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Pseudovector components of the piong®— yy, and F _(g?)
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As a consequence of dynamical chiral symmetry breaking the pion Bethe-Salpeter amplitude necessarily
contains terms proportional tgsy- P and ysy-k, wherek is the relative and® the total momentum of the
constituents. These terms are essential for the preservation of low-energy theorems, such as the Gell-Mann—
Oakes-Renner relation and those describing anomalous decays of the pion, and to obtaining an electromagnetic
pion form factor that falls as @f for large g, up to calculable Imf? corrections. In a simple model, which
correlates low- and high-energy pion observables, we (jfid_(g?)~0.12—0.19 Ge¥ for g>=10 Ge\~.
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I. PION AS A BOUND STATE ) A

[F’W(k;P)]tu:f XA P)1sKi(a.kP),  (2)
Understanding the pion is a key problem in strong inter- a

action physics. As the lowest mass excitation in the strong

interaction spectrum it must provide the long-range attractiorwherek is the relative andP is the total momentum of the
in NN potentials[1]. In QCD, it is a quark-antiquark bound quark-antiquark pair, x!(q;P):=S(q.)T"’(q;P)S(q.),
state whose low- and high-energy properties should be un~,...u represent color, flavor, and Dirac indices, =q
derstandable in terms of its internal structure, and it is alse- p/2, and f@::fAd“q/(zW)“ represents mnemonically a
that nearly maSSIess, collective excitation which is the realtrans|ati0na”y invariant regu|arization of the integraL with
ization of the Goldstone mode associated with dynamica{he regu]ariza’[ion mass scald— o is the last Step in any
chiral symmetry breakingDCSB). An explanation of these cajculation. In Eq(2), K is the fully amputated, renormal-
properties requires a melding of the study of the many-bodyzed quark-antiquark scattering kernel 8 the renormal-

aspects of the QCD vacuum with the analysis of two-bodyized dressed-quark propagator, which is the solution of
bound states. The Dyson-Schwinger equatiddSE'’s) pro-

vide a single, Poincarénvariant framework that is well N
suited to this problem. “1_7 (i f 2

The DSE'’s are a system of coupled integral equations and S(P) = Za(ly- Pt Mom) + 24 q 9Dy
truncations are employed to define a tractable problem. In
truncating the system it is straightforward to preserve the X(p=a)y.S(A)T',(q,p), (€)
global symmetries of a gauge field thed8] and, although

preserving the local symmetry is more difficult, progress iy herep .»(K) is the renormalized dressed-gluon propagator,
being madd 3]. The approach has been applied extenswelyrﬂ(q;p) is the renormalized dressed-quark-gluon vertex,

[4] to the study of confinement, and to DCSB where theandm A) is the Lagrangian current-quark bare mass. In
similarity between the ground state of QCD and that of o A) grang d !

. - .aEq. (3), Z, andZ, are the renormalization constants for the
superconductor can be exploited, with the QCD gap equat'Oﬁuark-gluon vertex and quark wave function, and the chiral

realized as the quark DSE. It has also been employed i mit is obtained withm,(A)=0. The solution of Eq(3)
studying meson-meson and meson-photon interactiéhs has the general form m

heavy meson decay6], QCD at finite temperature and den-
sity [7], and strong interaction contributions to weak interac-
tion phenomen4s,9|. ) ) o

Studying the pion as a bound state requires an understand- S(p)=—iy-poy(p?) +os(p)= iy-pA(p?) +B(p?) "
ing of its (fully amputated Bethe-Salpeter amplitude, which (4)
has the general form

Also important in the study of the pion is the chiral-limit,
Il (k;P) =7 ye[iE .(k;P)+ y-PF_(k:P) axial-vector Ward-Takahashi identity
+vy-kk-PG,(k;P)+ 0o, k,P,H.(k;P)],

uriuty j

. . Tj T
0 —iP, I, (q:P)=S A1) ys5 + %55 S Q). (5

where {rj}jzl_ng are the Pauli matricesl“j,T satisfies the This identity relates the renormalized, dressed-quark propa-
renormalized, homogeneous Bethe-Salpeter equation gator to the renormalized axial-vector vertex, which satisfies
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[F{‘Sﬂ(k;P)]tuzzz{’ys)’ME S(a4)

- Al [ .
28N2P = Jq (tr{g;(q;—P)—ﬁp g;(q;P)S(q_)}
M

|

tu

9S(q-)

P,

A — )
+fq [x5.(0;:P)sKia(a,k;P),  (6) +11 G (a; = P)S(a4) G (a; P)

| | | A IKIZ(,k:P)
where xL,(a;P):=S(q)TL,(G:P)S(@ ). In the chira # [t arm P I
limit the general solution of Eq6) is [10,1]] a Jk u

j X[ngw(k;P)]utv 13

. T
L, (k;P)=—+ Fr(k;P)+y-kk,Gg(k; P — ,
su(kiP) 2 Vsl VuFr(kiP) +-kk,Gr(kiP) whereG_(q; — P)':=C~1G_(—q;—P)C with C=y,7y,, the
charge conjugation matrix, arxt denoting the matrix trans-

— 0K HR(K; P)]+1:{rw(k; P) pose ofX. Equation(13) defines the pion normalization con-
p stant,N ., which has mass dimension one. Physical observ-
+ fg P_lz‘ r.(k;P), 7) ables are expressed in termslaf(k; P) :=(1/N ) G.(k;P).

In the chiral limit, when all the amplitudes in E¢L) are
retained, one obtaind.0]

where Fg, Ggr, Hg, and ﬂsu are regular asP?—0;
Pﬂl:{-w(k;P)~O(P2); I' .(k; P) is the amplitude in Eq(l);
and the residue of the pole in the axial-vector vertekﬁjs However, Eq.(14) is violated in bound-state treatments of

the chiral-limit leptonic decay constant, which is obtainedthe pion that neglect the pseudovector components of the
from Bethe-Salpeter amplitudd 1].*

fO=N2, (14)

i IIl. ANOMALOUS NEUTRAL PION DECAY

. AT .
5"fﬁP,L=szq tr > ¥57,8(a:) (4 P)S(q-) | (8)

The pseudovector components of the pion also play a spe-
cial role in the anomalousr’— yy decay. Consider the
(This expression is valid for arbitrary values of the quark'énormalized, impulse approximation to the axial-vector—
mass) Now, independent of assumptions about the the fornPhoton-photonAVV) amplituder

of K, it follows [10] from Egs.(4), (5), and(7) that T (K k) =T (ks ko) + T (Ko ko), (15)

fOE..(k;0)=Bo(k?), (9) A
; (ke ko) =Ne | {tror[ St
Fr(k;0)+2f0F (k;0)=Ag(k?), (10) X .
" ° XT2 (@~ P)S(4)i T 2(0.010)
Gr(k;0)+22G . (k;0)=2A}(k?), (11) X S(d12)iI')(A12,01) 1}, (16)
wherek,, k, are the photon momenf&?=0=k?2, 2k,-k
Hr(k;0)+2 f2H (k;0)=0, (12) b2 P té; L2

=P2], q is the loop momentum, and;:=q—Ky, g,:=Q
+Kp, 8:=3(q1102), Qr=0— kit k,.

whereA, andBy, are the chiral limit solutions of Eq3). A Here I'/(p1,p,) is the renormalized, dressed-quark-
necessary consequence of Eq®)—(12) is that the photon vertex, and it is because this vertex satisfies the vec-
pseudovector componerfts, andG,, and the pseudotensor tor Ward-Takahashi identity:

componenH ., are nonzero in Eq1). This corrects a mis-

apprehensiofi12] that only E,+#0 and has important phe- (P1=P2) i T (P1,P2) =S (p) =S H(po), (17

nomenological consequences. - L
that no renormalization constants appear explicitly in Eqg.

(16). I'7(p1,p2) has been much studi¢d] and, although its

exact form remains unknown, its robust qualitative features
To highlight one such consequence we note that(Zy. have been elucidated so that a phenomenologically effica-

the homogeneous Bethe-Salpeter equation, does not det&ious ansatz has emerggts]

mine the normalization of the Bethe-Salpeter amplitude. The

canonical normalization is fixed by requiring that the pion

pole in the quark-antiquark scattering amplitudié:=K/[1 IN_ in Eq. (13) provides the best numerical approximation to the

—(S9K], have unit residue. As an alternative, one can norpion’s leptonic decay constant in analyses that neglect the

malize the solution of Eq(2) by requiring thatE(0;0)  pseudovector components and empldy-mndependent form foK .

=B(0) in the chiral limit. In terms of the amplitudg,(k; P) 2In our Euclidean metl’iC‘)/LZ Yur {Yurv}=26,,, and a space-

defined in this way, the canonical normalization condition islike vector,k, , hask?>0.

Normalization of the pion field
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iT2(p,a):=i2a(p%0%) ¥, +(P+0a),

R A
2,00k =Ne | rorl St v5iE (:0)
X[Liy- (p+a)Aa(p%0%)+Ag(p%0D)], g

(18) X S(02)iT ) (02,012 S(d12)iT7(d12,01) .
(26)

24(p% %) =3[ f(PY) + (0], (19 Now using Egs(4) and(18) in Eq. (25) yields

f 2 —f 2
(p%) (Q), 20

p°—q ,U.Vpa'klkaU (PZ:O)a (27)

A1(p?,g%)= ARiy(kllkZ):__

where f=A,B. A feature of Eq.(18) is that the vertex is where[si=q?, Ag:=(d/ds)Aq(s), etc],
completely determined by the renormalized dressed-quark
propagator. In the Landau gauge the quantitative effect of
modifications, such as that canvassed in R&4], is small
and can be compensated for by small changes in the param-
eters that characterize a given model st{itly].

In the chiral limit (P>=0) using Egs.(1) and (7), the

R(0)= fo dsSAZeY(AJ (69)2+s0%0Y + 0 0]

+ O'S[SA(I)0'9/+ B(I)O'g]) (28

=0. (29)

divergence of the AVV vertex is

p p,uV(klakZ) R (kl k2)+f77- ,u]}(kllkz) (21)

The last line follows because, using Hg) to eliminateo?,
and o2 in favor of Aq and By, the integrand is identically
zero. Hence, the pseudovector components of the neutral-

where the direct contribution from the axial-vector vertex ispion Bethe-Salpeter amplitudeombine with the regular

2
S(Ql)?’SE()"PFR(q;O)

A
Riy(kl!kZ) = chq tl’DF
+v-89-PGr(§;0) +0,,8,P,Hr(G;0))

><S(Qz)iFZ(ChyQ12)S(Q12)iFZ(Q12aQ1)},

(22)
and that from the pion bound state is
3 A 3¢ N
T (K1 K2) ‘ZNch tror[S(d1) ys7(IE (§;0)

—vy-PF(8;0)—v-84-PG,(§;0)

_O-p,vq,u,PVHw(q;o))

X S(42)il"(d2,012)S(d12)iI')(d12,91)]-
(23)

Using Eqs.(10)—(12), Eq. (21) simplifies to

(k. ko) =R (kg ko) + 10T (ki ko) (29)

p puv

3

T A
S(Ql)?’sz(?"PAo(qz)

A
Riv(klakz) == chq trpe
+7y-80- P2Ag(G%)

X S(02)il' (02,0120 S(A12)i1I')(d12,01) |,
(25)

pieces of the axial-vector vertex to generate that part of the
AVV vertex which isconserved

To reveal the anomalous contribution to the divergence,
consider Eq(26), in which using Eqs(4) and(18) yields

Tp,y( kl7k2) /.vaaklkaO',](O) (30)

710)- | "dssEAwUAL w0l S0 o8- 002

+s0(Ay0e—Boal) 1} (39
Now, introducing C(s):=B(s)%/[sAy(s)?], Eq. (31)
simplifies to
= Exs0)  C'(s)
mPi=0)=- | ass s vcwp 2

which, using Eq/(9), yields

o 1 1
f?T'Z(F’z:O):fO deZE, (33)

so that, in the chiral limit

p/];),u,v( klikZ) klkaU (34)

,quo‘

Hence, the pseudoscalar piece of the neutral-pion Bethe-
Salpeter amplitude provides the only nonzero contribution to
the divergence of the AVV amplitude. This contribution is
just that identified with the “triangle anomaly,” and the re-
sult is independentof detailed information aboul’, and
S(p). It follows straightforwardly from Eqgs(30) and (33)
that
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mi agm , mf’, e 2 shell® We_introduce the dimensionless functionsg(&)
Iov= 167 72 X0°= g2 (Tf?,) . (39 ;);(I;s(r\);?t,hav(g) =\20y(p?), wherep?=2\2¢, \ is a mass

We emphasize that in obtaining the results in this section;s(g) — 2MF(2(&+M2))+ F(b,€) F(bsé) (Dg+ by F(££))
DCSB was crucial, since it originates and is manifest in a (35)

nonzero value oB,, in the identity betweeB, andE ., and

in other identities: Eqs(10)—(12). — (e
Our derivation is a generalization of that in REE6] and, Tu( &)= 2(£+m°)—1+e 2

to make it simple, particular care was taken in choosing the v 2(¢+m?)? ’

momentum routing in Eq(16). This was necessary because

it is impossible to simultaneously preserve the vector and@nd F(y):=[1—exp(=y)]ly. This five-parameter algebraic

axial vector Ward-Takahashi identities for triangle diagramsgform, wherem is theu/d current-quark mass, combines the

in field theories with axial currents that are bilinear in fer- effects of confinemefitand DCSB with free-particle behav-

mion fields. This choice of variables ensures the preservatiol®r at large, spacelik@?.®

of the vector Ward-Takahashi identity, which is tied to elec- The chiral limit vacuum quark condensate in QCD is

tromagnetic current conservation. With another choice o0f10,11

variazbles, surface terms arise that modify the value of 3

R(P“=0). However, these are always eliminated by sub- — 0 . M2 0

traction in any regularization of the theory that ensures elec- —(aa),= I;m Zy(p*M?) 472 jo dssog(s),

tromagnetic current conservatiph7]. M"=ee (41)

(40)

lll. ELECTROMAGNETIC PION FORM FACTOR where at one-loop  order Z,(u? M?)=[a(M?)/
As another example of the importancelaf’s pseudovec- a(“z)]ym(lfélg)’ with £ the covariant-gauge fixing parameter
tor components, we consider the electromagnetic pion forr‘rﬁgzO ;pemﬁes Landau gaugand 7”‘:.12/(33?_2'\]“) the
factor, calculated in the renormalized impulse approximagauge—|ndepen2den2t af‘or_‘”a'ous mass d_|men5|on§ﬂlapen-
tion: dEnce of Z,(u,M?) is just that required to ensure that
(qq)ﬁ is gauge independent. The parametrization of (86)
is a model that corresponds to the replacemgpt->1 in

+P2) F(0?)=A ,(p1,
(Pt P2)uF#(a)=Au(pr P2) Landau gauge, in which case Hg0) yields

C2Ne [ d'%k o — DS K
=Nz W“D[gﬂ( —P2)S(ky 1) @0 =% #’ 3 by 2
A= K2 an?biby

XIT (K, k)

X S(Ky )G, (k—q/2;py)S(k_ )], This is the signature of DCSB in the model parametrization
and we calculate the pion mass from
(36)
2¢2 —-\0
Kap=K+ ap1/2+ Bg/2 andp,:=p; +q. Again, no renormal- me o =2m(aa)1 gew (43
ization constants appear explicitly in E(B6) because the
renormalized dressed-quark-photon verte¥,, satisfies the
vector Ward-Takahashi identity, E¢L7). This also ensures
current conservation:

When all the components &f, are retained, Eq43) yields
an approximation to the pion mass found in a solution of the
Bethe-Salpeter equation that is accurate to[2%.
The model parameters are fixed by requiring a good de-
37) scription of a range of pion observables. This procedure ex-
plores our hypothesis that the bulk of pion observables can
We note that from the normalization condition f6r., Eq. be understood as the result of nonperturbative dressing of the

(13), and Egs(17) and (36) quark and gluon propagators.

(pl_ pZ),uA;L( P1, p2) =0.

F(g°=0)=1 (38
) ) o o 3The procedure actually employed in REE8] can, at best, only
if, and only if, one employs a truncation in whi¢his inde-  reproduce our results.
pendent ofP. One such scheme is the rainbow-ladder trun- “The representation &(p) as an entire function is motivated by
cation of Ref[11]. the algebraic solutions of Eq3) in Refs.[19]. The concomitant
absence of a Lehmann representation is a sufficient condition for
A. Quark propagator confinemen(2,20].

) ) At large p% oy(p?)~1/p? and o5(p?)~m/p?. The parametri-

To calculateF .(q°) we employ an algebraic parametri- zation therefore does not incorporate the additionalp?in
zation of the renormalized dressed-quark propagator that efyppression characteristic of QCD. It is a useful but not necessary
ficiently (_:haracterl_zes many e_ssentlal and robust elemgnts @fmplification, which introduces model artefacts that are easily
the solutions obtained in studies of the quark DSE. This deidentified and accounted fos=0.01 is introduced only to decouple
fines Eq.(36) directly Vp?,p3; in particular at the pion mass the large- and intermediafg? domains.
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B. Pion Bethe-Salpeter amplitude TABLE I. A comparison between our calculated values of low-

The Chebyshev moments of the scalar functions in o9y plonllaobservables and experiment or, in the case of
andm,q, the values estimated using other theoret-

. (—(A9)? gev
I'7(k;P) are, for example, ical tools. Each of the parameter sets in E4p) yields the same

. 2 (n calculated values. For consistency with Rdfll], we use
E'W(kz;PZ)::;f dB sirfBU;(cos B)E(k;P) (44)  Aqcp=0.234 GeV throughout.
0

Calculated Experiment
with k- P:=k?P? cosp, whereU,(z) is a Chebyshev poly- f 0.092 GeV 0.092
nomial of the second kind. At large?, independent of as- (— (@)% gen) 0.236 0.236:0.008 [21]
sumptions about the form &€, one haq11] Mya 0.006 0.008:0.004 [22]
m, 0.1387 0.1385
0 — 0 a(k?) (g 0.55 fm 0.663-0.006 [23]
EY (k% P?) o —(qQ),2 <z 45 £ 0.25 (dimensionless  0.310+0.003

FO (k% P?), k?G%(Kk?;P?), andk®HC(k?;P?) have precisely providing equally good fits, as illustrated in Tablé& There
the same behavior; i.e_, the asymptotic momentum depeﬂs a domain of parameter sets that Satisfy our f|tt|ng criterion
dence of all these functions is identical to thatRg(k?). ~ and they are distinguished only by the calculated magnitude
This makes manifest the “hard-gluon” contribution to Of the pion form factor at largg?. The two sets in Eq(48)
F.(g?) in Eq.(36). Further, in an asymptotically free theory, delimit reasonable boundaries and illustrate the model de-
where a well constructed rainbow-ladder truncation yields?€ndence in our result. With all parameter sets in the accept-
model-independent results at large[11], able domain, Eq(14) is satisfied exactly in the chiral limit,
in which case we obtaifi®=0.090 GeV, while at the fitted
value ofm, N, /f_=0.97.

0/1,2.p2\ — 50 (2. 2 _ . o
k?Go (K% P?)=2F3 (K% P?), K*=Mpy, (46) In our calculationf .r . is 20% too small. This discrep-
ancy cannot be reduced in the impulse approximation be-
with M yy =10 ocp. cause the nonanalytic contributions to the dressed-quark-

photon vertex associated with 7 rescattering and the tail of
the p-meson resonance are ignof&. It can only be elimi-
nated if these contributions are included. We have thus iden-
tified a constraint on realistic, impulse approximation calcu-
lations: they should not reproduce the experimental value of
- - 10 better than~20%, otherwise the model employed
as unphysical degrees-of-freedom.

Our calculated pion form factor is compared with avail-
able data in Figs. 1 and 2. It is also compared with the result
obtained in Ref[14], wherein the calculation is identical
exceptthat the pseudovector components of the pion were
neglected. Figure 1 shows a small, systematic discrepancy
between both calculations and the data at gy which is
due to the underestimate of. in impulse approximatiof.
The results obtained with or without the pseudovector com-
_ ponents of the pion Bethe-Salpeter amplitude are quantita-
with F.(k;P)=E.(k;P)/(110f;), G.(k;P)=2F.(kip)/  tively the same, which indicates that the pseudoscalar com-
[k*+Mgy], and H,(k;P)=0. The relative magnitude of ponentE_. is dominant in this domain.

these functions at larde? is chosen to reproduce the numeri-  The increasing uncertainty in the experimental data
cal results of Ref[11].

In a model exemplar used in R¢fL1] the zeroth Cheby-
shev moments provided results for, andf . that were in-
distinguishable from those obtained with the full solution.
Also H =0 and hence it was quantitatively unimportant in
the calculation ofm_ andf .. We expect that these results
are not specific to that particular model. In the latter cas%]
because the right-hand side of Efl) is zero, and hence in
general there is no “seed” term fad ..

These observations, combined with E®)—(12), moti-
vate a model fod” .:

En(k;P)= NiBo(kz) (47)

C. Results The quark propagator obtained with these parameter values is

. N ointwise little different from that obtained in R¢fl4]. One gauge
We determined the model parameters by optimizing agf this is the value of the Euclidean constituent quark mass; i.e., the

least-squares fit tb, r ., and{qd); gey, and a selection of .0 ¢ p2+M?(p?)=0. HereME ,=0.32 GeV whereas!®,

pion form factor data on the d(_)ma'mze [0,4] GeV~. The  _0.30 GeV in Ref[14]. It is also qualitatively similar to the nu-
procedure does not yield a unique parameter set with, foferical solution obtained in Refi11], whereME = 0.56 GeV. In-
example, the two sets: deed, our results are not sensitive to details of the fitting function:

fitting with different confining, algebraic forms yield®(p) that is
— pointwise little changed, and the same results for observables.
MGeV) m bo by b, bs "Just as in the present calculatidny .= 0.25 in Ref.[14]. How-
A 0473 00127 0.329 151 0.429 0.43048  ever, the mass scale is fixed so tfiat=0.084, which is why this
B 0.484 0.0125 0.314 1.63 0.445 0.405, result appears to agree better with the data at spialt . is larger.
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1.0 | T T 2N (_ /A~\0 2
L a(g?) (=(qd)q2)”
I T F7T(q )oc qZ .I::lT ’ (49)
08 = .
i.e., q°F _(g?)~const, up to calculable lg? corrections. If
I \T\ the pseudovector componentslof are neglected, the addi-
0.6+ | - . tional numerator factor afi? is missing and one obtaifi$4]
< | ~~T q*F (g% ~const.
P Th e~ In our model the behavior identified in EG9) becomes
04r 7 apparent atg’=2M3J,,. This is the domain on which
the asymptotic behavior indicated by Eg5) is manifest.
r Our calculated results, obtained with the two sets of
02 r i parameters in Eq48), illustrate the model-dependent uncer-
tainty:
%% T oz o4 os 0°F (9%)]q2~10-15 cew~0.12—-0.19 Ge¥.  (50)
a* (GeV)

This uncertainty arises primarily because the model allows

FIG. 1. Calculated pion form factor compared with data at smallfor a change in one parameter to be compensated by a
qz. The d.ata.are from REfi23] (CrOSSES and [24] (circles). Change in another. In our examp|bg>b§ but bg+ bg
The solid line is Fhe result obtained when t.he pseudoyector compo- bé+ bA; andb’fb’;: b?bg. This allows an equally good fit
nents of the pion Bethe-Salpeter amplitude are included, thc,?o |
dashed line when they are neglecteldt]. On the scale of this
figure, both parameter sets in E@8) yield the same calculated
result.

ow-energy properties but alters the intermedigtebe-
havior of F.(g?). In a solution of Eq(3) these coefficients
of the 1p* and 1p® terms are correlated and such compen-
sations cannot occur.

As a comparison, evaluating the leading-order
at intermediatey® is apparent in Fig. 2, as is the difference perturbative-QCD result with the asymptotic quark distribu-
between the results calculated with or withouttion amplitude: ¢,dX):=/3f . x(1—x), yields q?F_(q?)
the pseudovector components of the pion Bethe-Salpetes 1677fia(q2)~0_15 GeV, assuming a value ofa(q2
amplitude. These components provide the dominant contri~~ 10 Ge\?)~0.3. However, the perturbative analysis ne-
bution to F_(g?) at large pion energy because of the glects the anomalous dimension accompanying condensate
multiplicative factors:y-P and y-kk- P, which contribute formation®
an additional power ofg? in the numerator of those
terms involvingF?, FG, and G? relative to those propor- IV. CONCLUSIONS
tional to E. Using the method of Ref14] and the model-
independent asymptotic behavior indicated by E) we
find

Using the Dyson-Schwinger equations it is straightfor-
ward to show that, as a consequence of the dynamical chiral
symmetry breaking mechanism, the pion is a nearly mass-
less, pseudoscalar, quark-antiquark bound $idiel 1]. As a
corollary, the complete pion Bethe-Salpeter amplitude nec-
essarily contains pseudovector and pseudotensor compo-
nents, which are always qualitatively important. In model
studies, the quantitative effect of these components can be
obscured in the calculation of many pion observables; i.e.,
within a judiciously constructed framework, applied at low-
to intermediate-energy, their effect can be absorbed into the
values of the model paramet€is,14]. However, they are
crucial to a proper realization of anomalous current diver-
gences, crucial to obtaining a uniformly accurate connection
between the low- and high-energy domains, and they provide
the dominant contribution to the electromagnetic pion form
factor atq®>>10 Ge\~.
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