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Radial excitations in the analysis off-v and h-h8 mixing
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We continue our studies of a unified model of meson structure that makes use of a Nambu–Jona-Lasinio
~NJL! model that has been generalized to include a relativistic model of confinement.~We use Lorentz-vector
confinement, so that the Lagrangian exhibits chiral symmetry in the absence of a quark mass matrix.! Here we
studyf-v andh-h8 mixing. The latter study requires that we include the ’t Hooft interaction in our model. We
study states ofq̄q structure for energiesP2<3 GeV2. The coupledf-v system exhibits ideal mixing, such that
the v and its radially-excited states have no strange quark content, while thef states are puress̄ configura-
tions. In the case ofh-h8 mixing, the ’t Hooft interaction gives rise to aP2-dependent mixing angleuP(P2).
At the energy of theh~547!, uP(mh

2)5211.5°, while at the energy of theh8(958), we haveuP(mh8
2 )

5236.3°, if we take singlet-octet mixing into account. We obtain a satisfactory fit to experimental values for
energies of the radially-excited states of thef-v system, as well as for the decay constants of thev~782! and
thef~1020!. The predictions for the radially-excitedq̄q states of theh andh8 are not as good, if those states
are to be identified as theh~1295! andh~1440!. @However, we do find a state at 1370 MeV which is halfway
between theh~1295! andh~1440!. That suggests the presence of a non-qq̄ state that could mix with our state
at 1370 MeV to produce the two states at 1295 and 1440 MeV. The state at 1370 MeV is found to have very
little ss̄ component. Thus one might suggest a correspondence with thev~1420!, which is also a 2S state.#
Further work is needed to understand the spectrum of theh-h8 system of states aboveP251.0 GeV2, where
one may encounter low-energy pseudoscalar glueball states. We extend our work on singlet-octet mixing to
include pseudoscalar-axialvector mixing. In that case there are two mixing angles and two coupling constants
to be calculated. It is found that the spectrum obtained with singlet-octet mixing is largely unchanged upon
addition of pseudoscalar-axialvector mixing, if a small value for the strength of the ’t Hooft interaction is used.
A small ’t Hooft interaction implies ideal mixing for theh-h8 pair. It remains to be seen if the wave functions
in this case are consistent with experimental decay rates.@S0556-2813~98!04412-4#

PACS number~s!: 24.85.1p, 12.39.Ki, 12.40.Yx, 14.40.Aq
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I. INTRODUCTION

In a number of papers, we have been studying a gene
ized Nambu–Jona-Lasinio model that includes a relativi
model of confinement@1–4#. In general, the inclusion of con
finement will lead to a momentum-dependent quark ma
when we solve the ‘‘gap’’ equation. That feature was tak
into account in an earlier work@2#, where we carried out a
calculation in Euclidean space and showed that the G
stone theorem was satisfied. In the present work, and in m
of our earlier work, we use constant values of the masse
the up, down, strange, charm and bottom quarks. With
approximation, we are able to obtain a good fit to the o
served meson spectra@5#.

One good feature of our model is that the calculatio
procedure is the same for all mesons that are ofqq̄ structure.
In this work we apply our model to the calculation of th
masses ofh and vector mesons in the energy regionP2

<3.0 GeV2. One of our goals is to demonstrate that our~uni-
fied! model of meson spectra works well for a large numb
of mesons of quite different mass values.

The organization of our work is as follows. In Sec. II, w
describe the Lagrangian of our model which includes a re
tivistic model of confinement and the ’t Hooft interactio
That interaction plays an important role in understanding

*Electronic address: CASBC@CUNYVM.CUNY.EDU
PRC 580556-2813/98/58~6!/3648~11!/$15.00
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properties of theh andh8 mesons@6,7#. In the present work
we study whether the ’t Hooft interaction can yield a go
account of the radially-excited states of theh and h8 me-
sons. In Sec. III we describe how the energies of thef andv
mesons are obtained, while in Sec. IV we considerh-h8
mixing. In Sec. V we present the results of our calculatio
of the propertiesf andv mesons ofh-h8 mixing. Finally,
Sec. VI contains some further discussion and conclusion

II. A GENERALIZED NAMBU –JONA-LASINIO MODEL

The Lagrangian we consider in this work is based on
SU~3!-flavor version of the NJL model@6,7#

L5q̄~ i ]”2m0!q1
G1

2 (
i 50

8

@~ q̄l iq!21~ q̄ig5l iq!2#

12H$det@ q̄~11g5!q#1det@ q̄~12g5!q#%

2
G2

2 (
i 50

8

@~ q̄gml iq!21~ q̄gmg5l iq!2#1Lconf,

~2.1!

where m05diag(mu
0,md

0,ms
0) and thel i ( i 51,...,8) are the

Gell-Mann matrices. Herel05(2/3)1/2I , with I being the
unit matrix in flavor space. The term proportional toH is the
’t Hooft interaction andLconf denotes our model of confine
3648 ©1998 The American Physical Society
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PRC 58 3649RADIAL EXCITATIONS IN THE ANALYSIS OF f-v . . .
ment. In Eq.~2.1! we have used the notation of Ref.@8# to
facilitate comparison with that work. We use Lorentz-vec
confinement with

Lconf5E d4yq̄~x!gmq~x!Vc~x2y!q̄~y!gmq~y!.

~2.2!

Here,Vc(r )5kr exp(2mr) wherek is the ‘‘string tension’’
andm is a small parameter used to soften the singularities
the Fourier transform ofVc(r ). The Fourier transform of
Vc(r ) is then

Vc~kY2kY8!528pkF 1

@~kY2kY8!21m2#2
2

4m2

@~kY2kY8!21m2#3G ,

~2.3!

In this work, we study thev, f, h, andh8 mesons and thei
radially excited states. In an earlier work, we studied
spectrum of thev, J/c, and Y mesons and their radially
excited states@5#. Good fits were obtained to the fourtee
states to be found in the data tables. Our work on
v used md5mu50.364 GeV, m50.020 GeV, and k
50.0575 GeV2. ~Since we are using Lorentz-vector confin
ment, this value ofk is not directly related to the value ofk
used in Lorentz-scalar confinement for massive quark s
tems.! We maintain these values of the parameters and s
thef meson here. That study is used to fixG2 of Eq. ~2.1! at
G256.25 GeV22 and the constituent mass of the stran
quark atms50.565 GeV. In this manner, we fix several
the parameters of the model.

III. VECTOR MESONS: f-v MIXING

Our study requires that we introduce a vacuum polari
tion tensor@5,9#

2 i Ĵmn~P!5~21!ncE d4k

~2p!4 Tr@ iS~P/21k!Gm~P,k!

3 iS~2P/21k!ĝn#, ~3.1!

whereS(P)5@P” 2mq1 i e#21. ~See Fig. 1 and Fig. 2.! Here
nc53 is the number of colors andGm(P,k) represents a
vertex function that sums a ‘‘ladder’’ of confining intera
tions. @See Eq.~A2! for the definition ofĝn and see Appen-
dixes A and B for details concerning the calculation
Ĵmn(P) andGm(P,k).# In the case of the up quark, we writ

Ĵu
mn~P!52g̃mn~P!Ĵu

V~P2!, ~3.2!

with g̃mn5gmn2PmPn/P2. A similar definition is made for
Ĵd

V(P2) and Ĵs
V(P2). ~See Fig. 3 and Fig. 4.!

Since thef-v system exhibits ideal mixing, we may ob
tain the energy of thev and its radially excited states b
solving

12GVJv~P2!50, ~3.3!

when GV52G2 and Jv(P2)52Ĵu
V(P2). ~As we will see, a

good fit to thev and its radially excited states is found fo
GV512.5 GeV22, mu50.364 GeV, andk50.0575 GeV2.!
r

f

e

e

s-
dy

-

f

In a similar fashion, we may find the energy of thef and
its radially excited states by solving

12GVJf~P2!50, ~3.4!

with Jf(P2)52Ĵs
V(P2). That analysis leads us to choos

ms50.565 GeV.
Note that for each state found from the solution of Eq

~3.3! and ~3.4! we may define a meson-quark coupling co
stant

gvqq
2 5F ]Jv~P2!

]P2 U
P25m

v
2 G21

~3.5!

and

gfqq
2 5F ]Jf~P2!

]P2 U
P25m

f
2 G21

. ~3.6!

FIG. 1. ~a! The equation for the vertex operators,Gm(P,k), is
shown. The vertex is represented by the filled triangular area
the dashed line represents the confining interaction.~See Fig. 2.! ~b!
A perturbation expansion is shown for the equation in~a!. We see
that the vertex serves to sum a ‘‘ladder’’ of confining interaction

FIG. 2. ~a! The diagram shows the basic vacuum polarizat
diagram of the NJL model that is evaluated in the calculation of
tensor Jmn(P2). ~b! The diagram serves to define the tens

Ĵmn(P2). The shaded triangular area represents the confining ve
of Fig. 1. The right-hand side of the figure shows a perturbat

expansion forĴmn(P2).
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In the case of ideal mixing the expressions for the me
decay constants are simple. We define

^vacuJem
m uv,l&5mv f vel

m~kY !, ~3.7!

for the v and its radial excitations. Hereel
m(kY ) is the polar-

ization vector ofv. Thus,

f v5
gvqq

&

Ĵu
V~mv

2 !

mv
S 2

3
2

1

3D , ~3.8!

where the last factor arises from the charges of the up
down quarks. We find gvqq53.93 and Ĵu(mv

2 )
50.040 GeV2 for the v~782!. These values yieldf v

547.4 MeV, which is close to the experimental value
f v545.960.7 MeV. ~See Table I.! @Note that Ĵu(mv

2 )
5(2G2)

21/2.#
For thef meson, we have

f f5gfqq

Ĵs~mf
2 !

mf
~1/3!. ~3.9!

FIG. 3. The figure showsĴu
V(P2) for the parametersmu

50.364 GeV, k50.0575 GeV2, m50.020 GeV, and L3

50.622 GeV. The singularities, whose position are given by
vertical lines, are at the energies of the bound states of the confi
potential. The peaked structures to the right of the second and
vertical lines indicated the positions of states of angular momen
L52 in the confining potential.
n

nd

f

In the case of thef~1020!, we find gfqq54.78 andĴs(mf
2 )

5(2G2)21/250.040 GeV2, so thatf f562.5 MeV, which is
to be compared to the experimental value of 7862 MeV. We
also note the relation of the widthG(e1,e2) to the decay
constants defined above. For thef meson, for example,

G~e1,e2!5
4pa2

3

f f
2

mf
. ~3.10!

IV. PSEUDOSCALAR MESONS: h-h8 MIXING

For the study of pseudoscalar states, we use some o
notation of Ref.@8# where various effective coupling con
stants were defined. In the presence of the ’t Hooft inter
tion, these coupling constants depend upon the vacuum
densates^ūu&5^d̄d& and ^s̄s&. The effective coupling
constants are

K88
P 52G112Hc88, ~4.1!

K00
P 52G112Hc00, ~4.2!

K08
P 52Hc08, ~4.3!

where

FIG. 4. The figure showsĴs
V(P2) for ms50.565 GeV. ~Other

parameters are those given in the caption to Fig. 3.!
e
ng
ird
m

l
TABLE I. Experiment values for the masses and decay constants@10# are compared to our theoretica
values. Heremu5md50.364 GeV, ms50.565 GeV, K50.0575 GeV2, L350.622 GeV, m50.020 GeV,
andG256.25 GeV22.

Meson
Mass~Expt.!

~MeV!
Mass~Theory!

~MeV!
gvqq or

gfqq

Decay constant (f v , f f) ~MeV!

Expt. Theory

v~782! 78160.12 782a 3.93 45.960.7 47.4
f~1020! 1019.41360.008 1019a 4.78 7862 62.5
v~1420! 1419631 1402 1.26 8.4
v~1600! 1649624 1650 0.861 4.9
f~1680! 1680620 1717 0.731 5.8

aFit by the choice ofG2 andms .
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c0052
2

3
~2^ūu&1^s̄s&!, ~4.4!

c885
1

3
~4^ūu&2^s̄s&!, ~4.5!

and

c085
&

3
~^ūu&2^s̄s&!. ~4.6!

In addition, we define the vacuum polarization functio

2 i Ĵu
P~P2!52ncE d4k

~2p!4 Tr@ iSu~P/21k!i Ḡp~P,k!

3 iSu~2P/21k!ig5#, ~4.7!

where the subscriptu refers to the up quark. There is a sim
lar definition for Js

P(P2). ~See Appendix C.! In terms of
these functions, we define

Ĵ00
P ~P2!5

2

3
@ Ĵu

P~P2!1 Ĵd
P~P2!1 Ĵs

P~P2!#, ~4.8!

Ĵ88
P ~P2!5

1

3
@ Ĵu

P~P2!1 Ĵd
P~P2!14Ĵs

P~P2!#, ~4.9!

and

Ĵ08
P ~P2!5

&

3
@ Ĵu

P~P2!1 Ĵd
P~P2!22Ĵs

P~P2!#. ~4.10!

With reference to Eqs.~4.1!–~4.3! and to Eqs.~4.8!–~4.10!,
we define

KP5S K88
P K08

P

K08
P K00

P D , ~4.11!

and

ĴP~P2!5S Ĵ88
P ~P2! Ĵ08

P ~P2!

Ĵ08
P ~P2! Ĵ00

P ~P2!
D . ~4.12!

We also introduce aT matrix and a matrixDP . If we
write

TP~P2!5S AP~P2! BP~P2!

BP~P2! CP~P2!
D , ~4.13!

we have

AP~P2!5
1

det DP~P2!
$~K00

P K88
P 2K08

P K08
P !Ĵ00

P ~P2!2K88
P %,

~4.14!

BP~P2!5
1

det DP~P2!
$2~K00

P K88
P 2K08

P K08
P !Ĵ08

P ~P2!2K08
P %,

~4.15!

and
CP~P2!5
1

det DP~P2!
$~K00

P K88
P 2K08

P K08
P !Ĵ88

P ~P2!2K00
P %.

~4.16!

Further, the matrixDP(P2) is

DP~P2!5S D11
P ~P2! D12

P ~P2!

D21
P ~P2! D22

P ~P2!
D , ~4.17!

with

D11
P ~P2!5K88

P Ĵ88
P ~P2!1K08

P Ĵ08
P ~P2!21, ~4.18!

D12
P ~P2!5K88

P Ĵ08
P ~P2!1K08

P Ĵ00
P ~P2!, ~4.19!

D21
P ~P2!5K00

P Ĵ08
P ~P2!1K08

P Ĵ08
P ~P2!, ~4.20!

and

D22
P ~P2!5K00

P Ĵ00
P ~P2!1K08

P Ĵ08
P ~P2!21. ~4.21!

A matrix

M ~uP!5S cosuP

sinuP

2sinuP

cosuP
D ~4.22!

may be used to bring theT matrix to diagonal form with
diagonal elementsT1 andT2 . Thus,M (uP)T(P2)M 21(uP)
5Tdiag(P

2) with

tan 2uP~P2!5
2BP~P2!

CP~P2!2AP~P2!
. ~4.23!

We have

S h
h8 D5M ~uP!S h8

h0
D ~4.24!

with

h85
1

A6
@ ūg5u1d̄g5d22s̄g5s#, ~4.25!

and

h05
1

)
@ ūg5u1d̄g5d1 s̄g5s#. ~4.26!

Note that even withK0850, uP(P2) is not a constant, since
K00

P ÞK88
P in this analysis.

In general, bound state energies can be found by de
mining the singularities of theT matrix. When theT matrix
is not a single function, but has a matrix structure, it is n
essary to bring it to diagonal form. It is then seen tha
particular resonance is found predominately in one eig
value. For example, if we have a matrix of dimension 2,
can write T(P2)5ue1&T1(P2)^e1u1ue2&T2(P2)^e2u where
ue1& and ue2& are the eigenfunctions at the value ofP2. We
have T(P2).ue1&T1(P2)^e1u if the resonance is predomi
nately in T1(P2). The mixing angle is then exhibited b
writing ^FuT(P2)uF&5^Fue1&T1(P2)^e1uF& where



he

dy

e

-

.6

-

pr
e
e
tio

he
th

in

h

ver,
ed

f
eV

-
nt-
at

s

be

e
7

e

-

nt

3652 PRC 58BO HUANG, XIANG-DONG LI, AND C. M. SHAKIN
uF&5S l8

l0
D . ~4.27!

V. NUMERICAL RESULTS

Using the procedure outlined in Sec. III, we obtain t
results given in Table I for thef andv mesons. Except for
the fact that our prediction for the mass of thef~1680! is a
bit too large, the results are quite good.

For the calculation ofh andh8 mixing we needJu
P(P2)

andJs
P(P2) which are shown in Figs. 5 and 6. For the stu

of singlet-octet mixing, we putH5250.0 GeV25. We also
use the condensate values used by Vogl and Weise@6#.
These are ^ūu&52(0.248 GeV)3520.01525 GeV3 and
^s̄s&52(0.258 GeV)3520.01717 GeV3. We then find that
with G256.25 GeV22, a value used in our study of thef-v
system, andG155.69 GeV22, we obtain 512 MeV for the
mass of theh~547! and 977 MeV for the mass of th
h8(958). ~See Fig. 7 and Table II.!

In Fig. 8 we showT1(P2), the first element of the diago
nalized T matrix. We find resonances atP250.262 GeV2,
P250.954 GeV2, P251.88 GeV2, andP252.86 GeV2. The
masses are 0.512 GeV@h~547!#, 0.977 GeV@h~958!#, 1.37
GeV, and 1.69 GeV. We showT2(P2) in Fig. 9. The reso-
nances are atP250.262 GeV2, P250.954 GeV2, and P2

52.69 GeV2. The last resonance has a mass value of 1
GeV and is not seen inT1(P2). Therefore, we have found
five states belowP253.0 GeV2. There are the experimen
tally determined states, theh~1295! and theh~1440!, with
energies that do not correspond closely to the theoretical
dictions for states ofq̄q structure given above. Beyond th
h~547! and h8(958), the theoretical interpretation of th
states of higher energy is uncertain. In the data compila
of Ref. @10#, it is suggested that theh~1295! and h~1440!
may be non-q̄q configurations. It is also suggested that t
h~1440! may represent the presence of two states rather
one.

It is worth noting that the state at 1.37 GeV seen
T1(P2) is about halfway between theh~1295! andh~1440!.
One may speculate that our 1.37 GeV state may mix wit

FIG. 5. The functionĴu
P(P2) is shown. Heremu50.364 GeV,

L350.622 GeV, andm50.020 GeV. The vertical lines show th
energies of bound states of the up~or down! quark in the confining
field.
4

e-

n

an

a

non-q̄q configuration to produce theh~1295! and h~1440!.
We are not able to resolve these issues at this time. Howe
in this work we do provide the predictions of our generaliz
NJL model for the pureq̄q configurations.

In Table II we present values foruP(P2) for the five
states of theh-h8 system found in this work. Inspection o
Figs. 8 and 9, shows that the theoretical states at 1.37 G
and 1.69 GeV are predominantly seen inT1 , while the state
at 1.64 GeV is seen only inT2 . Assigning these states en
tirely to a single channel allows us to calculate the perce
age ofs̄s component. From Table II, we see that the state
1.69 GeV is almost entirely ofs̄s character, while the state
at 1.37 GeV and 1.64 GeV have only a very smalls̄s com-
ponent. We remark, therefore, that the state 1.69 GeV can
thought of as being in correspondence to thef~1680!, which
is a pures̄s configuration. Proceeding along these lines, w
may think of thev~1420! and the theoretical state at 1.3
GeV to be in correspondence. They have little or nos̄s com-

FIG. 6. The functionĴs
P(P2) is shown. Heremu50.364 GeV,

ms50.565 GeV, L350.622 GeV, k50.0575 GeV2, and m
50.020 GeV.

FIG. 7. Values of detDP(P2) are shown. The vertical lines rep
resent the singularities of detDP(P2) due to the singularities of

Ĵu
P(P2) andĴs

P(P2) seen in Figs. 3 and 4. There are five significa
zeros corresponding to states of the coupledh-h8 system.~See the
captions of Figs. 8 and 9 for the energies of these five states.!
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TABLE II. Mass spectrum and mixing angles for states of theh-h8 system. For the first three column
H5250.0 GeV25, G155.69 GeV22, and only singlet-octet mixing is included. For the last colum
pseudoscalar-axialvector mixing is taken into account,H is reduced to 216.0 GeV25, and G1

56.10 GeV22 is used. Heremu50.364 GeV andms50.565 GeV. For a resonance inT1 we have h
5cosuph

82sinuPh0, while for a resonance inT2 , we haveh85sinuph
81cosuPh0.

Mass~theory!
~GeV! uP(P2) ~deg! Channel

Fraction ofs̄s
configuration

Mass~GeV!
H5216.0 GeV25

0.512 211.5 T1 0.468a 0.531
0.977 236.3 T2 0.897b 0.972
1.37 262.5 T1 0.018a 1.36
1.64 41.5 T2 0.012b 1.63
1.69 35.3 T1 0.998a 1.69

aCalculated on the assumption that the resonance appears only inT1 ~see Figs. 8 and 9!.
bCalculated on the assumption that the resonance appears entirely inT2 ~see Figs. 8 and 9!.
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ponent and may be classed as radial excitations of 2S char-
acter.

Our analysis may be extended to include pseudosca
axialvector coupling in theh-h8 system. The necessary fo
mal developments are given in Ref.@8# and we follow the
procedure described there. In that work one makes use o
fact that theT matrix factors at each resonance with a ver
function of the form@8#

V~P!5ghig5~cos ûl82sin ûl0!1
g̃h

2mus
iP” g5

3~cos ũl82sin ũl0!, ~5.1!

with mus5@(mu12ms)cos2ũ1(2mu1ms)sin2 ũ#/3. To obtain
good values for theh and h8 masses, we find we have t
reduceH5250.0 GeV25 to H5216.0 GeV25. That is, the
inclusion of pseudoscalar-axialvector coupling leads to
use of a significantly smaller strength for the ’t Hooft inte

FIG. 8. Values ofT1(P2) are shown. Resonances are seen
P250.282 GeV2 @h~547!#, P250.945 GeV2 @h~958!#, P2

51.85 GeV2, andP252.82 GeV2, where the bracketed meson de
ignation shows the correspondence with experimental data. Thh8
resonance atP250.945 GeV2 has only a relatively small compo
nent in T1(P2), but is quite strong inT2(P2). ~See Fig. 9.! The
masses of the four states seen here are 0.531 GeV, 0.972 GeV
GeV, and 1.69 GeV.
r-

he
x

e

action if we wish to fit the value ofmh andmh8 . With G1

55.69 GeV22 and G256.25 GeV22 we obtain the results
given in Table III.

VI. DISCUSSION

Our results for singlet-octet mixing with H
5250.0 GeV25 were given in Sec. IV. We have recalcu
lated theh mass values including pseudoscalar-axialvec
mixing and found that reasonable mass values are fo
whenH is reduced to216.0 GeV25. ~See Table II.! ~A better
value for the mass of theh is obtained with the smaller valu
of H.! Thus, we see that pseudoscalar-axialvector mixing
important and a complete analysis should be made for
case. Since we were mainly interested in applications of
confinement model, we have not carried out the full progr
at this time.

Work related to ours has been reported by Takizaw
Nemoto, and Oka@11#. ~These authors did not includ
pseudoscalar-axialvector mixing in their study.! They use the
SU~3!-flavor NJL model supplemented with ’t Hooft interac
tion and obtain satisfactory results for the decay rates of

FIG. 9. Values ofT2(P2) are shown. Resonant behavior is se
at P250.282 GeV2 @h~547!#, P250.945 GeV2 @h~958!#, and P2

52.66 GeV2. ~For the last state the mass is 1.63 GeV.! Note that
the h~547! has only a small component inT2(P2), while the
h8(958) is quite strong in this component of theT matrix. ~See
Fig. 8.!
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h to several final states. However, since they did not inclu
a model of confinement, their analysis was limited to t
study of theh. These authors also note that the inclusion
the ’t Hooft interaction makes for aP2-dependent mixing
angle.@They remark that, since theh andh8 are composites
rather than elementary fields, the term ‘‘mixing angle’’ is
somewhat inappropriate designation for theP2-dependent
uP(P2). We will continue to use that name foruP(P2) with
that reservation in mind.#

A review of work concerning theh and h8 and based
upon the solution of coupled Schwinger-Dyson and Bet
Salpeter equations has been given by Klabucar and Ke
@12#. These authors make use of what is often called
global color model@13#. That work is not unlike the NJL-
based approach. It has a more microscopic aspect, since
ons appear in the Schwinger-Dyson equation for the qu
self-energy. The infrared~nonperturbative! part of the gluon
propagator is parameterized by a Gaussian form of pu
phenomenological character. For example, in Ref.@14# we
find the gluon propagator

Gmn~k!52Fgmn2
kmkn

k2 GG~k2!, ~6.1!

with

G~k!5GUV~k2!1GIR~k2!. ~6.2!

Here, GUV(k2) represents the known high-momentum b
havior and

GIR5
16p2

3
ak2e2mk2

~6.3!

is a phenomenological form. Herea andm are parameters o
the model. It is also necessary to specify five mass par
eters for the quarks. One finds a good fit to very many m
sonic masses in a model with a limited number of parame
@14#. It is interesting to note that the configuration-space
tential obtained from use of Eqs.~6.2!–~6.3! is approxi-
mately linear up to aboutr 51 fm. Therefore, we believe tha
the model of Ref.@14#, is not very different from ours in tha
Lorentz-vector confinement is used.

If we consider only singlet-octet mixing, the use of the
Hooft interaction in our work solves the problem of getting
large mass for theh0 . In the discussion of Ref.@14#, one
finds that an additional mass has to be assigned to theh0 .
That introduces another parameter in the model. Theref
the treatment of this problem on the basis of the ’t Ho

TABLE III. Values of the mixing angles and coupling constan
for the vertex of Eq. ~5.1!. Here H5216.0 GeV25, G1

56.10 GeV22, G256.25 GeV22, andmus50.433 GeV.

Mass~GeV! û(P2) ~deg! ũ(P2) ~deg! gh g̃h

0.531 236.7 242.9 5.50 1.90
0.972 2135 2127 5.54 1.67
1.36 259.6 160.3 1.19 0.074
1.63 2135.3 2121 0.380 0.365
1.69 252.9 256.4 0.500 0.460
e
e
f

-
ez
e

lu-
rk

ly

-

-
-
rs
-

e,
t

interaction is more satisfactory, since that interaction has
basis in a study of instanton dynamics in QCD@15#. ~Of
course, the use of the ’t Hooft interaction does introdu
another parameter,H, in our analysis. Both the mass of theh
and the mass of theh8 are affected by the ’t Hooft interac
tion to a significant degree@11#.!

One may be concerned with the fact that we have u
constant values for the constituent quark masses, rather
the momentum-dependent masses that arise when solvin
Schwinger-Dyson and Bethe-Salpeter equations@14#. How-
ever, it may be seen from Fig. 2 of Ref.@14# that the
~Euclidean-space! running mass for the up and down quar
in fairly constant up to about 600 MeV forLQCD.200 MeV.
Since the cutoff on the vacuum polarization integrals,Ĵ(P2),
is L350.622 GeV in our calculations, it would appear th
our use of constant mass values will not introduce large
certainties in our results. It also appears that extrapolatio
the results given in Fig. 2 of Ref.@14# would lead to fairly
constant values of the Minkowski-space mass over a sig
cant range of momentum. Related to this point is the obs
vation that a difference between our simplified model and
work of Ref. @14# is that the calculations of Ref.@14# are
carried out in Euclidean space and require an extrapola
into the timelike region. For the running mass, this is do
by fitting a fifth-order polynomial to the low-momentum re
gion of the functions describing the momentum-depend
masses. This extrapolation was found to be reliable for
mesonic ground states, but for only a limited number of
dial excitations. Results are given in Ref.@14# only for those
radial excitations where the method appeared to be relia
p(2S), r(2S), K(2S), J/c(2S), Y(2S), Y(3S) and a large
number of 2S states of ‘‘open flavor’’ mesons.

Finally, we note that the inclusion of pseudoscala
axialvector mixing in addition to singlet-octet mixin
changes the physical picture, since we need only a sma
Hooft interaction in that case. That leads to approxim
ideal mixing for theh-h8 pair. ~See Table III.! It is neces-
sary to calculate various decay rates for theh andh8 to see
if the results obtained with a small ’t Hooft interaction a
consistent with experimental data.~See Fig. 10.!

APPENDIX A: VACUUM POLARIZATION DIAGRAMS

A basic feature of the NJL model are vacuum polarizat
diagrams of the type shown in Fig. 1. If a quark of a sing
flavor is considered, we define the tensor

2 iJmn~P!5~21!ncE d4k

~2p!4 Tr@ iS~P/21k!ĝm

3 iS~2P/21k!ĝn#, ~A1!

whereS(p)5@p”2mq1 i e#21. Here,nc53 is the number of
colors and

ĝn5gn2
P” Pn

P2 . ~A2!

Also, mq is the constituent mass of the quark. Note th
Pnĝn50. Our definition of the vertexGm also leads to
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PmGm50, so thatPmJmn5JmnPn50. ~These relations would
appear naturally in a fully gauge-invariant calculation, as d
cussed in Ref.@16#.!

Our confinement model leads to the replacement
Jmn(P2) by Ĵmn(P2), where

2 i Ĵmn~P!5~21!ncE d4k

~2p!4 Tr@ iS~P/21k!Gm~P,k!

3 iS~2P/21k!ĝn#. ~A3!

Here we have replacedĝm of Eq. ~A1! by the confining
vertexGm(P,k). @The calculation ofGm(P,k) is described in
the next section.# The evaluation ofĴmn(P) is made by first
carrying out the integral overk0 in the complexk0 plane
@17#. To that end, we write

S~k!5
mq

E~pY ! F L~1 !~pY !

p02E~pY !1 i e
2

L~2 !~2pY !

p01E~pY !2 i eG . ~A4!

Further, we also need to define

L~1 !~pY !5(
s

u~pY ,s!ū~pY ,s!, ~A5!

5
p”1mq

2mq
, ~A6!

L~2 !~2pY !52(
s

n~2pY ,2s!nY ~2pY ,2s!, ~A7!

5
p”̃1mq

2mq
, ~A8!

with pm5@E(pY ),pY # and p̃m5@2E(pY ),pY #. Also

FIG. 10. Theoretical values for theh, h8, v, andf masses are
shown as dotted lines. The experimental values, with their un
tainties, are shown as solid lines.
-

f

k̂m5km2
~k•P!Pm

P2 ~A9!

and

g'
m~k!5ĝm2

~ ĝ• k̂!k̂m

k̂2
. ~A10!

Note thatPmg'
m(k)5 k̂mg'

m(k)50. Some motivation for in-

troducing k̃m and g'
m(k) may be seen by working in the

frame where PY 50. There, k̂m5@0,kY # and g'
m(k)

5@0,gY'(kY )#, wheregY'(kY ) is orthogonal tokY . Thus, k̂m is
associated with the longitudinal mode andg'

m(k) provides a
basis for describing the transverse modes. In terms of th
basis vectors, it is useful to define functionsG1

12(P,k),
G2

12(P,k), G1
21(P,k), andG2

21(P,k), by the relations@9#

L~1 !~kY !GmL~2 !~2kY !5G1
12k̂mL~1 !~kY !L~2 !~2kY !

1G2
12L~1 !~kY !g'

m~k!L~2 !~2kY !

~A11!

and

L~2 !~2kY !GmL~1 !~kY !5G1
21k̂mL~2 !~2kY !L~1 !~kY !

1G2
21L~2 !~2kY !g'

m~k!L~1 !~kY !.

~A12!

Further details of our calculation may be found in Ref.@9#.
We define

Ĵmn~P!52ĝmn~P!Ĵ~P2!, ~A13!

where

ĝmn5gmn5
PmPn

P2 . ~A14!

In Ref. @16# we presented a detailed derivation of our expr
sion for Ĵ(P2),

Ĵ~P2!52ncE d3k

~2p!3 F mq

E~kY !
G 2Fa1

12G1
121a2

12G2
12

P022E~kY !

2
a1

21G1
211a2

21G2
21

P012E~kY !
G . ~A15!

Here, a1
12522kY2/(3mq), a2

1254E2(kY )/(3mq
2), a1

21

5a1
12 anda2

215a2
12 . The integral of Eq.~A15! is diver-

gent and requires a cutoff. We takeukY u<L3 whereL3 is the
regulator. In the absence of a confining potential, we h
G1

125G1
2152mq /kY2 andG2

125G2
2151. In that case, we

obtain the result of the original NJL model forPY 50,

r-
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J~P2!5ncE d3k

~2p!3

1

2E~kY !

4E2~kY !2~4/3!kY2

E2~kY !2~P0!2/4
,

~A16!

where, again, the cutoffL3 is used to regulate the integra
For the study of light mesons,L3 is taken to be about 0.6 to
0.7 GeV.~The corresponding Euclidean-space evaluation
the 4-dimensional integral overkm makes use of a cutof
LE , that is about 0.9–1.0 GeV.!

When studying the omega meson~with mu5md!, we de-
fine Ĵv(P2)52Ĵu(P2)52Ĵd(P2).

As in Ref. @9#, we calculate the second term of Eq.~A15!

by using G1
2152mq /kY2 and G2

2151. That should be a
good approximation, since the second term of Eq.~A15! is
already small due to the form of the denominator.

APPENDIX B: VERTEX FUNCTIONS FOR A CONFINING
INTERACTION: VECTOR MESONS

A comprehensive discussion of the equation for the ver
functions was given in Ref.@4# for the case of Lorentz-scala
confinement. We had

Gm~P,k!5ĝm1 i E d4q

~2p!4 S~P/21q!Gm~P,q!

3S~2P/21q!VC~ ukY2qY u!, ~B1!

where VC(ukY2qY u) is the Fourier transform of the confine
ment potential which was given in Eq.~2.3!. Lorentz-vector
confinement is described by the following equation for t
vertex

Gm~P,k!5ĝm2 i E d4q

~2p!4 gnS~P/21q!Gm~P,q!

3S~2P/21q!gnVC~ ukY2qY u!. ~B2!

The new feature relative to Eq.~B1! is the appearance of
minus sign and a contraction with the Dirac matrixgn in Eq.
~B2!.

At this point it is useful to define functionsg1 and g2 .
WhenPY 50, we have@8#

g1~P0,ukY u!52~kY2/mq!G1
12~P0,ukY u! ~B3!

and

g2~P0,ukY u!5G2
12~P0,ukY u!. ~B4!

For ukY u sufficiently large, we can see thatg1(P0,ukY u)→1 and
g2(P0,ukY u)→1 @17#. Further, if we define

kon5@~P0/2!22mq
2#1/2, ~B5!

we have G1
12(P0,kon)5G2

12(P0,kon)50. Thus,

G1
12(P0,ukY u)/@P022E(kY )# is finite and we may drop thei e

that would be needed in the denominator in the absence
f

x

f a

confinement model. That feature eliminates the cut t
would otherwise appear inJ(P2) for P2.(2mq)2. Thus,
Ĵ(P2) is a real function.

Equations forg1(P0,ukY u) and g2(P0,ukY u) were obtained
in Ref. @9# by a technique that involved the calculation of
number of traces of Dirac matrix products. The equations
the case of Lorentz-scalar confinement, withk5ukY u and q
5uqY u, were

ga~P0,k!511 (
a851,2

E dq

P022E~q!
haa8~k,q!ga8~P0,q!,

~B6!

h11~k,q!5
kq3

2E2~q! H „E~k!E~q!1mq
2
…

a2

kq
2a1J , ~B7!

h22~k,q!5
kq3

2E~k!E~q! H „E~k!E~q!1mq
2
…

a01a2

2kq
2a1J ,

~B8!

h12~k,q!5
@E~q!1E~k!#q2

2E~q!
~a02a2!, ~B9!

and

h21~k,q!5
@E~k!1E~q!#

4E~k!E2~q!
mq

2q2~a02a2!. ~B10!

In these equations,

ai~k,q!52
2k

p S 1

y2 Ai21
4m2

y3 Ai3D , ~B11!

wherey52kq, z5(k21q21m2)/y and

Anm~z!5E
21

1

dt
tn

~ t2z!m . ~B12!

For Lorentz-vector confinement we have, fora51,2,

ga~P0,k!511 (
a851,2

E dq

P022E~q!
gaa8~k,q!ga8~P0,q!,

~B13!

with

g11~k,q!5
q2

E2~q!
~2qka11mq

2a2!, ~B14!

g12~k,q!5q2~a02a2!, ~B15!

g21~k,q!5
mq

2q2

2E2~q!
~a02a2!, ~B16!

g22~k,q!5
q3k

E~k!E~q!
a11

q2

2
~a01a2!. ~B17!

Note that the equations forg1(P0,k) andg2(P0,k) do not
require a cutoff at high momentum. In numerical calcu
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tions, it is usually sufficient to consider momenta for whichk
andq are less than 4.0 GeV. It is also worth recalling th
when calculating the vacuum polarization diagrams, ther
a cutoff ofL3 on the magnitude ofkY . Therefore, only values
of g1(P0,ukY u) andg2(P0,ukY u) are needed forukY u<L3 in the
calculation of the variousĴ(P2). It is also worth noting that
a0(k,q), a1(k,q), anda2(k,q) are quite large whenk5q.
@That behavior reflects the infrared singularity ofVC(ukY
2qY u).# Because of that behavior, the values obtained
g1(P0,ukY u) andg2(P0,ukY u) for uk̂u,2.0 GeV are insensitive
to any high-momentum cutoff of value greater than 2.0 Ge
that we use in solving Eq.~B6! or Eq. ~B13!.

APPENDIX C: VERTEX FUNCTIONS FOR A CONFINING
INTERACTION: PSEUDOSCALAR MESONS

In this appendix we discuss the vertex operator of
confining field for the case of pseudoscalar mesons. W
reference to Fig. 1, we may write

Ḡp~P,k!5g52 i E d4k8

~2p!4 @gmS~P/21k8!Ḡp~P,k8!

3S~2P/21k8!gmVC~k2k8!#. ~C1!

HereS(p)5@p”2mu1 i e#21, if we consider an up quark an
an up antiquark at the vertex. We defineGp

12 andGp
21 such

that

L~1 !~kY !Ḡp~P,k!L~2 !~2kY !

5Gp
12~P,k!L~1 !~kY !g5L~2 !~2kY !, ~C2!

and

L~2 !~2kY !Ḡp~P,k!L~1 !~kY !

5Gp
21~P,k!L~2 !~2kY !g5L~1 !~kY !. ~C3!

Recall thatL (1)(kY ) and L (2)(2kY ) were defined in Eqs
~A5! and ~A7!. The analysis proceeds by multiplying E
~C1! from the left by g5L (1)(kY ) and from the right by
L (2)(2kY ) and using Eq.~A4! for the two quark propagators
At that point, we form the trace of the equation. If we divid
the equation by Tr@g5L (1)(kY )g5L (2)(2kY )#, we obtain an
equation forGp

12(P,k), which involves bothGp
12(P,k8)
,
is

r

,

e
th

andGp
21(P,k8) on the right-hand side. We neglect the co

pling of Gp
12(P,k) to Gp

21(P,k). In that approximation
Gp

12(P,k) satisfies an uncoupled equation, as do
Gp

21(P,k). The neglect of the coupling term is equivalent
the neglect of ‘‘Z graphs,’’ or pair-current effects. Such e
fects are quite large in the case of Lorentz-vector confi
ment and they create major problems, if one attempts
solve the coupled equations. Since the probability of the c
fining potential to excite pair currents is unknown, it is n
unreasonable to neglect such effects in the Lorentz-ve
confinement model.

Our procedure then requires that we complete thek08 in-
tegral in the lower half of the complexk08 plane, picking up
only the pole where the quark goes on its positive mass s
@17#. The equation, in the frame wherePY 50, is found to be

Gp
12~P0,ukY u!512E d3k8

~2p!3

VC~kY2kY8!

P022E~kY8!

3
m222E~kY !E~kY8!

E~kY !E~kY8!
Gp

12~P0,ukY8u! ~C4!

for the equal mass case.
To obtain the corresponding equation forGp

21(P0,ukY u),
we multiply Eq. ~C1! by g5L (2)(2kY ) from the left and
L (1)(kY ) from the right and then take the trace of th
equation. In this case, we divide the equation
Tr@g5L (2)(2kY )g5L (1)(kY )# to obtain an equation for
Gp

21(P0,ukY u). The integral overk08 is completed in the
lower-halfk08 plane, where we pick up only the pole that h
the antiquark on itsnegativemass shell. The resulting~un-
coupled! equation forGp

21(P0,ukY u) is

Gp
21~P0,ukY u!511E d3k8

~2p!3

VC~kY2kY8!

P012E~kY8!

3
m222E~kY !E~kY8!

E~kY !E~kY8!
Gp

21~P0,ukY8u!. ~C5!

For completeness, we record the coupled equations
tained when we pick up both poles in the lower complexk08
plane. These have the quark going on itspositivemass shell
and the antiquark on itsnegativemass shell. We find
r

FGp
12~P0,ukY u!

Gp
21~P0,ukY u!

G5F1

1
G2E d3k8

~2p!3

VC~kY ,kY8!

E~kY !E~kY8! F m222E~kY !E~kY8!

P022E~kY8!

m212E~kY !E~kY8!

P012E~kY8!

2
m212E~kY !E~kY8!

P022E~kY8!
2

m222E~kY !E~kY8!

P012E~kY8!

G FGp
12~P0,ukY8u!

Gp
21~P0,ukY8u!

G .

~C6!

One may compare the matrix element that couplesGp
12 to Gp

21 with the element that couplesGp
12 to itself. @See Eq.~C6!.#

In this manner, one can see the very large amplitude for exciting ‘‘pair currents’’~or Z-graphs! in the case of Lorentz-vecto
confinement. That is,m21E(kY )E(kY8)@m22E(kY )E(kY8), making the off-diagonal term quite important.
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