2 to 3 for the
In Eq. (27), we make use of the average scattering lengttpresent case. Here we choogg=2. Consistently with the
defined as extranuclear capture assumption, we assurrel. The four
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functions display the same shape, with a maximum around 1 [Ix+3/21~+1/2| (M) +20iTy 411 +11.(7)
n=3. They have the same order of magnitude Byt and R (1) == ! 'fSI L

7,,, are smaller than the other two. The binding-energy de- 67 L Mt ()

pendence o5(0) will be less sensitive td, . than to the

power factorE3* "1, —1i(l;+1)(2l;+1) |. (35)

The energy derivative of thg factor at zero energy can
be treated in a similar way. A direct calculation ©f based
on other expansions of the Coulomb functions was per

formed in Ref[26]. In Eq.(17), only k,, andﬁ|i depend on

For E1 transitions, these functions are depicted in Fig. 5 for
|i:0~>|f:1, |i:1~>|f:0, |i:1—>|f:2, and |i:2—>|f
=1 (xp=2). The first three functions do not vary much

energy. Hences,; can be expressed @] with 7 but R4, displays a stronger dependence. Their varia-
tions have important consequences on the low-energy behav-
= d. ior of the S factor. Their values have to be compared with the
5 f u|f3fp”<ﬁu|i) dp critical value 24 +1=3 appearing in Eq(34). The function
S = )‘+1+2 fo 0 (32) Ri01 is always larger than 3 so that will be negative for
1 Eg any 7 like in the "Be(p, y)®B reaction. The functiorR

=
froulfpr “'i(o)dp crosses the critical value negg=1 and also leads to nega-
tive s; values when external capture dominates, wiilg,
andR,; lead to positives; values belowng=3.3 and 2.5,
This expression only depends on the extranuclear approXjespectively, and to negative values beyond.
mation and on the cutoff radiug. It is an exact quantum

mechanical result within this assumption when scattering
lengths are negligible. It still depends on nuclear effects
through the binding energig and, possibly, through the  Let us now apply these expressions to H©(p,y)!’F
average scattering length .. reaction. The constants defined in E(&2) and(23) take the

' valuesay=3.825 fm andEy=1.506 MeV. Equation(30)
provides the approximation

V. DISCUSSION

Since 2=E/Ey, the limit of the energy derivative

1+ n*
e

|' d S(0)=0.3TC3;,+1.58x10°3C%,, keVb, (36
m ——]

|
k™ Y2exp(wn)F)(kp) / I1
E—>0dE n=1

1/2 2
__ T X
12,7 12

where Cqs, and Cgy, (expressed in fm'?) are the
asymptotic normalization constants of the ground state and
(33  of the excited state, respectively. The coefficient of the sec-
ond term is insensitive to the choice x§ while the coeffi-
cient of the first term is sensitive within a few percents for

can be deduced from expansié®12 in Ref.[24]. It pro-  typical values betweer,=2 to 3. The difference between
vides, when the contribution of the scattering length is negthe coeff|C|ent52;rqu(36) mostly comes from the binding-
ligible, energy powerEg "~ in Eq. (30): the constantdNg; do not

differ much (4.45 and 3.71, respectiveland the integrals
Zyu, are very close to each othgf;,,(1.584)=1165 and

T110(3.783)= 1115, respectively; see Fig.].4These values
show that the dominance of the transition to the excited state
with the dimensionless functions is mainly due to the large value of the asymptotic normaliza-
tion constantCg;,, with respect toCys, (see Table)l This
constant is large enough to compensate the effect of the
small factorE%. If we slightly vary the exchange parameter
of the force, we observe that this constant locally scales as
Eg 2’ for the 1/2" state. Hence the large difference between
the asymptotic normalization constants is also partly due to
the binding energy.

The capture mechanisms to the 5/and 1/2 states are
qualitatively very similar. Capture to the excited state occurs
at larger distances because of a smaller binding energy but
this does not affect mucg(0). Thedominance of 1/2 cap-

, ‘ ) ) ) ture arises from the much larger asymptotic normalization
0 1 2 3 4 5 constant of this excited state. If we artificially move the*1/2
state to the same energy as the'5&ate, the constar@;,

is reduced to about 8 fmt'2 but remains significantly larger

FIG. 5. FunctionsRy,,;, [Eq. (35 with xo=2] as a function of  than for the ground state. This is the only difference which is
n, for the E1 transitionsl;=0—1;=1, I;=1—1;=0, l;=1—I¢ not due to a smaller binding energy. The interpretation of
=2, andl;=2—1;=1. these results in terms of a halo is then a matter of taste.

X
§|2|+2(X)+” 21+3(X)

S;=Eg'[2\+1- Ry (78)] (34
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The average scattering length plays a negligible role irdepend on the channel spif12]. The coefficient 35.8 is a
Eq. (36). Its value is 1.98 fm with the MN force. It intro- little bit smaller than the coefficient 36.5 obtained in Ref.
duces relative corrections of order 10in the second term [12] by extrapolating totaS(E) values calculated at small
and 6x 102 in the smaller first term. A significant effect of energies. The sensitivity to the scattering lengths is very
the scattering length would require that capture takes place ateak. ForE1l capture from thel wave, one obtains
smaller distances, i.e., would require a larger binding energy.

But then the function§11|f would become more sensitive to Sd(O)=2.4[C§12(1—0.0761d1)2

the choice ofx, and to other nuclear effects. 2 _ 2
The fact that the capture cross sections are larger with the T Chd1-0.0785)7] Vb, 39

V2 force than with the MN force follows from Eq36) and ; - - :
S X X th the notationa,, for the average scattering lengtfia
from Table I. This is in agreement with the properties of theWI ona;i verag ing lengt

0 mirror nucleus. The asymptotic normalization constantgm)' _'{_h|s tcoglectlon IS not nf[atgll_glbltle ant?1 m'?% be quite
Cgs)» Of the %0+ n system present a similar behavi@7]. sensitive to the average scattering lengths ot dn&ave,

In that case, they are both overestimated with respect to e)gspeqially i thgad are negative as they shpuld be here. With
periment, by about 8% for MN and more than 20% for V2_the microscopic model of Ref28], we obtain negative scat-

For 1F, the situation is different for the ground-state con-tering lengths but their absolute values are smaller than 0.2

stant. The result obtained with MN seems to be too small™ In this case, corrections due 1o scattering lengths are
Can realistic}’F constants be estimated by scaling the theol1egligible. . i :
The logarithmic derivatives; for an initial s wave is

retical curves in order to fit the experimental data of Ref. . 1

[11]? The fit should be performed at as low energies as poag'ven bﬁEq'ﬁ?‘}) b?twee_n—Z.S and—2.6. 'r\]AerY depenld—
sible, but with data with small error bars. We select the datd"9 On the choice fox,, in agreement with the general be-
in the energy range 0.4—0.6 MeV. The theoretBdactors  "aVviOr 0f Rqg; in Fig. 5. For thed wave, Ry, is significantly
obtained with the two forces do not have exactly the sam&maller thaln 3 and one obtains a large positive valu? near
energy dependence from the present energy range to the dp=2 M€V ~. The combined+d value is ther-1.9 MeV-

main of pure extranuclear capture. Hence scaling them gived dualitative agreement with a potential-model study at low
different results for the constants. We obt@lg,~1.1 with energieg29]. However, that study also shows a sensitivity of

both forces an€,,~78.6 fm™ Y2 with V2 and 81.6 fm 2 s; to the potential, which would require including a
with MN. The extrapolation uncertainty due to the force is SCattering-length dependence in E85).
larger than 3%. These constants introduced in (B6) lead

to the estimates VI. CONCLUSIONS
10.2 keVb withV2, Without any fit, a microscopic description of the
S(0)~ (37 0(p,y)'F radiative-capture reaction provides realistic

11.0 keVb with MN. cross sections which are however somewhat overestimated.

. . . . . This overestimation is weaker with the Minnesota force than
Equation(37) gives an idea of the theoretical uncertainty on with the Volkov force V2. These results follow from a cor-

the extrapolation, which must be taken into account in addi'res onding overestimation of the asymptotic normalization
tion to experimental uncertainties. P 9 ymp

When the binding energfg is small, the logarithmic constants which could be expected from the properties of the
B )

derivative s, is the difference of two large numbers since m't&?r\/gsﬁic\;{iﬁe’r ies. the capture process is dominated b
they are both proportional tﬁgl. If these large numbers do Y gies, P P Y

¢ | h oth | | p ible. H large distances. The low-energy asymptotic behavior of all
not cancel each other, a large valueslis possIble. HOW"  \aya functions is well known analytically. We have per-

ever, this is not a signature of a halo but only of a Weakformed a detailed analysis of zero-energy results. A simple
binding. expression is then obtained for the zero-ene®dqctor, de-
Fo_rl t_he 5/2 g_round state, a valg_e arounsil=0.5_5 pending only on the asymptotic hormalization constants and
MeV " is found W'.th Eq.(34). Itis posmve becauseyg is on an average scattering length of the initial wave. The de-
sma_lller than the crl_tlcal value G2y, in F'lg' 5. For the 1_/2 pendence on this scattering length is negligible in the present
excited state, one findg =—5.33 MeV = The lower bind- 550 The expression &0) clearly shows that it is here

ing energy of 1/2 allows a much largefs,|. The value is essentially sensitive to the prodUEEC2 . . The asvmototic
negative in agreement with the behavior®f,, in Fig. 5. ay v P b g ymptot

Let us briefly apply the same expressions to thenormalization constanCs,, of the excited state is large
Be(p,y)®B reaction which is also dominated by extra- €nough to compensate the small fadigrand to lead to the
nuclear capture. Heray=8.33 fm andEy=0.350 MeV. largest contribution to the capture process at low energies. Its
The small binding energfg=0.137 MeV of the 2 ground  large value is the main difference with ground-state capture
state (;=1 andl =1 or 2 leads toyg=1.60, a value similar and is also related to the lower binding energy of the excited

to the YF ground-state value. FdE1 capture from thes  State.

wave, Eq.(30) provides forx,=2 An expression for the logarithmic derivatiwg of this S
' ' factor at zero energy has been derived, which is exact in the
55(0)235_a0§12+ 0;2322) eV b, (39 context of the extranuclear capture approximation when

scattering-length effects are negligible. Under these assump-
where the coefficient is sensitive k3 to less than one per- tions, all the properties of; can be explained very simply
cent. Here the asymptotic normalization constaByt; also  with functions such as those displayed in Fig. 5. If the value
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of these functions calculated with the Sommerfeld parametefherefore, either both states are considered as halo states
of the final bound state is larger tham 2 1, s, is negative  because of their weak binding energies, or none of them if
and otherwise it is positive. As it is inversely proportional to the notion of halo is reserved to more remarkable properties
the binding energ¥g, large|s;| values may occur for small requiring at least two loosely bound particles.

Eg. These functions can be used to calculaiein other

reactions dominated by extranuclear capture, such as

"Be(p,y)®B. However, neglecting scattering-length effects ACKNOWLEDGMENTS

is probably not always valid.
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