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Extrapolation of the astrophysical S factor for 7Be„p,g…

8B to solar energies

B. K. Jennings, S. Karataglidis, and T. D. Shoppa
TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia, Canada V6T 2A3

~Received 23 June 1998!

We investigate the energy dependence of the astrophysicalS factor for the reaction7Be(p,g)8B, the primary
source of high-energy solar neutrinos in the solarpp chain. Using simple models we explore the model
dependence in the extrapolation of the experimental data to the region of astrophysical interest near 20 keV.
We find that below approximately 400 keV the energy dependence is very well understood and constrained by
the data for the elastic scattering of low-energy neutrons from7Li. Above 400 keV nuclear distortion of the
wave function of the incident proton introduces a significant model dependence. This is particularly important
for thes-wave contribution to theS factor. The extracted value ofS(0) is 19.061.060.2 eV b. The first error
is experimental while the second is an estimate of the theoretical error in the extrapolation.
@S0556-2813~98!01812-3#

PACS number~s!: 26.65.1t, 25.60.Pj, 25.40.Lw, 24.50.1g
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I. INTRODUCTION

The 7Be(p,g)8B reaction, at energies of approximate
20 keV, plays an important role in the production of so
neutrinos@1#. The subsequent decay of the8B is the source
of the high-energy neutrinos to which many solar neutr
detectors are sensitive. The cross section for this reactio
conventionally expressed in terms of theS factor which is
defined in terms of the cross sections by

S~E!5s~E!E exp@2ph~E!#, ~1!

whereh(E)5Z1Z2aAmc2/2E is the Sommerfeld paramete
a is the fine structure constant, andm is the reduced mass
The definition of theS factor eliminates from it most of the
energy dependence due to Coulomb repulsion by facto
out the penetration to the origin of a particle in the Coulom
potential of a point charge. However, it does not make thS
factor energy independent, as there are still energy de
dences due to the structure of the final bound state, r
nances, and the attenuation of the barrier by the nuc
mean field. The reaction rate, obtained by folding the ther
distribution of nuclei in the stellar core with the cross se
tion, peaks at approximately 20 keV. Because the cross
tion diminishes exponentially at low energies, the on
method of obtaining information about theS factor at ener-
gies of astrophysical interest is to extrapolate data take
experimentally accessible energies (E.100 keV!. To do the
extrapolation reliably we must understand the physics a
ciated with theS factor.

To illustrate the problem of extrapolating the data to
trophysical energies we show in Fig. 1 a fit to theexperimen-
tal data@2–4# that uses just a straight line and a fit with
calculation that includess-wave nuclear distortion through
hard sphere potential of radius 4.1 fm. The straight line a
potential model fits are displayed by a solid and dashed l
respectively. The latter calculation will be described in mo
detail in Sec. III. In both cases a Breit-Wigner resonance
included. As can be seen from the figure both fits to the d
are equally good;x250.9 in each case. However, there is
marked difference in theS factors at 20 keV: 15.3 and 21.
PRC 580556-2813/98/58~6!/3711~11!/$15.00
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eV b for the straight line fit and the hard sphere model,
spectively, a 37% variation in the extrapolated value. Suc
large difference must be understood if reliable extrapolati
are to be made and a variety of, sometimes conflicting, m
els @5–15# have been developed for this purpose.

The dashed curve in Fig. 1 shows an upturn in theS factor
at threshold. This is a feature common to all of the mo
calculations of the astrophysicalS factor for the7Be(p,g)8B
reaction~with the exception of the straight line fit!. It has
been established@15# that this behavior stems from a pole
the S factor when the photon energyEg vanishes.

We develop two key concepts for the description of t
astrophysicalS factor: the pole where the photon energy va
ishes and an effective hard sphere radius. These conc
will be developed and explored by modeling the complica
multidimensional many-body system with simple one-bo
models. The pole term describes and is dominated by C
lomb physics. It depends on nuclear physics through
separation energy, the asymptotic normalization of the fi

FIG. 1. Different fits to the experimentalS-factor data. The solid
curve is a straight line plus the resonance while the dashed cur
a calculation with a hard sphere cutoff radius of 4.1 fm plus
resonance.x250.9 in both cases. The data are from Vaughnet al.
@3# ~squares!, Filipponeet al. @2# ~circles!, and Hammacheet al. @4#
~diamonds!.
3711 ©1998 The American Physical Society
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3712 PRC 58B. K. JENNINGS, S. KARATAGLIDIS, AND T. D. SHOPPA
state wave function, and the spectroscopic factors. The s
ration energy of the valence proton from8B is 137.5 keV
@16# and determines the pole location. The asymptotic n
malization and the spectroscopic factor combine in
asymptotic strength parameter, defined in Sec. II, to give
residue of the pole. This will be determined by a fit to t
S-factor data. An effective hard sphere repulsion is int
duced to approximate how the nuclear physics influences
energy dependence, and is related primarily to the nonr
nant phase shift of the initial scattering state. The effect
hard sphere radius is determined by comparing the h
sphere model to more complete models such as pote
models. Elastic scattering data from protons on7Be, if it
existed, would help constrain the potential models a
through them the effective hard sphere radius. As such
are presently unavailable, the constraints must come from
elastic scattering of neutrons from7Li, the mirror system.
The concepts of the pole and the hard sphere repulsion
to a simple rational approximation for the energy dep
dence of theS factor, which encompasses the domina
physics at low energy.

This simple approach breaks down as the energy incre
and the capture becomes more sensitive to the internal s
ture of the7Be core. We explore the range of validity of th
simple one-dimensional model by comparing it with mo
sophisticated potential,R-matrix, and microscopic cluste
models. In general, the simple approach agrees with the
tential andR-matrix models over a larger energy range. A
ternatively, within its range of validity, we may use the ha
sphere model based on an effective hard sphere radius
Coulomb physics to understand and critique other mode

We present a brief review of the formalism in Sec. II a
show how the pole in theS factor arises. In Sec. III the har
sphere model is presented and used to derive a simple
pression for the energy dependence of theS factor. The hard
sphere model is compared to the cluster model calculat
in Sec. IV. In Sec. V we use the final arbiter, the experim
tal data, to discriminate between the models and determ
which is best for the extrapolation. In Sec. VI we present
best estimates for theS factor near threshold and draw som
conclusions.

II. POLE TERM

Most calculations of theS factor follow the pioneering
work of Christy and Duck@5# to which we refer the reade
for more details. Here we present a brief overview of t
model. The E1 contribution to the S factor for the
7Be(p,g)8B reaction may be written as

S5C~ I 0
212I 2

2!Eg
3~J11b11

2 1J12b12
2 !

1

12e22ph
, ~2!

where

I l5E
0

`

r 2drrc i l ~r !c f~r !, ~3!

C5
5p

9

1

~\c!3
~2phk!e2m2S Z1

M1
2

Z2

M2
D 2

. ~4!
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In Eq. ~2!, JLS is the spectroscopic factor for a given angu
momentumL and channel spinS, bLS is the asymptotic
normalization of the bound state wave function,Eg is the
photon energy, andk is the momentum of the incident pro
ton. The extra factor ofr in the integrand comes from th
photon wave function. The final bound state wave funct
c f(r ) is normalized in the asymptotic region toc f(r )
5Wa,l(kr )/r while the initial wave function reduces to th
regular Coulomb wave function divided bykrA2ph/(e2ph

21). The unusual choice of normalizations is just to si
plify the mathematics and generate integrals that are w
behaved at threshold. The initial state has both Coulomb
nuclear distortions. The Coulomb distortions are large a
give the penetration factor included in the definition of theS
factor, Eq. ~1!. They are included in all calculations. Th
nuclear distortions are much smaller but they are import
and introduce a significant model dependence into the ca
lations, as described in the next section.

The absolute magnitude of theS factor is determined pri-
marily by the spectroscopic factor and the asymptotic n
malization~see also Ref.@17#!. The spectroscopic factor con
tains many-body aspects of the problem and is calcula
from standard shell model theory. The asymptotic normali
tion also depends on the many-body wave function, but is
more difficult to estimate from first principles: it require
detailed knowledge of how the eight-body wave functi
extends beyond the nuclear potential and its mapping to
Whittaker function in this region. This may be estimat
crudely by approximating that behavior by using a suita
chosen Woods-Saxon wave function for the weakly bou
proton. Instead we treat the overall factorAn5J11b11

2

1J12b12
2 as a free parameter, which is independent of ene

and determined by theS-factor data. For simplicity we will
refer to this combination of asymptotic normalization a
spectroscopic factor as the asymptotic strength.

To investigate the behavior of the integrals in Eq.~2!, we
first consider c f(r )5Wa,l(kr )/r for all radii and take
c i0(r )5F0(kr)/$krA2ph/(e2ph21)%. Thes-wave integral
then becomes

I 05E
0

`

drr
Wa,l~kr !F0~kr !

kA2ph
~e2ph21!. ~5!

The integral is smooth ask passes through zero and diverg
as k→ ik (E→2EB). The nature of the divergence is de
termined by the asymptotic forms of the Coulomb wa
function and Whittaker function for larger. There the Whit-
taker function is proportional tor 2uhku/ke2kr @5# (hk is in-
dependent ofk). Above threshold the Coulomb wave func
tion oscillates at large radii; however, below threshold it
exponentially growing and is proportional tor uhueukur . Thus
the behavior of the integrand at large radius is

r 12uhku~1/k21/uku!exp@2~k2uku!r # ~6!

and the integral diverges as

I 0;1/~k2uku!2;1/~EB1E!251/Eg
2 . ~7!

The S factor is proportional toI 0
2Eg

3 , and gives rise to a
simple pole inSat Eg50. However, the first correction term
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PRC 58 3713EXTRAPOLATION OF THE ASTROPHYSICALS FACTOR . . .
is not simply 1/Eg but rather of the form (11c ln Eg)/Eg ,
the logarithmic term coming from ther 2uhku(1/k21/uku) factor.
Both the leading and first correction terms are determi
purely by the asymptotic behavior of the wave function
The second correction term, of orderEg

0 , is not determined
purely by the asymptotic value of wave function alone b
also depends on the wave function at finiter.

The presence of the pole suggests theS factor may be
parametrized as a Laurent series:

S5d21Eg
211d01d1Eg1•••. ~8!

The coefficients of the first two terms,d21 andd0 , are de-
termined purely by the asymptotic forms of the wave fun
tions while the third coefficientd1 is also dependent on th
short-range properties of the wave functions. The validity
such an approximation is discussed below.

III. ONE-BODY MODELS AND RATIONAL
APPROXIMATIONS

The energy dependence in theS factor enters through the
s- andd-wave integralsI 0 and I 2 and the phase-space fact
Eg

3 . To investigate that behavior, we present in Fig. 2
integrands, Eq.~3!, for both thes and d waves. A Woods-
Saxon potential model, denoted B1, whose radius~2.39 fm!
and diffuseness~0.65 fm! were taken from Barker@7#, was
used to calculate the bound state and nuclear distortion
potential depth of246.6 MeV was chosen to reproduce th
binding energy of the final state. No spin-orbit force w
included. The integrands are peaked at very large radii
fm and 55 fm for thes- andd-wave integrands, respectively
and extend well beyond 100 fm. As this is well outside t
range of the nuclear potential (r rms52.4860.03 fm for 7Be
@18#!, the capture is purely Coulombic. To ensure compl
convergence in our calculations we integrated to 1000
The small negative contribution and the node in thes-wave
integral near 0 fm arise from the effects of the nuclear d
tortion. The distortion in thed-wave component is negli
gible.

We show the integrands for a range of energies in Fig

FIG. 2. The integrand for thes-wave andd-wave contributions
to the S factor at 0.0 MeV. The calculations were done with
Woods-Saxon potential.
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The peaks in the integrands, which are displayed by the s
lines, are outside the range of the nuclear force even at
MeV. Two other calculations, in which the nuclear distortio
is varied, are also presented. The pure Coulomb calculat
Eq. ~5!, contains no nuclear distortions and is displayed
the dot-dashed line. The other curve~dashed line! matches
the full calculation at large distances, and so it has the sa
nuclear phase shift at large radii, but the initial wave functi
is integrated to small radii using just the Coulomb potent
In the s-wave integrands the nuclear distortions play an i
portant role, especially near the origin. These distortions p
duce a node in the scattering wave function and give a
pulsive phase shift. The node is necessary to make
scattering wave function orthogonal to the bound 0s-shell
protons in the7Be core. That orthogonality is preserved on
if the node in the scattering state is at a radius where
bound state wave function is still appreciable. Hence
node will be close to but inside the nuclear radius. There
no bound 0d-shell protons in7Be and hence no node in th
d-wave integrand. Consequently thed-wave phase shift is
small and attractive.

The integrals corresponding to the integrands plotted
Fig. 3 are given in Table I. The largest change in thes-wave
integral comes from the nuclear phase shift at large radii
is evident when partial nuclear distortion is introduced. T
additional distortion coming from the short-range nuclear p
tential produces a smaller but still significant change in
integral. This is common to the integrals evaluated at 0.5
1.5 MeV. In the case of thed-wave integral, the total effec
of nuclear distortions is quite small, at most 2%, even at
MeV.

Since theS factor is sensitive to the phase shift, the p
tential should reproduce the nuclear phase shifts. Unfo
nately, there are no experimental data for the scattering
protons from7Be from which the phase shifts may be dete

FIG. 3. The integrand for thes- andd-wave contributions to the
S factor at 0.0 MeV, 0.5 MeV, and 1.5 MeV. The solid line is a fu
calculation with a Woods-Saxon potential. The dot-dashed line
no nuclear distortion of the incoming wave and uses a Whitta
function for the bound state. The dashed curve is the extrapola
of full calculation to short distance using only the Coulomb pote
tial.
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3714 PRC 58B. K. JENNINGS, S. KARATAGLIDIS, AND T. D. SHOPPA
mined. However, data are available for the scattering in
mirror system,7Li-n, for which we follow Barker’s analysis
@7# to determine the potential depths. From the elastic s
tering of thermal neutrons from7Li, the scattering lengths
area150.8760.07 fm anda2523.6360.05 fm@19#, where
aS is the scattering length for the channel spinS. The depths
of the potentials are adjusted to fit these scattering leng
giving 246.58 MeV and256.21 MeV for theS51 and 2
potentials, respectively. TheS51 potential depth is very
similar to the one we have used for the first Woods-Sa
potential model but theS52 potential is significantly stron
ger. These nuclear potentials are then used in the calcula
of the S factor for 7Be(p,g). This assumes isospin symm
try for the nuclear mean field. The contributions for the tw
channel spins are combined using Barker’s spectrosc
factors@7#. We refer to this potential model as B2.

In Fig. 3, we see that thes-wave nuclear distortion is
dominated by the node in the scattering state wave funct
This suggests that we may construct a simple model, the
sphere model discussed in the Introduction, where the in
state wave function is zero inside some radiusr c and a pure
Coulomb wave outside. We impose the boundary condit
that the wave function be zero atr c . This generates a phas
shift and is equivalent to having an infinitely repulsive p
tential with a radiusr c . Thed-wave scattering state is take
to be an undistorted Coulomb wave function. The bou
state is assumed to be a pure Coulomb state, described
Whittaker function, for all radii.

We saw for the potential model that it was necessary
have different potential depths for different channel spi
For the hard sphere model this would suggest that we
different cutoff radii for different channel spins. Howeve
the simple model does not justify such elaborations and
find that with just a single, suitably chosen, radius we c
reproduce the low-energy results from a given poten
model. The use of a single radius does, however, weaken
connection between the hard sphere radius and the el
scattering phase shift. We make the connection only thro
the intermediary of the potential model.

TheS factors from the hard sphere model are compare
theS factor of other one-body models in Fig. 4. In Fig. 4~a!,
the solid curve is the result of the hard sphere model, w
r c52.4 fm, while the dashed curve displays the result of
Woods-Saxon potential, B1. The curves have been norm
ized to agree atE5100 keV. There is remarkable agreeme
between the two results up to 1.5 MeV, suggesting that
hard sphere model encapsulates the physics of the Wo
Saxon potential model. In Fig. 4~b! we show the results of a
hard sphere model calculation with radiusr c51.0 fm, the

TABLE I. The effects of nuclear distortion on the direct captu
matrix elements using a Woods-Saxon potential. The calculat
are as discussed in the text.

Model s-wave d-wave
energy 0.5 MeV 1.5 MeV 0.5 MeV 1.5 MeV

Full distortion 517.5 115.6 241.1 95.12
Partial distortion 525.2 121.8 242.2 97.59
No distortion 550.7 135.1 240.7 93.58
Pure Coulomb 560.4 144.5 240.8 93.77
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calculation with the B2 potential, and Barker’sR-matrix cal-
culation witha54 fm @9#. That choice ofa is predicated on
the result that, in theR-matrix formalism, the matching ra
dius should be roughly the sum of the radius and diffusen
of the potential@20#. The level of agreement is again qui
good.

One advantage of the hard sphere model is that it is p
sible to do an explicit Taylor series expansion aboutE50
MeV and obtain directly the derivatives ofS at threshold.
Following Williams and Koonin@21# we employ the Besse
function expansion@22# of the Coulomb wave functions to
generate the Taylor series expansion. Each term involveE-
independent radial integrations of Bessel functions, pow
and Whittaker functions. For a hard sphere radius of 2.4
the integrations may be done to yield the series

S~E!/S~0!5121.917E115.69E22110.28E3

1774.1E41•••, ~9!

whereE is in MeV. The coefficients are increasing in siz
and alternate in sign. Given the pole in theS factor, the
radius of convergence isE5EB5137.5 keV. We stress tha
the coefficients in Eq.~9! were not obtained by a fit of theS
factor over a finite energy region but rather through an
plicit series expansion of theS factor in powers of the en-
ergy.

A similar expansion has been used by Bayeet al. @23# to
obtain the first derivative of theS factor at threshold. They
utilize a slightly different Bessel function expansion for th
Coulomb functions. It can be obtained from that used
Williams and Koonin@21# by using the recurrence relation
for the Bessel functions. For the choice of cutoff radius
Bayeet al., 2.0 fm, we reproduce their numerical results.

A more convergent and pedagogically useful expans
may be developed. Motivated by the Laurent series of
~8!, the Pade´ approximant discussion of Ref.@15#, and the

s

FIG. 4. TheS factor as a function of energy for different one
body models. All curves are normalized to the same value at
MeV. In ~a! the solid line is a hard sphere model withr c52.4 fm
while the dashed line is the B1 Woods-Saxon model. In~b!, the
model with r c51.0 fm, the B2 model, and theR-matrix model of
Barker are displayed by the solid, dashed, and dot-dashed l
respectively.
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PRC 58 3715EXTRAPOLATION OF THE ASTROPHYSICALS FACTOR . . .
knowledge that there is a pole atEg50 MeV, we Taylor
series expandEgS. This removes the effect of the simp
pole in the expansion. To recoverS we divide byEg thus
obtaining a rational approximation

S~E!/S~0!5
0.137510.7361E10.2392E21•••

0.13751E
~10!

'
a

EB1E
1b1cE, ~11!

with a50.0408 MeV,b50.7033, andc50.2392 MeV21.
By construction,a/EB1b51. The rational approximation
Eqs.~10! or ~11!, is very similar to a Pade´ approximant. The
Padéapproximant is a ratio of polynomials with all the p
rameters determined by fitting the derivatives at the exp
sion point. However, in Eq.~10!, the position of the pole is
fixed by the binding energy. As a result, for the same or
polynomials one fewer derivative is required. The coe
cients in the rational approximation, Eq.~10!, are growing
much more slowly than in the Taylor series expansion,
~9!. This is due to the better convergence of the ratio
approximation. The coefficients do, however, begin to gr
more rapidly after the cubic term in the numerator.

The accuracy of the rational approximation@Eq. ~11!# is
shown in Table II. This approximation is valid to better th
1% up to 400 keV. By comparison, the Taylor series exp
sion and the logarithmic derivative expansion break do
below 100 keV as expected given the radius of converge
Although all approaches are accurate in the astrophysica
gion near 20 keV, only the rational approximation is accur
out to the region which is accessible by experiment.

The coefficientsa, b, andc in Eq. ~11! are given in Table
III for a variety of models. In the case of the hard sphe
models, the pole and constant terms are the same to w
0.5% while the linear term varies by a factor of almost
This confirms that the constant and pole terms are couple
an almost model-independent manner while the linear term
strongly dependent on initial state nuclear distortions.

The first and second logarithmic derivatives are also gi
in Table III for comparison with the results of Williams an
Koonin @21#. They have a binding energy of 136 keV an
use a hard sphere model withr c54.1 fm in both thes andd
waves. We agree with Barker@8# that this choice of radius is

TABLE II. The percentage error obtained by using various e
pansions of theS factor for r c52.4 fm. The errors introduced b
using a rational approximation@Eq. ~11!#, a second order Taylo
series expansion, a third order Taylor series expansion, and
logarithmic expansion of Ref.@21# are denoted bydSr , dST2 ,
dST3 , anddSW , respectively.

E ~MeV! dSr ~%! dST2 ~%! dST3 ~%! dSW ~%!

0.00 0.00 0.00 0.00 0.00
0.02 20.02 0.06 20.03 0.04
0.10 20.11 7.22 25.03 5.34
0.30 20.36 110.78 2230.92 124.51
0.40 20.56 211.84 2590.43 384.07
0.50 21.40 340.70 21191.88 1259.63
1.00 26.64 1309.96 29214.33 1.43107
n-
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.
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-
n
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e

e
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.
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poorly motivated and we find that none of the Woods-Sax
or generator coordinate models considered herein are co
tent with a hard sphere model withr c.3 fm. Williams and
Koonin are also missing a factor of 2 for thed-wave term in
their Eq.~1!.

Also, in Table III, we make the comparison of the para
etrization of the hard sphere models to those for three dif
ent Woods-Saxon calculations. The parametrization,
~11!, for the Woods-Saxon models was determined from
ting theS factor at 0, 20, and 40 keV. For two of the calc
lations, we use the B1 and B2 models introduced previou
For the third, the radius and diffuseness parameters w
obtained from Tombrello@10# while the potential depth was
adjusted to reproduce the binding energy of the final st
No spin-orbit force was included. The third calculation
denoted as T. The results for the B1 and T models are q
close to those of the hard sphere model withr c52.4 fm.
While thea andb coefficients in the B2 model are consiste
with those of the other Woods-Saxon models, the linear te
c is closer to the hard sphere model withr c51.0 fm. This is
consistent with the agreement we have seen in Fig. 4
tween the B2 model and the hard sphere model with t
radius.

Attempts have been made to obtain the derivatives
threshold by a quadratic fit to eitherS or ln S over an ex-
tended energy range. The derivatives obtained by
method tend to disagree among themselves and with ou
sults. The derivatives from two such fits are shown in the l
two rows of Table III. The first is a fit to lnS by Barker@8#
over the energy range 0–100 keV. He uses a Woods-Sa
potential model to obtainS. The second is from Adelberge
et al. @24#. ThereS is obtained from a generator coordina
calculation@6# and fit over the energy range 20–300 keV. A
shown in Table II, Taylor series expansions about the ori
are not valid over the energy ranges used for the fits. We
that in order to accurately determine both the first and sec
derivatives at the origin it is necessary to restrict the fit
gion to less than 10 keV. The Taylor series expansion c

-

he

TABLE III. Coefficients of the expansion Eq.~11!. Also shown
are the first and second logarithmic derivatives at threshold.
first four rows are for the hard sphere model with different cut
radii. The fifth row contains the results from Williams and Koon
@21# while the sixth, seventh, and eighth rows are with Wood
Saxon potentials. The last two rows contain values of the der
tives from previous work.

Model a ~MeV! b c ~MeV21) dln S/dE
~MeV21)

d2ln S/dE2

~MeV22)

r c50.0 fm 0.0409 0.702 0.390 21.77 28.3
r c51.0 fm 0.0409 0.703 0.343 21.82 28.1
r c52.4 fm 0.0408 0.703 0.239 21.92 27.7
r c54.1 fm 0.0407 0.704 0.067 22.09 27.0
WK @21# 0.0425 0.687 0.050 22.35 28.3
B1 @7# 0.0420 0.695 0.310 21.91 28.6
B2 @7# 0.0417 0.697 0.367 21.84 28.7
T @10# 0.0409 0.703 0.200 21.96 27.6
Barker @8# — — — 21.41 10.2
Adelberger

et al. @24#
— — — 20.70 3.3
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verges well in this energy region. We can, however, qual
tively reproduce the numbers of Barker and Adelbergeret al.
for the derivatives from our models if we use their fit r
gions. Thus the differences in the numbers obtained are
primarily from differences in the models but rather due
how the derivatives were obtained. They indicate the se
tivity to the fit range chosen.

While a quadratic form does not work well near thresho
it is quite good if that region is excluded. For example, a
to the S factor over the range 30–300 keV is accurate
better than 0.4% except very near the end points. Using
fit to extrapolate to threshold gives almost a 3% error
S(0), not toosurprising given that the quadratic form ig
nores the existence of the pole atE52137.5 keV.

To further illustrate the role of nuclear distortions, theS
factors for the cutoff radii of Table III are shown in Fig. 5
The curves withr c50.0, 1.0, 2.4, and 4.1 fm are displaye
by the solid, short-dashed, long-dashed, and dot-das
lines, respectively. All the curves are normalized to 19
eV b at threshold. The effect of nuclear distortion is qu
noticeable even at energies as low as 100 keV, and incre
with increasing energy. Figure 5, together with Fig. 4, hig
lights an important aspect of the models: the equivalent h
sphere radius is sensitive to the choice of potential de
Analogously, the phase shift and degree of nuclear distor
are model dependent. The effect of nuclear distortion
also seen in Table IV where the ratiosS(0)/S(20),

TABLE IV. The energy dependence of theS factor at low en-
ergy for various cutoff radii and Woods-Saxon models.

Model S(0)/S(20) S(20)/S(100) S(0)/An

r c50.0 fm 1.03 1.06 38.2
r c51.0 fm 1.03 1.06 38.1
r c52.4 fm 1.03 1.07 37.8
r c54.1 fm 1.04 1.10 37.2
B1 @7# 1.03 1.08 37.8
B2 @7# 1.03 1.06 38.0
T @10# 1.03 1.08 37.6

FIG. 5. TheS factor as a function of energy for a range of cuto
radii. The results obtained forr c50.0, 1.0, 2.4, and 4.1 fm are
shown by the solid, short-dashed, long-dashed, and dot-da
lines, respectively. All the curves are normalized to 19 eV b
threshold.
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S(20)/S(100), andS(0)/An are given. The variation in the
last ratio is almost 3%, indicating that theS factor is sensi-
tive to nuclear distortions even at threshold.

Nuneset al. @14# have also calculated theS factor with a
Woods-Saxon potential, but used the parametrization of K
et al. @12#. We find good agreement with their calculation
and, in particular, concur with their observation of large
fects due to nuclear distortions in that particular model. T
parametrization of Kimet al. generates anS factor with a
slightly different energy dependence, corresponding to
hard sphere model withr c53.0 fm.

The relatives- and d-wave contributions to theS factor,
calculated forr c52.4 fm, are displayed in Fig. 6. The tota
s-wave, andd-wave parts are displayed by the solid, dash
and dot-dashed lines, respectively. The upturn at thresho
purely from thes-wave component, even though thes- and
d-wave capture leads to the same final state. The linear
havior in thed-wave component is a result of the zero in t
Coulomb function which lies very close to the position of t
pole. In general, partial waves for nonzero orbital angu
momentum will have zeros on the negative energy axis. T
higher the angular momentum, the closer they will lie
threshold. Thus we do not expect to see an upturn when
capture occurs from a high-angular-momentum state.

IV. COMPARISON WITH CLUSTER MODELS

The other class of models which has been used in
analysis of the data is composed of the cluster mod
@6,13,25–27#. These generator-coordinate models~GCM’s!
calculate theS factor microscopically and incorporate man
body effects which are not included explicitly in the simpl
one-body potential models. They predict the absolute ma
tude as well as the energy dependence. However, the us
the more sophisticated models comes at a price: it is m
difficult to discern the dominant physical effects and to u
derstand the differences between the various calculati
Fortunately, the hard sphere model can be used to cla
these issues.

We compare the results of the hard sphere model ca
lation, with r c50 fm, with the GCM calculations of Descou
vemont and Baye~DB! @13# and the GCM calculations o

ed
t

FIG. 6. TheS factor, as calculated withr c52.4 fm. The total
result is displayed by the solid line, while thes- andd-wave com-
ponents are shown by the dashed and dot-dashed lines, respec
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Csótó et al. @25# ~denoted as C2B! in Fig. 7. The hard sphere
DB, and C2B results are displayed by the long-dashed, so
and short-dashed lines, respectively. In the GCM calculat
C2B, the effect of intercluster antisymmetrization, leading
effective eight-body wave functions, has not been includ
All results have been normalized to agree at 300 keV. Ab
this energy, the two GCM results agree with each oth
while below the result of DB is consistent with that of th
r c50 fm hard sphere model. However, the C2B calculat
is consistent with the hard sphere model result withr c52.4
fm, as shown in Fig. 8. There, that result is displayed by
solid line while the hard sphere model result is displayed
the dot-dashed line. We show by the dotted line the calc
tion, by Csótó, which includes antisymmetrization@26#. This
calculation will hereafter be referred to as the C8B mod
While this calculation shows the same energy dependenc
the C2B result near threshold, there is a marked cha
above 500 keV.

The differences between the C2B and C8B GCM cal

FIG. 7. TheS factor as a function of energy for various mode
The solid curve is the result of the DB GCM calculation~as quoted
by Hammacheet al. @4#!. The short-dashed curve is the result of t
C2B model calculation, while the long-dashed curve is the ha
sphere model result withr c50 fm. The curves are normalized t
agree at 0.3 MeV.

FIG. 8. TheS factor as a function of energy for various mode
The C2B and C8B GCM model results are displayed by the s
and dashed lines, respectively. The result of ther c52.4 fm hard
sphere calculation is shown by the dot-dashed line.
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lations, manifest at higher energies, have their source in b
the s- and d-wave contributions@28#. The difference in the
s-wave calculations is relatively small and consistent w
the expected model dependence due to the different sh
range behavior. The effect is much more dramatic for thd
waves; the contribution from three of thed-wave channels
goes to zero@28# at approximately 1.5 MeV. That behavior
inconsistent with the very small effects of nuclear distorti
in the d-wave component observed in the one-body mod

Outside the range of the nuclear force the wave functio
and hence the matrix element, are determined by the pro
ties of the Coulomb force, the asymptotic strength, and
phase shift. As the two calculations of Cso´tó have the same
phase shift@26,28# the only difference must be at short di
tances, less than;3 fm. At 1.5 MeV, the integrand peaks a
14.5 fm, as determined by the Coulomb properties and
phase shift. Therefore the antisymmetrization, being the o
difference between the two- and eight-body models, m
make the integrand very large at small radii. That is poss
if there is a resonance and, in that case, the wholed-wave
contribution may indeed vanish. This may be simulated
the Woods-Saxon model by increasing the depth of the
tential. However, a resonance would have a very pronoun
effect on the phase shift, and there is no indication o
resonance in thed-wave component. It is also inconsiste
with the statement that the two calculations of Cso´tó have
the same phase shift.

We note that in the potential models antisymmetrization
not a problem. One can construct a fully antisymmet
eight-body wave function for the7Be-p system by taking a
Slater determinant of the bound states wave functions
the scattering wave function. Orthogonality is assured
tween the wave functions when they are calculated with
same potential, and the Slater determinant is trivially co
structed. As the transition operator is one-body in our mo
only the incoming proton is involved in the interaction wi
the mean field defined by the7Be nucleus as a whole. Anti
symmetrization then becomes a problem only when one v
tures beyond the potential model and has wave functions
are not orthogonal by construction.

V. COMPARISONS WITH THE DATA

The discussions in the previous sections have conc
trated on theoretical aspects of the low-energy behavio
the S factor. We now turn to the data to determine the n
malization and a meaningful value of theS factor at astro-
physical energies. When discussing the7Be(p,g)8B S-factor
data, it is important to consider resonant capture. The m
resonance in the reaction at low energies is theM1 reso-
nance at 0.637 MeV for the capture to the 0.774 MeV st
in 8B @16#. There is another, much weaker and wider, re
nance in the cross section at 2.183 MeV corresponding to
2.32 MeV state in8B @16#. We limit our comparisons toE
,1.5 MeV, to avoid the influence of this wider state, a
assume the resonance at 0.637 MeV to be of Breit-Wig
form.

There have been seven measurements of
7Be(p,g)8B S factor. Two of these@29,30# have large error
bars and data points at only a limited number of energ
two and one, respectively. This limits their usefulness a
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TABLE V. Values of S(20) in eV b extracted from the various experimental data sets with diffe
models. For each data set, except Vaughnet al., we have two columns showing the extracted value ofS(20)
using data up to 400 keV and 1.5 MeV, respectively. The last two columns give the weighted average
S factor obtained from the data sets of Vaughnet al., Filipponeet al., and Hammacheet al. The last row is
the standard deviation errors on the value of theS factor including both statistical and normalization erro

Model Kavanaghet al. Vaughnet al. Filipponeet al. Hammacheet al. Average

r c52.4 fm 24.3 25.1 18.1 19.3 18.7 19.5 18.7 19.4 18
B1 24.1 24.7 17.7 19.1 18.4 19.3 18.4 19.2 18
C2B 24.0 25.2 19.1 19.1 18.9 19.3 19.2 19.2 19
C8B 24.0 26.1 22.7 19.2 20.0 19.4 20.9 19.3 21
r c51.0 fm 23.3 23.3 16.0 18.5 17.1 18.5 16.9 18.5 16
B2 23.3 23.5 16.6 18.5 17.3 18.4 17.2 18.4 17
DB 23.2 23.9 17.9 18.4 17.8 18.3 18.0 18.3 18.
s 1.9 1.9 1.5 1.6 1.5 1.4 0.9 1.1 0.8
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we will not consider them further. The remaining five me
surements fall into two basic classes. The first is compri
of the data of Kavanaghet al. @31# and of Parker@32#. Those
data are on average;30% greater in magnitude than th
data of Filipponeet al. @2#, Vaughnet al. @3#, and the most
recent measurement of Hammacheet al. @4#. The areal den-
sity of the 7Be target is frequently determined by measuri
the 7Li( d,p) cross sectionsdp and normalizing the data to
the known value. We follow the recommendation of@24# and
take sdp5147611 mb for all the data sets. Striederet al.
@33# quote smaller errors,sdp514665, while a recent mea
surement@34# givessdp515568 mb. The use of the differ-
ent values for this normalizing reaction shifts the results o
slightly. The measurements of Filipponeet al. @2# and of
Hammacheet al. @4# also determined the density by dire
measure of theb-delayed g rays, and found very good
agreement between the two normalization methods.

To extract a reliable value of theS factor at astrophysica
energies we must carefully consider the experimental err
Some of the errors are common between different data s
for example, the value ofsdp used in the normalization. Also
in fitting individual data sets errors common to all the poin
must be handled separately. Thus we fit each data set s
rately using just the relative errors. The sets used are
vanaghet al. @31#, Vaughnet al. @3#, Filipponeet al. @2#, and
the two data sets of Hammacheet al. @4#. That measuremen
reports two data sets from runs taken in different years w
different normalization errors. Hence, the two data sets
Hammacheet al. are fit separately using just the relative e
rors and combined using both relative and absolute errors
averaging the values ofS(20) obtained from the fits to the
data of Vaughnet al.and Filipponeet al.we have taken into
account the common error due to the uncertainty insdp used
for the normalization.

The resonance at 0.637 MeV was fit with the Bre
Wigner form. In comparisons to the data of Filipponeet al.
@2# and Kavanaghet al. @31# the parameters of the Breit
Wigner were determined by the fit to the data. In fitting t
data of Vaughnet al. @3# and Hammacheet al. @4# the reso-
nance parameters were taken from the fit to the data of
ipponeet al. Leaving out the resonance in the fit of the da
of Hammacheet al. raises the result by 2–3 %.

The values ofS(20) determined as a result of the fits
the data are shown in Table V for hard sphere (r c52.4 and
-
d

y

s.
ts:

pa-
a-

h
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1.0 fm!, Woods-Saxon~B1 and B2!, and GCM~DB, C2B,
and C8B! models. For each model two fits are shown: t
left column for each data set is the result obtained by fitt
the data below 400 keV, while the right column is the res
obtained by fitting up to 1.5 MeV. As the data of Vaugh
et al. do not extend below 400 keV only the result of fittin
to the higher energy is presented in that case. The final
umn lists the result of the average of the fits to the data
Vaughn et al., Filippone et al., and Hammacheet al. The
ideograms@35# for the B2, DB, C2B, and C8B results ar
displayed in Fig. 9 from top to bottom in the order liste
Therein, the results obtained from fitting the data of Fili
poneet al., Vaughnet al., and Hammacheet al. below 1.5
MeV are displayed by the short-dashed, dot-dashed,
long-dashed lines, respectively. The solid line is the sum
all four Gaussian distributions; the peak at;25 eV b was
obtained from the data set of Kavanaghet al.As indicated by
the disparity in the absolute magnitude, the results obtai
from the data of Kavanaghet al. are consistently much

FIG. 9. Ideogram@35# for the S factor at 20 keV. The calcula-
tions are denoted by B2, DB, C2B, and C8B as defined in the t
The results obtained from the data of Filipponeet al., Vaughn
et al., and Hammacheet al. are displayed by the short-dashed, do
dashed, and long-dashed lines, respectively. The solid line is
sum of the contributions. The isolated peak at higherS values is
from Kavanaghet al. @31#.
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higher than those obtained from the other data sets. Hen
was not included in the average given in Table V.

The best consistency in the values ofS(20) among the
data sets, excluding the data of Kavanaghet al., is found
with the fits using the C2B and DB models. The high qual
of the fit to the data using the B1 and C2B models can
seen in Figs. 10 and 11. The quality of fit using the D
model is similar and is not shown. Note that the values
tained from the DB calculation are consistently lower th
the C2B values by 3–6 %. Our DB result agrees with t
quoted by Hammacheet al. @4# who also used this calcula
tion in their extrapolation. The GCM model calculation
Johnsonet al. @6# has a very similar energy dependence
the DB calculation and would give similar results in a fi
The low values ofS(20) obtained with these models, com
pared to the C2B and C8B models, is a consequence o
energy dependence near threshold. As was shown in Fi
the DB model calculation agrees with the hard sphere mo
for r c50 fm in the low-energy region. The B2 Woods-Sax
model fit looks equally good but the extrapolated value
theS factor depends on the energy range used in the fit.
value drops by 5% for the larger energy range.

FIG. 10. The theoreticalS factor as function of energy compare
to the experimental data. In~a! we present the data of Kavanaghet
al. @31# while in ~b! we show the data of Vaughnet al. @3#, Filip-
poneet al. @2#, and Hammacheet al. @4#. In each figure, the solid
line shows the B1 model result, while the dot-dashed and das
curves are the results of the C2B and C8B calculations, res
tively. In ~b! the fits are to the data of Filipponeet al., with the
exception of the dotted curve in~b! which is a fit to the data of
Vaughet al. using the C8B calculation. All the fits are to the 0–1
MeV energy range.
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The values ofS(20) obtained from fitting the C8B mode
to the data sets show much more dispersion than any of
other results, varying with both the energy range and data
used. The latter variation is clearly seen in the C8B ide
gram, Fig. 9. This is reflected in Figs. 10 and 11, where
C8B calculation has the wrong energy dependence w
compared toany given data set. While the data suggests
steady increase in theS factor above 1 MeV, the C8B resu
is relatively flat in the 1–2 MeV range and then shows
sharp increase above 2 MeV. This disagreement with
data must be understood before using this model to extra
late the data to threshold.

In Table VI we show thex2 per degree of freedom fo
individual data sets for four different models. Only data b
low 1.5 MeV have been included in the fit. Each data set
a common normalization error which is not included in t
calculation ofx2. For the data of Hammacheet al. @4# we fit
only the 1996 data. The higher value ofx2 per degree of
freedom for the data of Kavanaghet al. @31# is due to three
points on the lower side of the resonance peak; the fitt
ignores any relative error in the energy calibration. For
other three data sets thex2 per degree of freedom is of orde
1 except for the C8B results for which it is consisten
higher. This reflects the incorrect energy dependence of
C8B model noted in the previous paragraph.

We may now discuss in more detail Fig. 1, where tw
extreme fits to the nonresonant part of the data are sho
The first is the naive straight line fit while the other is th
hard sphere model result withr c54.1 fm. These two results

ed
c-

FIG. 11. Expanded view of theS factor as function of energy
This is an expanded view of Fig. 10~b! using the same convention
for the curves and data points.
with
e been
TABLE VI. The x2 per degree of freedom for fits to individual data sets. Each fit is to a data set
common normalization errors and only the relatives errors are included. Only data below 1.5 MeV hav
included in the fits.

Model Kavanaghet al. Vaughnet al. Filipponeet al. Hammacheet al. 96

B1 2.5 0.6 1.0 0.8
C2B 2.6 0.9 1.0 0.9
C8B 3.7 1.6 1.8 2.7
DB 2.4 0.7 1.0 0.8
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are compared to the DB GCM calculation in Fig 12. T
resonant contribution has been removed from all the cur
All three results are in reasonable agreement with each o
in most of the energy region where data exist,E.0.1 MeV,
hence the equally good fits. However, only the DB calcu
tion contains the correct physics at low energy. The stra
line fit does not contain any contribution from the pole te
and hence no upturn, while the upturn in ther c54.1 fm hard
sphere model calculation is far too severe. Also, the cur
ture in that hard sphere model result is not seen in the G
model calculations in the region of the data.

We can improve on the straight line fit by replacing t
constant term with$0.0408/(0.13751E)10.7033% from the
rational approximation, Eq.~11!. Since the ratio of the pole
to constant term is fixed in an almost model-independ
manner and the pole term, by itself, is poorly determined
the data, it makes little sense to fit these two terms se
rately. This leads to the form

S~E!5S~0!F S 0.0408

0.13751E
10.7033D1c8EG , ~12!

whereS(0) andc8 are fit parameters andE is in MeV. Using
this form and a Breit-Wigner resonance we fit the data up
1.5 MeV. The resulting fit @S(0)518.5 eV b and c8
50.351 MeV21] is as good as that with the straight line b
the value ofS(20) is now 18.060.9 eV b. This is in agree
ment with the DB results when fit over the same ene
range. The parameterc8, determined by the fit, is also clos
to that obtained from the B2 potential model and correspo
to a low value ofr c ~see Table III!.

VI. CONCLUSIONS

We have explored the energy dependence of
7Be(p,g)8B reaction and have constructed a simple mo
to illustrate the dominant physics. For energiesE,0.4 MeV,
theS factor is dominated by a pole arising from the influen
of the subthreshold8B ground state. The behavior of theS
factor near threshold is determined by three parameters
location and residue of the pole, and the effective h

FIG. 12. TheS factor as function of energy. The result of th
DB calculation, the straight line fit from Fig. 1, and ther c54.1 fm
model calculation are displayed by the solid, dashed, and
dashed lines, respectively.
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sphere radius. The location of the pole is set by the bind
energy of the valence proton in8B, while the residue is
proportional to the normalization of theS factor. The hard
sphere radius simulates the effect of the nuclear distort
and changes the slope of theS factor. The low-energy behav
ior of the models considered in this paper can be reprodu
with r c in the range 0–3 fm. If we restrict the comparison
models that fit the elastic scattering of neutrons from7Li, a
value of 1 fm is preferred. TheS-factor data do not distin-
guish between the results obtained with these values. W
some models at low energy are consistent with a hard sp
model of r c50 fm, suggesting no nuclear distortion
threshold, this is not of major concern: the preferred value
1 fm is suitably well inside the nucleus so that the influen
of nuclear distortion for what is, in effect, a surface captu
is minimal. The range ofr c from 0 to 3 fm introduces an
error of about 5% in the extrapolations even when only d
below 400 keV are used. Restricting ourselves to mod
consistent with the elastic neutron7Li scattering data re-
duces this uncertainty to about 1%. Thus from fitting t
energy range of 0–400 keV we haveS(20)518.461.0
60.2 eV b or, equivalently,S(0)519.061.060.2 eV b,
where the first error is experimental and the second is fr
model dependences in the fit.

As the energy increases beyond 400 keV the model
pendences and, hence, uncertainties also increase. Yet
at the somewhat higher energy regionE,2 MeV the simple
model gives indications of how large model effects might b
For example, the effect of nuclear distortion in thed-wave
component of theS factor is at most 2% even forE;1.5
MeV, as the scattering wave barely penetrates into the reg
where the nuclear forces are strong. Together with the c
parison with existing data, this casts doubt on the eight-b
model result of Cso´tó.

Of the models considered here, the DB and C2B GC
calculations have the least variation of the extractedS(20)
with the energy range fit, suggesting they do have a m
accurate description of the physics in the higher-ene
range. However, the GCM calculations predict the mag
tude of S(20) to be much higher than that we extract fro
the recent experimental data. As with the fit to the low
energy range we restrict ourselves to models that are con
tent with the neutron7Li elastic scattering data. Elasti
p-7Be scattering data would be useful in confirming the co
clusions drawn from the elasticn-7Li scattering data.

Neither data nor theoretical considerations are sufficien
refined to completely rule out the Woods-Saxon models. T
value of S(20) differs by 5% depending on whether th
GCM or the Woods-Saxon model is used for the extrapo
tion. Taking this as an indication of the error for the fit in th
energy rangeE,1.5 MeV we then obtainS(20)517.6
60.760.4 eV b andS(0)518.160.760.4 eV b. The second
error comes from the uncertainty~half the spread! in the
choice of model used in the extrapolation. As the theoret
error here is not well understood we prefer the values of
S factor extracted from the more restricted energy ran
Phase shift information from proton7Be scattering in the 1
MeV region would reduce the theoretical uncertainty fro
the fit over the larger energy range.
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