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Microscopic analysis of extranuclear capture on the16O„p,g…

17F reaction

D. Baye, P. Descouvemont, and M. Hesse
Physique Nucle´aire Théorique et Physique Mathe´matique, C.P. 229, Universite´ Libre de Bruxelles, B 1050 Brussels, Belgium

~Received 21 January 1998!

Starting from a fully microscopic calculation, the16O(p,g)17F radiative-capture reaction is discussed in
detail. The generator-coordinate and microscopicR-matrix methods are applied to the determination of the
bound states and phase shifts of the16O1p system, where16O is described by a closedp shell cluster. The
astrophysicalS factor is then calculated and compared with experiment. A study of its behavior at very low
energies leads to general quantal formulas for theS factor and for its logarithmic derivative at zero energy,
which are valid for all cases where capture dominantly occurs when both nuclei are far from each other. The
larger capture to the 1/21 excited state is then explained by its lower binding energy without need for a special
halo effect. The logarithmic derivative at zero energy is shown to depend on a slowly varying function of the
bound-state Sommerfeld parameter and its different values for capture to the 5/21 and 1/21 states are ex-
plained. The same expressions are applied to the7Be(p,g)8B reaction.@S0556-2813~98!00307-0#

PACS number~s!: 25.40.Lw, 21.60.Gx, 24.10.Cn, 24.50.1g
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I. INTRODUCTION

A precise knowledge of many radiative-capture react
rates is essential for astrophysics@1#. Microscopic models of
radiative-capture reactions@2–4# can provide a realistic de
scription of astrophysicalS factors down to very low ener
gies ~see Refs.@5–7# for reviews!. They allow a parameter
free study of capture reactions. In microscopic mode
antisymmetrization is exactly taken into account and
whole information is deduced from an effective nuclear fo
@8,9#. Strangely, these models have not been applied yet
simple case, the16O(p,g)17F reaction, which leads to inter
esting physical considerations. The16O(p,g)17F reaction
links different parts of the CNO cycle. It offers a clear e
ample of applying the microscopic model. The16O nucleus
is well described by a closedp shell configuration. The sim
pler potential or direct-capture model@10,11# also fairly well
describes the energy dependence of the capture cross
tions to the17F bound states. In fact, this reaction is one
the best examples of a capture mechanism usually ca
‘‘extranuclear capture’’: At low energies, the capture proce
mostly occurs at distances much larger than the16O radius.

A detailed analysis of this effect is timely. During th
completion of this work, the interest for this reaction w
even increased by the issue of accurate new data which
solve the capture components to the17F ground state and to
its single excited state down to about 200 keV@11#. These
data emphasize the contrasted energy dependences ofS
factors for capture to the 5/21 ground state and 1/21 excited
state@10# which have not been explained yet with intuitiv
concepts. They also confirm the predicted fact@10# that the
capture is stronger to the 1/21 excited state of17F. Because
of its low binding energy, this state has a larger spatial
tension than the ground state. The authors of Ref.@11# at-
tribute the largerS factor for capture towards this state an
its low-energy rise to the existence of a proton halo in
1/21 wave function. Although no precise definition of
nuclear halo exists, this property is usually characterized b
radius which is significantly larger than the standard nucl
radius.

The aim of this paper is to present a fully microscop
PRC 580556-2813/98/58~1!/545~9!/$15.00
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study of the 16O(p,g)17F reaction, performed with two ef
fective nucleon-nucleon forces and to use it as a basis
discussing different physical issues. The questions we w
to answer are the following. How do the microscopic resu
compare with experiment? What is their sensitivity to t
choice of the nucleon-nucleon force? Can one underst
and predict the very-low-energy behaviors of theS factors?
Is the 1/21 S-factor rise related to the existence of a prot
halo in the excited state of17F?

At low energies, the capture process for some reacti
like the present one or like7Be(p,g)8B is mostly extra-
nuclear, i.e., takes place mostly when both nuclei are
away from each other~typically at several tens of fm!. At
such large distances, the Coulomb force largely domina
the nuclear interaction. Only two types of nuclear quantit
may then influence the capture cross section, i.e.,
asymptotic normalization constants of the bound states~or
the related vertex constants! and the elastic scatterin
lengths. The influence of the former has been discussed
number of papers~see Ref.@12# and references therein!, but
the role of the latter is usually disregarded. With its simp
physical assumptions, the16O(p,g)17F reaction allows a de-
tailed analysis of these effects. It is also a useful tool
validate indirect methods of determination of the astrophy
cal S factor by measuring asymptotic normalization co
stants, i.e., to test whether the knowledge of these const
is sufficient to provide an accurateS factor. The force sen-
sitivity of these constants, which is an important problem
model calculations@12#, can also be studied on this reactio

In Sec. II, the microscopic model is described. In Sec.
results about phase shifts, elastic cross sections and
radiative-capture astrophysicalS factor are presented an
compared with experiment. The low-energy behavior in
case of extranuclear capture is analyzed in a general con
in Sec. IV. Physical aspects are discussed in Sec. V. C
cluding remarks are presented in Sec. VI.

II. MICROSCOPIC MODEL

A. Cross sections

A radiative-capture reaction corresponds to an elec
magnetic transition from an initial scattering state at t
545 © 1998 The American Physical Society
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546 PRC 58D. BAYE, P. DESCOUVEMONT, AND M. HESSE
center-of-mass energyE, towards a final bound state at e
ergy 2EB . For anelectric multipole transition of multipo-
larity l, the capture cross section can be written as@3#

s l i Ji→ l f Jf

El 5
8p

\

kg
2l11

~2I 111!~2I 211!

3
l11

l~2l11!!! 2

2Jf11

2l i11

3(
I

u^C l f

Jf uuMEluuC l i I
Ji ~E!&u2, ~1!

where kg5Eg /\c is the photon wave number andEg5E
1EB is the photon energy. The colliding nuclei have spinsI 1
and I 2 leading to a channel spinI . The orbital and total
angular momenta are respectivelyl f andJf for the final wave
function C l f

Jf and l i and Ji for the initial wave function

C l i I
Ji (E). The operatorMElm appearing in the reduced ma

trix element is the electric multipole operator of rankl. The
initial and final wave functions appearing in Eq.~1!, and in
particular the normalization ofC l i I

Ji , will be defined in the

next subsection.
By summing over the significant multipoles and initi

states, one obtains the total capture cross section to a g
final state. By eliminating the dominant part of Coulom
penetration effects, one defines the astrophysicalS factor

S~E!5(
l f Jf

Sl fJf
~E!5E exp~2ph!(

l f Jf
(
l i Ji

(
l

s l i Ji→ l f Jf

El ,

~2!

whereh(E) is the Sommerfeld parameter.

B. Wave functions

The system is described by a 17-body microscopic Ham
tonian

H5(
i 51

17

Ti1 (
i . j 51

17

Vi j , ~3!

whereTi is the kinetic energy of nucleoni and Vi j is the
interaction ~including Coulomb and spin-orbit! between
nucleonsi and j . Approximate solutions of Eq.~3! are re-
quired both at positive and negative energies.

The bound and scattering wave functions of the sys
will be described by resonating-group wave functions@8# as

C l
JM5AfO@fp^ Yl~Vr!#JMglJ~r!, ~4!

where fO is the internal wave function chosen fo
16O (I 150), fp is the spin-isospin state of the proton (I 2
51/2), andr5(r,Vr) is the quantal relative coordinate b
tween the centers of mass of these clusters. The orbital
mentuml coupled to the channel spinI 51/2 ~which is omit-
ted in this section! gives the total angular momentumJ. The
parity of this state is (2) l .

The exact asymptotic form of a bound-state relative wa
function in Eq.~4! is given by
en

l-

m

o-

e

gl fJf
~r!5r21ul fJf

~r! →
r→`

Cl fJf
r21W2hB ,l f11/2~2kBr!,

~5!

where the real numbershB andkB are respectively the Som
merfeld parameter and the wave number of this bound st
andW2h,l 11/2 is a Whittaker function@13#. The asymptotic
normalization coefficientCl fJf

plays an important role at low
energies. The asymptotic form of a scattering-state rela
wave function can be written as

@4p~2l i11!#21/2gl iJi
~r!

5r21ul iJi
~r! →

r→`

v21/2~kr!21

3@cosd l i Ji
Fl i

~kr!1sind l i Ji
Gl i

~kr!#, ~6!

whereFl andGl are the regular and irregular Coulomb fun
tions @13#. In Eq. ~6!, v and k are respectively the relative
velocity and wave number of the relative motion, andd l i Ji

is
the scattering phase shift. The unit-flux normalization is ch
sen consistently with Eq.~1!.

A Slater determinant in the two-center harmon
oscillator model is defined as

FK~R!5AFO~2 1
17 R!Fp~ 16

17 R!, ~7!

whereFO(S) is a closed-shells4p12 Slater determinant and
Fp(S) represents a 0s orbital ~with spin and isospin!, cen-
tered atS. The subscriptK561/2 corresponds to the proto
spin projection. The internal wave functionsfO andfp ap-
pearing in Eq.~4! differ from FO(S) andFp(S) by a Gauss-
ian center-of-mass~c.m.! factor. The vectorR joining the
oscillator centers is the generator coordinate. A common
cillator parameterb is used on both centers. This Slater d
terminant is then projected on the orbital and total angu
momenta as

F l
JM~R!5

1

4p(
K

~ l IM 2KKuJM!

3E Yl
M2K~VR!FK~R!dVR , ~8!

whereR5(R,VR).
Initial and final wave functions are expanded as

C l
JM5 (

n51

N

f ln
J F l

JM~Rn!, ~9!

where N is the number of selected generator coordinat
The generator-coordinate values are usually chosen equ
tant. Expression~9! is equivalent to Eq.~4! except for a
Gaussian c.m. factor~not written here for simplicity! whose
effect can be eliminated exactly and easily@3,9#. The relative
function glJ depends on the coefficientsf ln

J which must be
derived from the HamiltonianH.

The expressions~9! and ~8! provide fair simple approxi-
mations of the17F bound states at small separation distan
between the16O and p clusters. However the asymptoti
properties of these bound states display a Gaussian dec
which is not realistic at large distances since it disagrees w
Eq. ~5!. A similar problem occurs for scattering states who
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oscillating asymptotic behavior~6! cannot be simulated by
finite number of square-integrable functions. Expression~9!
will therefore only be used in a limited range ofr values and
the correct asymptotic forms~5! and ~6! will be obtained
with the help of the microscopicR-matrix method.

C. Microscopic R-matrix method

In the R-matrix formalism @14,3,9#, the configuration
space is divided into two regions, separated at a distanca,
the ‘‘channel radius.’’ In the internal region (r<a), the in-
ternal wave functionC l , int

JM is described by approximation~9!
in the microscopic cluster model, with full account of an
symmetrization. In the external region (r.a), the external
wave functionC l ,ext

JM involves a relative wave functionglJ

approximated by its exact asymptotic form~5! or ~6!; the
antisymmetrization and the nuclear interaction betwe
nucleons belonging to remote nuclei are neglected.

The physics of the problem is deduced from the Bloc
Schrödinger equation@14,3,9#

~H1L2E!C l , int
JM 5LC l ,ext

JM , ~10!

in which the left-hand side~LHS! involves the wave function
C l , int

JM in the internal region and the RHS involves th
asymptotic formC l ,ext

JM of the wave function. The Bloch op
erator L is a surface operator@proportional to d(r2a)#
which imposes the continuity of the logarithmic derivativ
of the two components of the wave function@15#. The inter-
nal and external wave functions are in addition related by
continuity condition

C l , int
JM ~a!5C l ,ext

JM ~a!, ~11!

in which the RHS is known, except for a normalization fa
tor at negative energies or for a dependence on the scatt
matrix at positive energies.

The main advantage of the microscopicR-matrix method
is that it provides theoreticalR-matrices which, for a single
channel, read as

RlJ~E!5 (
n51

N g lJn
2

ElJn2E
, ~12!

whereg lJn is the reduced width amplitude associated w
pole ElJn . Contrary to the phenomenologicalR-matrix em-
ployed in fits of experimental data, this theoreticalR-matrix
is completely determined by the Schro¨dinger equation with
n

-

e

-
ing

Hamiltonian ~3! and does not rely on experiment. It po
sessesN poles obtained from approximately solving E
~10!. The phase shift deduced fromRlJ(E) must be~almost!
independent of the value of the channel radiusa.

The Bloch-Schro¨dinger equation provides bound-sta
and scattering wave functions made of two piecesC l , int

JM and
C l ,ext

JM which can now be used to calculate the radiativ
capture matrix element appearing in Eq.~1!.

D. Matrix elements

The Bloch-Schro¨dinger equation~10! is solved by projec-
tion on the basis states~8!. The cross sections are then ca
culated with Eq.~1!. Because of the split structure of th
wave function, the matrix elements must be calculated
several parts.

The calculation of the different matrix elements of th
overlap, kinetic, central and spin-orbit nuclear interactio
and Coulomb interaction follows a standard procedure@3,9#.
Here we shall just briefly explain the calculation of theE1
transition matrix element. The first and most difficult part
performed over the full configuration space with basis fun
tions ~8!. The microscopicE1 operator reads

ME1m5e(
i 51

17

~ 1
2 2t i3!~r im2Rcmm!, ~13!

where t i3 is the third component of the isospin operator
nucleoni , r im (m5x, y, or z) is a component of its coordi
nate r i , and Rc.m.m is a component of the c.m. coordinat
With separate calculations for the one-body and c.m. part
this matrix element, one obtains

^FK~R!uME1muFK8~R8!&

52 4
17 e~Rm1Rm8 !^FK~R!uFK~R8!&dKK8,

~14!

where the overlap is given by

^FK~R!uFK~R8!&

5exp@24~R2R8!2/17b2#@12exp~2R•R8/2b2!

3~11R•R8/2b2!#. ~15!

The reducedE1 matrix element between projected bas
states is then given forl f5 l i21 by
^F
l f

Jf~R!uuME1uuF l i

Ji~R8!&52p2~21! l f1Ji1IF 2Ji11

l i~2l i21!~2l i11!G
1/2H Ji l i 1/2

l f Jf 1 J F l iE
21

1

Pl i
~cosu!

3^FK~R!uME1zuFK~R8!&d cosu1E
21

1

Pl i
1~cosu!^FK~R!uME1xuFK~R8!&d cosuG , ~16!
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whereu is the angle betweenR and R8, Pl is a Legendre
polynomial, andPl

1 is an associated Legendre function. T
integration overu in Eq. ~16! is performed numerically with
a Gauss quadrature.

The basis states~8!, and therefore the wave function~9!,
are only valid in the internal region. Let us briefly sketch t
rest of the calculation~see Ref.@3# for details!. Subtracting a
correction over the external region involving the same ba
states provides theE1 matrix elements over the internal re
gion. This correction is simple since antisymmetrization c
be neglected. It involves a one-dimensional integral which
performed numerically. Then adding the exact asympto
form of theE1 matrix elements leads to the values to be u
in Eq. ~1! from which theS factor is deduced with Eq.~2!.
This one-dimensional integral involves the Whittaker a
Coulomb functions appearing in the asymptotic forms~5!
and~6!. Special care must be taken in the numerical integ
tion of this part of the correction since the low binding e
ergies of the final states lead to a very slow decrease of
integrand.

III. RESULTS

The 16O nucleus is well described by a closed-shells4p12

harmonic-oscillator configuration with the oscillator para
eter b51.76 fm which reproduces the16O radius ^r 2&1/2

52.58 fm, corresponding to a charge radius of 2.71 fm. T
sets of generator coordinates have been selected in ord
test the sensitivity to this choice:N58 values from 1.7 to
10.1 fm with a step of 1.2 fm andN510 values from 0.9 to
9.9 fm with a step of 1.0 fm. The channel radius is taken
both cases as 8.9 fm, but we have checked that the result
stable enough with respect to variations ofa. The interest of
using theR-matrix method is striking here: our basis on
extends up to about 10 fm while integrals in matrix eleme
reach 300 fm. The basis states must only cover the reg
where the nuclear interaction and antisymmetrization
tween the incoming proton and16O are not negligible.

Two effective nucleon-nucleon interactions are employ
V2 ~Ref. @16#! and Minnesota~hereafter referred to as MN
Ref. @17#!. Their exchange parameterm or u and their spin-
orbit amplitudeS0 @18# are slightly adjusted to reproduce th
17F bound spectrum, i.e., 5/21 and 1/21 states respectively
located 0.6005 and 0.1052 MeV below threshold. The c
ditions of the calculations are given in Table I. With tho
parameters, the energies are reproduced within 0.1 k
Since comparisons require fitting the energies, the par
eters are slighly different for the two sets of generator co
dinates. The asymptotic normalization constantsCl fJf

de-
fined in Eq.~5! are also displayed in Table I. Even for th

TABLE I. Potential parametersm or u and S0 ~in MeV fm5)
and asymptotic normalization constantsCl fJf

~in fm21/2).

N Potential m or u S0 Cd5/2 Cs1/2

8 V2 0.59359 23.39 1.0935 91.15
10 V2 0.59370 23.45 1.0934 91.14
8 MN 0.91790 33.77 0.9734 86.20
10 MN 0.91728 33.92 0.9731 86.42
is

n
is
ic
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-

he

-

o
to

n
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s
n
-

:

-

V.
-

r-

weakly bound 1/21 state, they are not much sensitive to t
choice of basis states. As discussed in Sec. V, they are
sitive to the interaction choice.

Different spectroscopic quantities are gathered in Table
With N58 basis states, the table would be identical exc
for bothB(E2) which would be smaller by 1.5%. The resul
obtained with MN are slightly smaller than those obtain
with V2. The agreement with the experimental quadrup
moment@19# is reasonable if we assume that it is negativ
but the reducedE2 transition probability is somewhat to
small. The rms radius of the excited state is larger by ab
0.12 fm than the ground-state one, i.e., by 4%. The lar
difference presented in Ref.@11# corresponds to the rms ra
dius ^r2&1/2 of the relative motion of the loosely bound pro
ton.

Elastic phase shifts obtained with both interactions a
N510 are displayed in Fig. 1. The results withN58 would
not be distinguishable except in the 3/21 resonance whose
location differs by less than 0.1 MeV. According to the ge
eralized Levinson theorem@20#, the phase shifts at zero en
ergy are defined asp(mlJ1nlJ) wheremlJ is the number of
forbidden states~1 in thes andp waves and 0 beyond! and
nlJ is the number of bound states in the corresponding pa
wave. The positive-parity phase shifts~upper part! are in
good agreement with those deduced from experiment@21#,
except in the vicinity of the 3/21 resonance whose amplitud
is not well reproduced by the MN force~full lines! and
whose location is not well reproduced by the V2 force~dot-
ted lines!. A narrow 1/22 resonance and a broad 3/22 reso-
nance which have a more complicated structure than16Og.s.
1p do not appear on the negative parity phase shifts~lower
part!. The present phase shifts are comparable to those
tained in Ref.@22#.

Elastic excitation functions at a laboratory angle of 16
obtained with both interactions are presented in Fig. 2 wh
they are compared with data of Ref.@23#. The MN cross
sections agree on the average with experiment. The com
cated structure due to the overlapping 3/21 and 3/22 reso-
nances can not be reproduced by the present model. Th
cross sections are rather poor mostly because the 3/21 reso-
nance is not located at a correct energy.

Finally, let us come to radiative capture. Capture occ
mostly through anE1 transition from the initialp wave to
the finald5/21 ands1/21 bound states. The smallf compo-
nents inE1 capture are included in the calculation and w
have checked thatE2 capture leads to negligible contribu
tions. Then, without any fit or effective charge, the ast
physicalS factor is obtained as shown in Fig. 3. Strikingl
the capture towards the 1/21 excited state is larger than th
capture towards the 5/21 ground state. This will be discusse

TABLE II. Root-mean-square radii~in fm!, quadrupole moment
~in e fm2), and reducedE2 transition probability~in W.u.! in the
17F spectrum.

V2 MN Expt.

^r 2&1/2(5/21) 2.67 2.65
^r 2&1/2(1/21) 2.79 2.77
Q(5/21) 28.0 27.3 6(1062)
B(E2,1/21→5/21) 23.6 19.1 25.060.5
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in detail in Sec. V on the basis of a general analysis
extranuclear capture performed in the next section.

The shapes of the theoretical curves are in good ag
ment with recent absolute@11# and relative@10# data. For
ground-state capture, the absolute normalization seems
too small with MN and too large with V2. For the domina
capture to the 1/21 state, the normalization is better with th

FIG. 1. Phase shiftsd lJ for the 16O1p elastic scattering as a
function of the c.m. energyE for the 1/21, 3/21, and 5/21 partial
waves~upper part!, and for the 1/22 and 3/22 partial waves~lower
part! calculated with the MN~full lines! and V2 ~dotted lines!
forces. Experimental phase shifts are from Ref.@21#.

FIG. 2. Excitation functions for the16O1p elastic scattering as
a function of the proton energyEp at a laboratory angle of 166°
calculated with the MN~full lines! and V2 ~dotted lines! forces.
Experimental cross sections are from Ref.@23#.
f

e-

be

MN interaction~full line! than with V2~dotted line! but both
calculations overestimate the data. Of course, this overe
mation affects the totalS factors. This effect andS(0) values
will also be discussed in Sec. V.

IV. ANALYTICAL STUDY OF EXTRANUCLEAR
CAPTURE AT LOW ENERGIES

The rise of theS factor at low energies is confirmed b
experiment. Its origin can not easily be explained intuitive
but arises from asymptotic properties of the Coulomb wa
functions. Let us study this effect in the general case wh
external capture dominates, for two nuclei with mass nu
bers A1 and A2 (A5A11A2), chargesZ1e and Z2e, and
spinsI 1 and I 2.

When the capture is essentially extranuclear, antisym
trization and other short-distance effects can be negle
and theS factor in Eq.~2! can be approximated as

Sl fJf
~E!5acNElkg

2l11S E
r 0

`

ul fJf
rlũl i

~E!dr D 2

, ~17!

wherea is the fine structure constant,r 0 is a cutoff radius,
and

NEl58pFZ1S A2

A D l

1Z2S 2
A1

A D lG2

3
~l11!~2l11!

l~2l11!!! 2

~2Jf11!~2l i11!

~2I 111!~2I 211!S l f l l i

0 0 0D
2

~18!

is a normalization factor. The asymptotic form oful fJf
also

depends on the channel spinI . In order to keep the notation
simple, we do not write this quantum number explicitly.
sum overI is understood in Eq.~17!. At very low energies,
the renormalized function

ũl~E!5E1/2exp~ph!ul~E! ~19!

FIG. 3. AstrophysicalS factor for the16O(p,g)17F reaction as
a function of the c.m. energyE, calculated with the MN~full lines!
and V2 ~dotted lines! forces. From bottom to top: 5/21 ground-
state, 1/21 excited-state and total captures. ExperimentalS factors
from Ref. @10# ~total: crosses! and Ref.@11# (5/21: squares, 1/21:
circles, total: triangles!.
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weakly depends on energy. Since the phase shifts are
small at these energies and since large distancesr are con-
sidered, the shape ofũl mostly depends on the orbital mo
mentum l . Its dependence on other quantum numbers
approximately be taken into account through some aver
of the different phase shifts corresponding tol @see Eq.~28!
below#. The overlap between the exponentially decreas
wave functionul fJf

of the final bound state and the expone

tially increasing wave functionũl i
of the low-energy scatter

ing state peaks at large distances. For example, in
16O(p,g)17F case, the maximum of the integrand in Eq.~17!
occurs near 18 fm for the ground state and near 67 fm for
1/21 state.

Let us expand theS factor near zero energy as

S~E!5S~0!~11s1E1••• !, ~20!

where a precise value of the logarithmic derivative at
origin

s15
1

S~0!S dS

dED
0

~21!

is important for a correct evaluation of reaction rates.
First, let us calculateS(0). To this end, we introduce the

‘‘nuclear Bohr radius’’

aN5\2/mZ1Z2e2 ~22!

and the ‘‘nuclear Rydberg energy’’ or ‘‘Gamow energy’’

EN5\2/2maN
2 . ~23!

Not surprisingly, when the Coulomb interaction dominat
nuclear analogs of the atomic units appear. From Ref.@24#,
we establish a connection with the modified Bessel fu
tions,

lim
E→0

k21/2exp~ph!Fl~kr!5p1/2r1/2I 2l 11~x! ~24!

and

lim
E→0

k21/2exp~2ph!Gl~kr!52p21/2r1/2K2l 11~x!

~25!

with

x52~2hkr!1/252~2r/aN!1/2. ~26!

In Eq. ~25!, we follow the sign convention of Ref.@13#,
where theKn are positive functions, rather than the conve
tion of Ref.@24#. From these relations, the limit ofũl i

(E) can
be approximated to first order with respect to scatter
lengths as

ũl i
~0!5~p\/2!1/2r1/2@ I 2l i11~x!24~al i

/aN!K2l i11~x!#.
~27!

In Eq. ~27!, we make use of the average scattering len
defined as
ry

n
ge

g
-

e

e

e

,

-

-

g

h

al i
52

aN

2p
~2l f11!(

Ji

~2Ji11!H Ji l i I

l f Jf lJ 2

3 lim
E→0

exp~2ph!d l i IJi
~E!. ~28!

This expression may depend onl, l f , I , andJf . Introduc-
ing the resulting expression~27! in Eq. ~17! provides

S~0!5 1
2 pa\cNEl~EB /\c!2l11

3H E
r 0

`

ul fJf
rl11/2@ I 2l i11~2A2r/aN!

24~al i
/aN!K2l i11~2A2r/aN!#drJ 2

. ~29!

The same principle was applied in Ref.@25# for calculating
S(0) for the reaction 3He(a,g)7Be, but with numerical
wave functions forũl i

(0) andul fJf
.

As confirmed in the next section, the second term in
brackets of Eq.~29! is often very small when external cap
ture dominates, becauseI n(x) and Kn(x) respectively be-
have as increasing and decreasing exponentials for large
ues of their argumentx. Neglecting this term and replacin
ul fJf

by its asymptotic form@see Eq.~5!# yields the expres-
sion

S~0!5
p

32
a\caN

2 NEl~aNEB/8\c!2l11@Cl fJf
Il l i l f

~hB!#2.

~30!

The dimensionless functions

Il l i l f
~h!5E

x0

`

W2h,l f11/2~x2/4h!x2l12I 2l i11~x!dx

~31!

with x05A8r 0 /aN mostly depend onh. For E1 transitions,
they are depicted in Fig. 4 for the important casesl i50
→l f51, l i51→ l f50, l i51→ l f52, and l i52→ l f51.
Typical values ofx0 are 1 for light systems and 2 to 3 for th
present case. Here we choosex052. Consistently with the
extranuclear capture assumption, we assumeh.1. The four

FIG. 4. FunctionsI1l i l f
@Eq. ~31! with x052# as a function ofh,

for the E1 transitionsl i50→ l f51, l i51→ l f50, l i51→ l f52,
and l i52→ l f51.
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functions display the same shape, with a maximum aro
h53. They have the same order of magnitude butI110 and
I121 are smaller than the other two. The binding-energy
pendence ofS(0) will be less sensitive toIl l i l f

than to the

power factorEB
2l11 .

The energy derivative of theS factor at zero energy ca
be treated in a similar way. A direct calculation ofs1 based
on other expansions of the Coulomb functions was p
formed in Ref.@26#. In Eq. ~17!, only kg and ũl i

depend on

energy. Hence,s1 can be expressed as@7#

s15
2l11

EB
12

E
r 0

`

ul fJf
rlS d

dE
ũl i D

0

dr

E
r 0

`

ul fJf
rlũl i

~0!dr

. ~32!

This expression only depends on the extranuclear appr
mation and on the cutoff radiusr 0. It is an exact quantum
mechanical result within this assumption when scatter
lengths are negligible. It still depends on nuclear effe
through the binding energyEB and, possibly, through the
average scattering length inũl i

.

Sinceh225E/EN , the limit of the energy derivative

lim
E→0

d

dEFk21/2exp~ph!Fl~kr!Y )
n51

l S 11
n2

h2D G
52

p1/2

12EN
r1/2S x

2D 2F x

2
I 2l 12~x!1 l I 2l 13~x!G ~33!

can be deduced from expansion~6.12! in Ref. @24#. It pro-
vides, when the contribution of the scattering length is n
ligible,

s15EB
21@2l112Rl l i l f

~hB!# ~34!

with the dimensionless functions

FIG. 5. FunctionsR1l i l f
@Eq. ~35! with x052# as a function of

h, for the E1 transitionsl i50→ l f51, l i51→ l f50, l i51→ l f

52, andl i52→ l f51.
d

-

r-

i-

g
s

-

Rl l i l f
~h!5

1

6h2FIl13/2,l i11/2,l f
~h!12l iIl11,l i11,l f

~h!

8Il l i l f
~h!

2 l i~ l i11!~2l i11!G . ~35!

For E1 transitions, these functions are depicted in Fig. 5
l i50→ l f51, l i51→ l f50, l i51→ l f52, and l i52→ l f
51 (x052). The first three functions do not vary muc
with h butR121 displays a stronger dependence. Their var
tions have important consequences on the low-energy be
ior of theS factor. Their values have to be compared with t
critical value 2l1153 appearing in Eq.~34!. The function
R101 is always larger than 3 so thats1 will be negative for
any hB like in the 7Be(p,g)8B reaction. The functionR110
crosses the critical value nearhB51 and also leads to nega
tive s1 values when external capture dominates, whileR112
andR121 lead to positives1 values belowhB53.3 and 2.5,
respectively, and to negative values beyond.

V. DISCUSSION

Let us now apply these expressions to the16O(p,g)17F
reaction. The constants defined in Eqs.~22! and~23! take the
valuesaN53.825 fm andEN51.506 MeV. Equation~30!
provides the approximation

S~0!50.37Cd5/2
2 11.5831023Cs1/2

2 keV b, ~36!

where Cd5/2 and Cs1/2 ~expressed in fm21/2) are the
asymptotic normalization constants of the ground state
of the excited state, respectively. The coefficient of the s
ond term is insensitive to the choice ofx0 while the coeffi-
cient of the first term is sensitive within a few percents f
typical values betweenx052 to 3. The difference betwee
the coefficients in Eq.~36! mostly comes from the binding
energy powerEB

2l11 in Eq. ~30!: the constantsNE1 do not
differ much ~4.45 and 3.71, respectively! and the integrals
I11l f

are very close to each other@I112(1.584)51165 and

I110(3.783)51115, respectively; see Fig. 4#. These values
show that the dominance of the transition to the excited s
is mainly due to the large value of the asymptotic normali
tion constantCs1/2 with respect toCd5/2 ~see Table I!. This
constant is large enough to compensate the effect of
small factorEB

3 . If we slightly vary the exchange paramet
of the force, we observe that this constant locally scales
EB

22.7 for the 1/21 state. Hence the large difference betwe
the asymptotic normalization constants is also partly due
the binding energy.

The capture mechanisms to the 5/21 and 1/21 states are
qualitatively very similar. Capture to the excited state occ
at larger distances because of a smaller binding energy
this does not affect muchS(0). Thedominance of 1/21 cap-
ture arises from the much larger asymptotic normalizat
constant of this excited state. If we artificially move the 1/21

state to the same energy as the 5/21 state, the constantCs1/2
is reduced to about 8 fm21/2 but remains significantly large
than for the ground state. This is the only difference which
not due to a smaller binding energy. The interpretation
these results in terms of a halo is then a matter of taste.
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The average scattering length plays a negligible role
Eq. ~36!. Its value is 1.98 fm with the MN force. It intro
duces relative corrections of order 1024 in the second term
and 631023 in the smaller first term. A significant effect o
the scattering length would require that capture takes plac
smaller distances, i.e., would require a larger binding ene
But then the functionsI11l f

would become more sensitive t

the choice ofx0 and to other nuclear effects.
The fact that the capture cross sections are larger with

V2 force than with the MN force follows from Eq.~36! and
from Table I. This is in agreement with the properties of t
17O mirror nucleus. The asymptotic normalization consta
Cd5/2 of the 16O1n system present a similar behavior@27#.
In that case, they are both overestimated with respect to
periment, by about 8% for MN and more than 20% for V
For 17F, the situation is different for the ground-state co
stant. The result obtained with MN seems to be too sm
Can realistic17F constants be estimated by scaling the th
retical curves in order to fit the experimental data of R
@11#? The fit should be performed at as low energies as p
sible, but with data with small error bars. We select the d
in the energy range 0.4–0.6 MeV. The theoreticalS factors
obtained with the two forces do not have exactly the sa
energy dependence from the present energy range to the
main of pure extranuclear capture. Hence scaling them g
different results for the constants. We obtainCd5/2'1.1 with
both forces andCs1/2'78.6 fm21/2 with V2 and 81.6 fm21/2

with MN. The extrapolation uncertainty due to the force
larger than 3%. These constants introduced in Eq.~36! lead
to the estimates

S~0!'H 10.2 keV b with V2,

11.0 keV b with MN.
~37!

Equation~37! gives an idea of the theoretical uncertainty
the extrapolation, which must be taken into account in ad
tion to experimental uncertainties.

When the binding energyEB is small, the logarithmic
derivative s1 is the difference of two large numbers sin
they are both proportional toEB

21 . If these large numbers d
not cancel each other, a large value ofs1 is possible. How-
ever, this is not a signature of a halo but only of a we
binding.

For the 5/21 ground state, a value arounds150.55
MeV21 is found with Eq.~34!. It is positive becausehB is
smaller than the critical value ofR112 in Fig. 5. For the 1/21

excited state, one findss1525.33 MeV21. The lower bind-
ing energy of 1/21 allows a much largerus1u. The value is
negative in agreement with the behavior ofR110 in Fig. 5.

Let us briefly apply the same expressions to
7Be(p,g)8B reaction which is also dominated by extr
nuclear capture. HereaN58.33 fm andEN50.350 MeV.
The small binding energyEB50.137 MeV of the 21 ground
state (l i51 andI 51 or 2! leads tohB51.60, a value similar
to the 17F ground-state value. ForE1 capture from thes
wave, Eq.~30! provides forx052,

Ss~0!535.8~Cp12
2 1Cp22

2 ! eV b, ~38!

where the coefficient is sensitive tox0 to less than one per
cent. Here the asymptotic normalization constantsCl f IJ f

also
n

at
y.

e

s

x-
.
-
ll.
-
.
s-
a

e
do-
es

i-

k

e

depend on the channel spinI @12#. The coefficient 35.8 is a
little bit smaller than the coefficient 36.5 obtained in Re
@12# by extrapolating totalS(E) values calculated at sma
energies. The sensitivity to the scattering lengths is v
weak. ForE1 capture from thed wave, one obtains

Sd~0!52.4@Cp12
2 ~120.076ad1!2

1Cp22
2 ~120.076ad2!2# eV b, ~39!

with the notational i I
for the average scattering lengths~in

fm!. This correction is not negligible and might be qui
sensitive to the average scattering lengths of thed wave,
especially if thead are negative as they should be here. W
the microscopic model of Ref.@28#, we obtain negative scat
tering lengths but their absolute values are smaller than
fm. In this case, corrections due to scattering lengths
negligible.

The logarithmic derivatives1 for an initial s wave is
given by Eq.~34! between22.5 and22.6 MeV21 depend-
ing on the choice forx0, in agreement with the general be
havior ofR101 in Fig. 5. For thed wave,R121 is significantly
smaller than 3 and one obtains a large positive value n
8.2 MeV21. The combineds1d value is then21.9 MeV21

in qualitative agreement with a potential-model study at l
energies@29#. However, that study also shows a sensitivity
s1 to the potential, which would require including
scattering-length dependence in Eq.~35!.

VI. CONCLUSIONS

Without any fit, a microscopic description of th
16O(p,g)17F radiative-capture reaction provides realis
cross sections which are however somewhat overestima
This overestimation is weaker with the Minnesota force th
with the Volkov force V2. These results follow from a co
responding overestimation of the asymptotic normalizat
constants which could be expected from the properties of
mirror system@27#.

At very low energies, the capture process is dominated
large distances. The low-energy asymptotic behavior of
wave functions is well known analytically. We have pe
formed a detailed analysis of zero-energy results. A sim
expression is then obtained for the zero-energyS factor, de-
pending only on the asymptotic normalization constants
on an average scattering length of the initial wave. The
pendence on this scattering length is negligible in the pres
case. The expression ofS(0) clearly shows that it is here
essentially sensitive to the productEB

3Cl fJf

2 . The asymptotic

normalization constantCs1/2 of the excited state is large
enough to compensate the small factorEB

3 and to lead to the
largest contribution to the capture process at low energies
large value is the main difference with ground-state capt
and is also related to the lower binding energy of the exci
state.

An expression for the logarithmic derivatives1 of this S
factor at zero energy has been derived, which is exact in
context of the extranuclear capture approximation wh
scattering-length effects are negligible. Under these assu
tions, all the properties ofs1 can be explained very simply
with functions such as those displayed in Fig. 5. If the va
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of these functions calculated with the Sommerfeld param
of the final bound state is larger than 2l11, s1 is negative
and otherwise it is positive. As it is inversely proportional
the binding energyEB , largeus1u values may occur for smal
EB . These functions can be used to calculates1 in other
reactions dominated by extranuclear capture, such
7Be(p,g)8B. However, neglecting scattering-length effec
is probably not always valid.

We do not think that the differences between the grou
state and excited-state capture properties at low energie
a signature for a halo effect showing up only in the exci
state. Indeed, for both states, the capture is essentially e
nuclear and we have shown that, to a large extent, dif
ences beween them can be related to the binding ene
ite

o
d

d
.

er

as

-
are
d
ra-
r-
y.

Therefore, either both states are considered as halo s
because of their weak binding energies, or none of them
the notion of halo is reserved to more remarkable proper
requiring at least two loosely bound particles.

ACKNOWLEDGMENTS

This text presents research results of the Belgian prog
on interuniversity attraction poles initiated by the Belgia
state Federal Services for Scientific, Technical and Cultu
Affairs. M.H. is supported by this program. P.D. acknow
edges the support of the National Fund for Scientific R
search, Belgium.
ys.

l

s.

,

ys.
@1# C.E. Rolfs and W.S. Rodney,Cauldrons in the Cosmos~Uni-
versity of Chicago, Chicago, 1988!.

@2# Q.K.K. Liu, H. Kanada, and Y.C. Tang, Phys. Rev. C23, 645
~1981!.

@3# D. Baye and P. Descouvemont, Nucl. Phys.A407, 77 ~1983!.
@4# D. Baye and P. Descouvemont, Ann. Phys.~N.Y.! 165, 115

~1985!.
@5# P. Descouvemont, inNuclear Astrophysics, Proceedings of the

International Symposium, Karlsruhe, Germany, 1992, ed
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