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We continue our studies of a unified model of meson structure that makes use of a Nambu—Jona-Lasinio
(NJL) model that has been generalized to include a relativistic model of confinefiémiuse Lorentz-vector
confinement, so that the Lagrangian exhibits chiral symmetry in the absence of a quark masy Heatiwe
study ¢-w and - ' mixing. The latter study requires that we include the 't Hooft interaction in our model. We
study states ofjq structure for energieB?<3 Ge\2. The coupleds-w system exhibits ideal mixing, such that
the w and its radially-excited states have no strange quark content, whilé ttates are pures configura-
tions. In the case of- 7’ mixing, the 't Hooft interaction gives rise toR2-dependent mixing anglés(P?).

At the energy of then(547), Hp(mi):—11.5°, while at the energy of thg'(958), we haveep(m";,)
=—236.3°, if we take singlet-octet mixing into account. We obtain a satisfactory fit to experimental values for
energies of the radially-excited states of thev system, as well as for the decay constants of«@ti&2) and

the #(1020. The predictions for the radially-excitegt) states of they and %’ are not as good, if those states

are to be identified as thg(1295 and 7(1440. [However, we do find a state at 1370 MeV which is halfway
between thep(1295 and 7(1440. That suggests the presence of a mapstate that could mix with our state

at 1370 MeV to produce the two states at 1295 and 1440 MeV. The state at 1370 MeV is found to have very
little ss component. Thus one might suggest a correspondence with(##20, which is also a 3 state]

Further work is needed to understand the spectrum ofjthg system of states abow®?=1.0 GeV, where

one may encounter low-energy pseudoscalar glueball states. We extend our work on singlet-octet mixing to
include pseudoscalar-axialvector mixing. In that case there are two mixing angles and two coupling constants
to be calculated. It is found that the spectrum obtained with singlet-octet mixing is largely unchanged upon
addition of pseudoscalar-axialvector mixing, if a small value for the strength of the 't Hooft interaction is used.
A small 't Hooft interaction implies ideal mixing for the-»’ pair. It remains to be seen if the wave functions

in this case are consistent with experimental decay rf&#656-28188)04412-4

PACS numbeps): 24.85+p, 12.39.Ki, 12.40.Yx, 14.40.Aq

[. INTRODUCTION properties of they and ' mesong6,7]. In the present work
we study whether the 't Hooft interaction can yield a good

In a number of papers, we have been studying a generahccount of the radially-excited states of tiyeand »’ me-
ized Nambu—Jona-Lasinio model that includes a relativistisons. In Sec. lll we describe how the energies ofglend w
model of confinemeritLl—4]. In general, the inclusion of con- mesons are obtained, while in Sec. IV we considen;’
finement will lead to a momentum-dependent quark masanixing. In Sec. V we present the results of our calculations
when we solve the “gap” equation. That feature was takenof the propertiesp and @ mesons ofy-7’ mixing. Finally,
into account in an earlier work2], where we carried out a Sec. VI contains some further discussion and conclusions.
calculation in Euclidean space and showed that the Gold-
stone theo_rem was satisfied. In the present work, and in mo ! A GENERALIZED NAMBU
of our earlier work, we use constant values of the masses o0
the up, down, strange, charm and bottom quarks. With that The Lagrangian we consider in this work is based on the
approximation, we are able to obtain a good fit to the ob-SU(3)-flavor version of the NJL modégb,7]
served meson spectfa].

—JONA-LASINIO MODEL

One good feature of our model is that the calculational G, 8 . .
procedure is the same for all mesons that ar@@structure. L=q(i—m°)q+ > > [(@\a)?+ (@i ysh'a)?]
In this work we apply our model to the calculation of the =0
masses ofy and vector mesons in the energy regiBA +2H{defq(1+ ys)q]+defq(1l—ys)ql}

<3.0 Ge\?. One of our goals is to demonstrate that auri-

fied) model of meson spectra works well for a large number G, 8 i .

of mesons of quite different mass values. Y ;0 Lay*Na)“+ (ay*ysN'a) ]+ Leonts
The organization of our work is as follows. In Sec. I, we

describe the Lagrangian of our model which includes a rela- 2.1

tivistic model of confinement and the 't Hooft interaction.

That interaction plays an important role in understanding thevhere m°=diag(rr18,mg,rr§) and the\' (i=1,...,.8) are the
Gell-Mann matrices. Hera°=(2/3)"4, with | being the
unit matrix in flavor space. The term proportionalHds the

*Electronic address: CASBC@CUNYVM.CUNY.EDU 't Hooft interaction andC,,; denotes our model of confine-
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ment. In Eq.(2.1) we have used the notation of R¢8] to P/2+k P/2+k P/2+k
facilitate comparison with that work. We use Lorentz-vector i M %
confinement with P = P + AV
_ — -P/2+k - -
Laan= | 4007000V )Y) 7,09, e T Pr2sk
(2.2
P/2+k P/2+k

Here,VE(r) = kr exp(—ur) wherex is the “string tension”
andu is a small parameter used to soften the singularities of K B
the Fourier transform o¥°(r). The Fourier transform of
VE(r) is then

L Ve

1 4u?

(K=K w2 (R4 p2P)
(2.3

Ve(k—k')=—8mk

. , . FIG. 1. (@) The equation for the vertex operatoi8:(P,k), is
In this work, we study the, ¢, 7, and»' mesons and their shown. The vertex is represented by the filled triangular area and

radially excited states. In an earlier work, we _StUd'ed thethe dashed line represents the confining interact®ee Fig. 2. (b)
spe_ctrum of thew, J/y, gnd Y meson§ and their radially A perturbation expansion is shown for the equatiorian We see
excited state¢5]. Good fits were obtained to the fourteen ot the vertex serves to sum a “ladder” of confining interactions.
states to be found in the data tables. Our work on the

o used my=m,=0.364 GeV, ©=0.020GeV, and In a similar fashion, we may find the energy of titend
=0.0575 GeV. (Since we are using Lorentz-vector confine- jts radially excited states by solving

ment, this value ok is not directly related to the value af

used in Lorentz-scalar confinement for massive quark sys- 1-GyJ4(P?)=0, (3.9
tems) We maintain these values of the parameters and study R

the ¢ meson here. That study is used to@x of Eq.(2.)) at ~ with J,(P?)=2J3Y(P?). That analysis leads us to choose
G,=6.25GeV 2 and the constituent mass of the strangems=0.565 GeV.

quark atmg=0.565 GeV. In this manner, we fix several of = Note that for each state found from the solution of Egs.

the parameters of the model. (3.3 and(3.4) we may define a meson-quark coupling con-
stant
lll. VECTOR MESONS: ¢-w MIXING , 93 PZ) -1
Our study requires that we introduce a vacuum polariza- Y0qq= oP? |, 3.9
tion tensor(5,9] pe=m,
. d4k and
— 1 TMY = ( — - i M
iJF7(P)=( 1)ncf 2 Tr[iS(P/2+ k)T #(P,k) 2 aJ¢(P2) 1 e
XiS(— P2+ K)%"], 3.1) 9400~ | P2 pomt| '
WhereS(P)=[P—mq+ie]‘1. (See Fig. 1 and Fig. R2Here Pi2ak
n.=3 is the number of colors anti*(P,k) represents a " * v
vertex function that sums a “ladder” of confining interac- P <>
tions.[See Eq.(A2) for the definition ofy” and see Appen- o
-P/2+]

dixes A and B for details concerning the calculation of (a)

J#*(P) andT'*(P,k).] In the case of the up quark, we write
P/2+k

3(P)=—5*(P)J(P?), (32 p..u(>.v,. _ .HQY.. R u’@v
with §#¥=g*”— P#P"/P?. A similar definition is made for P2k
J¥(P?) andJY(P?). (See Fig. 3 and Fig. %. L v oo v
Since the¢-w system exhibits ideal mixing, we may ob- T *e
tain the energy of thes and its radially excited states by (b)
solving

FIG. 2. (a) The diagram shows the basic vacuum polarization
1-GJ,(P?)=0, (3.3 diagram of the NJL model that is evaluated in the calculation of the
tensor J**(P?). (b) The diagram serves to define the tensor
when G, =2G, and Jw(P2)=23L/(P2). (As we will see, a  J**(P?). The shaded triangular area represents the confining vertex
good fit to thew and its radially excited states is found for of Fig. 1. The right-hand side of the figure shows a perturbative
Gy=12.5GeV 2, m,=0.364 GeV, andk=0.0575 GeV.) expansion ford“"(P?).
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FIG. 3. The figure shows];(P?) for the parametersm, FIG. 4. The figure showsY(P?) for my=0.565 GeV. (Other

=0.364GeV, «=0.0575GeV¥, ©=0.020GeV, and A3  parameters are those given in the caption to Fig. 3.
=0.622 GeV. The singularities, whose position are given by the

vertical lines, are at the energies of the bound states of the confmlng} the case of thes(1020, we find g¢qq:4_78 andf]s(m(zﬁ)

potential. The peaked structures to the right of the second and third 1 >4 P
vertical lines indicated the positions of states of angular momentum (2G2) /2=0.040 GeV, so thatf ,=62.5 MeV, which is
L=2 in the confining potential. to be compared to the experimental value of-Z8BMeV. We

also note the relation of the widthi(e*,e™) to the decay

In the case of ideal mixing the expressions for the mesogonstants defined above. For tthemeson, for example,

decay constants are simple. We define
[(e* o=) 4ma? f(zzﬁ 31
(e",e7)= 3 m, (3.10

(vadd¥ o, \)=m,f, e k), (3.7)

for the w and its radial excitations. Herq*f(l?) is the polar-
ization vector ofw. Thus, IV. PSEUDOSCALAR MESONS: #-7' MIXING
AV, 2 For the study of pseudoscalar states, we use some of the
_Gogg du(Mmy) (21 notation of Ref.[8] where various effective coupling con-
fo=——"7— 1535/, (3.8 ; ; .
vi m, {3 3 stants were defined. In the presence of the 't Hooft interac-

tion, these coupling constants depend upon the vacuum con-

where the last factor arises from the charges of the up andensates(uu)=(dd) and (ss). The effective coupling

down quarks. We find g,qq=3.93 and J,(m2)  constants are
=0.040 GeV for the w(782. These values yieldf,,

=47.4 MeV, which is close to the experimental value of Kfs=2G;+2Hcgg, (4.1
f,=45.9+0.7 MeV. (See Table ). [Note that J,(m?)
=(2G,)"Y2] K5o=2G1+ 2Hcqo, (4.2
For the ¢ meson, we have
A K bs=2Hcgs, 4.3
f,=g o) (1/3) (3.9 ; N +
¢S m, ' ' where

TABLE |. Experiment values for the masses and decay consfdfisare compared to our theoretical
values. Herem,=my=0.364 GeV, m;=0.565 GeV, K=0.0575 GeV, A;=0.622 GeV, u=0.020 GeV,
andG,=6.25 GeV2,

Decay constant  f(,,f;) (MeV)

Mass(Expt.) Mass(Theory) Guwaq OF
Meson (MeV) (MeV) Jgqq Expt. Theory
(782 781+0.12 782 3.93 45.9-0.7 47.4
$(1020 1019.413:0.008 1019 4.78 782 62.5
(1420 1419+31 1402 1.26 8.4
(1600 1649+24 1650 0.861 4.9
#(1680 1680+20 1717 0.731 5.8

8t by the choice oG, andm,.
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2
Coo=~ 3 (2(uu) +(ss)), (4.9
1
Ces=3 (4(uu)—(ss)), (4.5
and
V2o
Cos=3 ((uu)—(ss)). (4.9

In addition, we define the vacuum polarization function

—ijP(P2)=—nJ Lﬂ(Tlr[iS(F>/2+k)iF(P k)
u [ (277_)4 u P ’

XiS,(— P2+ k)i ys], 4.7

where the subscript refers to the up quark. There is a simi-

lar definition forJE(PZ). (See Appendix G.In terms of
these functions, we define

R 2 . " "
J(P?)== [IL(P?)+35(PY) +3E(P?)],

3 4.9

[35(P?)+35(P?)+435(PY)],

w| K

J5(P?) = (4.9

and

S

Jog(P?)= 5~ [J0(P?) +35(P?) = 2J5(P?)]. (4.10

With reference to Eqe4.1)—(4.3) and to Eqs(4.8—(4.10,
we define

K Ké’s)
| o
and
(P JG(P?)
JP(P2>=(ASS ) . 4.12
0e(P?)  J5((P?)

We also introduce & matrix and a matrixDp. If we
write

Ap(P?)

Bp(P?)

BP(PZ)) 413

TP(PZ):( Co(P?)

we have

1 N
Ap(P?)= detDa(P?) {(K§oK s KK o) Iool P?) — K ggh,
(4.19

1 N
Bp(P?)= detDa(P?) {— (KooK gg— KoK ) Ipe( P?) — K gt
(4.15

and
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1 A
Cr(P?)= Gatpap?) | (KoKes KoeKoe Joe P*) ~ Koo

(4.19
Further, the matriXD p(P?) is
Df(P?) DPAP?)
D (P2)=( , (4.1
i D5(P?) D5,(P?)
with
DPy(P?)=Kgglge(P) +Kiglgg(PH)—1, (4.1
D 7A(P?) = KEdbe( P?) + Kfgdoo( P?), (4.19
D5y(P?) =K §oJbe( P?) + Kfgdoe( P?), (4.20
and
D5AP?)=Kgdbo P +Kgelgs(PH—1. (4.2
A matrix
_[cop  —sindp 5
M(0p)= sindp  Ccop (4.29

may be used to bring th& matrix to diagonal form with
diagonal element¥; andT,. Thus,M(6p) T(P?)M ~1(6p)
:Tdiag(Pz) W|th

2o(P?) = 222 4.2
@nLe(P)= P —Anpy 4B
We have
n 78
=M 4.2
(77) ( P)(ﬂo) 4.29
with
! [Uysu+dysd— 2Syss] (4.25
=—1[Uuysu —25y:5s], )
78 \/E Ys s Vs
and
= [Uysu+dyed+Syes]. 4.2
7o ‘/3[ s ysd+SysS] (4.26

Note that even wittK os=0, 6p(P?) is not a constant, since
K% Kgg in this analysis.

In general, bound state energies can be found by deter-
mining the singularities of th& matrix. When theT matrix
is not a single function, but has a matrix structure, it is nec-
essary to bring it to diagonal form. It is then seen that a
particular resonance is found predominately in one eigen-
value. For example, if we have a matrix of dimension 2, we
can write T(P?)=|e;)T,(P?)(e|+|e,)To(P?)(e,| where
le;) and|e,) are the eigenfunctions at the valuePt. We
have T(P?)=|e,)T,(P?)(e,| if the resonance is predomi-
nately in T,(P?). The mixing angle is then exhibited by
writing (®|T(P?)|®)=(®|e,)T,(P?)(e,|®) where
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FIG. 5. The functiorf]E(Pz) is shown. Heran,=0.364 GeV,
A3=0.622 GeV, andu=0.020 GeV. The vertical lines show the

energies of bound states of the (g down quark in the confining

FIG. 6. The functiorf]SP(Pz) is shown. Herem,=0.364 GeV,
ms=0.565 GeV, A3;=0.622GeV, «=0.0575GeV¥, and u

field. =0.020 GeV.
N nongqg configuration to produce th@(1295 and 7(1440.
|®)= ( )\8)_ (4.27  We are not able to resolve these issues at this time. However,
0

in this work we do provide the predictions of our generalized
NJL model for the purgq configurations.
V. NUMERICAL RESULTS In Table Il we present values fofip(P?) for the five
states of thep- 7’ system found in this work. Inspection of
Using the procedure outlined in Sec. Ill, we obtain therijgs. 8 and 9, shows that the theoretical states at 1.37 GeV
results given in Table | for thep and w mesons. Except for and 1.69 GeV are predominantly seeriTip, while the state
the fact that our prediction for the mass of #1680 is a  at 1.64 GeV is seen only iff,. Assigning these states en-
bit too large, the results are quite good. tirely to a single channel allows us to calculate the percent-
For the calculation ofy and ' mixing we need){(P?)  age ofss component. From Table II, we see that the state at
andJ{(P?) which are shown in Figs. 5 and 6. For the study 1.69 GeV is almost entirely & character, while the states
of singlet-octet mixing, we puti=—50.0 GeV°. We also  at 1.37 GeV and 1.64 GeV have only a very snsallcom-
use the condensate values used by Vogl and WES$e ponent. We remark, therefore, that the state 1.69 GeV can be
These are (Uu)=—(0.248 GeV§=—0.01525 GeV and thought of as being in correspondence to #i&680, which
(ss)=—(0.258 GeV§=—0.01717 GeV. We then find that is a puress configuration. Proceeding along these lines, we
with G,=6.25 GeV 2, a value used in our study of thew may think of thew(1420 and the theoretical state at 1.37
system, and3;="5.69 GeV % we obtain 512 MeV for the GeV to be in correspondence. They have little olsa@om-
mass of then(547) and 977 MeV for the mass of the
7'(958). (See Fig. 7 and Table )I.

In Fig. 8 we showT(P?), the first element of the diago- 10 -
nalized T matrix. We find resonances &°=0.262 GeV, 08l
P2=0.954 GeV, P?=1.88 GeVf, andP?=2.86 Ge\. The 06
masses are 0.512 Ggw(547)], 0.977 GeV|[7(958)], 1.37 T
GeV, and 1.69 GeV. We shoW,(P?) in Fig. 9. The reso- 04r
nances are aP2=0.262 GeV, P?=0.954 GeV, and P? o2}
=2.69 Ge\,. The last resonance has a mass value of 1.6 & ggf
GeV and is not seen ifi;(P?). Therefore, we have found o 0zl
five states belowP?=3.0 Ge\2. There are the experimen- & [
tally determined states, thg(1295 and the 7(1440, with o4r
energies that do not correspond closely to the theoretical pre 0.6 |
dictions for states ofjq structure given above. Beyond the 08l
(547 and 7'(958), the theoretical interpretation of the aol oo
states of higher energy is uncertain. In the data compilatiol 0.0 05 1.0 1.5 2.0 25 3.0
of Ref. [10], it is suggested that the(1295 and 7(1440 P2 (GeV?)

may be norgq configurations. It is also suggested that the

7(1440 may represent the presence of two states rather than FIG. 7. Values of deDp(P?) are shown. The vertical lines rep-

one. resent the singularities of dBR(P?) due to the singularities of
It is worth noting that the state at 1.37 GeV seen inj}(P?) andJE(P?) seen in Figs. 3 and 4. There are five significant

Tl(Pz) is about halfway between thg(1295 and 7(1440. zeros corresponding to states of the coupjed’ system.(See the

One may speculate that our 1.37 GeV state may mix with &aptions of Figs. 8 and 9 for the energies of these five sjates.
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TABLE Il. Mass spectrum and mixing angles for states of #xe;’ system. For the first three columns
H=-50.0GeV® G;=5.69 GeV? and only singlet-octet mixing is included. For the last column,
pseudoscalar-axialvector mixing is taken into accouHt,is reduced to—16.0 GeV?> and G,
=6.10 GeV'? is used. Herem,=0.364 GeV andm,=0.565 GeV. For a resonance iy, we have 5
= cosf,rP—sin 6p7°, while for a resonance ifi,, we havey’ =sin 8,7°+cos 6p7".

Mass(theory) Fraction ofss Mass(GeV)
(GeV) 0s(P?) (deg Channel configuration H=-16.0GeV®
0.512 —-11.5 T, 0.468 0.531
0.977 -36.3 T, 0.897 0.972
1.37 —-62.5 T, 0.018 1.36
1.64 415 T, 0.012 1.63
1.69 35.3 T, 0.99¢ 1.69

&Calculated on the assumption that the resonance appears ohjy(see Figs. 8 and)9
®Calculated on the assumption that the resonance appears entifelysee Figs. 8 and)9

ponent and may be classed as radial excitationsS€l2ar-  action if we wish to fit the value of, andm,, . With G,

acter. _ _ =5.69 GeV? and G,=6.25 GeV'2 we obtain the results
Our analysis may be extended to include pseudoscalagiyen in Table Iil.

axialvector coupling in they- »" system. The necessary for-

mal developments are given in R¢8] and we follow the

procedure described there. In that work one makes use of the

fact that theT matrix factors at each resonance with a vertex Our results for singlet-octet mixing with H

function of the form[8] =—50.0 GeV ® were given in Sec. IV. We have recalcu-

lated then mass values including pseudoscalar-axialvector

VI. DISCUSSION

. A oA g9, . mixing and found that reasonable mass values are found
V(P)=9,i y5(C0OS ONg—sin Oho) + 2my. 1P ys whenH is reduced to-16.0 GeV . (See Table I). (A better
value for the mass of thg is obtained with the smaller value
X (€S ONg—sin O\ ), (5.1)  of H.) Thus, we see that pseudoscalar-axialvector mixing is

important and a complete analysis should be made for that

with myc=[(m,+ 2m,) cogé+(2m,+m)sir? /3. To obtain  Case- Since we were mainly interested in applications of our
good values for thej and »' masses, we find we have to confinement model, we have not carried out the full program

reduceH = —50.0 GeV'® to H=—16.0 GeV'5. That is, the &t this time.

inclusion of pseudoscalar-axialvector coupling leads to the Work rela(;ed Iio ours h;']is been hreporge_g by T_akilzzwa,
use of a significantly smaller strength for the 't Hooft inter- Nemoto, an O. g11]. (T \ese authors did not include
pseudoscalar-axialvector mixing in their studjhey use the

SU(3)-flavor NJL model supplemented with 't Hooft interac-

200 tion and obtain satisfactory results for the decay rates of the
150 |-
200
100 |-
150 |-
&« 50|
% A 100
©  of
g L &; 50
B sl ®
—~ | 9] ot L
'_. ~—
-100 —
A 50
150 |- S
A -100
-200 I . L . L L I ) L
0.0 05 1.0 15 2.0 25 3.0 150
P? (GeV?) 200 T D
0. 15 20 25 3.0
FIG. 8. Values ofT,(P?) are shown. Resonances are seen at P? (GeV?)

P2=0.282 GeV [5(547)], P2=0.945GeV [7(959], P2

=1.85 GeV, andP?=2.82 Ge\f, where the bracketed meson des-  FIG. 9. Values ofT,(P?) are shown. Resonant behavior is seen
ignation shows the correspondence with experimental datazThe at P?=0.282 GeV [#7(547)], P2=0.945 GeV [7(958], and P?
resonance aP?=0.945 GeV has only a relatively small compo- =2.66 Ge\f. (For the last state the mass is 1.63 GeNote that
nent in T;(P?), but is quite strong ifT,(P?). (See Fig. 9. The  the 7547 has only a small component ifi,(P?), while the
masses of the four states seen here are 0.531 GeV, 0.972 GeV, 1.36(958) is quite strong in this component of tAematrix. (See
GeV, and 1.69 GeV. Fig. 8)
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TABLE Ill. Values of the mixing angles and coupling constants interaction is more satisfactory, since that interaction has its
for the vertex of Egq.(5.1). Here H=-16.0GeV> G; basis in a study of instanton dynamics in QED6]. (Of

=6.10 GeV'?, G,=6.25 GeV?, andm,=0.433 GeV. course, the use of the 't Hooft interaction does introduce
- = — another parameteH, in our analysis. Both the mass of the
Mass(GeV)  §(P?) (deg  6(P?) (deg 9y 9, and the mass of the’ are affected by the 't Hooft interac-

tion to a significant degrefl1].)

82?; _ 122'7 B 1;39 :':2 i'zg One may be concerned with the fact that we have used
' ‘ : constant values for the constituent quark masses, rather than

1.36 —59.6 160.3 1.19 0.074 " the momentum-dependent masses that arise when solving the

1.63 —135.3 -121 0380  0.365 Schwinger-Dyson and Bethe-Salpeter equatida. How-

1.69 —52.9 —56.4 0.500 0.460

ever, it may be seen from Fig. 2 of Rdfl4] that the
(Euclidean-spagerunning mass for the up and down quarks

7 1o several final states. However, since they did not include. fairly constant up to about 600 MeV fdtgcp=200 MeV.

a model of confinement, their analysis was limited to theSince the cutoff on the vacuum polarization integra(®?),

study of thes. These authors also note that the inclusion ofiS As=0.622 GeV in our calculations, it would appear that
the 't Hooft interaction makes for ®2-dependent mixing OUr Use of constant mass values will not introduce large un-

angle [They remark that, since theand 7’ are composites certainties in our results. It also appears that extrapolation of
rather than elementary fields, the term “mixing angle” is a the results given in Fig. 2 of Ref14] would lead to fairly
somewhat inappropriate designation for tRé-dependent constant values of the Minkowski-space mass over a signifi-

00(P2). We will continue to use that name fép(P2) with cant range of momentum. Related to this point is the obser-
thPat reservation in mind. vation that a difference between our simplified model and the

A review of work concerning they and 7' and based work of Ref.[14] is that the calculations of Refl14] are

upon the solution of coupled Schwinger-Dyson and Bethe?a”ied out in. Euclid_ean space and rgquire an ex}re@polation
to the timelike region. For the running mass, this is done

Salpeter equations has been given by Klabucar and Kekd2!© ' : .
[12]. These authors make use of what is often called th&Y fitting a fifth-order polynomial to the low-momentum re-

global color mode[13]. That work is not unlike the NJL- gion of the functions describing the momentum-dependent
based approach. It has a more microscopic aspect, since gl

(passes. This extrapolation was found to be reliable for all
ons appear in the Schwinger-Dyson equation for the quar

esonic ground states, but for only a limited number of ra-
self-energy. The infrarethonperturbativepart of the gluon

ial excitations. Results are given in REE4] only for those

propagator is parameterized by a Gaussian form of purel{/adial excitations where the method appeared to be reliable:
phenomenological character. For example, in Ref] we ~ 7(25). p(25), K(29), J/i(2S), ¥(2S), Y(3S) and a large
find the gluon propagator number of 5 states of “open flavor” mesons.

Finally, we note that the inclusion of pseudoscalar-

k k axialvector mixing in addition to singlet-octet mixing
Gu(K)==109u,— ﬁzy G(k?), (6.1)  changes the physical picture, since we need only a small 't
Hooft interaction in that case. That leads to approximate
with ideal mixing for then- 7' pair. (See Table lll} It is neces-
sary to calculate various decay rates for thand ' to see
G(k)=Gyy(k?) + G r(k?). (6.2)  if the results obtained with a small 't Hooft interaction are

consistent with experimental dat&ee Fig. 10.
Here, G (k?) represents the known high-momentum be-

havior and APPENDIX A: VACUUM POLARIZATION DIAGRAMS

16m° A basic feature of the NJL model are vacuum polarization

diagrams of the type shown in Fig. 1. If a quark of a single
flavor is considered, we define the tensor
is a phenomenological form. Heeeand n. are parameters of

Gr= akZe™ #K* (6.3

the model. It is also necessary to specify five mass param- d*k

eters for the quarks. One finds a good fit to very many me- —iI#(P)=(—- 1)ncf @7 Tr[iS(P/2+ k) y*
sonic masses in a model with a limited number of parameters

[14]. It is interesting to note that the configuration-space po- XiS(— P2+ k) "], (A1)

tential obtained from use of Eq$6.2—(6.3 is approxi-
mately linear up to about=1 fm. Therefore, we believe that
the model of Ref{14], is not very different from ours in that
Lorentz-vector confinement is used.

If we consider only singlet-octet mixing, the use of the 't PP
Hooft interaction in our work solves the problem of getting a W= (A2)
large mass for they,. In the discussion of Ref.14], one
finds that an additional mass has to be assigned tapthe
That introduces another parameter in the model. Thereforéilso, m, is the constituent mass of the quark. Note that

the treatment of this problem on the basis of the 't HooftP,3”=0. Our definition of the verted'* also leads to

whereS(p)=[p—mq+ie]‘l. Here,n.=3 is the number of
colors and
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. (k-P)P*
k=K = (A9)
and
o (kke
YK =y*— : (A10)

Note thatP, y#(k) =k, ! (k)=0. Some motivation for in-
troducingk,, and y%(k) may be seen by working in the
frame where P=0. There, k#=[0K] and v (K)
=[0,y,(kK)], wherey, (k) is orthogonal tok. Thus,k* is
associated with the longitudinal mode apfi(k) provides a
basis for describing the transverse modes. In terms of these
basis vectors, it is useful to define functiofy ~(P,k),

I'; (P,k), ' "(P,k), andI'; *(P,k), by the relationg9]

AP THA (=K)=T7 k*A (A T(—k)

shown as dotted lines. The experimental values, with their uncer-

tainties, are shown as solid lines.

P~I",=0, so thatP , J*"=J*"P,=0. (These relations would

+T5 AP K YA (—k)
(A11)

appear naturally in a fully gauge-invariant calculation, as disy g

cussed in Ref[16].)

Our confinement model leads to the replacement of

J#*(P?) by J**(P?), where

= d*k
—|J‘“’(P)=(—1)ncf 2 TSP (P k)

XiS(—P/2+k)¥"]. (A3)
Here we have replaced§* of Eq. (Al) by the confining
vertexI'*(P,k). [The calculation of'*(P,k) is described in

the next section.The evaluation oﬁM(P) is made by first
carrying out the integral ovek?® in the complexk® plane
[17]. To that end, we write

_omg [ AT(p) AC(=p)
SO=E5) [p—E(p)+ie po+E(p)—te) Y

Further, we also need to define

AT(B) =2 u(p,9UB,S), (A5)
=p2+mr:“, (A6)
AD(=p)==2 u-P,=9)7(~p,~9), (A7)
J;qu, (A8)

with p#=[E(p),p] andp*=[—E(p),p]. Also

AT (=KTH*ADK) =T Tk* AT (—k)AP(K)

+T, TAC (=K Y (O AT(K).
(A12)

Further details of our calculation may be found in Ré&X.
We define

J#v(P)=—gH (P)I(P?), (A13)
where
PrpY
g4 =g =—57 (A14)

In Ref.[16] we presented a detailed derivation of our expres-
sion for J(P?),

20 — — — _
a; 'y +a; TI';

. d3k Mg
J(P2)=—ncf 3 - -
(27)° | E(k) PO—2E(k)
a; Ty +a, T, "]
e " zA 2| (A15)
PO+ 2E(k)

Here, aj ~=-2Kk%(3my), aj =4E%(k)/(3m}), a;*
=a,  anda, "=a, . The integral of Eq(A15) is diver-
gent and requires a cutoff. We tajd=<A ; whereA; is the
regulator. In the absence of a confining potential, we have
I =T;*=-my/k? andT'; =T, *=1. In that case, we
obtain the result of the original NJL model fer=0,
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d*k 1 4E%(K)—(4/3)k?

(2m)% 2E(K) E2(K)—(P%)%4
(A16)

J(Pz)zncf

where, again, the cutoff 5 is used to regulate the integral.
For the study of light mesong, 5 is taken to be about 0.6 to

0.7 GeV.(The corresponding Euclidean-space evaluation o

the 4-dimensional integral ovée* makes use of a cutoff
Ag, that is about 0.9-1.0 Ge)/.

When studying the omega mes@mith m,=m,), we de-
fine J,,(P?)=2J,(P?) =234(P?).

As in Ref.[9], we calculate the second term of E4.15)
by usingT'; *=—m,/k? and T, "=1. That should be a
good approximation, since the second term of &lL5) is
already small due to the form of the denominator.

APPENDIX B: VERTEX FUNCTIONS FOR A CONFINING
INTERACTION: VECTOR MESONS

BO HUANG, XIANG-DONG LI, AND C. M. SHAKIN
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confinement model. That feature eliminates the cut that
would otherwise appear id(P?) for P?>(2m,)?. Thus,
J(P?) is a real function.

Equations fory;(P°|k|) and y,(P°|k|) were obtained
in Ref. [9] by a technique that involved the calculation of a
number of traces of Dirac matrix products. The equations for
fhe case of Lorentz-scalar confinement, V\Ai:th|IZ| andq
=|q|, were

A comprehensive discussion of the equation for the vertex

functions was given in Ref4] for the case of Lorentz-scalar
confinement. We had

. [ d%
FM(P,k)Z‘yM-Hf (27)‘13(P/2+q)FM(P’Q)
X S(—PI2+q)VC(|k—d]), (B1)

where VC(|k—d|) is the Fourier transform of the confine-
ment potential which was given in EQR.3). Lorentz-vector

confinement is described by the following equation for the

vertex

. [ d
T,L(P.k)=7,rlj 2m)? y'S(P12+q)T" ,(P,q)

X S(—P/2+q)y,V([k—d]). (B2)

The new feature relative to E¢B1) is the appearance of a
minus sign and a contraction with the Dirac matyikin Eq.
(B2).

At this point it is useful to define functiong, and y,.
WhenP=0, we have8]

y1(PO|k|) = — (K¥mg)T'{ ~(P°,|k]) (B3)

and
y2(POIk)=T3 ~(PCIK|). (B4)

For || sufficiently large, we can see that(P°,|k|)—1 and

v2(PC,|K|)—1 [17]. Further, if we define
Kon=[(P%/2)?—mZ]"?, (BS)

we have T (P%ko,)=T5 (P%k,)=0. Thus,
57 (PO,|K|)/[P°—2E(K)] is finite and we may drop thies

_ dq
valPORO=14 2 | B gy Nae (ki) 7w (PG,
(B6)
kqg® o 82
hll(kvq):F(q) (E(K)E(q) +mg) kq [ (B7)
kq® ag+ta
hzz(k-Q):W;qE(m[(E(k)E(Q)‘Fmé) eIt
(B8)
E(q)+E(k)]g?
k=l ey, (89
and
[E(k)+E(a)]
hay(k,q) = WEZ((;) mia%(ap—a,).  (B10)
In these equations,
k ——2—K iA +4—'LLZA ) B11
ai(k,a)=—— y2 Pzt 3 Ais s (B1Y)
wherey=2kq, z=(k®>+ g%+ x?)/y and
1 t"
Anm(2)= f—ldt (t——Z)m (B12)

For Lorentz-vector confinement we have, tor=1,2,

d
Y(PR=1+ S | o Gua ()7 (P,

a'=1,2
(B13)

with
q2
g11(k,q) = E%(q) (2qkay +mZay), (B14)
91k Q) =0*(ap—ay), (B15)
2.2
91(k,0) = 520y (30~ 22), (B16)
q° 9

922(k,q) = E(WEQ) at 5 (at a;). (B1y)

Note that the equations far, (P°,k) andy,(P° k) do not

that would be needed in the denominator in the absence ofr@quire a cutoff at high momentum. In numerical calcula-
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tions, it is usually sufficient to consider momenta for which andF;*(P,k’) on the right-hand side. We neglect the cou-
andq are less than 4.0 GeV. It is also worth recalling that,pling of F;*(P,k) to F;*(P,k). In that approximation
when calculating the vacuum polarization diagrams, there if;“—(P,k) satisfies an uncoupled equation, as does
a cutoff of A ; on the magnitude dof. Therefore, only values F;*(P,k). The neglect of the coupling term is equivalent to
of y,(P%,|K|) and y,(P°|k|) are needed fofk|<A; in the the neglect of ‘Z graphs,” or pair-current effects. Such ef-
calculation of the varioud(P2). It is also worth noting that [€CtS are quite large in the case of Lorentz-vector confine-
ao(k,q), a;(k,q), anda,(k,q) are quite large whek=gq. ment and they create major problems, if one attempts to

[That behavior reflects the infrared singularity VF(|I2 solve the coupled equations. Since the probability of the con-

fining potential to excite pair currents is unknown, it is not

—ql).] Because of that behavior, the values obtained forunreasonable to neglect such effects in the Lorentz-vector

y1(P2,|K]) and y,(P,|K|) for |k|]<2.0 GeV are insensitive confinement model.

to any high-momentum cutoff of value greater than 2.0 GeV, oyr procedure then requires that we complete khén-

that we use in solving EqB6) or Eq. (B13). tegral in the lower half of the complek, plane, picking up
only the pole where the quark goes on its positive mass shell

APPENDIX C: VERTEX FUNCTIONS FOR A CONFINING [17]. The equation, in the frame wheRe=0, is found to be
INTERACTION: PSEUDOSCALAR MESONS

. _ . il o d®k’ VE(k—k')
In this appendix we discuss the vertex operator of the I'j (P ,|k|)=1—j 5 -
confining field for the case of pseudoscalar mesons. With (2m)° PO—2E(K’)
reference to Fig. 1, we may write

i m?—2E(K)E(K")
TaP)= 751 | s [7#SPI2EK TP E(RER)

Iy (POIK']) (C9

for the equal mass case.

To obtain the corresponding equation f *(P°,[K|),
HereS(p)=[p—m,+ie] ", if we consider an up quark and we multiply Eg. (C1) by ysA()(—K) from the left and
an up antiquark at the vertex. We defifig ™ andI’; * such A)(K) from the right and then take the trace of the
that equation. In this case, we divide the equation by

A RTH(PRAC)(~K) Tr,[ZSA((,_)A(_E)%A(_H(R)] to obta?n an equati(?n for
. . I, "(P%k[). The integral overk, is completed in the
=T, (P.KA (k) ysAT)(=k), (C2)  lower-halfk, plane, where we pick up only the pole that has
the antiquark on itsiegativemass shell. The resultingin-

X S(—P2+Kk")y,VE(k—k")]. (Cy

and coupled equation forl', * (P°,|K|) is
AT(=RTp(PRAT(K) ) a3k’ VE(K—K)
- ()(—K (K F;+(PO'|k|):1+j 3 -
=I, "(POA T (=K)ysAT (k). (C3) (2m)° PO+ 2E(K")
Recall thatA(")(k) and A(7)(—k) were defined in Egs. m2— 2E(K)E(K") A
(A5) and (A7). The analysis proceeds by multiplying Eq. X — r,"(P°[Kk']). (CH
(C1) from the left by ysA(*)(k) and from the right by E(K)E(K")

A(‘)(—IZ)_and using Eq(A4) for the two quark propagators.  For completeness, we record the coupled equations ob-
At that point, we form the trace of the equation. If we divide 3ined when we pick up both poles in the lower compitgx

the equation by TrysA(*)(k) ysA()(—k)], we obtain an plane. These have the quark going ongtsitivemass shell
equation forl"; ~(P,k), which involves bothI'j ~(P,k’)  and the antiquark on itsegativemass shell. We find

m2—2E(K)E(K’) m2+ 2E(K)E(K")
H‘f d3k’ VC(k,k') PO—2E(k’) PO+ 2E(K’)
1 (2m)° E(EK') | m2+2E(K)E(K’)  m2—2E(R)E(K)

P°—2E(k’) PO+ 2E(k’)

r;‘<P°,|IZ|>]
T, (P |K])

F;‘<P°.|IZ'|)]
I, (PO Ik])

(C6)

One may compare the matrix element that couﬁl§§ to F,}* with the element that coupldég’ to itself.[See Eq(C6).]
In this manner, one can see the very large amplitude for exciting “pair curréotsZ-graphg in the case of Lorentz-vector

confinement. That isn?+E(K)E(k’)>m?—E(K)E(k’), making the off-diagonal term quite important.
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