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Pseudovector components of the pion,p0
˜gg, and F p„q
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As a consequence of dynamical chiral symmetry breaking the pion Bethe-Salpeter amplitude necessarily
contains terms proportional tog5g•P andg5g•k, wherek is the relative andP the total momentum of the
constituents. These terms are essential for the preservation of low-energy theorems, such as the Gell-Mann–
Oakes-Renner relation and those describing anomalous decays of the pion, and to obtaining an electromagnetic
pion form factor that falls as 1/q2 for largeq2, up to calculable lnq2 corrections. In a simple model, which
correlates low- and high-energy pion observables, we findq2Fp(q2);0.12– 0.19 GeV2 for q2*10 GeV2.
@S0556-2813~98!02512-6#

PACS number~s!: 13.40.Gp, 14.40.Aq, 12.38.Lg, 24.85.1p
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I. PION AS A BOUND STATE

Understanding the pion is a key problem in strong int
action physics. As the lowest mass excitation in the stro
interaction spectrum it must provide the long-range attrac
in NN potentials@1#. In QCD, it is a quark-antiquark boun
state whose low- and high-energy properties should be
derstandable in terms of its internal structure, and it is a
that nearly massless, collective excitation which is the re
ization of the Goldstone mode associated with dynam
chiral symmetry breaking~DCSB!. An explanation of these
properties requires a melding of the study of the many-b
aspects of the QCD vacuum with the analysis of two-bo
bound states. The Dyson-Schwinger equations~DSE’s! pro-
vide a single, Poincare´ invariant framework that is wel
suited to this problem.

The DSE’s are a system of coupled integral equations
truncations are employed to define a tractable problem
truncating the system it is straightforward to preserve
global symmetries of a gauge field theory@2# and, although
preserving the local symmetry is more difficult, progress
being made@3#. The approach has been applied extensiv
@4# to the study of confinement, and to DCSB where t
similarity between the ground state of QCD and that o
superconductor can be exploited, with the QCD gap equa
realized as the quark DSE. It has also been employe
studying meson-meson and meson-photon interactions@5#,
heavy meson decays@6#, QCD at finite temperature and den
sity @7#, and strong interaction contributions to weak intera
tion phenomena@8,9#.

Studying the pion as a bound state requires an underst
ing of its ~fully amputated! Bethe-Salpeter amplitude, whic
has the general form

Gp
j ~k;P!5t jg5@ iEp~k;P!1g•PFp~k;P!

1g•kk•PGp~k;P!1smnkmPnHp~k;P!#,

~1!

where $t j% j 51...3 are the Pauli matrices.Gp
j satisfies the

renormalized, homogeneous Bethe-Salpeter equation
PRC 580556-2813/98/58~6!/3659~7!/$15.00
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@Gp
j ~k;P!# tu5E

q

L

@xp
j ~q;P!#srKtu

rs~q,k;P!, ~2!

wherek is the relative andP is the total momentum of the
quark-antiquark pair, xp

j (q;P)ªS(q1)Gp
j (q;P)S(q2),

r ,...,u represent color, flavor, and Dirac indices,q65q
6P/2, and *q

L
ª*Ld4q/(2p)4 represents mnemonically

translationally invariant regularization of the integral, withL
the regularization mass scale:L→` is the last step in any
calculation. In Eq.~2!, K is the fully amputated, renormal
ized quark-antiquark scattering kernel andS is the renormal-
ized dressed-quark propagator, which is the solution of

S~p!215Z2~ ig•p1mbm!1Z1E
q

L

g2Dmn

3~p2q!gmS~q!Gn~q,p!, ~3!

whereDmn(k) is the renormalized dressed-gluon propagat
Gm(q;p) is the renormalized dressed-quark-gluon vert
and mbm(L) is the Lagrangian current-quark bare mass.
Eq. ~3!, Z1 andZ2 are the renormalization constants for th
quark-gluon vertex and quark wave function, and the ch
limit is obtained withmbm(L)50. The solution of Eq.~3!
has the general form

S~p!52 ig•psV~p2!1sS~p2![
1

ig•pA~p2!1B~p2!
.

~4!

Also important in the study of the pion is the chiral-limi
axial-vector Ward-Takahashi identity

2 iPmG5m
j ~q;P!5S21~q1!g5

t j

2
1g5

t j

2
S21~q2!. ~5!

This identity relates the renormalized, dressed-quark pro
gator to the renormalized axial-vector vertex, which satisfi
3659 ©1998 The American Physical Society
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@G5m
j ~k;P!# tu5Z2Fg5gm

t j

2 G
tu

1E
q

L

@x5m
j ~q;P!#srKtu

rs~q,k;P!, ~6!

where x5m
j (q;P)ªS(q1)G5m

j (q;P)S(q2). In the chiral
limit the general solution of Eq.~6! is @10,11#

G5m
j ~k;P!5

t j

2
g5@gmFR~k;P!1g•kkmGR~k;P!

2smnknHR~k;P!#1G̃5m
j ~k;P!

1 f p
0 Pm

P2 Gp~k;P!, ~7!

where FR , GR , HR , and G̃5m
j are regular asP2→0;

PmG̃5m
j (k;P);O(P2); Gp(k;P) is the amplitude in Eq.~1!;

and the residue of the pole in the axial-vector vertex isf p
0 ,

the chiral-limit leptonic decay constant, which is obtain
from

d i j f pPm5Z2E
q

L

trFt i

2
g5gmS~q1!Gp

j ~q;P!S~q2!G . ~8!

~This expression is valid for arbitrary values of the qua
mass.! Now, independent of assumptions about the the fo
of K, it follows @10# from Eqs.~4!, ~5!, and~7! that

f p
0 Ep~k;0!5B0~k2!, ~9!

FR~k;0!12 f p
0 Fp~k;0!5A0~k2!, ~10!

GR~k;0!12 f p
0 Gp~k;0!52A08~k2!, ~11!

HR~k;0!12 f p
0 Hp~k;0!50, ~12!

whereA0 andB0 are the chiral limit solutions of Eq.~3!. A
necessary consequence of Eqs.~9!–~12! is that the
pseudovector componentsFp andGp , and the pseudotenso
componentHp , are nonzero in Eq.~1!. This corrects a mis-
apprehension@12# that only EpÞ0 and has important phe
nomenological consequences.

Normalization of the pion field

To highlight one such consequence we note that Eq.~2!,
the homogeneous Bethe-Salpeter equation, does not d
mine the normalization of the Bethe-Salpeter amplitude. T
canonical normalization is fixed by requiring that the pi
pole in the quark-antiquark scattering amplitude:MªK/@1
2(SS)K#, have unit residue. As an alternative, one can n
malize the solution of Eq.~2! by requiring thatE(0;0)
5B(0) in the chiral limit. In terms of the amplitudeGp(k;P)
defined in this way, the canonical normalization condition
ter-
e

r-

s

2d i j Np
2 Pm5E

q

L H trF Ḡp
i ~q;2P!

]S~q1!

]Pm
G p

j ~q;P!S~q2!G
1trF Ḡp

i ~q;2P!S~q1!G p
j ~q;P!

]S~q2!

]Pm
G J

1E
q

LE
k

L

@x̄G p

i ~q;2P!#sr

]Ktu
rs~q,k;P!

]Pm

3@xG p

j ~k;P!#ut , ~13!

whereḠp(q;2P) t
ªC21Gp(2q;2P)C with C5g2g4 , the

charge conjugation matrix, andXt denoting the matrix trans
pose ofX. Equation~13! defines the pion normalization con
stant,Np , which has mass dimension one. Physical obse
ables are expressed in terms ofGp(k;P)ª(1/Np)Gp(k;P).

In the chiral limit, when all the amplitudes in Eq.~1! are
retained, one obtains@10#

f p
0 5Np

0 . ~14!

However, Eq.~14! is violated in bound-state treatments
the pion that neglect the pseudovector components of
Bethe-Salpeter amplitude@11#.1

II. ANOMALOUS NEUTRAL PION DECAY

The pseudovector components of the pion also play a s
cial role in the anomalousp0→gg decay. Consider the
renormalized, impulse approximation to the axial-vecto
photon-photon~AVV ! amplitude:2

Trmn~k1 ,k2!ªTrmn~k1 ,k2!1Trnm~k2 ,k1!, ~15!

Trmn~k1 ,k2!ªNcE
q

L

$trDF@S~q1!

3G5r
3 ~ q̂;2P!S~q2!iGm

g ~q2 ,q12!

3S~q12!iGn
g~q12,q1!#%, ~16!

wherek1 , k2 are the photon momenta@k1
2505k2

2, 2k1•k2

5P2#, q is the loop momentum, andq1ªq2k1 , q2ªq
1k2 , q̂ª 1

2 (q11q2), q12ªq2k11k2 .
Here Gm

g (p1 ,p2) is the renormalized, dressed-quar
photon vertex, and it is because this vertex satisfies the
tor Ward-Takahashi identity:

~p12p2!miGm
g ~p1 ,p2!5S21~p1!2S21~p2!, ~17!

that no renormalization constants appear explicitly in E
~16!. Gm

g (p1 ,p2) has been much studied@3# and, although its
exact form remains unknown, its robust qualitative featu
have been elucidated so that a phenomenologically effi
cious ansatz has emerged@13#

1Np in Eq. ~13! provides the best numerical approximation to t
pion’s leptonic decay constant in analyses that neglect
pseudovector components and employ aP-independent form forK.

2In our Euclidean metric:gm
† 5gm , $gm ,gn%52dmn , and a space-

like vector,km , hask2.0.
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iGm
g ~p,q!ª iSA~p2,q2!gm1~p1q!m

3@ 1
2 ig•~p1q!DA~p2,q2!1DB~p2,q2!#,

~18!

S f~p2,q2!ª 1
2 @ f ~p2!1 f ~q2!#, ~19!

D f~p2,q2!ª
f ~p2!2 f ~q2!

p22q2 , ~20!

where f 5A,B. A feature of Eq.~18! is that the vertex is
completely determined by the renormalized dressed-qu
propagator. In the Landau gauge the quantitative effec
modifications, such as that canvassed in Ref.@14#, is small
and can be compensated for by small changes in the pa
eters that characterize a given model study@15#.

In the chiral limit (P250) using Eqs.~1! and ~7!, the
divergence of the AVV vertex is

PrTrmn~k1 ,k2!5Rmn
3 ~k1 ,k2!1 f p

0 Tmn
3 ~k1 ,k2!, ~21!

where the direct contribution from the axial-vector vertex

Rmn
3 ~k1 ,k2!ª2NcE

q

L

trDFFS~q1!g5

t3

2
~g•PFR~ q̂;0!

1g•q̂q̂•PGR~ q̂;0!1smnq̂mPnHR~ q̂;0!!

3S~q2!iGm
g ~q2 ,q12!S~q12!iGn

g~q12,q1!G ,
~22!

and that from the pion bound state is

Tmn
3 ~k1 ,k2!ªNcE

q

L

trDF@S~q1!g5t3~ iEp~ q̂;0!

2g•PFp~ q̂;0!2g•q̂q̂•PGp~ q̂;0!

2smnq̂mPnHp~ q̂;0!!

3S~q2!iGm
g ~q2 ,q12!S~q12!iGn

g~q12,q1!#.

~23!

Using Eqs.~10!–~12!, Eq. ~21! simplifies to

PrTrmn~k1 ,k2!5R̂mn
3 ~k1 ,k2!1 f p

0 T̂mn
3 ~k1 ,k2!; ~24!

R̂mn
3 ~k1 ,k2!ª2NcE

q

L

trDFFS~q1!g5

t3

2
~g•PA0~ q̂2!

1g•q̂q̂•P2A08~ q̂2!!

3S~q2!iGm
g ~q2 ,q12!S~q12!iGn

g~q12,q1!G ,
~25!
rk
of

m-

T̂mn
3 ~k1 ,k2!ªNcE

q

L

trDF@S~q1!g5t3iEp~ q̂;0!

3S~q2!iGm
g ~q2 ,q12!S~q12!iGn

g~q12,q1!#.

~26!

Now using Eqs.~4! and ~18! in Eq. ~25! yields

R̂mn
3 ~k1 ,k2!52

aem

p
emnrsk1rk2sR~P250!, ~27!

where@sªq2, A08ª(d/ds)A0(s), etc.#,

R~0!5E
0

`

dss2A0
2sV

0~A0@~sV
0 !21ssV

0sV
081sS

08sS
0#

1sV
0@sA08sV

01B08sS
0# ! ~28!

[0. ~29!

The last line follows because, using Eq.~4! to eliminatesV
0

and sS
0 in favor of A0 and B0 , the integrand is identically

zero. Hence, the pseudovector components of the neu
pion Bethe-Salpeter amplitudecombine with the regular
pieces of the axial-vector vertex to generate that part of
AVV vertex which isconserved.

To reveal the anomalous contribution to the divergen
consider Eq.~26!, in which using Eqs.~4! and ~18! yields

T̂mn
3 ~k1 ,k2!5

aem

p
emnrsk1rk2sT~0!, ~30!

T~0!5E
0

`

dssEpA0sV
0$A0@sV

0sS
01s~sV

08sS
02sV

0sS
08!

1ssV
0~A08sS

02B08sV
0 !#%. ~31!

Now, introducing C(s)ªB0(s)2/@sA0(s)2#, Eq. ~31!
simplifies to

T~P250!52E
0

`

dss
Ep~s;0!

B0~s!

C8~s!

@11C~s!#3 , ~32!

which, using Eq.~9!, yields

f p
0T~P250!5E

0

`

dC
1

~11C!3 5
1

2
, ~33!

so that, in the chiral limit

PrTrmn~k1 ,k2!5
aem

p
emnrsk1rk2s . ~34!

Hence, the pseudoscalar piece of the neutral-pion Be
Salpeter amplitude provides the only nonzero contribution
the divergence of the AVV amplitude. This contribution
just that identified with the ‘‘triangle anomaly,’’ and the re
sult is independentof detailed information aboutGp and
S(p). It follows straightforwardly from Eqs.~30! and ~33!
that
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Gp0→gg5
mp

3

16p

aem
2

p2 T~0!25
mp

3

64p S aem

p f p
0 D 2

. ~35!

We emphasize that in obtaining the results in this sec
DCSB was crucial, since it originates and is manifest in
nonzero value ofB0 , in the identity betweenB0 andEp , and
in other identities: Eqs.~10!–~12!.

Our derivation is a generalization of that in Ref.@16# and,
to make it simple, particular care was taken in choosing
momentum routing in Eq.~16!. This was necessary becau
it is impossible to simultaneously preserve the vector a
axial vector Ward-Takahashi identities for triangle diagra
in field theories with axial currents that are bilinear in fe
mion fields. This choice of variables ensures the preserva
of the vector Ward-Takahashi identity, which is tied to ele
tromagnetic current conservation. With another choice
variables, surface terms arise that modify the value
R(P250). However, these are always eliminated by su
traction in any regularization of the theory that ensures e
tromagnetic current conservation@17#.

III. ELECTROMAGNETIC PION FORM FACTOR

As another example of the importance ofGp’s pseudovec-
tor components, we consider the electromagnetic pion fo
factor, calculated in the renormalized impulse approxim
tion:

~p11p2!mFp~q2!ªLm~p1 ,p2!

5
2Nc

Np
2 E d4k

~2p!4trD@ Ḡp~k;2p2!S~k11!

3 iGm
g ~k11 ,k12!

3S~k12!Gp~k2q/2;p1!S~k22!#,

~36!

kabªk1ap1/21bq/2 andp2ªp11q. Again, no renormal-
ization constants appear explicitly in Eq.~36! because the
renormalized dressed-quark-photon vertex,Gm

g , satisfies the
vector Ward-Takahashi identity, Eq.~17!. This also ensures
current conservation:

~p12p2!mLm~p1 ,p2!50. ~37!

We note that from the normalization condition forGp , Eq.
~13!, and Eqs.~17! and ~36!

F~q250!51 ~38!

if, and only if, one employs a truncation in whichK is inde-
pendent ofP. One such scheme is the rainbow-ladder tru
cation of Ref.@11#.

A. Quark propagator

To calculateFp(q2) we employ an algebraic parametr
zation of the renormalized dressed-quark propagator tha
ficiently characterizes many essential and robust elemen
the solutions obtained in studies of the quark DSE. This
fines Eq.~36! directly ;p1

2 ,p2
2; in particular at the pion mas
n
a

e

d
s

n
-
f
f
-
c-

m
-

-

f-
of
-

shell.3 We introduce the dimensionless functions:s̄S(j)
ªlsS(p

2), s̄V(j)ªl2sV(p2), wherep25l2j, l is a mass
scale, with

s̄S~j!52m̄F„2~j1m̄2!…1F~b1j!F~b3j!„b01b2F~«j!…,
~39!

s̄V~j!5
2~j1m̄2!211e22~j1m̄2!

2~j1m̄2!2 , ~40!

and F(y)ª@12exp(2y)#/y. This five-parameter algebrai
form, wherem̄ is theu/d current-quark mass, combines th
effects of confinement4 and DCSB with free-particle behav
ior at large, spacelikep2.5

The chiral limit vacuum quark condensate in QCD
@10,11#

2^q̄q&m
0
ª lim

M2→`

Z4~m2,M2!
3

4p2 E
0

M2

dsssS
0~s!,

~41!

where at one-loop order Z4(m2,M2)5@a(M2)/
a(m2)#gm(11j/3), with j the covariant-gauge fixing paramet
~j50 specifies Landau gauge! and gm512/(3322Nf) the
gauge-independent anomalous mass dimension. Thej depen-
dence of Z4(m2,M2) is just that required to ensure tha
^q̄q&m

0 is gauge independent. The parametrization of Eq.~38!
is a model that corresponds to the replacementgm→1 in
Landau gauge, in which case Eq.~40! yields

2^q̄q&m
0 5l3ln

m2

LQCD
2

3

4p2

b0

b1b3
. ~42!

This is the signature of DCSB in the model parametrizat
and we calculate the pion mass from

mp
2 f p

2 52m^q̄q&1 GeV
0 . ~43!

When all the components ofGp are retained, Eq.~43! yields
an approximation to the pion mass found in a solution of
Bethe-Salpeter equation that is accurate to 2%@11#.

The model parameters are fixed by requiring a good
scription of a range of pion observables. This procedure
plores our hypothesis that the bulk of pion observables
be understood as the result of nonperturbative dressing o
quark and gluon propagators.

3The procedure actually employed in Ref.@18# can, at best, only
reproduce our results.

4The representation ofS(p) as an entire function is motivated b
the algebraic solutions of Eq.~3! in Refs. @19#. The concomitant
absence of a Lehmann representation is a sufficient condition
confinement@2,20#.

5At large p2: sV(p2);1/p2 and sS(p2);m/p2. The parametri-
zation therefore does not incorporate the additional lnp2-
suppression characteristic of QCD. It is a useful but not neces
simplification, which introduces model artefacts that are ea
identified and accounted for.«50.01 is introduced only to decoupl
the large- and intermediate-p2 domains.
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B. Pion Bethe-Salpeter amplitude

The Chebyshev moments of the scalar functions
Gp(k;P) are, for example,

Ep
i ~k2;P2!ª

2

p E
0

p

db sin2b Ui~cosb!Ep~k;P! ~44!

with k•PªAk2P2 cosb, whereUi(z) is a Chebyshev poly-
nomial of the second kind. At largek2, independent of as
sumptions about the form ofK, one has@11#

Ep
0 ~k2;P2!}2^q̄q&k2

0 a~k2!

k2 . ~45!

Fp
0 (k2;P2), k2Gp

0 (k2;P2), andk2Hp
0 (k2;P2) have precisely

the same behavior; i.e., the asymptotic momentum dep
dence of all these functions is identical to that ofB0(k2).
This makes manifest the ‘‘hard-gluon’’ contribution t
Fp(q2) in Eq. ~36!. Further, in an asymptotically free theor
where a well constructed rainbow-ladder truncation yie
model-independent results at largek2 @11#,

k2Gp
0 ~k2;P2!52Fp

0 ~k2;P2!, k2*MUV
2 , ~46!

with MUVª10LQCD.
In a model exemplar used in Ref.@11# the zeroth Cheby-

shev moments provided results formp and f p that were in-
distinguishable from those obtained with the full solutio
Also Hp.0 and hence it was quantitatively unimportant
the calculation ofmp and f p . We expect that these resul
are not specific to that particular model. In the latter ca
because the right-hand side of Eq.~11! is zero, and hence in
general there is no ‘‘seed’’ term forHp .

These observations, combined with Eqs.~9!–~12!, moti-
vate a model forGp :

Ep~k;P!5
1

Np
B0~k2! ~47!

with Fp(k;P)5Ep(k;P)/(110f p), Gp(k;P)52Fp(k;p)/
@k21MUV

2 #, and Hp(k;P)[0. The relative magnitude o
these functions at largek2 is chosen to reproduce the nume
cal results of Ref.@11#.

C. Results

We determined the model parameters by optimizing
least-squares fit tof p , r p , and^q̄q&1 GeV

0 , and a selection of
pion form factor data on the domainq2P@0,4# GeV2. The
procedure does not yield a unique parameter set with,
example, the two sets:

l~GeV! m̄ b0 b1 b2 b3

A 0.473 0.0127 0.329 1.51 0.429 0.430,~48!
B 0.484 0.0125 0.314 1.63 0.445 0.405,
n

n-

s

.

e

a

or

providing equally good fits, as illustrated in Table I.6 There
is a domain of parameter sets that satisfy our fitting criter
and they are distinguished only by the calculated magnit
of the pion form factor at largeq2. The two sets in Eq.~48!
delimit reasonable boundaries and illustrate the model
pendence in our result. With all parameter sets in the acc
able domain, Eq.~14! is satisfied exactly in the chiral limit
in which case we obtainf p

0 50.090 GeV, while at the fitted
value ofm, Np / f p50.97.

In our calculationf pr p is 20% too small. This discrep
ancy cannot be reduced in the impulse approximation
cause the nonanalytic contributions to the dressed-qu
photon vertex associated withp-p rescattering and the tail o
the r-meson resonance are ignored@8#. It can only be elimi-
nated if these contributions are included. We have thus id
tified a constraint on realistic, impulse approximation calc
lations: they should not reproduce the experimental value
f pr p to better than;20%, otherwise the model employe
has unphysical degrees-of-freedom.

Our calculated pion form factor is compared with ava
able data in Figs. 1 and 2. It is also compared with the re
obtained in Ref.@14#, wherein the calculation is identica
exceptthat the pseudovector components of the pion w
neglected. Figure 1 shows a small, systematic discrepa
between both calculations and the data at lowq2, which is
due to the underestimate ofr p in impulse approximation.7

The results obtained with or without the pseudovector co
ponents of the pion Bethe-Salpeter amplitude are quan
tively the same, which indicates that the pseudoscalar c
ponentEp is dominant in this domain.

The increasing uncertainty in the experimental d

6The quark propagator obtained with these parameter value
pointwise little different from that obtained in Ref.@14#. One gauge
of this is the value of the Euclidean constituent quark mass; i.e.,
solution of p21M2(p2)50. HereMu/d

E 50.32 GeV whereasMu/d
E

50.30 GeV in Ref.@14#. It is also qualitatively similar to the nu-
merical solution obtained in Ref.@11#, whereMu/d

E 50.56 GeV. In-
deed, our results are not sensitive to details of the fitting functi
fitting with different confining, algebraic forms yieldsS(p) that is
pointwise little changed, and the same results for observables.

7Just as in the present calculation,f pr p50.25 in Ref.@14#. How-
ever, the mass scale is fixed so thatf p50.084, which is why this
result appears to agree better with the data at smallq2: r p is larger.

TABLE I. A comparison between our calculated values of lo
energy pion observables and experiment or, in the case
(2^q̄q&1 GeV

0 )1/3 andmu/d , the values estimated using other theor
ical tools. Each of the parameter sets in Eq.~48! yields the same
calculated values. For consistency with Ref.@11#, we use
LQCD50.234 GeV throughout.

Calculated Experiment

f p 0.092 GeV 0.092
(2^q̄q&1 GeV

0 )1/3 0.236 0.23660.008 @21#

mu/d 0.006 0.00860.004 @22#

mp 0.1387 0.1385
r p 0.55 fm 0.66360.006 @23#

r p f p 0.25 ~dimensionless! 0.31060.003
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at intermediateq2 is apparent in Fig. 2, as is the differenc
between the results calculated with or witho
the pseudovector components of the pion Bethe-Salp
amplitude. These components provide the dominant con
bution to Fp(q2) at large pion energy because of th
multiplicative factors:g•P and g•kk•P, which contribute
an additional power ofq2 in the numerator of those
terms involvingF2, FG, and G2 relative to those propor
tional to E. Using the method of Ref.@14# and the model-
independent asymptotic behavior indicated by Eq.~45! we
find

FIG. 2. Calculated pion form factor compared with the larg
q2 data available: diamonds indicate Ref.@24#; and circles indicate
Ref. @25#. The solid lines are the results obtained when
pseudovector components of the pion Bethe-Salpeter amplitude
included~lower line is setA in Eq. ~48!; upper line is setB!, the
dashed line when they are neglected@14#.

FIG. 1. Calculated pion form factor compared with data at sm
q2. The data are from Refs.@23# ~crosses! and @24# ~circles!.
The solid line is the result obtained when the pseudovector com
nents of the pion Bethe-Salpeter amplitude are included,
dashed line when they are neglected@14#. On the scale of this
figure, both parameter sets in Eq.~48! yield the same calculated
result.
er
ri-

Fp~q2!}
a~q2!

q2

~2^q̄q&q2
0

!2

f p
4 ; ~49!

i.e., q2Fp(q2)'const, up to calculable lnq2 corrections. If
the pseudovector components ofGp are neglected, the addi
tional numerator factor ofq2 is missing and one obtains@14#
q4Fp(q2)'const.

In our model the behavior identified in Eq.~49! becomes
apparent atq2*2MUV

2 . This is the domain on which
the asymptotic behavior indicated by Eq.~45! is manifest.
Our calculated results, obtained with the two sets
parameters in Eq.~48!, illustrate the model-dependent unce
tainty:

q2Fp~q2!uq2;10– 15 GeV2;0.12– 0.19 GeV2. ~50!

This uncertainty arises primarily because the model allo
for a change in one parameter to be compensated b
change in another. In our example:b2

B.b2
A but b0

B1b2
B

5b0
A1b2

A ; andb1
Ab3

A5b1
Bb3

B . This allows an equally good fi
to low-energy properties but alters the intermediate-q2 be-
havior of Fp(q2). In a solution of Eq.~3! these coefficients
of the 1/p4 and 1/p6 terms are correlated and such compe
sations cannot occur.

As a comparison, evaluating the leading-ord
perturbative-QCD result with the asymptotic quark distrib
tion amplitude: fas(x)ªA3 f px(12x), yields q2Fp(q2)
516p f p

2 a(q2)'0.15 GeV2, assuming a value ofa(q2

;10 GeV2)'0.3. However, the perturbative analysis n
glects the anomalous dimension accompanying conden
formation.8

IV. CONCLUSIONS

Using the Dyson-Schwinger equations it is straightfo
ward to show that, as a consequence of the dynamical ch
symmetry breaking mechanism, the pion is a nearly ma
less, pseudoscalar, quark-antiquark bound state@10,11#. As a
corollary, the complete pion Bethe-Salpeter amplitude n
essarily contains pseudovector and pseudotensor com
nents, which are always qualitatively important. In mod
studies, the quantitative effect of these components can
obscured in the calculation of many pion observables; i
within a judiciously constructed framework, applied at low
to intermediate-energy, their effect can be absorbed into
values of the model parameters@5,14#. However, they are
crucial to a proper realization of anomalous current div
gences, crucial to obtaining a uniformly accurate connect
between the low- and high-energy domains, and they prov
the dominant contribution to the electromagnetic pion fo
factor atq2.10 GeV2.
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