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Various models for pion probability distributions from heavy-ion collisions
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Various models for pion multiplicity distributions produced in relativistic heavy ion collisions are discussed.
The models include a relativistic hydrodynamic model, a thermodynamic description, an emitting source pion
laser model, and a description which generates a negative binomial description. The approach developed can be
used to discuss other cases which will be mentioned. The pion probability distributions for these various cases
are compared. Comparison of the pion laser model and Bose-Einstein condensation in a laser trap and with the
thermal model are made. The thermal model and hydrodynamic model are also used to illustrate why the
number of pions never diverges and why the Bose-Einstein correction effects are relatively small. The pion
emission strengthh of a Poisson emitter and a critical densityhc are connected in a thermal model byh/nc

5e2m/T,1, and this fact reduces any Bose-Einstein correction effects in the number and number fluctuation
of pions. Fluctuations can be much larger than Poisson in the pion laser model and for a negative binomial
description. The clan representation of the negative binomial distribution due to Van Hove and Giovannini is
discussed using the present description. Applications to CERN/NA44 and CERN/NA49 data are discussed in
terms of the relativistic hydrodynamic model.@S0556-2813~98!04912-7#

PACS number~s!: 24.10.Jv, 21.65.1f, 24.85.1p, 25.75.2q
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I. INTRODUCTION

Pion multiplicity distributions produced in heavy ion co
lisions are of current interest for several reasons. First, p
are by far the main component of the produced particles
very high energy heavy ion collisions. For example, in t
SPS experiments at CERN hundreds of pions are produ
and this number may go up considerably at RHIC energ
In the Landau hydrodynamic model, the number of pio
scales atS1/4 whereS5Ec.m.

2 . Secondly, pions are a usefu
tool for studying HBT effects coming from Bose-Einste
correlations. HBT two-particle correlation experiments gi
information about source parameters of the emitting syst
Thirdly, if many pions are produced by a strongly emittin
source at high enough density, a pion laser may be form
according to one model owing to Bose-Einstein symmetri
tion effects. Pions with a nonzero chemical potential can a
show the phenomena of Bose-Einstein condensation at s
critical density. Since Bose-Einstein condensation of a fin
number of atoms in a harmonic oscillator or laser trap
recently been seen, the possibility of seeing effects ass
ated with the formation of a pion laser or an enhanced c
densation into a ground state would be interesting. A co
parison of Bose-Einstein condensation of atoms in
harmonic oscillator trap and the pion laser model will
given in this paper. Fourthly, the possibility of intermitten
behavior in pion distributions has been a concern for ove
decade. A distribution that is widely used to discuss interm
tency is the negative binomial distribution, and a mod
which generates a negative binomial distribution will be d
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veloped in the framework of the present description. T
clan representation for the negative binomial distribution d
to Van Hove and Giovannini will also be discussed. Th
representation is a useful way of characterizing experime
data.

In this paper we present a unified description of seve
currently discussed models for evaluating pion distributio
Our main focus will be on four particular cases, but oth
possibilities exist and will be discussed briefly. The e
amples we will consider in detail are~1! a thermodynamic
description,~2! a relativistic hydrodynamic model,~3! an
emitting source model, and~4! a model which gives a nega
tive binomial distribution. These cases cover a wide sp
trum of possibilities. Thermodynamic descriptions have be
extensively used@1–5# for the production of pions in heavy
ion collisions and also are discussed in the quark ma
meetings@4,5#. Emitting source models are reviewed in Re
@6,7#. The emitting source model that we discuss in detai
originally due to Pratt@8# and discussed further in Refs
@9,10#. Application of the negative binomial distribution t
high energy collision data can be found in Refs.@11–14#,
and its connection with intermittency are discussed in Re
@15,16#. Hydrodynamic descriptions are also frequently a
plied to heavy ion collisions, and their descriptions appea
the quark matter proceedings, Refs.@4,5#. The relativistic
hydrodynamic model gives a good description of single a
double inclusive data from Cern experiments carried out
the CERN/NA44 and CERN/NA49 Collaborations.

We will use an approach that initially was developed f
cluster distributions@17–23#, but applications to cycle clas
problems were noted@17# and further studied in more deta
in Refs. @21–23#. Cycle class problems appear in Bos
Einstein and Fermi-Dirac statistics because the density
trix must be symmetrized or antisymmetrized in Feynma
path integral approach to statistical mechanics@24#. A de-
3627 ©1998 The American Physical Society
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3628 PRC 58A. Z. MEKJIAN, B. R. SCHLEI, AND D. STROTTMAN
tailed application of the approach discussed below to Bo
Einstein condensation phenomena can be found in R
@22,23#. The connection between cluster models and cy
class problems is shown in Fig. 1. Specifically, a cycle
lengthk corresponds to a cluster of sizek, and the number of
cycles of lengthk corresponds to the number of clusters
sizek.

Application of results from cluster models to the theory
disordered systems can be found in Refs.@25,26#. Some of
the results of this reference were connected to probab
distributions which appear inQuantum Optics. Methods
from Quantum Opticshave been used by Weineret al. @27–
29# to discuss particle production and correlations in hea
ion collisions.

II. PION PROBABILITY DISTRIBUTIONS

In this section we will discuss several models of pi
production in heavy ion collisions. These models, which
a thermodynamic description, a relativistic hydrodynam
model, an emitting source model, and a negative binom
model, can be described using a unified formalism. Bef
giving specific results, we will give some general expre
sions that we will use. These expressions were initially
veloped for the description of the fragmentation of nuc
into clusters. However, because of the correspondence
tween cycles and clusters shown in Fig. 1, the cluster res
can be used to describe cycle class problems, and the
production models that we consider can be re-expresse
such terms. This correspondence has already been illust
in the description of Bose-Einstein condensation.

This section is divided into various subsections. First,
give some general results. Then we will apply these result
the cases mentioned above. Comparisons will be made

FIG. 1. Cycles and clusters. In the mapping of a cycle cl
problem into a cluster problem and vice versa, the cycle len
corresponds to the cluster size; the number of cycles of lengk
corresponds to the number of clusters withk nucleons. Also shown

is the vectornW 5(n1 ,n2 , . . . ,nA) as a block diagram. The numbe
of vertical blocks isk, and the number of columns withk blocks is
nk . The total number of blocks isA.
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the various cases and with other situations already discu
such as Bose-Einstein condensation.

A. General results

In describing a fragmentation process, partitioning pro
lems, or cycle class problems, a weight is given to ea
division of A5(kknk . Figure 2 illustrates the possible div
sions ofA54. A vectornW 5(n1 ,n2 , . . . ,nk ,nA) specifies the
division wherenk is the number of clusters withk nucleons,
cycles of lengthk, etc. A general block picture fornW is
shown in Fig. 1, and the specific block pictures ofA54 are
shown in Fig. 2 along with cluster and cycle class divisio
and harmonic oscillator excitations. The type of weig
WA(nW ,xW ) given to anynW that we will consider can be written
as

s
h

FIG. 2. Various parallels. Various parallels are shown wh
include the partitioning of an integer, a corresponding block pictu
a cluster, a cycle class representation of each partition, and
equivalent harmonic oscillator excitation. Some places where th
various columns appear are as follows: The partitions of an inte
appears in counting the number of irreducible representation of
symmetric group. Block pictures and rotated versions of the o
shown appear in combinatorial analysis~Ferrer’s block diagram!
and in group theory~Young tableaus!. Cluster problems appear in
many areas of physics such as nuclear multifragmentation, perc
tion, randomly broken objects, and the fragmentation of atom
clusters. They also appear in group structure such as in the d
bution of city sizes, etc. Cycle class problems appear in Bo
Einstein and Fermi-Dirac statistics, speckle patterns in phase sp
Feynman’s theory of thel-transition in liquid He, in random per-
mutations, etc. Excitations in the harmonic oscillator appear w
evaluating the microcanonical partition function of Bose atoms i
laser trap. Another application is to the Veneziano-Hagedorn m
spectrum, where each excitation is an elementary particle.



i-

ic

es
l

in

e

e

o

n

of
l
r-

nd

this

n
stic
ate
ade

ely
is is

ical
ob-

hed

ein

po-

tes

PRC 58 3629VARIOUS MODELS FOR PION PROBABILITY . . .
WA~nW ,xW !5
1

ZA~xW !
)

k

xk
nk

nk!
. ~1!

Here nk! are Gibbs factorials,ZA(xW ) is the canonical parti-
tion function, andxk is a function of thermodynamic quant
ties such as volumeV, temperatureT. This xk was called a
tuning parameter in Ref.@17#, and a specific formxk5x/k
was studied in detail in Refs.@17,18#. Other forms forxk
were used to study percolative features of simple statist
model @21# and Bose-Einstein condensation of atoms in
box @22# and atoms in a laser trap@23#. The form ofxk for
the pion models to be discussed will be given below.

Given WA(nW ,xW ) of the type of Eq.~1!, various quantities
are easily calculated. For example the ensemble averag
nk , given by^nk&5(WA(nW ,xW )nk , where the sum is over al
partition of A, is simply @17,20#

^nk&5xk

ZA2k~xW !

ZA~xW !
. ~2!

This result can be easily understood heuristically by not
that the nk times the Gibbs factorial 1/nk! gives 1/(nk
21)!. This operation removes one column ofk blocks from
Fig. 1. The sum over all partitions ofA, which we callpA(nW )
in (WA(nW ,x)nk , then gives rise to the factorZA2k(x). The
xk factor in Eq.~2! is from the shiftxk

nk5xkxk
nk21 where the

xk
nk21 is the appropriate power ofxk for the partitions with

one column ofk blocks removed. TheZA(xW ) in Eq. ~2! is
present inWA(nW ,xW ) and is in the final answer. Since th
constraintA5(kknk always applies to any partition ofA,
then it is also true when written asA5(kk^nk&. Substituting
the result of Eq.~2! into this constraint equation givesA
5(kkxkZA2k /ZA , and rearranging terms results in the r
cursive relation

ZA~xW !5
1

A(
k

kxkZA2k~xW ! ~3!

with Z051. This recursive equation is a very simple way
obtainingZA(xW ), and it applies to anyWA(nW ,xW ) of the form
of Eq. ~1!. To use it, thexk’s have to be specified. As a
examplexk5x/k gives @17,18#

ZA~x!5x~x11!•••~x1A21!/A! 5
G~A1x!

G~x!A!
. ~4!

The ZA(xW ) is the canonical partition function of a system
A objects (A nucleons,A atoms, . . .!. The grand canonica
partition functionz(xW ,u) is obtained from the canonical pa
tition function ZA(xW ) or the weightWA(nW ,xW ). For example,
the generating function ofWA(xW )5(pA(nW )WA(nW ,xW ) is @17#

z~xW ,u![exp@ux11u2x21u3x31•••#5 (
A50

`

WA~xW !uA.

~5!
al
a

of

g

-

f

Theu is taken to beu5ebm in thermodynamics, wherem
is the chemical potential. Form50, u51 and

z~xW !5expF (
k51

`

xkG . ~6!

The ratio

ZA~xW !/z~xW !5PA~xW ! ~7!

is the ratio of the canonical partition function to the gra
canonical partition function. The mean and variance ofA
follow once thexk’s are specified:

^A&5(
k

kxk ~8!

and

^A2&2^A&25(
k

k2xk . ~9!

These last two equations follow from Eq.~5! by differenti-
ating this equation with respect tou and settingu51. These
expressions form the main general results to be used in
paper. Other results can be found in Refs.@17–22#.

B. Pion distributions in a thermal model

We begin this subsection by first giving some well-know
results on the thermal properties of an ideal gas of relativi
pions. Some of these results will then be used to motiv
some ideas, developments, and comparisons to be m
later. Moreover, since the thermal description is extensiv
used, many readers will recognize these results and th
helpful for the subsequent development of the choice ofxk
for this particular model and other models to follow.

In a thermal model or in a description based on statist
mechanics, the distributions associated with pions are
tained from the assumption that an equilibrium is establis
in some interaction volumeV at some temperatureT. Spe-
cifically, statistical thermodynamics gives the Bose-Einst
occupancy factor

f ~e!5
1

ebe21
~10!

for an energy level ate andb51/kBT. This result is based
on the grand canonical ensemble with the pion chemical
tential m50. For pions in a box of volumeV, the thermal
properties of pions can be obtained from the density of sta
factor Vd3p/h3 and from the energye, momentumpW , rela-
tion e5(p21m2)1/2. In particular, with\5c5kB51, the
following relations can be obtained for thermal pions:

N

V
5

1

2p2 m2T(
k51

`
1

k
K2S k

m

T D
E

V
5

1

2p2 m3T(
k51

`
1

kF3

4
K3S k

m

T D1
1

4
K1S k

m

T D G
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PV5
1

2p2 m2T(
k51

`
1

k2 K2S k
m

T D ~11!

S

V
5@~E/V!1p#/T.

HereN/V is the total number density,E/V—the energy den-
sity, PV—the equation of state, andS/V—the entropy den-
sity of pions. The variousK ’s are MacDonald functions. The
ultrarelativistic photonlike limitm→0 or T@m and the non-
relativistic limit e5p2/2m1m can be obtained from thes
equations using the following limits for the MacDona
functions Kn that appear. With z5km/T:Kn(z)
5(G(n)/2)/(1/2z)n for z→0 and Kn(z)5A(p/2z)e2z for
z→`. Here G(n) is a gamma function. In the above E
~11!, the sum overk gives the corrections arising from Bos
Einstein or BE statistics, with thek51 term the Maxwell
Boltzmann or MB limit. Specifically, thek52,3, . . .` give
the enhancements coming from BE statistics. For exam
for N/V the ratioN/V/(N/V)MB5z(3) in the massless pion
limit. Here (N/V)MB is thek51 term only. Thez(3)51.2 is
the Riemann zeta function. The results of Eq.~11! arise
when the occupancy factor of Eq.~10! is expanded as a
power seriesf (e)5e2be(11e2be1e22be1•••). The inte-
grals over (Vd3p/h3)e2kbe with e5Ap21m2 give rise to
the variousK ’s.

The probability of havingnk pions in levelk, given that
the mean number in that level is (nk)51/(ebek21) is the
geometric distribution@30#

p~nk!5
^nk&

nk

~^nk&11!nk11
. ~12!

The ^nk&5(nk50
` p(nk)nk and ^nk

2&2^nk&
2 is

^nk
2&2^nk&

25^nk&~11^nk&!. ~13!

The Poisson limit iŝ nk
2&2^nk&

25^nk& and is realized when
MB statistics applies. The above expression on fluctuati
pertain to a particular energy level. We now turn to an eva
ation of the fluctuations in the total number of pions and
associated probability distribution. Such quantities are
portant in an event-by-event analysis of data. The probab
of N-pions is given by the ratio of the canonical partitio
function, ZN , to the grand canonical partition functionz,
with z5(N50

` ZN andZO51. To obtainZN ,z we use results
from Sec. II A with u5ebm51. For a thermal model the
choice ofxk is

xk5
VT3

2p2S m

T D 2 1

k2 K2S k
m

T D . ~14!

Later, we will give another choice ofxk . That this is the
correct choice follows from̂N&5(kxk where^N&/V in the
grand canonical ensemble is given by Eq.~11!. Also z
5ePV/T5eSkxk where PV/T5(kxk follows also from Eq.
~11!, andz5eSkxk was a result developed in Sec. II A. Th
result forz5eSxk can be expanded to give theWN(xW ) of Eq.
~5! and its associatedWN(nW ,xW )5)xk

nk/nk!/ZN(xW ) of Eq. ~1!.
e,

s
-

s
-

ty

The WN(nW ,xW ) is the weight given tonW 5(n1 ,n2 , . . . ,nA) in
a cycle class decomposition of a permutation. For exam
the permutation

S 1 2 3 4 5 6 7

1 3 2 4 7 5 6D ~15!

has two cycles of length 1 which are 1→1 and 4→4, one
cycle of length 2 which is 2→3→2, and one cycle of length
3 which is 5→7→6→5. The cycles appear in Feynman
path integral density matrix approach inStatistical Mechan-
ics @24#, and permutations appear because the density ma
must be symmetrized. An example of this approach to
ideal Bose gas in a box@22# and to the ideal Bose gas in
harmonic oscillator trap@23# shows the utility of the recur-
rence relation of Eq.~3! in obtaining the canonical partition
functionZN(xW ) and all its associated thermodynamic quan
ties. We will briefly summarize these two cases in the n
section.

Using this choice ofxk , the probability ofN pions is
PN5ZN /z whereZN is obtained from Eq.~3! with xk given
by Eq.~14!. The fluctuationŝN2&2^N&25(k2xk . An alter-
native method for obtainingPN was recently given by Be-
cattini, Giovannini, and Lupia@31#. They used projection
methods to obtainPN which involves takingN-derivatives of
z with respect tou and settingu50. Specifically

PN5
1

N!
lim
w→0

dN

dwN expF2
V

2p2E d3pln~12e2e/Tv!G .
~16!

Table I summarizesPN for T5163 MeV, V522.5, and
m/T50.85. This choice generates the samePN distribution
given in Ref. @32#. Here the PN’s are calculated by the
simple recurrence relation of Eq.~3!. Computationally, Eq.
~3! is very easy to work with since computers evaluate
cursive relations quickly as well as the sums for^N& and
^N2&2^N&2 that appear in Eq.~8!.

Two limiting behavior of xk are of interest. In the ul-
trarelativistic limit or massless pion limit, thexk of Eq. ~14!
is simply

xk5
V

p2 T3
1

k4 ~17!

and in the nonrelativistic limit

TABLE I. The probabilityPN of N pions compared to a Poisso
distribution with the samêN&. Also given are the cycle class pa
rametersxk obtained from Eq.~14!.

N PN Poisson k xk

0 0.311 0.293
1 0.346 0.359 1 1.10812
2 0.208 0.221 2 0.04812
3 0.0903 0.0904 3 0.00588
4 0.0320 0.0278 4 0.00107
5 0.00998 0.00682 5 0.00024
6 0.00287 0.00139 6 0.00006



an

ng

ic
It
y

-
ne
-
nd

d
e-
di

ti
-
s

m
th
o
t

4

e

t
e
t

hi
on
se
pe

e-

t

in
er

l
-

ed

ral
ss-

re

rge.

PRC 58 3631VARIOUS MODELS FOR PION PROBABILITY . . .
xk5
V

lT
3 e2km/T

1

k5/2
~18!

where lT5h/(2pmT)1/2. The factore2km/T is the Boltz-
mann factor cost function for creatingk-pions, and this factor
arises from the mass of the pion. We will introduce a qu
tity t, wherexk;1/kt. In cluster modelst is Fisher’s critical
exponent@32#. In Eq. ~17! t54 and in Eq.~18! t55/2.

C. Relativistic hydrodynamic model and applications
to CERN/NA44 and CERN/NA49 experiments

We also calculated the pion probability distribution usi
a relativistic hydrodynamic model: HYLANDER-C@28#.
This particular model belongs to the class of models wh
apply ~311!-dimensional relativistic one-fluid-dynamics.
provides fully three-dimensional solutions of the hydrod
namical relativistic Euler equations@35#. HYLANDER-C
and its earlier version, HYLANDER@33#, have been suc
cessfully applied to various heavy-ion reactions at SPS e
gies. HYLANDER-C and HYLANDER were used to repro
duce@36# simultaneously mesonic and baryonic rapidity a
transverse momentum spectra of the S1S reaction at 200A
GeV. Corresponding measurements have been performe
the NA35 Collaboration@37#. Based on the successful d
scription of the measured single-inclusive spectra, pre
tions for Bose-Einstein correlation~BEC! functions @38,39#
were made. Those predictions turned out to agree quan
tively with the measurements@40,41#. The model also repro
duces the photon data for S1Au collisions at SPS energie
@42# and gives a simple explanation for the ‘‘soft-p' puzzle’’
@43# and the complex behavior of the radii extracted fro
pion and kaon correlations and explains the difference in
extracted radii for pions and kaons in terms of a cloud
pions due to the decay of resonances which surrounds
fireball ~pion halo! @38#.

In the following, we discuss some further results@34# for
158A GeV Pb1 Pb collisions measured by the CERN/NA4
@44,45# and CERN/NA49 Collaborations@46#. The Pb1Pb
data reproduced by HYLANDER-C have been obtain
while using an equation of state~EOS! with a phase transi-
tion to a quark-gluon plasma at a critical temperatureTC
5200 MeV ~cf. Refs. @47,29# and references therein!. This
EOS does not depend on the baryon density, and thus
freeze-out energy density translates directly into a fix
freeze-out temperatureTf . The choice for the freeze-ou
temperature is in these calculations,Tf5139 MeV.

The number of thermal pions (p1, p2, andp0) that are
produced in the model calculations is 853. In particular, t
number does not include any resonance decay contributi
But this total number of thermal pions includes the Bo
Einstein enhancement. To be specific, the thermal pion s
tra are calculated by evaluating the integral

E
dN

d3p
5

1

~2p!3ES

pmdsm~xm8 !

expF pmum~xm8 !

Tf~xm8 !
G21

, ~19!

wheredsm is the differential volume element and the int
gration is performed over the freeze-out hypersurface,S.
-

h

-

r-

by

c-

ta-

e
f
he

d

he
d

s
s.
-
c-

um(x) and Tf are the four velocity of the fluid element a
point x and the freeze-out temperature, respectively.pm

5(E,pW ) is the four-momentum of a pion.
By expanding the Bose-Einstein occupation factor

terms of a Maxwell-Boltzmann factor and a series of high
order corrections, we can obtain the distribution ofxk’s
which are summarized in Table II.

Using these results forxk , the fluctuation in the therma
pions is ^N2&2^N&25(k2xk5312.97 or a 20% enhance
ment over the Poisson result ofx15260. The probability
distribution associated with the thermal pions is obtain
from PN5Zn /z whereZN is given by Eq.~3! andz is given
by Eq. ~6!. Figure 3 shows the result forPN , which is a
perfect Gaussian distribution~solid line! with mean ^N&
5283.9 and variancêN2&2^N&25312.97.

D. Some special examples

In this subsection, we will illustrate some of the gene
results of Sec. II A with three specific examples. For ma
less particles in a box of sidesL in d-dimensions~neglecting
spin!, thexk is

xk5
Ld

2d23pd21S kBT

\c D d 1

kt [
xd

kt ~20!

where t5d11. Then z5exp@xdz(t)#, ^N&5xdz(d) and
^N2&2^N&25xdz(d21) with z(n)5(k51

` 1/kn. Some val-
ues of z(n) that often appear in statistical mechanics a
z(1)5`, z(2)5p2/651.645, z(3)51.202, z(4)5p2/90
51.082,z(3/2)52.612. In two dimensionŝN2&2^N&25`
so that the fluctuations of massless particles becomes la

TABLE II. The distribution ofxk in a relativistic hydrodynamic
model .

k xk k xk

1 260 6 0.0067
2 9.957 7 0.0016
3 1.047 8 0.0004
4 0.163 9 0.0001
5 0.031

FIG. 3. Results forPN for thermal pions,p2, in 158A GeV
Pb1Pb collisions. The solid line uses contributionsk→600 ~al-
readyk510 gives the fully converged result!. The dotted lines only
use up tok52 terms. In the figure, we have~solid line! Sxk

5271.2,^N&5Skxk5283.9, and̂ N2&2^N&25Sk2xk5312.97.
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For nonrelativistic atoms in a box@22# in d-dimensions

xk5
x

kt 1
1

k
~21!

with t5d/211, x5Ld/lT
d , lT5h/(2pmT)1/2. Condensa-

tion occurs ind53 at x5xc5A/z(3/2)5V/lTc

3 in the limit

A, V→`. Manifestation of this Bose-Einstein condensati
are ~1! a power law distribution of cycle lengths@21,22#:
^nk&;1/k5/2, ~2! the specific heatCV has a cusp@30#, and~3!
the ground state occupanyng.s. becomes macroscopicall
large@30#: ng.s./A512x/xc512(T/Tc)

3/2, for T<Tc . The
Tc is determined by the densityA/V from A/z(3/2)
5V/lTc

3 . For d51,2 Tc→0 so that there is no sudden co

densation at a nonzeroT. The occupancy of any level with
energyek is

nk5 (
k51

A

e2bekk
ZA2k

ZA
. ~22!

For A→`, ZA2k /ZA→ebmk and thus we obtain the well
known occupancy factor

nk5
1

eb~ek2m!21
. ~23!

As T→Tc , m→e0[0.
For atoms in a laser trap given by a harmonic oscilla

well with frequencyv and level spacing\v @23#

xk5
1

k

xkd/2

~12xk!d
~24!

wherex5e2\v/kBT. For smallx

xk5
xkd/2

kd11S kBT

\v D d

.

There is no condensation at nonzeroT for d51, but there is
condensation ford52,3 atTcÞ0.

E. Emitting source, pion laser model

A simple and exactly solvable emitting source models
pions was first introduced by Pratt@8#. The model has an
interesting feature. Namely, a Poisson emitter of pions
behave like a pion laser when Bose-Einstein symmetriza
effects are included. A manifestation of this behavior is
large enhancement in the number of pions. This enhan
ment is into a zero momentum state and is similar to Bo
Einstein condensation of atoms in a box which also conde
into the zero momentum state. An important result of t
condensation is a reduction in the intercept in the two p
ticle correlation functions. Such effects were discussed
Refs.@27–30#. Recently Cso¨rgö and Zimány @10# have given
simple exact expressions for Pratt’s model. Some simple
sults were also presented by Chao, Gao, and Zhang@9#. This
subsection presents some further discussions of this m
using results from Sec. II A when applied to this case a
r

r

n
n

a
e-
-

se
s
r-
in

e-

el
d

shows some similarities with the Bose-Einstein condensa
of atoms in a laser trap as given by Eq.~24!.

First, we will give expressions forxk . Oncexk is given,
then all the general results of Sec. II B apply. In Prat
model,h is the mean pion multiplicity generated by a Po
son emitter. Then, in the Poisson limit, the probability
havingN pions isPN5(hN/N!)e2h. This is also the result
of the thermal model of Sec. II B in the Maxwell-Boltzman
limit, where h5x15(VT3/2p2)(m/T)K2(m/T). Correc-
tions to this result obtained from Bose-Einstein symmetri
tion effects can be developed by evaluating a quantityxk
~calledCk in Ref. @8#!. TheCk are referred to as combinan
@10#. The importance of combinants can be found in t
work of Gyulassy and Kaufman@48,49#. While thexk of the
thermal model is given by Eq.~14!, in the emitting source
modelxk is given by evaluating

xk5
hk

k E )
i 51

k

d3xW id
3pW )

i 51

k21

d3pie
iS~pW i 212pW i !•xW i

3)
i 51

k

sS 1

2
~pi 211pi !,xi D ~25!

wherep05p5pk andx15h. We neglect any temporal de
pendence to keep the discussion simple.

The s(pW ,xW ) is the source strength. As in Ref.@8# this
source strength is taken to be a thermal Gaussian of the f

S~pW ,xW !5
1

„~2p!2R2mT…3/2
e2PW 2/2mT1xW2/2R2

. ~26!

For this choice ofs(pW ,xW ), the evaluation of thexk’s can be
done analytically@9#. We now give a discussion of the lim
ing behavior ofxk before giving the general behavior. Fo
small k and R2/2@1/8mT ~typically R2/2;6 and 1/8mT
;1/6)

xk5~R2mT!3/2S h

~R2mT!3/2D k
1

k4 . ~27!

Thusxk;1/k4 andt54 for smallk. For largek

xk5
1

kS h

hc
D k

. ~28!

Now xk;1/k andt51. Thehc is given by

hc5S R2mT1AR2mT1
1

4D 3/2

. ~29!

Table III gives some values ofxk for R2/256 and 1/8mT
51/6.

The general behavior forxk was explicitly written by
Csörgö and Zimány @10#, and is

xk5
hk

k

1

~g1
k/22g2

k/2!3
~30!

with g651/2(11y6A11y) and y52R2mT21/2. Thehc

5g1
3/2 in this notation. We rewrite this as
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xk5S h

hc
D k 1

kS 12F S g2

g1
D 1/2G kD 3 ~31!

to illustrate its close relation to atoms in a laser trap as gi
by Eq. ~24!. For d53, Eq. ~24! gives

xk5
x3k/2

k~12xk!3
~32!

with x5e2\v/kBT.
Once thexk’s are given, thez5exp@(xk#, ^N&5(kxk ,

^N2&2^N&25(k2xk andPN5zN /z follow with ZN given by
the recurrence expression of Eq.~3!. Sincexk51/k(h/hc)

k

for large k, ^N&→` when h>hc . At h5hc the ^N&
;(1/k which diverges logarithmically. We now compa
these results with thermal models. In thermal models,xk is
given by Eq.~14! and its nonrelativistic and ultrarelativisti
limits in Eq. ~17! and Eq.~18!. No divergence in̂N& occurs
in either the ultrarelativistic limit where ^N&
5(V/p2)T3z(3), or the nonrelativistic limit where ^N&
5(V/lT

3)g3/2(m/T) with g3/2(m/T)5((e2m/T)k/k3/2. Note,
however, that fluctuations,̂ N2&2^N&2, in the two-
dimensional ultrarelativistic case discussed in Sec. II C
be infinite. To further illustrate the difference, we note that
the thermal model allxk’s are given by Eq.~14! so that
x1[h is not independent ofV,T,m whereV;R3. Table IV

TABLE III. Values of xk . Unlessh is large, thexk fall very
rapidly and thus thêN& and^N2&2^N&2 are governed by the firs
few k’s. For the choice R2/256 and 1/8mT51/6, the hc

542.875. However, the secondxk5x2 is comparable tox1 at h
5432, thex3 to x2 at h5140, thex4 to x3 at h590, etc.

k xk k xk

1 h 6 h6/2.4331010

2 h2/432 7 h7/1.3231012

3 h3/6.073104 8 h8/7.4031013

4 h4/5.473106 9 h9/3.831015

5 h5/3.913108 10 h10/2.0731017

TABLE IV. Values of xk in a thermal model using the sam
choice ofR2, T as in Table II. Thexk is also written ashk/bk where
x15h and bk is a number that is given in the table. The resu
hk/bk are very similar to that of Table III.

k xk xk5hk/bk

1 20 h
2 0.991 h2/404
3 0.142 h3/6.213104

4 0.30931021 h4/5.173106

5 00.83531022 h5/3.833108

6 00.25731022 h6/2.5731010

7 000.86931023 h7/1.4731012

8 000.31231023 h8/8.2031013

9 000.11831023 h9/4.3431015

10 0000.46231024 h10/2.2231017
n

n

shows values ofxk for V5(4p/3)R3 with R2/256 and
mT53/4. Usingh5x1 , the xk can be rewritten asxk;hk

and the results are also shown when written in this form. T
results of Table IV are very similar to Table III. Howeve
the largexk limit is @V/(lT

3
•k5/2)#e2km/T. If we takex1 to be

this result with k51, the xk5(1/k5/2)(h/hc)
k with hc

5V/lT
3;(R2mT)3/2, which is similar to Eq.~29!.

Note thath5hce
2m/T so thath/hc5e2m/T,1. Conse-

quently, the sum(xkk5^N& always converges. Thus ther
can be no result̂N&→`. The Boltzmann factore2m/T sup-
presses the propertŷN&→`. This hidden connection be
tweenh, hc , andh/hc,1 is not present in the pion lase
model which treatsh as independent ofhc or x1 as indepen-
dent of the otherxk’s. The thermal model has this connectio
and shows why no divergence in̂N& ever occurs in the
thermal model. Similar conclusions also apply to the relat
istic hydrodynamic model.

F. Negative binomial distribution

As we have seen, pion probability distributions are det
mined once the choice of thexk’s is specified. The therma
equilibrium model specifies a particular form forxk as does
the emitting source model. Bose atoms in a box or laser
also can be discussed in terms ofxk . In this subsection we
will present a choice forxk which results in a negative bino
mial distribution. The choice given below is partly motivate
by results from the other models. The negative binomial i
probability distribution that is frequently used to character
pion yields@11–13#. It has also been used in the discussi
of intermittency@15,16#. Van Hove and Giovannini@11–13#
has given a clan model representation of it which will also
mentioned.

The various forms forxk that we have encountered so f
in this paper and also in the application of this approach
cluster yields suggest looking at a behavior forxk given by

xk5ayk/kt. ~33!

For example, the nonrelativistic thermal model hasa
5V/lT

3 , y5e2m/T, andt55/2. The ultrarelativistic therma
model hasa5(V/p2)T3, y51, and t54. The emitting
source model, for small k, is a5(R2mT)3/2, y
5h/(R2mT)3/2, t54 and isa51, y5h/hc , t51 for large
k. We will now show that the choice

xk5ayk/k, ~34!

which hast51, generates a negative binomial probabil
distribution. This way of generating a negative binomial d
tribution can be found in Ref.@50#, more recently in Ref.
@51#, and was used in Refs.@17# and@20#. Thea andy will be
related to the mean number of pions and to their fluctuatio
We will also connect them to the clan variables of V
Hove. Using results from Ref.@17# and Sec. II A, the follow-
ing behavior for various relevant quantities are obtain
First, the grand canonical partition functionz5exp((xk)
51/(12y)a which can easily be verified by notin
(kayk/k52aln(12y). The canonical partition functionZn
can be obtained and is@17# ZN5yNG(a1N)/G(a)N!—see
also Eq.~4!. The extrayN that appears here is from theyk in
xk . Note that )k(yk)nk5yN since (knk5N, where the
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)k(yk)nk appears inWA(nW ,xW ) of Eq. ~1!. One way to obtain
this result forZN is directly from the recurrence relation o
Eq. ~3!. The mean number of pions can be obtained fr
(kxk and is

^N&5
ay

12y
. ~35!

The variance follows from̂N2&2^N&25ay/(12y)2 or

^N2&2^N&25^N&S 11
^N&
a D . ~36!

The result of Eq.~36! is the result for the variance of
negative binomial distribution. This result is also similar
that of Eq.~13! whena51, but Eq.~13! refers to fluctuations
in a particular levelk, while Eq. ~36! has no reference to
level. The fluctuations can be much larger than Poisson
because of the factor (11^N&/a). To see that the probability
distribution associated with this model (xk5ayk/k) is indeed
a negative binomial distribution, thePN5ZN /z can be easily
evaluated and rewritten as

PN5S N1a21

N D S 1

11
^N&
a
D aS ^N&/a

11
^N&
a
D N

. ~37!

The result of Eq.~37! is the standard form of the negativ
binomial distribution.

An interesting transformation of the negative binomial
to a set of clan variablesNc , nc , given by@13#

Nc5alnS 11
^N&
a D ,

nc5
^N&
Nc

. ~38!

The Nc equals the average number of clans, andnc is the
average number of particles in a clan. The variablesNc , nc
are a useful way of analyzing experimental data. In terms
y andz51/(12y)a

Nc5 lnz,

nc52
y

~12y!ln~12y!
. ~39!

Thusnc only depends ony andNc is simply connected toz.
Note that in thermodynamics~see also Sec. II B!, the grand
canonical partition functionz is connected to the equation o
state. Specifically,pV/kBT5 lnz so thatpV5NckBT if this
connection is made.

G. Other models

Besides the choicet51, other choices fort can be
solved. Many of these other choices were studied in
framework of cluster models@22#, but the results obtained
also apply to particle production of bosons. Some discuss
of these issues can be found in Ref.@25# where results from
n

f

e

n

a somewhat general theory of disordered systems were
nected to distributions used in particle physics and quan
optics.

III. CONCLUSIONS

This paper discusses several models of pion productio
a unified way by showing that they are different choices o
quantity which we calledxk . The models considered are
thermal description of pion production, a relativistic hydr
dynamic model, an emitting source pion laser model, an
model that gives rise to a negative binomial distribution. T
results of these models are compared with each other. C
parisons are also made with Bose-Einstein condensatio
Bose particles or atoms trapped in a harmonic oscillator w
and in a box ofd-dimensions.

The quantityxk appears in the weight given to each cyc
class decomposition of the symmetric group. The indexk is
the length of a cycle. The cycle classes appear when
density matrix is symmetrized as in Feynman’s path integ
approach to statistical mechanics. The quantitiesxk , k
51,2,3, . . . completely determine the behavior of the sy
tem as discussed in Sec. II A. Specifically the mean num
of pions and their fluctuations are just moments of thexk
distribution. The grand canonical partition functionz is also
simply obtained from thesexk’s, and the canonical partition
functionZN can be obtained by a simple recursive proced
which contains thexk . The probability ofN-pions is PN
5ZN /z. These methods and relations were initially used
one of us in cluster problems@17–22# and subsequently ap
plied to Bose-Einstein cycle class problems@22,23#. They
were also used in a discussion of the pion laser mode
Refs.@8–10#. The two problems, cycle class and clusters, c
be mapped into one another as shown in Fig. 1. Specific
the indexk is either the cluster size or cycle length, andnk is
either the number of cycles of lengthk or the number of
clusters withk nucleons. After presenting various gener
expressions, specific cases are discussed and compared
started with the thermal model because of its long hist
and its widespread use in heavy ion collisions.The therm
model was used to motivate some of the quantities, suc
the xk’s that also appear in the other cases that are con
ered. The role of the Boltzmann factore2km/T in xk , which
represents the cost function for makingk-pions, is important
in the thermal model. The mean number of pions, their fl
tuations, and the probability distribution forN-pions are dis-
cussed and compared with Poisson results. The results
relativistic hydrodynamic model are also discussed. The r
tivistic hydrodynamic model is used in the analysis
CERN/NA44 and CERN/NA49 data. The probability distr
bution for thermal pions is shown to be a Gaussian distri
tion. The fluctuations in pions is about 20% above the Po
son limit. This result of slightly enhanced fluctuations is al
consistent with thermal model results.

The emitting source model of Pratt is next discussed
has an interesting feature of the possibility of large dep
tures from Poissonian results. This model also has so
other interesting properties that are not present in the ther
and hydrodynamic models. Namely, a critical pion dens
hc exists and, if the Poisson emission strengthh equals this
density, an infinite number of pions results from Bos



d

r t
p
n
v
h
in
m

ata,

t of

PRC 58 3635VARIOUS MODELS FOR PION PROBABILITY . . .
Einstein enhancement factors. The thermal and hydro
namic models lack this property becauseh;hce

2m/T. Some
result of the emitting source model are shown to be simila
Bose-Einstein condensation in a laser trap when this tra
taken to be a three-dimensional harmonic oscillator well. A
other distribution which can have large fluctuations abo
Poisson results is the negative binomial distribution. T
clan representation of the negative binomial distribution,
troduced by Van Hove and Giovannini, is discussed in ter
y
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l
s

na
s

d
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d
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e
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of quantities that appear in the specification of thexk’s. The
clan representation is a useful way of characterizing d
and it is compared with the thermal model results.
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@10# T. Csörgö and J. Zima´nyi, CU-TP-818/1977; Phys. Rev. Let

80, 916 ~1998!.
@11# L. Van Hove and A. Giovannini, Z. Phys. C30, 391 ~1986!.
@12# A. Giovannini, Nuovo Cimento A10, 713 ~1972!; 24, 421

~1974!.
@13# L. Van Hove, Phys. Lett. B232, 509 ~1989!.
@14# P. Carruthers and C. C. Shih, Phys. Lett.127B, 242 ~1983!.
@15# A. Bialas and R. Peschanski, Nucl. Phys.B272, 703 ~1986!;

B306, 857 ~1988!.
@16# A. Bialas, Nucl. Phys.A545, 282 ~1992!.
@17# A. Z. Mekjian, Phys. Rev. Lett.64, 2125~1990!; Phys. Rev. C

41, 2103~1990!.
@18# A. Z. Mekjian and S. J. Lee, Phys. Rev. A44, 6294~1991!.
@19# K. C. Chase and A. Z. Mekjian, Phys. Rev. Lett.75, 4732

~1995!.
@20# S. J. Lee and A. Z. Mekjian, Phys. Rev. C45, 1284~1992!; 50,

3025 ~1994!; Phys. Lett. A149, 7 ~1990!.
@21# K. C. Chase and A. Z. Mekjian, Phys. Lett. B379, 50 ~1996!.
@22# K. C. Chase and A. Z. Mekjian, Phys. Rev. C49, 2164~1994!.
@23# K. C. Chase, A. Z. Mekjian, and L. Zamick, ‘‘Canonical an

Microcanonical Ensemble Approaches to Bose-Einstein C
densation: The Thermodynamics of Particles in Harmo
Traps,’’ Rutgers University report, cond-mat/9708070.

@24# R. P. Feynman,Statistical Mechanics: A Set of Lectures, Fro
tiers in Physics~Benjamin/Cummings, Reading, MA, 1972!.

@25# A. Z. Mekjian and K. C. Chase, Phys. Lett. A229, 840~1997!.
,

l
,

-
c

@26# K. C. Chase, P. Bhattacharya, and A. Z. Mekjian, Phys. Rev
57, 882 ~1998!.
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