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Various models for pion probability distributions from heavy-ion collisions
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Various models for pion multiplicity distributions produced in relativistic heavy ion collisions are discussed.
The models include a relativistic hydrodynamic model, a thermodynamic description, an emitting source pion
laser model, and a description which generates a negative binomial description. The approach developed can be
used to discuss other cases which will be mentioned. The pion probability distributions for these various cases
are compared. Comparison of the pion laser model and Bose-Einstein condensation in a laser trap and with the
thermal model are made. The thermal model and hydrodynamic model are also used to illustrate why the
number of pions never diverges and why the Bose-Einstein correction effects are relatively small. The pion
emission strengthy of a Poisson emitter and a critical densify are connected in a thermal model kyn,
=e"™T<1, and this fact reduces any Bose-Einstein correction effects in the number and number fluctuation
of pions. Fluctuations can be much larger than Poisson in the pion laser model and for a negative binomial
description. The clan representation of the negative binomial distribution due to Van Hove and Giovannini is
discussed using the present description. Applications to CERN/NA44 and CERN/NA49 data are discussed in
terms of the relativistic hydrodynamic modg50556-28138)04912-7

PACS numbes): 24.10.Jv, 21.65:f, 24.85+p, 25.75—q

I. INTRODUCTION veloped in the framework of the present description. The

. C . . clan representation for the negative binomial distribution due
Pion multiplicity distributions produced in heavy ion col- ; P . .
. . . . to Van Hove and Giovannini will also be discussed. This

lisions are of current interest for several reasons. First, pion

S T o :
: . . ing experimental
are by far the main component of the produced particles mrepresentatlon Is a useful way of characterizing experimenta

. ) . : data.
\ggé Zlghe?;(zr?t}; g?%\;/éé?\r hct?rilé?:g:.ofl:o:oi);aar:ge'régut:s In this paper we present a unified description of several
xper : P P ) gUrrentIy discussed models for evaluating pion distributions.
and this number may go up considerably at RHIC energies

dau hvdrod . del. th b P ur main focus will be on four particular cases, but other
In the Landau hydrodynamic model, the number of pions, qqipjjities exist and will be discussed briefly. The ex-

scales aS"* whereS=E{ , . Secondly, pions are a useful amples we will consider in detail arfd) a thermodynamic
tool for studying HBT effects coming from Bose-Einstein description, (2) a relativistic hydrodynamic model3) an
correlations. HBT two-particle correlation experiments giveemitting source model, an@) a model which gives a nega-
information about source parameters of the emitting systemive binomial distribution. These cases cover a wide spec-
Thirdly, if many pions are produced by a strongly emitting trum of possibilities. Thermodynamic descriptions have been
source at high enough density, a pion laser may be formedxtensively usefll-5] for the production of pions in heavy
according to one model owing to Bose-Einstein symmetrizaion collisions and also are discussed in the quark matter
tion effects. Pions with a nonzero chemical potential can alsmeetingq4,5]. Emitting source models are reviewed in Refs.
show the phenomena of Bose-Einstein condensation at sonfig,7]. The emitting source model that we discuss in detail is
critical density. Since Bose-Einstein condensation of a finiteoriginally due to Prat{8] and discussed further in Refs.
number of atoms in a harmonic oscillator or laser trap ha$9,10]. Application of the negative binomial distribution to
recently been seen, the possibility of seeing effects assochigh energy collision data can be found in Ref$1-14,
ated with the formation of a pion laser or an enhanced conand its connection with intermittency are discussed in Refs.
densation into a ground state would be interesting. A comf15,16. Hydrodynamic descriptions are also frequently ap-
parison of Bose-Einstein condensation of atoms in gilied to heavy ion collisions, and their descriptions appear in
harmonic oscillator trap and the pion laser model will bethe quark matter proceedings, Refd,5]. The relativistic
given in this paper. Fourthly, the possibility of intermittency hydrodynamic model gives a good description of single and
behavior in pion distributions has been a concern for over aouble inclusive data from Cern experiments carried out by
decade. A distribution that is widely used to discuss intermitthe CERN/NA44 and CERN/NA49 Collaborations.
tency is the negative binomial distribution, and a model We will use an approach that initially was developed for
which generates a negative binomial distribution will be de-cluster distributiong17-23, but applications to cycle class
problems were notefll7] and further studied in more detail
in Refs. [21-23. Cycle class problems appear in Bose-

*Electronic address: mekjian@ruthep.rutgers.edu Einstein and Fermi-Dirac statistics because the density ma-
"Electronic address: schlei@LANL.gov trix must be symmetrized or antisymmetrized in Feynman'’s
*Electronic address: dds@LANL.gov path integral approach to statistical mecharji24]. A de-
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FIG. 1. Cycles and clusters. In the mapping of a cycle class @
problem into a cluster problem and vice versa, the cycle length} 1,1, 1+1 (1T o ©0 Q
corresponds to the cluster size; the number of cycles of lekgth o © @ @
corresponds to the number of clusters wkthucleons. Also shown
is the vectom=(ny,n,, ...,n,) as a block diagram. The number
of vertical blocks isk, and the number of columns withblocks is
ny. The total number of blocks ia.

1l

!
!
!

FIG. 2. Various parallels. Various parallels are shown which
include the partitioning of an integer, a corresponding block picture,
tailed application of the approach discussed below to Bosea cluster, a cycle class representation of each partition, and an
Einstein condensation phenomena can be found in Refequivalent harmonic oscillator excitation. Some places where these
[22,23. The connection between cluster models and cyclevarious columns appear are as follows: The partitions of an integer
class problems is shown in Fig. 1. Specifically, a cycle ofappears in counting the number of irreducible representation of the
lengthk corresponds to a cluster of sikeand the number of symmetric group. Block pictures and rotated versions of the ones
cycles of lengthk corresponds to the number of clusters of shown appear in combinatorial analy¢ferrer's block diagram
sizek. and in group theoryYoung tableaus Cluster problems appear in

Application of results from cluster models to the theory of Many areas of physics such as nuclear multifragmentation, percola-
disordered systems can be found in Ré25,26. Some of tion, randomly broken obJe_cts, and the fragmentatlon_ of ator_nlc_
the results of this reference were connected to probabilit)ﬁ'”,SterS' They also appear in group structure such as in the distri-
distributions which appear iQuantum Optics Methods ~ pution of city sizes, etc. Cycle class problems appear in Bose-
from Quantum Optic$iave been used by Weinet al. [27— Einstein and Fermi-Dirac statistics, speckle patterns in phase space,

. . . - . Feynman'’s theory of tha-transition in liquid He, in random per-
29] to discuss particle production and correlations in heavy . L . !
ion collisions mutations, etc. Excitations in the harmonic oscillator appear when

evaluating the microcanonical partition function of Bose atoms in a
laser trap. Another application is to the Veneziano-Hagedorn mass

spectrum, where each excitation is an elementary particle.
II. PION PROBABILITY DISTRIBUTIONS

In this section we will discuss several models of pionthe various cases and with other situations already discussed
production in heavy ion collisions. These models, which aresych as Bose-Einstein condensation.

a thermodynamic description, a relativistic hydrodynamic
model, an emitting source model, and a negative binomial
model, can be described using a unified formalism. Before A. General results

giving specific results, we will give some general expres- | gescribing a fragmentation process, partitioning prob-
sions that we will use. These expressions were initially dejems or cycle class problems, a weight is given to each

veloped for the description of the fragmentation of nucleigision of A=3,kn, . Figure 2 illustrates the possible divi-
into clusters. However, because of the correspondence be-

tween cycles and clusters shown in Fig. 1, the cluster resul lons ofA=4. Avectorn=(ny,ny, ... .N,N,) specifies the
can be used to describe cycle class problems, and the pi vision wheren, is the number of clusters witk nuclepns,
production models that we consider can be re-expressed fycles of lengthk, etc. A general block picture fon is
such terms. This correspondence has already been illustratéfOWn in Fig. 1, and the specific block picturesfof 4 are
in the description of Bose-Einstein Condensation' ShOWI’l n F|g 2 along with CIUSter and CyCle C|aSS d|V|S|0nS
This section is divided into various subsections. First, we2nd harmonic oscillator excitations. The type of weight
give some general results. Then we will apply these results t8V/,(n,x) given to anyn that we will consider can be written
the cases mentioned above. Comparisons will be made fas
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X"k Theu is taken to bai=e”* in thermodynamics, wherg
Wa(RX) = — =[] = (1)  is the chemical potential. Fe=0, u=1 and
Za(x) & Nid
Heren,! are Gibbs factorialsZ,(x) is the canonical parti- z(x)zex;{ kzl Xkl (6)

tion function, andx, is a function of thermodynamic quanti-

ties such as volum¥, temperaturel. This x, was called a The ratio

tuning parameter in Refl17], and a specific fornx,=x/k

was studied in detail in Ref§17,18. Other forms forx, ZA(X)Z(X) =P A(X) 7
were used to study percolative features of simple statistical

model [21] and Bose-Einstein condensation of atoms in ais the ratio of the canonical partition function to the grand
box [22] and atoms in a laser trd@3]. The form ofx, for  canonical partition function. The mean and varianceAof

the pion models to be discussed will be given below. follow once thex,’s are specified:
Given W,(n,x) of the type of Eq(1), various quantities
are easily calculated. For example the ensemble averages of (Ay= E KX, ®)
Ny, given by(nk>=EWA(ﬁ,>Z)nk, where the sum is over all k
artition of A, is simply[17,2
p ply[17,20 and
Zp-(X)
(M) =Xe——=— 2 AZ)—(AY2="> K2, 9
ZA(X) < > < > Ek k ( )

This result can be easily understood heuristically by notingThese last two equations follow from E¢p) by differenti-
that the n, times the Gibbs factorial tf! gives 1/(n,  ating this equation with respect toand settingy=1. These
—1)!. This operation removes one columnkoblocks from  expressions form the main general results to be used in this
Fig. 1. The sum over all partitions & which we callm,(n) ~ Paper. Other results can be found in R¢fisz—22.
in SW,(n,x)n,, then gives rise to the factd,_ (). The
X, factor in Eq.(2) is from the shifthk:xkxEk_l where the
XEk_l is the appropriate power of, for the partitions with We begin this subsection by first giving some well-known
S . results on the thermal properties of an ideal gas of relativistic
one column Oﬂf E’IOCkS removed. Th&,(x) in Eg. (2) is pions. Some of these results will then be used to motivate
present inWx(n,x) and is in the final answer. Since the some ideas, developments, and comparisons to be made
constraintA=Xkn, always applies to any partition @&, |ater. Moreover, since the thermal description is extensively
then it is also true when written @s=Xk(ny). Substituting  ysed, many readers will recognize these results and this is
the result of Eq.(2) into this constraint equation give&  helpful for the subsequent development of the choice,of
=ZkxZa-k/Zn, and rearranging terms results in the re-for this particular model and other models to follow.
cursive relation In a thermal model or in a description based on statistical
L mechanics, the distributions associated with pions are ob-
-~ ~ tained from the assumption that an equilibrium is established
Za(x)= KEK“ KXZa-«(X) ) in some interaction volum¥& at some temperaturé. Spe-
cifically, statistical thermodynamics gives the Bose-Einstein

with Z,=1. This recursive equation is a very simple way of 9ccupancy factor

obtainingZA(x), and it applies to anyV,(n,x) of the form
of Eg. (1). To use it, thex,'s have to be specified. As an f(e)=
examplex, = x/k gives[17,1§ efe—1

B. Pion distributions in a thermal model

(10

T (A+x) for an energy level a¢ and 8=1/kgT. This result is based
o @ on the grand canonical ensemble with the pion chemical po-
TGOAL tential u=0. For pions in a box of volum&/, the thermal

. _ - _ properties of pions can be obtained from the density of states
The ZA(X) is the canonical partition function of a system of factor Vd3p/h? and from the energy, momentump, rela-

A objects @ nucleoDsA atoms, .. ). The grand canonical o, e=(p2+m?)Y2 In particular, with%i=c=kg=1, the
partition functionz(x,u) is obtained from the canonical par- following relations can be obtained for thermal pions:

tition function Z,(x) or the weightW,(n,x). For example,

Za(X)=X(X+1)---(Xx+A-1)/A! =

)

the generating function ONa(X) =2, i Wa(n,X) is [17] N 1, 1 m
" V=M T2, (Kol Ky
z()Z,u)Eexr[ux1+u2x2+u3x3+---]=A§=:0 Wa(X)UA, E 1 3T§ 1 3K . 1K )
(5) vz & et T Tt T
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1 1 m TABLE I. The probabilityPy of N pions compared to a Poisson
PV= —2sz2 —2K2( k—) (11 distribution with the saméN). Also given are the cycle class pa-
2m k=1 k T rametersx, obtained from Eq(14).

S N Py Poisson k Xy
Vo [(E/V)+p]/T.
0 0.311 0.293
HereN/V is the total number densit{/V—the energy den- 1 0.346 0.359 ! 1.10812
. . 2 0.208 0.221 2 0.04812

sity, PV—the equation of state, arfdf V—the entropy den- 3 0.0903 0.0904 3 0.00588
sity of pions. The variou&’s are MacDonald functions. The 4 0'0320 0'0278 1 0'00107
ultrarelativistic photonlike limitn—0 or T>m and the non- : : '
relativistic limit e=p?/2m+m can be obtained from these 5 0.00998 0.00682 5 0.00024
equations using the following limits for the MacDonald 6 0.00287 0.00139 6 0.00006

functions K, that appear. With z=km/T:K,(2)
=(I'(v)I12)I(1/122)" for z—0 and K (z)= (m/2z)e™* for
z—o. HereI'(v) is a gamma function. In the above Eq.
(11), the sum ovek gives the corrections arising from Bose-
Einstein or BE statistics, with thk=1 term the Maxwell
Boltzmann or MB limit. Specifically, th&=2,3, . . . give
the enhancements coming from BE statistics. For example,
for N/V the ratioN/V/(N/V) g = ¢(3) in the massless pion
limit. Here (N/V) g is thek=1 term only. Thef(3)=1.2 is
the Riemann zeta function. The results of Efl) arise
when the occupancy factor of E¢L0) is expanded as a
power seried(e)=e Aé(1+e Fe+e 2P+ ...). The inte-

The Wy(n,x) is the weight given to=(ny,n,, ...,n,) in
a cycle class decomposition of a permutation. For example
the permutation

123 456
3 (15

1 3 2 4 75
has two cycles of length 1 which are-41 and 4-4, one

cycle of length 2 which is 2:3—2, and one cycle of length
3 which is 5-7—6—5. The cycles appear in Feynman’s

grals over ¥d®p/h3)e *f¢ with e=\/p?+m? give rise to
the variousK’s.

The probability of havingh, pions in levelk, given that
the mean number in that level isy)=1/(e’*«—1) is the
geometric distributiorf30]

(Y
p(n) = —(<nk>+ et (12
The (ny==7 _o P(N)N and(nip) —(ny)? is
Ny = (n?=(n(1+(ny)). (13

The Poisson limit ign2) — (n,)?=(n,) and is realized when

path integral density matrix approach $tatistical Mechan-
ics[24], and permutations appear because the density matrix
must be symmetrized. An example of this approach to the
ideal Bose gas in a boj22] and to the ideal Bose gas in a
harmonic oscillator trap23] shows the utility of the recur-
rence relation of Eq(3) in obtaining the canonical partition

function ZN(Q) and all its associated thermodynamic quanti-
ties. We will briefly summarize these two cases in the next
section.

Using this choice ofx,, the probability ofN pions is
Pn=2Zy/z whereZy is obtained from Eq(3) with x, given
by Eq.(14). The fluctuationgN?)—(N)2=Sk?x, . An alter-
native method for obtainingy was recently given by Be-
cattini, Giovannini, and Lupid31]. They used projection
methods to obtaiy which involves taking\-derivatives of

MB statistics applies. The above expression on fluctuationg , i, respect tau and settingu=0. Specifically
pertain to a particular energy level. We now turn to an evalu-

ation of the fluctuations in the total number of pions and its 1 g\ vV

associated probability distribution. Such guantities are im- PN:W"m mexr{—ﬁf dpin(1—-e “Tw)|.
portant in an event-by-event analysis of data. The probability "w—0

of N-pions is given by the ratio of the canonical partition (16)
function, Zy, to the grand canonical partition functian
with z=3{_,Zy andZo=1. To obtainZy ,z we use results
from Sec. IIA with u=ef#=1. For a thermal model the
choice ofx, is

Table | summarizeP for T=163 MeV, V=22.5, and
m/T=0.85. This choice generates the saR)g distribution
given in Ref.[32]. Here thePy's are calculated by the
simple recurrence relation of E¢3). Computationally, Eq.

3 2 (3) is very easy to work with since computers evaluate re-
VT°[m\<1 m ; - .
Xe=n—| =| Kol k=]. (14)  cursive relations quickly as well as the sums {) and
27\ T) k T (N?)—(N)? that appear in Eq(8).

Two limiting behavior ofx, are of interest. In the ul-
trarelativistic limit or massless pion limit, the, of Eq. (14)
is simply

Later, we will give another choice of,. That this is the
correct choice follows from{N)=Xkx, where(N)/V in the
grand canonical ensemble is given by EH4l). Also z
=ePVT=e*% where PV/T=3,x, follows also from Eq.
(11), andz=e> was a result developed in Sec. Il A. The

result forz=e>* can be expanded to give tMtN(i) of Eq.
(5) and its associated/(n,x) =1Ix¥/n, !/ Zy(x) of Eq. (1).

X =1T3i (17)
k 2 k4

and in the nonrelativistic limit
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v 1 TABLE II. The distribution ofx, in a relativistic hydrodynamic
X, =—e kKmT__ (18 model .
k )\ﬁ K512

k Xy k X
where \y=h/(2mmT)Y2. The factore ™7 is the Boltz-
mann factor cost function for creatitkgpions, and this factor 1 260 6 0.0067
arises from the mass of the pion. We will introduce a quan- 2 9.957 7 0.0016
tity 7, wherex,~ 1/k". In cluster models- is Fisher’s critical 3 1.047 8 0.0004
exponen{32]. In Eq.(17) =4 and in Eq.(18) 7=5/2. 4 0.163 9 0.0001

5 0.031

C. Relativistic hydrodynamic model and applications

to CERN/NA44 and CERN/NA49 experiments . .
P u#(x) andT; are the four velocity of the fluid element at

We also calculated the pion probability distribution usingpoint x and the freeze-out temperature, respectivedy.

a relativistic hydrodynamic model: HYLANDER-(28]. = (E,p) is the four-momentum of a pion
This particular model belongs to the class of models which B)’/ expanding the Bose-Einstein oécupation factor in
apply (3+1)-dimensior_1al rel_ativistic one-fluid-dynamics. It terms of a Maxwell-Boltzmann factor and a series of higher
provides fully three-dimensional solutions of the hydrody-Order corrections, we can obtain the distribution xafs
namical relativistic Euler equationg35]. HYLANDER-C which are summa,rized in Table II
222511§|yegg:;ire\(;et:)SI\(/);r,ioTs(hﬁ:\zlzigr??]éazggﬁsb;eg;su(e:z-neb Using these results fax,, the fluctuation in the thermal

. § vions is (N2)—(N)2=3k?x,=312.97 or a 20% enhance-
gies. HYLANDER-C and HYLANDER were used to repro- .ot oyer the Poisson result af,=260. The probability

duce[36] simultaneously mesonic and baryonic rapidity anddistribution associated with the thermal pions is obtained
transverse momentum spectra of the Sreaction at 20@ from Py=Z,/z whereZ, is given by Eq.(3) andz s given
GeV. Corresponding measurements have been performed kex/ Eq N(6) r;:igure 3 sr';‘ows the result fdp.. . which is a

. _ . . N »
the_ N.A35 Collaboratior{37]. Baseq on the successful de_ perfect Gaussian distributiofsolid line) with mean (N)
scription of the measured single-inclusive spectra, predicz 283.9 and variancéN?) — (N)2=312.97
tions for Bose-Einstein correlatioflBEC) functions[38,39 ) R
were made. Those predictions turned out to agree quantita-
tively with the measuremenig0,41. The model also repro- D. Some special examples
duces the photon data fort#u collisions at SPS energies | this subsection, we will illustrate some of the general

[42] and gives a simple explanation for the “sqft-puzzle”  resylts of Sec. Il A with three specific examples. For mass-
[43] and the complex behavior of the radii extracted from|ggg particles in a box of sidésin d-dimensiongneglecting
pion and kaon correlations and explains the difference in thgi the x, is

extracted radii for pions and kaons in terms of a cloud of
pions due to the decay of resonances which surrounds the Ld keT\91  xy
fireball (pion halg [38]. Xk (ﬁ_c) Pl
In the following, we discuss some further resuldd] for
158A GeV Pb+ Pb collisions measured by the CERN/NA44
[44,45 and CERN/NA49 Collaborationg46]. The PbrPb  where 7=d+1. Then z=exgxs{(7)], (N)=x4{(d) and
data reproduced by HYLANDER-C have been obtainedN%) —(N)?=x4{(d—1) with {(n)==;_,1Kk". Some val-
while using an equation of statEOS with a phase transi- ues of {(n) that often appear in statistical mechanics are
tion to a quark-gluon plasma at a critical temperatlige ~ {(1)=o, {(2)==%/6=1.645, {(3)=1.202, {(4)=m?/90
=200 MeV (cf. Refs.[47,29 and references therginThis ~ =1.082,{(3/2)=2.612. In two dimensionéN?)—(N)2=oo
EOS does not depend on the baryon density, and thus trs® that the fluctuations of massless particles becomes large.
freeze-out energy density translates directly into a fixed

:Zd—awd—l (20

freeze-out temperaturé@;. The choice for the freeze-out 0.025 e
temperature is in these calculatiois=139 MeV. ;

The number of thermal pionse(", =, and«°) that are 0'020;_ ]
produced in the model calculations is 853. In particular, this 0.015 [ 3
number does not include any resonance decay contributions. Py b
But this total number of thermal pions includes the Bose- 0.010 ¢ E
Einstein enhancement. To be specific, the thermal pion spec- 0.005 E ]
tra are calculated by evaluating the integral - ; : \

M B4 BT B P
0 200 250 300 350 400

, (19 N

EdN 1 f p“dU#(X,’L)
dp (2m)3)s p[pﬂw,;) . |
exg———|— FIG. 3. Results forPy for thermal pions,m—, in 158A GeV
Tf(X,/L) Pb+Pb collisions. The solid line uses contributioks-600 (al-
readyk= 10 gives the fully converged resulfThe dotted lines only
wheredo* is the differential volume element and the inte- use up tok=2 terms. In the figure, we havésolid line) 3x,
gration is performed over the freeze-out hypersurfae, =271.2,(N)=3kx=283.9, andN?)—(N)?=3k?x,=312.97.
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For nonrelativistic atoms in a bd22] in d-dimensions shows some similarities with the Bose-Einstein condensation
of atoms in a laser trap as given by Eg4).
x 1 First, we will give expressions fax,. Oncex, is given,
et R @D then all the general results of Sec. IIB apply. In Pratt’s
model, » is the mean pion multiplicity generated by a Pois-
with 7=d/2+1, x=LY\Y, A;=h/(27mT)¥2 Condensa- son emitter. Then, in the Poisson limit, the probability of
tion occurs ind=3 atx=x.=A/{(3/2)=V/\}_in the limit ~havingN pions isPy=(7"/N!)e”". This is also the result
A V— . Manifestation of this Bose-Einstein condensation®f the thermal model of Sec. 11 B in the Maxwell-Boltzmann

H —y = 3 2
are (1) a power law distribution of cycle lengtH21,22: I|_m|t, whr?re ”_lxlg(\_/-rész )(rg/T)Ké(.m/T)' Correc-
(N~ 1K (2) the specific hea,, has a cusp30], and(3) tions to this result obtained from Bose-Einstein symmetriza-

; tion effects can be developed by evaluating a quamngjty
th tat Il
|aregeg[g)(;l]h?] S ;;e: i)ic;/[))(azy%s__ Fﬁ?;@%s fg:az;:zicop_)rlﬁz y (calledC, in Ref.[8]). TheC, are referred to as combinants
T, is déte?ﬁiined by t(ﬁe density&/V’ from Alcg.(3/2) [10]. The importance of combinants can be found in the

=V/\3 . Ford=1,2T,—0 so that there is no sudden con- work of Gyulassy and Kaufmaj#8,49. While thex, of the
c " thermal model is given by Ed14), in the emitting source
densation at a nonzefb The occupancy of any level with  m5qelx, is given by evaluating

energyey is

Kk k k—1
A _n 32 432 3 AlS(Pi_1—Pi)-X;
X = d°x;d d>p;e'=Pi-17Pi)-Xi
Ne= 2 e*ﬂfkaAik. (22) k k I];I;I_ i pI];[l Pi
k=1 Zp ’
1
For A—o, Z,_/Zy—eP#¥ and thus we obtain the well- Xiﬂl S| 5 (Pi-1t pi),Xi) (25)

known occupancy factor

wherepy=p=p, andx;= . We neglect any temporal de-
1 pendence to keep the discussion simple.

n=———. 23 .
K eBlacm 1 @3 The s(p,x) is the source strength. As in Ref8] this
source strength is taken to be a thermal Gaussian of the form
As T—T;, u—€o=0.
For_atoms in a laser trap given b_y a harmonic oscillator s 5 %) = 1 o P22mT 4 x2/2R? 26
well with frequencyw and level spacing o [23] P, (2m)2R?mT)?? '
y 1 x<92 (24  For this choice ofs(p,X), the evaluation of the,’s can be
KTk (1—xKkyd done analytically{9]. We now give a discussion of the lim-
ing behavior ofx, before giving the general behavior. For
wherex=e 9T For smallx small k and R?/2>1/8mT (typically R%/2~6 and 1/8nT
~1/6)
xkdi2 (T d )
Xk:kd+1 fo X, = (RZmT)32 Y 1 27)
k™ (RZmT)B/Z k4 !

There is no condensation at nonzdréor d=1, but there is

~ 4 =
condensation fod=2,3 atT,#0. Thusx,~1/k* and =4 for smallk. For largek

1/ » k
E. Emitting source, pion laser model X= AR (28

A simple and exactly solvable emitting source models for
pions was first introduced by Prdt8]. The model has an
interesting feature. Namely, a Poisson emitter of pions can 1
behave like a pion laser when Bose-Einstein symmetrization Ne= ( R2mT+ VR2mT+ =
effects are included. A manifestation of this behavior is a 4

large enhancement in the number of pions. This enhance|=able lll gives some values o, for R2/2=6 and 1/8nT
’ =

ment is into a zero momentum state and is similar to Bose-
- ; . ; . =1/6.
Einstein condensation of atoms in a box which also condense . . .

The general behavior fok, was explicitly written by

into the zero momentum state. An important result of thisCS.d 6 and Zimany [10], and is
condensation is a reduction in the intercept in the two par- 9 y '

Now x,~1/k and7=1. The 7. is given by

32
(29)

ticle correlation functions. Such effects were discussed in K 1
Refs.[27-30. Recently C3mo and Zimany [10] have given Xk:l - (30)
simple exact expressions for Pratt's model. Some simple re- K (K2 M2)3

sults were also presented by Chao, Gao, and Zh@hdhis _
subsection presents some further discussions of this modwlith y. =1/2(1+y=+1+y) andy=2R?mT—1/2. The .
using results from Sec. Il A when applied to this case and=y>? in this notation. We rewrite this as
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TABLE IIl. Values of x,. Unlessy is large, thex, fall very shows values ofx, for V:(47-r/3)R3 with R%/2=6 and
rapidly and thus théN) and(N?)—(N)? are governed by the first mT=3/4. Using p=x;, the x, can be rewritten ag,~ 7
few k's. For the choiceR?/2=6 and 1/80nT=1/6, the 7.  and the results are also shown when written in this form. The
=42.875. However, the secong=x, is comparable tox; at 7 results of Table IV are very similar to Table 1ll. However,
=432, thex; to x, at =140, thex, to x; at =90, etc. the largex, limit is [V/()\'3I' k5/2)]e—km/T. If we takex, to be
this result with k=1, the x,=(1/k>?) (7/5.)* with 7,

k * k X =V/\3~(R?’mT)%?, which is similar to Eq/(29).
1 7 6 7%/2.43x 10'° Note thatn=n.e ™" so thaty/n.=e ™T<1. Conse-
2 7?1432 7 7711.32< 102 quently, the sun®x.k=(N) always converges. Thus there
3 7°16.07x 10 8 7817.40x 103 can be no resuN)—o. The Boltzmann factoe ™7 sup-
4 715.47x 1P 9 7°/3.8x 10'° presses the propertyN)—co. This hidden connection be-
5 7°13.91< 168 10 7'92.07x 1017 tween, 7., and »/ n,<1 is not present in the pion laser
model which treats; as independent of. or x; as indepen-
dent of the otheg,’s. The thermal model has this connection
7\k 1 and shows why no divergence {fN) ever occurs in the
xk—(—) 77Tk 3 (31)  thermal model. Similar conclusions also apply to the relativ-
e k(l— (7_) 1 ) istic hydrodynamic model.
Y+

F. Negative binomial distribution
to illustrate its close relation to atoms in a laser trap as given

by Eq.(24). Ford=3, Eq.(24) gives As we have seen, pion probability distributions are deter-

mined once the choice of thg's is specified. The thermal

x3K/2 equilibrium model specifies a particular form fof as does
Xy=——— (320  the emitting source model. Bose atoms in a box or laser trap
k(1—x) also can be discussed in termsxpf. In this subsection we

. B will present a choice fog, which results in a negative bino-
with x=e ) . mial distribution. The choice given below is partly motivated
9”0‘3 tgexk S _are given, thez=exg2xd, (N)=2kXc,  py results from the other models. The negative binomial is a
(N%)—(N)"=2k" andPy=zy/z follow with Zy given by prohanility distribution that is frequently used to characterize
the recurrence expression of Eg). Sincex,=1/k(7/7c) pion yields[11-13. It has also been used in the discussion
for large k, (N)—o when 7=75.. At n=75 the (N)  of intermittency[15,16. Van Hove and Giovannirfil1-13
~21/k which diverges logarithmically. We now compare pas given a clan model representation of it which will also be
these results with thermal models. In thermal modelsis  mentioned.
givgn .by Eq.(14) and its nonrelati\(istic and gltrarelativistic The various forms fok, that we have encountered so far
limits in Eq. (17) and Eq.(18). No divergence i{N) occurs i this paper and also in the application of this approach to

in either the ultrarelativistic limit where (N)  cjyster yields suggest looking at a behavior fgrgiven by
=(VI7%)T3(3), or the nonrelativistic limit where(N)

= (VIN3)gg(m/T) with g (m/T)=3(e" ™k k%2 Note, = ay /K", (33

however, that fluctuations,(N?)—(N)?, in the two- _

dimensional ultrarelativistic case discussed in Sec. IIC can For example, the nonrelativistic thermal model has

be infinite. To further illustrate the difference, we note thatin=V/\3, y=e~™T, and7=5/2. The ultrarelativistic thermal

the thermal model alk,’s are given by Eq.(14) so that Model hasa=(V/7*)T? y=1, and 7=4. The emitting

x,= 7 is not independent of,T,m whereV~R3, Table Iv  source  model, for smallk, is a=(R°mT)*% 'y
=p/(R?’mT)*2, r=4 and isa=1, y= 9/ 7., =1 for large

TABLE IV. Values of x, in a thermal model using the same k. We will now show that the choice

choice ofR?, T as in Table II. The, is also written as;/b, where ‘

x,=» and b, is a number that is given in the table. The results Xg=ay/k, (34)

7*/by are very similar to that of Table III.

holkgT

which hasT=1, generates a negative binomial probability

K X X = 7°/by distribution. This way of generating a negative binomial dis-
tribution can be found in Ref.50], more recently in Ref.

1 20 7 [51], and was used in RefEl7] and[20]. Thea andy will be

2 0.991 7?1404 related to the mean number of pions and to their fluctuations.

3 0.142 7°16.21x 10 We will also connect them to the clan variables of Van

4 0.309< 107! 7*15.17x 10° Hove. Using results from Ref17] and Sec. Il A, the follow-

5 00.835<1072 7°/3.83x 10° ing behavior for various relevant quantities are obtained.

6 00.257% 102 7%2.57x 10'° First, the grand canonical partition functiar=expEx)

7 000.86% 103 7711.47x 102 =1/(1-y)* which can easily be verified by noting

8 000.31X% 1078 7%18.20x 103 > ay¥’k=—aln(1-y). The canonical partition functioi,,

9 000.118<10°3 7°14.34x 1015 can be obtained and [47] Zy=y"I'(a+N)/T'(a)N!—see

10 0000.46% 10~ 4 7'92.22< 1047 also Eq.(4). The extrayN that appears here is from tly& in

Xc. Note that IT,(y¥)"=yN since Skn,=N, where the
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I, (y)"™ appears inN,(n,x) of Eq. (1). One way to obtain & somewhat general theory of disordered systems were con-
this result forZy is directly from the recurrence relation of nected to distributions used in particle physics and quantum
Eg. (3). The mean number of pions can be obtained fromoptics.

>kx, and is
IIl. CONCLUSIONS
ay
(N)= 1y (35) This paper discusses several models of pion production in
a unified way by showing that they are different choices of a
The variance follows fron{N2)—(N)2=ay/(1—y)? or quantity which we callec,. The models considered are a

thermal description of pion production, a relativistic hydro-
dynamic model, an emitting source pion laser model, and a
model that gives rise to a negative binomial distribution. The
results of these models are compared with each other. Com-
The result of Eq.(36) is the result for the variance of a parisons are also made with Bose-Einstein condensation of
negative binomial distribution. This result is also similar to Bose particles or atoms trapped in a harmonic oscillator well
that of Eq.(13) whena=1, but Eq.(13) refers to fluctuations and in a box ofd-dimensions.

ina particular levek, while Eq. (36) has no reference to a The quantityxk appears in the Weight given to each Cycle
level. The fluctuations can be much larger than Poissoniaglass decomposition of the symmetric group. The inkiéx
because of the factor (A(N)/a). To see that the probability the length of a cycle. The cycle classes appear when the
distribution associated with this moded= ay*/K) is indeed  density matrix is symmetrized as in Feynman’s path integral
a negative binomial distribution, tHéy=Zy/z can be easily approach to statistical mechanics. The quantitigs k
evaluated and rewritten as =1,2,3... completely determine the behavior of the sys-
tem as discussed in Sec. Il A. Specifically the mean number
of pions and their fluctuations are just moments of fhe
distribution. The grand canonical partition functiats also
simply obtained from thesg,’s, and the canonical partition
functionZy can be obtained by a simple recursive procedure

The result of Eq(37) is the standard form of the negative Which contains thex,. The probability ofN-pions is Py

(N)

1+~
a

(N)=(N)?=(N) - (36)

N+a—1
N

1 a/ (Nya \ N
- N)

(37

a a

binomial distribution. =Zn/z. These methods and relations were initially used by
An interesting transformation of the negative binomial isone of us in cluster problenfd7-23 and subsequently ap-
to a set of clan variableN,, n., given by[13] plied to Bose-Einstein cycle class problefi&2,23. They
were also used in a discussion of the pion laser model in
(N Refs.[8-10]. The two problems, cycle class and clusters, can
Nc=aln| 1+ ?)' be mapped into one another as shown in Fig. 1. Specifically
the indexk is either the cluster size or cycle length, ands
(N) either the number of cycles of lengthor the number of
nC:N_' (39 clusters withk nucleons. After presenting various general
C

expressions, specific cases are discussed and compared. We
started with the thermal model because of its long history

average number of particles in a clan. The variables n, and its widespread use in heavy ion collisions.The thermal

are a useful way of analyzing experimental data. In terms oande! was used to mo“"f”“e some of the quantities, such as
y andz=1/(1—y)? the x,’s that also appear in the other cases that are consid-

ered. The role of the Boltzmann facter “™T in x,, which
N.=Inz, represents the cost function for makikgpions, is important
in the thermal model. The mean number of pions, their fluc-
y tuations, and the probability distribution fdl-pions are dis-
~Asyini=y) (399  cussed and compared with Poisson results. The results for a

relativistic hydrodynamic model are also discussed. The rela-
Thusn. only depends ory andN. is simply connected ta.

tivistic hydrodynamic model is used in the analysis of
Note that in thermodynamiosee also Sec. 1B the grand CERN/NA44 and CERN/NA49 data. The probability distri-
canonical partition functioz is connected to the equation of

bution for thermal pions is shown to be a Gaussian distribu-

state. SpecificallypVV/kgT=1Inz so thatpV=NkgT if this tion. _Th_e fluptuations in pions is about 20% aboye th? Pois-
connection is made. son limit. This result of slightly enhanced fluctuations is also
consistent with thermal model results.

The emitting source model of Pratt is next discussed. It
has an interesting feature of the possibility of large depar-

Besides the choicer=1, other choices forr can be tures from Poissonian results. This model also has some
solved. Many of these other choices were studied in thether interesting properties that are not present in the thermal
framework of cluster modelg22], but the results obtained and hydrodynamic models. Namely, a critical pion density
also apply to particle production of bosons. Some discussiom, exists and, if the Poisson emission strengtkquals this
of these issues can be found in Rg#5] where results from  density, an infinite number of pions results from Bose-

The N, equals the average number of clans, anpds the

Ne=

G. Other models
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Einstein enhancement factors. The thermal and hydrodysf quantities that appear in the specification of xp&s. The

namic models lack this property becauge n.e"™'. Some

clan representation is a useful way of characterizing data,

result of the emitting source model are shown to be similar tand it is compared with the thermal model results.

Bose-Einstein condensation in a laser trap when this trap i

S

taken to be a three-dimensional harmonic oscillator well. An-

other distribution which can have large fluctuations above
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