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Extrapolation of the astrophysical S factor for 'Be(p,y)®B to solar energies
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We investigate the energy dependence of the astrophy&faator for the reactioriBe(p, y)®B, the primary
source of high-energy solar neutrinos in the sgdar chain. Using simple models we explore the model
dependence in the extrapolation of the experimental data to the region of astrophysical interest near 20 keV.
We find that below approximately 400 keV the energy dependence is very well understood and constrained by
the data for the elastic scattering of low-energy neutrons ffbimAbove 400 keV nuclear distortion of the
wave function of the incident proton introduces a significant model dependence. This is particularly important
for the sswave contribution to th& factor. The extracted value &0) is 19.0- 1.0+ 0.2 eV b. The first error
is experimental while the second is an estimate of the theoretical error in the extrapolation.
[S0556-28188)01812-3

PACS numbgs): 26.65+t, 25.60.Pj, 25.40.Lw, 24.56.g

[. INTRODUCTION eV b for the straight line fit and the hard sphere model, re-

spectively, a 37% variation in the extrapolated value. Such a

The "Be(p,y)®B reaction, at energies of approximately large difference must be understood if reliable extrapolations

20 keV, plays an important role in the production of solarare to be made and a variety of, sometimes conflicting, mod-

neutrinos[1]. The subsequent decay of tfiB is the source els[5-15 have been developed for this purpose.

of the high-energy neutrinos to which many solar neutrino The dashed curve in Fig. 1 shows an upturn in$tfactor

detectors are sensitive. The cross section for this reaction &t threshold. This is a feature common to all of the model
conventionally expressed in terms of tBefactor which is  calculations of the astrophysic&factor for the’Be(p, y)®B

defined in terms of the cross sectionby reaction (with the exception of the straight line Jfitlt has
been establisheld 5] that this behavior stems from a pole in
S(E)=0(E)E exd 27 n(E)], (1)  the Sfactor when the photon enerdy, vanishes.

We develop two key concepts for the description of the
where5(E)=Z,Z,a+/uc?/2E is the Sommerfeld parameter, astrophysicaSfactor: the pole where the photon energy van-
a is the fine structure constant, apdis the reduced mass. ishes and an effective hard sphere radius. These concepts
The definition of theS factor eliminates from it most of the Will be developed and explored by modeling the complicated
energy dependence due to Coulomb repulsion by factoringhultidimensional many-body system with simple one-body
out the penetration to the origin of a particle in the Coulombmodels. The pole term describes and is dominated by Cou-
potential of a point charge. However, it does not makeShe lomb physics. It depends on nuclear physics through the
factor energy independent, as there are still energy depeseparation energy, the asymptotic normalization of the final
dences due to the structure of the final bound state, reso-

nances, and the attenuation of the barrier by the nuclear 120 , . : .
mean field. The reaction rate, obtained by folding the thermal
distribution of nuclei in the stellar core with the cross sec- 100
tion, peaks at approximately 20 keV. Because the cross sec-
tion diminishes exponentially at low energies, the only 80
method of obtaining information about ti&factor at ener- 2
gies of astrophysical interest is to extrapolate data taken at 5 60
experimentally accessible energigs>x100 ke\). To do the 2]
extrapolation reliably we must understand the physics asso- 40
ciated with theS factor.
To illustrate the problem of extrapolating the data to as- 20
trophysical energies we show in Fib a fit to theexperimen-
tal data[2—4] that uses just a straight line and a fit with a 000 . 0'5 1'0 -

calculation that includes-wave nuclear distortion through a
hard sphere potential of radius 4.1 fm. The straight line and

potential model fits are displayed by a solid and dashed line, r G, 1. pifferent fits to the experimentsifactor data. The solid
respectively. The latter calculation will be described in morecyrve is a straight line plus the resonance while the dashed curve is
detail in Sec. Ill. In both cases a Breit-Wigner resonance is, calculation with a hard sphere cutoff radius of 4.1 fm plus the
included. As can be seen from the figure both fits to the datgesonancey?=0.9 in both cases. The data are from Vaugtral.

are equally goody?=0.9 in each case. However, there is a[3] (squarey Filipponeet al.[2] (circles, and Hammachet al.[4]
marked difference in th& factors at 20 keV: 15.3 and 21.0 (diamonds.

E (MeV)
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state wave function, and the spectroscopic factors. The sepl Eq. (2), J, 5 is the spectroscopic factor for a given angular
ration energy of the valence proton frofB is 137.5 keV  momentumL and channel spirS, B.s is the asymptotic
[16] and determines the pole location. The asymptotic nornormalization of the bound state wave functidg, is the
malization and the spectroscopic factor combine in arphoton energy, an#l is the momentum of the incident pro-
asymptotic strength parameter, defined in Sec. Il, to give théon. The extra factor of in the integrand comes from the
residue of the pole. This will be determined by a fit to thephoton wave function. The final bound state wave function
Sfactor data. An effective hard sphere repulsion is intro-y(r) is normalized in the asymptotic region tg(r)
duced to approximate how the nuclear physics influences the W, ,(«r)/r while the initial wave function reduces to the
energy dependence, and is related primarily to the nonresgegular Coulomb wave function divided byr 27 7/ (27"
nant phase shift of the initial scattering state. The effective-1). The unusual choice of normalizations is just to sim-
hard sphere radius is determined by comparing the harglify the mathematics and generate integrals that are well
sphere model to more complete models such as potentilehaved at threshold. The initial state has both Coulomb and
models. Elastic scattering data from protons te, if it  nuclear distortions. The Coulomb distortions are large and
existed, would help constrain the potential models andjive the penetration factor included in the definition of Se
through them the effective hard sphere radius. As such da@actor, Eq.(1). They are included in all calculations. The
are presently unavailable, the constraints must come from theuclear distortions are much smaller but they are important
elastic scattering of neutrons frorfLi, the mirror system. and introduce a significant model dependence into the calcu-
The concepts of the pole and the hard sphere repulsion leagtions, as described in the next section.
to a simple rational approximation for the energy depen- The absolute magnitude of ti®factor is determined pri-
dence of theS factor, which encompasses the dominantmarily by the spectroscopic factor and the asymptotic nor-
physics at low energy. malization(see also Ref.17]). The spectroscopic factor con-

This simple approach breaks down as the energy increasesins many-body aspects of the problem and is calculable
and the capture becomes more sensitive to the internal strufrom standard shell model theory. The asymptotic normaliza-
ture of the ‘Be core. We explore the range of validity of the tion also depends on the many-body wave function, but is far
simple one-dimensional model by comparing it with moremore difficult to estimate from first principles: it requires
sophisticated potentialR-matrix, and microscopic cluster detailed knowledge of how the eight-body wave function
models. In general, the simple approach agrees with the p@xtends beyond the nuclear potential and its mapping to the
tential andR-matrix models over a larger energy range. Al- Whittaker function in this region. This may be estimated
ternatively, within its range of validity, we may use the hard crudely by approximating that behavior by using a suitably
sphere model based on an effective hard sphere radius aglosen Woods-Saxon wave function for the weakly bound
Coulomb physics to understand and critique other models. proton. Instead we treat the overall faCt@rn:‘]llﬂil

We present a brlgf review of th<_a formalism in Sec. Il and +J1,82, as a free parameter, which is independent of energy
show how the pole in th&factor arises. In Sec. lll the hard gnqg determined by thefactor data. For simplicity we will
sphere model is presented and used to derive a simple exsfer to this combination of asymptotic normalization and
pression for the energy dependence of $tfactor. The hard spectroscopic factor as the asymptotic strength.

sphere model is compared to the cluster model calculations 14 jnvestigate the behavior of the integrals in E2), we
in Sec. IV. In Sec. V we use the final arbiter, the experimentirsi consider (r)=W,,(xr)/r for all radii and take

tal ldatg, to discriminate betwgen the models and determ'n&o(r):Fo(kr)/{kr\/m/(e
which is best for the extrapolation. In Sec. VI we present 0Uthan becomes
best estimates for th&factor near threshold and draw some

conclusions. | —fwdrrwa"(kr)FO(kr)
0= s -
Il. POLE TERM ° k2w

271—1)}. Thes-wave integral

(e271—1). (5)

Most calculations of theS factor follow the pioneering The integral is smooth dspasses through zero and diverges
work of Christy and DucK5] to which we refer the reader ask—ix (E— —Eg). The nature of the divergence is de-
for more details. Here we present a brief overview of thetermined by the asymptotic forms of the Coulomb wave
model. The E1 contribution to the S factor for the function and Whittaker function for large There the Whit-
7Be(p,»y)88 reaction may be written as taker function is proportional tOilnk‘/Kei wt [5] (7]k is in-
dependent ok). Above threshold the Coulomb wave func-
tion oscillates at large radii; however, below threshold it is

1
S=C(15+215)E3(J1uB85,+ leﬂiz)l— (2)  exponentially growing and is proportional t&”e!". Thus
—e

—27y’
! the behavior of the integrand at large radius is
where rlflﬂkl(l/Kflllkl)eXF[_(K_|k|)r] (6)
* and the integral diverges as
||:fo r2drr gy (r) (), € g g
lo~1U(k—|k|)?~ 1/ Eg+E)?=1/E2. 7
2

_57 1 (zmyk)ez,uz(ﬁ—é) _ (4  The Sfactor is proportional tol oS, and gives rise to a
9 (#c)® M; M, simple pole inSatE,=0. However, the first correction term
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FIG. 2. The integrand for thewave andd-wave contributions
to the S factor at 0.0 MeV. The calculations were done with a t (fm)
Woods-Saxon potential.
FIG. 3. The integrand for the andd-wave contributions to the
is not simply 1E., but rather of the form (%c In E,)/E,, Sfactor_at 0.0 MeV, 0.5 MeV, and 1.5 MeV. The solid line is _afull
the logarithmic term coming from theilﬁkl(l/K?l/‘kD factor. calculation with a Woods-Saxon potential. The dot-dashed line has

Both the leading and first correction terms are determine(?]o nuclear distortion of the incoming wave and uses a Whittaker

urelv by the asvmptotic behavior of the wave functions unction for the bound state. The dashed curve is the extrapolation
purely by y .p ) ) “of full calculation to short distance using only the Coulomb poten-
The second correction term, of ordéﬂ, is not determined

tial.
purely by the asymptotic value of wave function alone but

also depends on the wave function at finite The peaks in the integrands, which are displayed by the solid
The presence of the pole suggests Shéactor may be lines, are outside the range of the nuclear force even at 1.5
parametrized as a Laurent series: MeV. Two other calculations, in which the nuclear distortion
is varied, are also presented. The pure Coulomb calculation,
Szd,lE;lJr dot+d;E,+---. (8) Eq. (5), contains no nuclear distortions and is displayed by

the dot-dashed line. The other curi@ashed ling matches
The coefficients of the first two termd, ; andd,, are de- the full calculation at large distances, and so it has the same
termined purely by the asymptotic forms of the wave func-nuclear phase shift at large radii, but the initial wave function
tions while the third coefficientl; is also dependent on the is integrated to small radii using just the Coulomb potential.
short-range properties of the wave functions. The validity ofin the swave integrands the nuclear distortions play an im-

such an approximation is discussed below. portant role, especially near the origin. These distortions pro-

duce a node in the scattering wave function and give a re-

lIl. ONE-BODY MODELS AND RATIONAL pulsive phase shift. The node is necessary to make the
APPROXIMATIONS scattering wave function orthogonal to the bounstshell

protons in the’Be core. That orthogonality is preserved only

The energy dependence in tBdactor enters through the if the node in the scattering state is at a radius where the
s andd-wave integrald; andl, and the phase-space factor bound state wave function is still appreciable. Hence the
E?/. To investigate that behavior, we present in Fig. 2 thenode will be close to but inside the nuclear radius. There are
integrands, Eq(3), for both thes andd waves. A Woods- no bound @-shell protons in’Be and hence no node in the
Saxon potential model, denoted B1, whose radfi89 fm) d-wave integrand. Consequently tldewave phase shift is
and diffusenes$0.65 fm were taken from Barkef7], was  small and attractive.
used to calculate the bound state and nuclear distortions. A The integrals corresponding to the integrands plotted in
potential depth of-46.6 MeV was chosen to reproduce the Fig. 3 are given in Table I. The largest change in shveave
binding energy of the final state. No spin-orbit force wasintegral comes from the nuclear phase shift at large radii, as
included. The integrands are peaked at very large radii, 4% evident when partial nuclear distortion is introduced. The
fm and 55 fm for thes- andd-wave integrands, respectively, additional distortion coming from the short-range nuclear po-
and extend well beyond 100 fm. As this is well outside thetential produces a smaller but still significant change in the
range of the nuclear potential f{,.=2.48+0.03 fm for ‘Be integral. This is common to the integrals evaluated at 0.5 and
[18]), the capture is purely Coulombic. To ensure completel.5 MeV. In the case of thd-wave integral, the total effect
convergence in our calculations we integrated to 1000 fmof nuclear distortions is quite small, at most 2%, even at 1.5
The small negative contribution and the node in shgave  MeV.
integral near 0 fm arise from the effects of the nuclear dis- Since theS factor is sensitive to the phase shift, the po-
tortion. The distortion in thed-wave component is negli- tential should reproduce the nuclear phase shifts. Unfortu-
gible. nately, there are no experimental data for the scattering of

We show the integrands for a range of energies in Fig. 3protons from’Be from which the phase shifts may be deter-
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TABLE I. The effects of nuclear distortion on the direct capture 30 T T
matrix elements using a Woods-Saxon potential. The calculations
are as discussed in the text. 25
Model s-wave d-wave 20
energy 0.5MeV 15MeV 0.5MeV 15 MeV 15 b |
Full distortion 517.5 115.6 241.1 95.12 % 10 : :
Partial distortion 525.2 121.8 242.2 97.59 v
No distortion 550.7 135.1 240.7 93.58 25
Pure Coulomb 560.4 1445 240.8 93.77 20
mined. However, data are available for the scattering in the 57 i
mirror system,’Li-n, for which we follow Barker’s analysis 10 . :
[7] to determine the potential depths. From the elastic scat- 0.0 0.5 1.0 15
tering of thermal neutrons fromLi, the scattering lengths E (MeV)

area; =0.87+0.07 fm anda,= —3.63+ 0.05 fm[19], where
ag is the scattering length for the channel sfirrhe depths
of the potentials are adjusted to fit these scattering Iength%}I AR :

- - eV. In (a) the solid line is a hard sphere model witf=2.4 fm
giving —46.58 MeV and—56.21 MeV for theS=1 and 2 0 the dashed line is the B1 Woods-Saxon model(tn the

ppt(_entials, respectively. The=1 potential' depth is very model withr =1.0 fm, the B2 model, and th@-matrix model of
similar to the one we have used for the first WOOdS'SaxorBarker are displayed by the solid, dashed, and dot-dashed lines,

potential model but th&=2 potential is significantly stron- egpectively.
ger. These nuclear potentials are then used in the calculation

of the Sfactor for 7Be(p,y_). This assumes isospin symme- ca|culation with the B2 potential, and BarkeRsmatrix cal-
try for the nuclear mean field. The contributions for the two .jjation witha=4 fm [9]. That choice of is predicated on
channel spins are combined using Barker's Spectroscopifye result that, in th&-matrix formalism, the matching ra-
factors[7]. We refer to this potential model as B2. ~ gj,s should be roughly the sum of the radius and diffuseness
In Fig. 3, we see that thewave nuclear distortion is f he potential[20]. The level of agreement is again quite
dominated by the node in the scattering state wave functio _
This suggests that we may construct a simple model, the hard gpe advantage of the hard sphere model is that it is pos-
sphere model discussed in the Introduction, where the initiadjpie to do an explicit Taylor series expansion abBut0
state wave function is zero inside some radiygnd a pure ey and obtain directly the derivatives & at threshold.
Coulomb wave outglde. We impose t_he boundary Cond't'orFollowing Williams and Kooni{21] we employ the Bessel
that the wave function be zero gf. This generates a phase fynction expansio22] of the Coulomb wave functions to
shlft_ and_ is equn_/alent to having an .nf|n|_tely repul_swe PO- generate the Taylor series expansion. Each term invdives
tential with a radiug ;. Thed-wave scattering state is taken jngependent radial integrations of Bessel functions, powers,

to be an undistorted Coulomb wave function. The boundyng whittaker functions. For a hard sphere radius of 2.4 fm
state is assumed to be a pure Coulomb state, described byt integrations may be done to yield the series

Whittaker function, for all radii.

We saw for the potential model that it was necessary to S(E)/S(0)=1—1.917F + 15.6FE2—110.283
have different potential depths for different channel spins.
For the hard sphere model this would suggest that we use +T74.E*+ -, 9
different cutoff radii for different channel spins. However,
the simple model does not justify such elaborations and wevhereE is in MeV. The coefficients are increasing in size
find that with just a single, suitably chosen, radius we carmand alternate in sign. Given the pole in tBefactor, the
reproduce the low-energy results from a given potentiatadius of convergence &=Ez=137.5 keV. We stress that
model. The use of a single radius does, however, weaken thtae coefficients in Eq9) were not obtained by a fit of th®
connection between the hard sphere radius and the elasfiactor over a finite energy region but rather through an ex-
scattering phase shift. We make the connection only througplicit series expansion of th8 factor in powers of the en-
the intermediary of the potential model. ergy.

The Sfactors from the hard sphere model are compared to A similar expansion has been used by Bayal.[23] to
the Sfactor of other one-body models in Fig. 4. In Figa4  obtain the first derivative of th& factor at threshold. They
the solid curve is the result of the hard sphere model, withutilize a slightly different Bessel function expansion for the
r.=2.4 fm, while the dashed curve displays the result of theCoulomb functions. It can be obtained from that used by
Woods-Saxon potential, B1. The curves have been normaWilliams and Koonin[21] by using the recurrence relations
ized to agree dE=100 keV. There is remarkable agreementfor the Bessel functions. For the choice of cutoff radius of
between the two results up to 1.5 MeV, suggesting that th8ayeet al, 2.0 fm, we reproduce their numerical results.
hard sphere model encapsulates the physics of the Woods- A more convergent and pedagogically useful expansion
Saxon potential model. In Fig(d) we show the results of a may be developed. Motivated by the Laurent series of Eqg.
hard sphere model calculation with radius=1.0 fm, the (8), the Padeapproximant discussion of Ref15], and the

FIG. 4. TheS factor as a function of energy for different one-
body models. All curves are normalized to the same value at 0.1
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TABLE Il. The percentage error obtained by using various ex- TABLE lll. Coefficients of the expansion E¢l11). Also shown
pansions of thes factor forr.=2.4 fm. The errors introduced by are the first and second logarithmic derivatives at threshold. The
using a rational approximatiofEg. (11)], a second order Taylor first four rows are for the hard sphere model with different cutoff
series expansion, a third order Taylor series expansion, and thadii. The fifth row contains the results from Williams and Koonin
logarithmic expansion of Refl21] are denoted bysS,, 6S;,, [21] while the sixth, seventh, and eighth rows are with Woods-
6Sr3, and 8Sy,, respectively. Saxon potentials. The last two rows contain values of the deriva-
tives from previous work.

E (MeV) 0S (%) S (%) Sz (%) ISy (%)

Model a(MeV) b c(MevV™Y) dinSYdE d?n SdE?
0.00 0.00 0.00 0.00 0.00 (MeV-1) (MeV~2)
0.02 —-0.02 0.06 -0.03 0.04
0.10 ~011 792 ~503 534 r.=0.0fm 0.0409 0.702 0390 —1.77 28.3
0.30 —0.36 110.78 —230.92 124.51 r.=1.0 fm 0.0409 0.703 0.343 —1.82 28.1
0.40 —0.56 211.84 —590.43 384.07 r.=2.4fm 0.0408 0.703 0.239 —-1.92 27.7
0.50 —1.40 340.70 —1191.88 125963 r.=41fm 0.0407 0.704 0.067 —2.09 27.0
1.00 —-6.64 1309.96 —9214.33  1.%10 WK [21] 0.0425 0.687 0.050 —2.35 28.3

B1[7] 0.0420 0.695 0.310 —-1.91 28.6

B2 [7] 0.0417 0.697 0.367 —-1.84 28.7
knowledge that there is a pole &,=0 MeV, we Taylor T[10] 0.0409 0.703 0.200 —1.96 27.6
series expand,S. This removes the effect of the simple Barker[8] — — _ 141 10.2
pole in the expansion. To recov&we divide byE,, thus Adelberger _ _ _ ~0.70 3.3
obtaining a rational approximation et al.[24]

SE)/S 0= 0.1375+0.736 E+0.239E+ - - - 10
(B)/S(0)= 0.1375+E (10 poorly motivated and we find that none of the Woods-Saxon
or generator coordinate models considered herein are consis-
tent with a hard sphere model withh>3 fm. Williams and

= Eg+E +b+cE, (1) Koonin are also missing a factor of 2 for tdewave term in
their Eq.(1).
with a=0.0408 MeV,b=0.7033, andc=0.2392 MeV *. Also, in Table Ill, we make the comparison of the param-

By construction,a/Eg+b=1. The rational approximation, etrization of the hard sphere models to those for three differ-
Eqgs.(10) or (11), is very similar to a Padapproximant. The ent Woods-Saxon calculations. The parametrization, Eq.
Padeapproximant is a ratio of polynomials with all the pa- (11), for the Woods-Saxon models was determined from fit-
rameters determined by fitting the derivatives at the expanting the Sfactor at 0, 20, and 40 keV. For two of the calcu-
sion point. However, in Eq(10), the position of the pole is lations, we use the B1 and B2 models introduced previously.
fixed by the binding energy. As a result, for the same ordefor the third, the radius and diffuseness parameters were
polynomials one fewer derivative is required. The coeffi-obtained from Tombrell$10] while the potential depth was
cients in the rational approximation, E(L0), are growing adjusted to reproduce the binding energy of the final state.
much more slowly than in the Taylor series expansion, EqQNo spin-orbit force was included. The third calculation is
(9). This is due to the better convergence of the rationadenoted as T. The results for the B1 and T models are quite
approximation. The coefficients do, however, begin to growclose to those of the hard sphere model witl=2.4 fm.
more rapidly after the cubic term in the numerator. While thea andb coefficients in the B2 model are consistent
The accuracy of the rational approximatipeg. (11)] is  with those of the other Woods-Saxon models, the linear term
shown in Table II. This approximation is valid to better thanc is closer to the hard sphere model with=1.0 fm. This is
1% up to 400 keV. By comparison, the Taylor series expan€onsistent with the agreement we have seen in Fig. 4 be-
sion and the logarithmic derivative expansion break dowrtween the B2 model and the hard sphere model with that
below 100 keV as expected given the radius of convergenceadius.
Although all approaches are accurate in the astrophysical re- Attempts have been made to obtain the derivatives at
gion near 20 keV, only the rational approximation is accuratghreshold by a quadratic fit to eith& or In S over an ex-
out to the region which is accessible by experiment. tended energy range. The derivatives obtained by this
The coefficients, b, andc in Eqg. (11) are given in Table method tend to disagree among themselves and with our re-
[l for a variety of models. In the case of the hard spheresults. The derivatives from two such fits are shown in the last
models, the pole and constant terms are the same to withivo rows of Table Ill. The first is a fit to 1§ by Barker[8]
0.5% while the linear term varies by a factor of almost 6.over the energy range 0—100 keV. He uses a Woods-Saxon
This confirms that the constant and pole terms are coupled ipotential model to obtais. The second is from Adelberger
an almost model-independent manner while the linear term ist al. [24]. ThereS is obtained from a generator coordinate
strongly dependent on initial state nuclear distortions. calculation[6] and fit over the energy range 20—300 keV. As
The first and second logarithmic derivatives are also givershown in Table Il, Taylor series expansions about the origin
in Table Il for comparison with the results of Williams and are not valid over the energy ranges used for the fits. We find
Koonin [21]. They have a binding energy of 136 keV and that in order to accurately determine both the first and second
use a hard sphere model with=4.1 fm in both thesandd  derivatives at the origin it is necessary to restrict the fit re-
waves. We agree with Barkg8] that this choice of radius is gion to less than 10 keV. The Taylor series expansion con-
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FIG. 5. TheSfactor as a function of energy for a range of cutoff ~ FIG. 6. TheS factor, as calculated with,=2.4 fm. The total
radii. The results obtained far.=0.0, 1.0, 2.4, and 4.1 fm are result is displayed by the solid line, while tlse and d-wave com-
shown by the solid, short-dashed, long-dashed, and dot-dashembnents are shown by the dashed and dot-dashed lines, respectively.
lines, respectively. All the curves are normalized to 19 eVb at
threshold. S(20)/S(100), andS(0)/A,, are given. The variation in the

L . . last ratio is almost 3%, indicating that tlgfactor is sensi-
verges well in this energy region. We can, however, qualitasjye to nuclear distortions even at threshold.
tively reproduce the numbers of Barker and Adelbergeal. Nuneset al. [14] have also calculated ti@factor with a
for the derivatives from our models if we use their fit re- \y504s-Saxon potential, but used the parametrization of Kim
gions. .Thus the .dlfferences_ in the numbers obtained are N 5| [12]. We find good agreement with their calculations
primarily from differences in the models but rather due 04,4 ‘in particular, concur with their observation of large ef-
how the derivatives were obtained. They indicate the SenSigcts due to nuclear distortions in that particular model. The
tivity to the fit range chosen. parametrization of Kimet al. generates ar$ factor with a
. .Wh|[eaquad.rat|c form.dogs not work well near thresholqs|ight|y different energy dependence, corresponding to a
it is quite good if that region is excluded. For example, a fit;, 5 -4 sphere model with.=3.0 fm.
to the S factor over the range 30-300 keV is accurate 10 The rejatives- and d-wave contributions to th& factor,
better than 0.4% except very near the end points. Using this, . lated for .= 2.4 fm, are displayed in Fig. 6. The total,
fit to extrapolate to threshold gives almost a 3% error ins—wave, andj-V\jave parts are displayed by the solid, dashed,
S(0), not toosurprising given that the quadratic form ig- 44 dot-dashed lines, respectively. The upturn at threshold is
nores the existence of the polefat —137.5 keV.. purely from thes-wave component, even though teeand

To further illustrate the role of nuclear distortions, t8e  y\yave capture leads to the same final state. The linear be-
factors for the cutoff radii of Table Il are shown in Fig. 5. 1ayior in thed-wave component is a result of the zero in the
The curves withr.=0.0, 1.0, 2.4, and 4.1 fm are displayed coylomb function which lies very close to the position of the
by the solid, short-dashed, long-dashed, and dot-dasheghe |n general, partial waves for nonzero orbital angular
lines, respectively. All the curves are normalized to 19.0,omentum will have zeros on the negative energy axis. The
eV b at threshold. The effect of nuclear distortion is q“itehigher the angular momentum, the closer they will lie to
noticeable even at energies as low as 100 keV, and increasgsresnold. Thus we do not expect to see an upturn when the

with increasing energy. Figure 5, together with Fig. 4, high'capture occurs from a high-angular-momentum state.
lights an important aspect of the models: the equivalent hard

sphere radius is sensitive to the choice of potential depth.
Analogously, the phase shift and degree of nuclear distortion IV. COMPARISON WITH CLUSTER MODELS
are model dependent. The effect of nuclear distortion is

also seen in Table IV where the ratioS(0)/S(20). The other class of models which has been used in the

analysis of the data is composed of the cluster models
[6,13,25—-2T These generator-coordinate modéBCM'’s)
calculate thes factor microscopically and incorporate many-
body effects which are not included explicitly in the simpler

TABLE IV. The energy dependence of tt&factor at low en-
ergy for various cutoff radii and Woods-Saxon models.

Model S(0)/S(20) S(20)/S(100) S(0)/A, one-body potential models. They predict the absolute magni-
tude as well as the energy dependence. However, the use of
r.=0.0 fm 1.03 1.06 38.2 the more sophisticated models comes at a price: it is more
re=1.0fm 1.03 1.06 38.1 difficult to discern the dominant physical effects and to un-
ro=2.4fm 1.03 1.07 37.8 derstand the differences between the various calculations.
re=4.11fm 1.04 1.10 37.2 Fortunately, the hard sphere model can be used to clarify
B1[7] 1.03 1.08 37.8 these issues.
B2[7] 1.03 1.06 38.0 We compare the results of the hard sphere model calcu-
T [10] 1.03 1.08 37.6 lation, withr.=0 fm, with the GCM calculations of Descou-

vemont and Bayd€DB) [13] and the GCM calculations of
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lations, manifest at higher energies, have their source in both
the s- and d-wave contribution§28]. The difference in the
swave calculations is relatively small and consistent with
the expected model dependence due to the different short-
range behavior. The effect is much more dramatic fordhe

2 waves; the contribution from three of tliewave channels

3 goes to zer$28] at approximately 1.5 MeV. That behavior is

n inconsistent with the very small effects of nuclear distortion
10 | ] in the d-wave component observed in the one-body models.

0
0.0

0.5

E (MeV)

1.0

L5

Outside the range of the nuclear force the wave functions,
and hence the matrix element, are determined by the proper-
ties of the Coulomb force, the asymptotic strength, and the
phase shift. As the two calculations of @sdave the same
phase shiff26,28 the only difference must be at short dis-

tances, less thanr 3 fm. At 1.5 MeV, the integrand peaks at

FIG. 7. TheSfactor as a function of energy for various models. 14.5 fm, as determined by the Coulomb properties and the
The solid curve is the result of the DB GCM calculati@s quoted ~ phase shift. Therefore the antisymmetrization, being the only
by Hammachet al.[4]). The short-dashed curve is the result of the difference between the two- and eight-body models, must
C2B model calculation, while the long-dashed curve is the hardimake the integrand very large at small radii. That is possible
sphere model result with,=0 fm. The curves are normalized to if there is a resonance and, in that case, the wikelave
agree at 0.3 MeV. contribution may indeed vanish. This may be simulated in

the Woods-Saxon model by increasing the depth of the po-

Csdo et al.[25] (denoted as C2Bn Fig. 7. The hard sphere, tential. However, a resonance would have a very pronounced
DB, and C2B results are displayed by the long-dashed, solikffect on the phase shift, and there is no indication of a
and short-dashed lines, respectively. In the GCM calculationiesonance in the-wave component. It is also inconsistent
C2B, the effect of intercluster antisymmetrization, leading towith the statement that the two calculations of shave
effective eight-body wave functions, has not been includedthe same phase shift.
All results have been normalized to agree at 300 keV. Above We note that in the potential models antisymmetrization is
this energy, the two GCM results agree with each othernot a problem. One can construct a fully antisymmetric
while below the result of DB is consistent with that of the eight-body wave function for théBep system by taking a
r.=0 fm hard sphere model. However, the C2B calculationSlater determinant of the bound states wave functions and
is consistent with the hard sphere model result wit 2.4  the scattering wave function. Orthogonality is assured be-
fm, as shown in Fig. 8. There, that result is displayed by théween the wave functions when they are calculated with the
solid line while the hard sphere model result is displayed bysame potential, and the Slater determinant is trivially con-
the dot-dashed line. We show by the dotted line the calculastructed. As the transition operator is one-body in our model
tion, by Csa0, which includes antisymmetrizatid@6]. This  only the incoming proton is involved in the interaction with
calculation will hereafter be referred to as the C8B modelthe mean field defined by th&Be nucleus as a whole. Anti-
While this calculation shows the same energy dependence agmmetrization then becomes a problem only when one ven-
the C2B result near threshold, there is a marked changeires beyond the potential model and has wave functions that
above 500 keV. are not orthogonal by construction.

The differences between the C2B and C8B GCM calcu-

40 . , : . . V. COMPARISONS WITH THE DATA

The discussions in the previous sections have concen-
trated on theoretical aspects of the low-energy behavior of
301 = the S factor. We now turn to the data to determine the nor-

- malization and a meaningful value of ti&factor at astro-
physical energies. When discussing tige(p, v)®B Sfactor
data, it is important to consider resonant capture. The main
resonance in the reaction at low energies is th&¢ reso-
nance at 0.637 MeV for the capture to the 0.774 MeV state
in 8B [16]. There is another, much weaker and wider, reso-
nance in the cross section at 2.183 MeV corresponding to the

2.32 MeV state in®B [16]. We limit our comparisons t&

20 <1.5 MeV, to avoid the influence of this wider state, and
assume the resonance at 0.637 MeV to be of Breit-Wigner
form.

FIG. 8. TheSfactor as a function of energy for various models. = There have been seven measurements of the
The C2B and C8B GCM model results are displayed by the solid’Be(p,y)®B S factor. Two of thes¢29,30 have large error
and dashed lines, respectively. The result of the 2.4 fm hard  bars and data points at only a limited number of energies,
sphere calculation is shown by the dot-dashed line. two and one, respectively. This limits their usefulness and

0.0 0.5 1.0 1.5
E (MeV)
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TABLE V. Values of S(20) in eV b extracted from the various experimental data sets with different
models. For each data set, except Vaughal,, we have two columns showing the extracted valu§(@o)
using data up to 400 keV and 1.5 MeV, respectively. The last two columns give the weighted average of the
Sfactor obtained from the data sets of Vaug#ral, Filipponeet al, and Hammachet al. The last row is
the standard deviation errors on the value of &factor including both statistical and normalization errors.

Model Kavanaglet al. Vaughnet al.  Filipponeet al. Hammacheet al. Average
re=2.4fm 24.3 251 18.1 19.3 18.7 195 18.7 194 18.6
B1 24.1 24.7 17.7 19.1 18.4 19.3 18.4 19.2 183
C2B 24.0 25.2 19.1 19.1 18.9 19.3 19.2 19.2 19.1
csB 24.0 26.1 22.7 19.2 20.0 19.4 20.9 19.3 21.0
re=21.0fm 23.3 23.3 16.0 18.5 17.1 18.5 16.9 185 16.9
B2 23.3 235 16.6 18.5 17.3 18.4 17.2 184 17.2
DB 23.2 23.9 17.9 18.4 17.8 18.3 18.0 18.3 18.0
o 1.9 1.9 15 1.6 15 14 0.9 11 038

we will not consider them further. The remaining five mea-1.0 fm), Woods-Saxor{B1 and B2, and GCM(DB, C2B,
surements fall into two basic classes. The first is comprisednd C8B models. For each model two fits are shown: the
of the data of Kavanagét al.[31] and of Parkef32]. Those left column for each data set is the result obtained by fitting
data are on average 30% greater in magnitude than the the data below 400 keV, while the right column is the result
data of Filipponeet al. [2], Vaughnet al. [3], and the most obtained by fitting up to 1.5 MeV. As the data of Vaughn
recent measurement of Hammaddteal. [4]. The areal den- et al. do not extend below 400 keV only the result of fitting
sity of the "Be target is frequently determined by measuringto the higher energy is presented in that case. The final col-
the “Li(d,p) cross sectiorry, and normalizing the data to umn lists the result of the average of the fits to the data of
the known value. We follow the recommendatiorf®#] and  Vaughn et al, Filippone et al, and Hammacheet al. The
take o4,=147+11 mb for all the data sets. Striedet al.  ideograms[35] for the B2, DB, C2B, and C8B results are
[33] quote smaller errorsry,= 146+ 5, while a recent mea- displayed in Fig. 9 from top to bottom in the order listed.
suremenf34] givesoy,=155+8 mb. The use of the differ- Therein, the results obtained from fitting the data of Filip-
ent values for this normalizing reaction shifts the results onlyponeet al, Vaughnet al, and Hammachet al. below 1.5
slightly. The measurements of Filipporet al. [2] and of MeV are displayed by the short-dashed, dot-dashed, and
Hammacheet al. [4] also determined the density by direct long-dashed lines, respectively. The solid line is the sum of
measure of theB-delayed y rays, and found very good all four Gaussian distributions; the peak a5 eVb was
agreement between the two normalization methods. obtained from the data set of Kavanagjtal. As indicated by

To extract a reliable value of thefactor at astrophysical the disparity in the absolute magnitude, the results obtained
energies we must carefully consider the experimental error§tom the data of Kavanaglet al. are consistently much
Some of the errors are common between different data sets:

for example, the value of 4, used in the normalization. Also 4 : : :

in fitting individual data sets errors common to all the points 3L B2
must be handled separately. Thus we fit each data set sepa- 2 [ - b
rately using just the relative errors. The sets used are Ka- 1 /’;35\;‘;\ . . ]
vanaghet al.[31], Vaughnet al.[3], Filipponeet al.[2], and » i ' ' OB
the two data sets of Hammackeal.[4]. That measurement g 3 ]

reports two data sets from runs taken in different years with
different normalization errors. Hence, the two data sets of
Hammacheet al. are fit separately using just the relative er- 3F
rors and combined using both relative and absolute errors. In 2 [
averaging the values @(20) obtained from the fits to the
data of Vaughret al. and Filipponeet al. we have taken into

—
T

account the common error due to the uncertainty jp used 2r ]
for the normalization. 1 ]
The resonance at 0.637 MeV was fit with the Breit- 015 30

Wigner form. In comparisons to the data of Filippoeteal.
[2] and Kavanagtet al. [31] the parameters of the Breit-
Wigner were determined by the fit to the data. In fitting the  F1G. 9. Ideogran{35] for the S factor at 20 keV. The calcula-
data of Vaughret al. [3] and Hammachet al. [4] the reso-  tjons are denoted by B2, DB, C2B, and C8B as defined in the text.
nance parameters were taken from the fit to the data of Firhe results obtained from the data of Filippoeeal, Vaughn
ipponeet al. Leaving out the resonance in the fit of the dataet al, and Hammachet al. are displayed by the short-dashed, dot-
of Hammacheet al. raises the result by 2—3 %. dashed, and long-dashed lines, respectively. The solid line is the
The values 0fS(20) determined as a result of the fits to sum of the contributions. The isolated peak at higBeralues is
the data are shown in Table V for hard spherg=2.4 and  from Kavanaghet al.[31].

$(20) (cVb)
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FIG. 10. The theoreticéfactor as function of energy compared FIG. 11. Expanded view of th8 factor as function of energy.
to the experimental data. lf@ we present the data of Kavanagh  This is an expanded view of Fig. (f) using the same conventions
al. [31] while in (b) we show the data of Vaughet al. [3], Filip- for the curves and data points.
poneet al.[2], and Hammachet al. [4]. In each figure, the solid ) L
line shows the B1 model result, while the dot-dashed and dashed The values 0f5(20) obtained from fitting the C8B model
curves are the results of the C2B and C8B calculations, respedO the data sets show much more dispersion than any of the
tively. In (b) the fits are to the data of Filipporet al, with the  other results, varying with both the energy range and data set
exception of the dotted curve ifb) which is a fit to the data of used. The latter variation is clearly seen in the C8B ideo-
Vaughet al. using the C8B calculation. All the fits are to the 0-1.5 gram, Fig. 9. This is reflected in Figs. 10 and 11, where the
MeV energy range. C8B calculation has the wrong energy dependence when
compared toany given data setWhile the data suggests a
higher than those obtained from the other data sets. Hencesteady increase in th@factor above 1 MeV, the C8B result
was not included in the average given in Table V. is relatively flat in the 1-2 MeV range and then shows a
The best consistency in the values $(f20) among the sharp increase above 2 MeV. This disagreement with the
data sets, excluding the data of Kavanagtal, is found data must be understood before using this model to extrapo-
with the fits using the C2B and DB models. The high qualitylate the data to threshold.
of the fit to the data using the B1 and C2B models can be In Table VI we show they? per degree of freedom for
seen in Figs. 10 and 11. The quality of fit using the DBindividual data sets for four different models. Only data be-
model is similar and is not shown. Note that the values oblow 1.5 MeV have been included in the fit. Each data set has
tained from the DB calculation are consistently lower thana common normalization error which is not included in the
the C2B values by 3—6%. Our DB result agrees with thatcalculation ofy?. For the data of Hammactet al.[4] we fit
quoted by Hammachet al. [4] who also used this calcula- only the 1996 data. The higher value gf per degree of
tion in their extrapolation. The GCM model calculation of freedom for the data of Kavanagh al. [31] is due to three
Johnsoret al. [6] has a very similar energy dependence topoints on the lower side of the resonance peak; the fitting
the DB calculation and would give similar results in a fit. ignores any relative error in the energy calibration. For the
The low values ofS(20) obtained with these models, com- other three data sets thé per degree of freedom is of order
pared to the C2B and C8B models, is a consequence of the except for the C8B results for which it is consistently
energy dependence near threshold. As was shown in Fig. Righer. This reflects the incorrect energy dependence of the
the DB model calculation agrees with the hard sphere modeat8B model noted in the previous paragraph.
for r.=0 fmin the low-energy region. The B2 Woods-Saxon We may now discuss in more detail Fig. 1, where two
model fit looks equally good but the extrapolated value ofextreme fits to the nonresonant part of the data are shown.
the Sfactor depends on the energy range used in the fit. Th@he first is the naive straight line fit while the other is the
value drops by 5% for the larger energy range. hard sphere model result with=4.1 fm. These two results

TABLE VI. The x? per degree of freedom for fits to individual data sets. Each fit is to a data set with
common normalization errors and only the relatives errors are included. Only data below 1.5 MeV have been
included in the fits.

Model Kavanagtet al. Vaughnet al. Filipponeet al. Hammacheet al. 96
B1 25 0.6 1.0 0.8
C2B 2.6 0.9 1.0 0.9
Cc8B 3.7 1.6 1.8 2.7

DB 2.4 0.7 1.0 0.8
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30 . . sphere radius. The location of the pole is set by the binding
energy of the valence proton ifB, while the residue is
proportional to the normalization of th® factor. The hard
sphere radius simulates the effect of the nuclear distortion,
and changes the slope of tBéactor. The low-energy behav-
ior of the models considered in this paper can be reproduced
with r in the range 0-3 fm. If we restrict the comparison to
models that fit the elastic scattering of neutrons fréioy, a
value of 1 fm is preferred. Th&factor data do not distin-
guish between the results obtained with these values. While
some models at low energy are consistent with a hard sphere
0 , , model of r,.=0 fm, suggesting no nuclear distortion at
0.0 0.5 1.0 1.5 threshold, this is not of major concern: the preferred value of
E (MeV) 1 fm is suitably well inside the nucleus so that the influence
of nuclear distortion for what is, in effect, a surface capture
DB calculation, the straight line fit from Fig. 1, and the=4.1 fm is minimal. The rqnge of ¢ from O.to 3 fm introduces an
model calculation are displayed by the solid, dashed, and do®'ror of about 5% in the exnapo"”_‘t'qns even when only data
dashed lines, respectively. below 400 keV are used. Restricting ourselves to models
consistent with the elastic neutrofiLi scattering data re-

are compared to the DB GCM calculation in Fig 12. Theduces this uncertainty to about 1%. Thus from fitting the
resonant contribution has been removed from all the curvegnergy range of 0-400 keV we hav§(20)=18.4+1.0
All three results are in reasonable agreement with each other 0.2 eVb or, equivalently,S(0)=19.0+1.0+0.2 eVb,
in most of the energy region where data exist; 0.1 MeV,  where the first error is experimental and the second is from
hence the equally good fits. However, only the DB calcula-model dependences in the fit.
tion contains the correct physics at low energy. The straight As the energy increases beyond 400 keV the model de-
line fit does not contain any contribution from the pole termpendences and, hence, uncertainties also increase. Yet even
and hence no upturn, while the upturn in the=4.1 fm hard  at the somewhat higher energy regier:2 MeV the simple
sphere model calculation is far too severe. Also, the curvamodel gives indications of how large model effects might be.
ture in that hard sphere model result is not seen in the GCMqy example, the effect of nuclear distortion in tthevave
model calculations in the region of the data. _ component of theS factor is at most 2% even fdE~1.5

We can improve on the straight line fit by replacing the pjey, as the scattering wave barely penetrates into the region
constant term wit{0.0408/(0.1375 E) +0.7033 from the  \yhere the nuclear forces are strong. Together with the com-

rational approxima_tior_n qull)' Since the ratio O_f the pole o rison with existing data, this casts doubt on the eight-body
to constant term is fixed in an almost model—lndependenﬁ]Odel result of Csio

manner and the pole term, by itself, is poorly determined by Of the models considered here. the DB and C2B GCM
the data, it makes little sense to fit these two terms sepa- X

rately. This leads to the form cglculatlons have the Iegst varlathn of the extracs20)
with the energy range fit, suggesting they do have a more
accurate description of the physics in the higher-energy
., (12 range. However, the GCM calculations predict the magni-
tude of S(20) to be much higher than that we extract from
whereS(0) andc’ are fit parameters aris in MeV. Using the recent experlment.al data. As with the fit to the Iowerj
energy range we restrict ourselves to models that are consis-

this form and a Breit-Wigner resonance we fit the data up tQ ith th Ui elasti g d Elasti
15 MeV. The resuling fit[S(0)=18.5 eVb andc’ tent with the neutron’Li elastic scattering data. Elastic

=0.351 MeV !]is as good as that with the straight line but p—73e scattering data would b? l7JS.er| in cpnfirming the con-
the value ofS(20) is now 18.6:0.9 eVb. This is in agree- Clusions drawn from the elastit-'Li scattering data.
ment with the DB results when fit over the same energy Nelther data nor theoretical considerations are sufficiently
range. The parametef, determined by the fit, is also close refined to completely rule out the Woods-Saxon models. The
to that obtained from the B2 potential model and correspondy¥alue of S(20) differs by 5% depending on whether the
to a low value ofr . (see Table II). GCM or the Woods-Saxon model is used for the extrapola-
tion. Taking this as an indication of the error for the fit in the
energy rangeE<1.5 MeV we then obtainS(20)=17.6
+0.7£0.4 eVb and5(0)=18.1+0.7+0.4 eV b. The second

We have explored the energy dependence of therror comes from the uncertaintpalf the spreadin the
"Be(p, y)®B reaction and have constructed a simple modekhoice of model used in the extrapolation. As the theoretical
to illustrate the dominant physics. For enerdies 0.4 MeV,  error here is not well understood we prefer the values of the
the Sfactor is dominated by a pole arising from the influenceS factor extracted from the more restricted energy range.
of the subthreshol#B ground state. The behavior of ti® Phase shift information from protofBe scattering in the 1
factor near threshold is determined by three parameters: thdeV region would reduce the theoretical uncertainty from
location and residue of the pole, and the effective hardhe fit over the larger energy range.

S (eVb)

10 b

FIG. 12. TheS factor as function of energy. The result of the

S(E)=5(0)

0.0408 1
01375rE 01083 F¢C

VI. CONCLUSIONS
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