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Relativistic simultaneously coupled multiparticle states

W. H. Klink
Department of Physics and Astronomy and Department of Mathematics, University of Iowa, Iowa City, Iowa 52242

~Received 26 January 1998!

To carry out calculations dealing with relativistic multiparticle systems requires making a choice of variables
that describe the system. Simultaneously coupled states, whereinn single-particle states are coupled together
simultaneously rather than in a stepwise fashion, are defined and the resulting variables compared with step-
wise variables. Generalized Racah coefficients that connect stepwise coupled states with simultaneously
coupled states are derived for three-particle systems and used to calculate properties of resonances in isobar
models. Invariants of simultaneously coupled states include orbital and spin angular momentum variables. It is
shown how these variables can be coupled together in exactly the same way as is done nonrelativistically.
@S0556-2813~98!05212-1#

PACS number~s!: 24.10.Jv, 11.30.Cp, 24.10.Cn
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I. INTRODUCTION

To carry out calculations on multiparticle systems, f
example, bound-state wave functions or scattering am
tudes, it is necessary to make a choice of variables for
multiparticle system. Often the procedure for obtaining va
ables is to couple the constituent variables together one
time, 1 to 2,~1,2! to 3, and so on, resulting in a stepwis
coupled scheme. Such a scheme is of obvious utility for
fining a two-body potential between particles 1 and 2, bu
two-body potential between particles 2 and 3 requires a
ferent stepwise scheme. Then coefficients are needed
connect different stepwise schemes, and often one cho
variables from one stepwise scheme as a standard and re
quantities such as kernels of operators naturally define
another stepwise scheme by generalized Racah coefficie

For nonrelativistic quantum mechanical systems suc
procedure is workable and has been used in many calc
tions of three and more body systems@1#. For relativistic
multiparticle systems, however, the procedure is more c
plicated, especially when the constituent particles have s
One of the goals of this paper is to define states called
locity states having the property that internal variables s
as spin and orbital angular momenta of relativistic multip
ticle systems can be coupled together exactly as is done
relativistically. That is, just as a nonrelativisticn-particle
stateup1m1¯pnmn& (pi is the momentum of thei th particle
and m i its spin projection! can be rewritten as
up,k1m1¯kn ,mn& ~with Sk i50! and then the spins and o
bital angular momenta coupled together, so too can a rela
istic n-particle state up1m1¯pnmn& (pi is the four-
momentum of thei th particle! be rewritten as a velocity stat
uv,k1m1¯knmn& ~with Sk i50! and the angular moment
coupled together.p is the total momentum of the nonrelativ
istic n-particle system,p5Spi , whereasv is the four veloc-
ity of the relativisticn-particle system,v51/(mn)Spi , mn

2

5(Spi)
2, the square of the mass of then-particle system.

Section II reviews the relativistic kinematics needed to
fine velocity states.

The velocity states written above are not diagonal in
total angular momentum. It is often desirable to constr
states that are diagonal in the total angular momentum
PRC 580556-2813/98/58~6!/3617~10!/$15.00
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well as the overall four-velocity. One way to construct su
states is to stepwise couple then-particle states. For relativ
istic systems there is, however, another possibility, namel
couple all of the single-particle states together simu
neously to obtain a state labeled by the overall four mom
tum, the total angular momentum and remaining variab
these remaining variables are invariant variables of the wh
system and are obtained from the velocity states by suita
transformations, as shown in Sec. III.

A second goal of this paper is to construct simultaneou
coupled states that can serve as a standard relative to
stepwise coupled states. In Sec. IV the coefficients rela
any stepwise coupled state to the standard simultaneo
coupled state for three-particle systems are computed. T
the coefficients relating different stepwise states are gi
via the coefficients relating stepwise to simultaneou
coupled states. These coefficients are all products of SU~2!
Clebsch-Gordan coefficients and WignerD functions.

Simultaneously coupled states exist only for grou
whose irreducible representations can be written as indu
representations@2#. This includes the Poincare´ group whose
representations describe relativistic systems, as well as
Galilei group describing nonrelativistic systems. It does n
include groups such as the three-dimensional rotation gr
SO~3! or other compact groups. Hence, for these grou
there are no simultaneously coupled angular momen
states and Racah coefficients simply connect different s
wise schemes@3#.

Reference@4# shows how to construct simultaneous
coupled states in which the invariant variables include re
tivistically invariant spin projections; these states, called
multaneously coupled spin projection states are writ
uv j s;I (n)rr 1¯r n&, where s is a spin projection along a
space-fixed axis whiler is an invariant spin projection alon
a body-fixed axis, with2 j <s, r< j . I (n) is a set of func-
tionally independent invariant subenergies needed to spe
the entiren-particle system. For the three-particle system d
cussed in Sec. IV,I (3) consists of three variables that can
chosen asm125A(p11p2)2, m13, and m23, the invariant
masses of the 1-2, 1-3, and 2-3 subsystems, respectively.
total invariant massm5A(p11p21p3)2 can be expressed in
terms of m12, m13, and m23. The remaining labels in the
3617 ©1998 The American Physical Society



ian
s

a
lt

on
tic

f
.
rc
h
sl
le
r

te

th
ic
ta
d
s

u
h

o-

by

is
ut
e

, i
-
nc
pe

o
t-
rb
n

in
o
n
ar
n

o
ic
in
h
as
he
o

are

s-

are
r a

as

is

at

to

used
For
his
ical

tor

ut

3618 PRC 58W. H. KLINK
simultaneously coupled spin projection state are invar
spin projection variablesr 1¯r n , eigenvalues of operator
such asPi•Wj , wherePi and Wi are the four-momentum
and Pauli-Lubanski operators of thei th particle. Ther i range
between2 j i and j i , where j i is the spin of thei th particle.
Reference@4# shows how to construct the generalized Rac
coefficients connecting stepwise coupled states to simu
neously coupled spin projection states. If the spin projecti
are helicities, then this procedure generalizes the two-par
coupling scheme of Jacob and Wick@5#.

However, spin projection variables are often not as use
in calculations as are orbital and spin angular momenta
particular, spin-dependent potentials such as spin orbit fo
are not conveniently written in spin projection variables. T
main goal of this paper is to construct simultaneou
coupled states in which the spin projection variab
r ,r 1 ,r 2¯r n are replaced byl, the relative orbital angula
momentum of then-particle systemr l , the projection along
a body-fixed axis, and spins~collectively denoted bys!. Sec-
tion III shows how to compute the coefficients connecting
simultaneously coupled spin projection sta
uv j s,I (n)rr 1¯r n& with uv j s,I (n) lr ls&, a simultaneously
coupled orbital angular momentum state. Then in Sec. IV
coefficients connecting a stepwise coupled three-part
state to a simultaneously coupled angular momentum s
are computed. As an application the kernel of a two-bo
operator given in stepwise coupled variables is given in
multaneously coupled variables.

It should be noted that states are labeled by a fo
velocity rather than the more usual three-momentum. T
choice of four-velocity, three-momentum, or light front m
mentump'5p11 ip2 , p15p01p3 corresponds roughly to
the different forms of relativistic dynamics first proposed
Dirac, namely, point, instant, and front-form dynamics@6#.
While the background for simultaneously coupled states
point form of relativistic dynamics, it is possible to carry o
all the calculations of this paper equally well using thre
momenta or front-form momenta. What is lost, however
relativistic covariance. In the point form of relativistic dy
namics, all Lorentz transformations are kinematic and he
the angular momentum coupling carried out in this pa
remains valid even in the presence of interactions.

In a similar vein all the simultaneously coupled spin pr
jection states of Ref.@4# and the Racah coefficients connec
ing them to stepwise coupled states are carried out for a
trary boosts. Boosts are certain Lorentz transformatio
coset representatives of the Lorentz group SO~1,3! with re-
spect to the rotation group SO~3!. They correspond to differ-
ent possibilities of relativistic spin. The most popular sp
choices are canonical, helicity, and front-form spin; each c
responds to a different choice of boost or coset represe
tive. Though there are advantages to leaving the boosts
trary in the Racah coefficients, because canonical spi
often used in applications, and since velocity states are m
naturally defined using canonical spin boosts, only canon
spin will be used in the main body of the paper. By choos
a particular boost, all of the rotations appearing in t
Wigner D functions can then be computed explicitly,
shown in Sec. IV. The Appendix shows how to carry out t
calculations for arbitrary boosts, by introducing the notion
a generalized Melosh rotation@7#.
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II. REVIEW OF RELATIVISTIC KINEMATICS

The irreducible representation space of the Poinc´
group for single particles of massm and spin of j is the
Hilbert spaceH5L2(R3) ^ Vj , where Vj is the usual (2j
11)-dimensional space.n-particle spacesHn are then appro-
priately symmetrized or antisymmetrizedn-fold tensor prod-
ucts of single-particle spaces. SinceHn is a representation
space of the Poincare´ group, the actions of space time tran
lations and Lorentz transformationsL are well defined.

It turns out to be more convenient to specify the Poinc´
group action on states rather than wave functions. Fo
single-particle state the group action is

Uaup js&5e2 ip•aup js&,

ULup js&5 (
s852 j

1 j

uLp, j s8&Ds8s
j

~Rw!. ~1!

p is a four-momentum vector satisfyingp•p5m2 and p•a
ªpmam5pTga, with g the Minkowski metric ~1,21,21,
21!. The Lorentz transformationLPSO(1,3) sendsp to Lp
and changes the spin projection components. RwPSO(3) is
a Wigner rotation, which is also sometimes written
Rw(p,L) to emphasize that the rotationRw depends onp and
L. Rw is defined as

Rw~p,L!ªB21~Lv !LB~v !, vªp/m, ~2!

whereB(v) is a boost, a coset representative of SO~1,3! with
respect to SO~3!, and thus a Lorentz transformation, which
completely specified by the four-velocityv. It is called a
boost because it takes the four-momentum of a particle
rest prest5(m,0) to the four-momentump: p5B(v)prest.
This condition does not uniquely specifyB(v) so there are
many different choices of boosts possible corresponding
different types of relativistic spin.Ds8s

s ( ) is a WignerD
function andj is the spin of the particle.

Though there are many different choices forB(v), ca-
nonical spin boosts have several properties that can be
to advantage in defining simultaneously coupled states.
that reason only canonical spin boosts will be used in t
paper. There are various equivalent definitions of canon
spin boosts:

B~v !ªR~ v̂ !Lz~ uvu!R21~ v̂ !, BT~v !5B~v ! ~3a!

5F v0 vT

v I 1
v^ vT

11v0
G ~3b!

5@v,v~1!,v~2!,v~3!#. ~3c!

R( v̂)[R(w,u,0) is the rotation specified by Euler anglesw,
u, the azimuthal and polar angles of the unit velocity vec
v̂. It is embedded into the Lorentz group as (0

1
R( v̂)
0 ). Lz(uvu)

is a pure Lorentz transformation along thez axis with com-
ponents cosha5v0 and sinha5uvu given through the four-
velocity v5(v0,v), (v0)2511v•v. Multiplying the matri-
ces in Eq.~3a! together gives a second way of writing o
B(v), namely, Eq.~3b!.
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The most useful form ofB(v) for this paper is Eq.~3c!,
whereB(v) is written as 4 four-vectors, of which the first
v. In order to be a Lorentz transformation,v( i )•v( j )5
2d i j and must also be orthogonal tov, v•v( i )50, i , j
51,2,3.

If en
m
ªdn

m , thenv( i ) for canonical boosts can be writte
as

vm~ i !5ei
m2

ei•v
11v0 ~vm1e0

m!. ~4!

Boosts other then canonical spin boosts differ inv( i ). The
Appendix givesv( i ) for helicity and front-form boosts.

The property that makes canonical boosts so useful
simultaneously coupled states is that the Wigner rotation
rotation is the same rotation:

Rw~p,R!5R, ~5!

a result proved in Ref.@4#. Helicity and front-form boosts
also have special properties that make them useful in o
contexts.

As shown in Ref.@4# the labels of the stateup js& are all
eigenvalues of operators built out of Lie algebra elements
the Poincare´ group. Thusp is the eigenvalue of the fre
four-momentum operatorPfr

m , the exponential ofUa in Eq.
~1!, while j ands are eigenvalues of the Pauli-Lubanski o
erator:

Wm5
1

2
emnabPfr

nJab,

W̃m5
1

2
emnabVnJab,

5
1

2
emnabVnSab

Vn
ªPfr

n /M fr , M fr
25Pfr•Pfr. ~6!

The modified Pauli-Lubanski operatorW̃m differs from Wm

by having the mass taken out.Jab are the infinitesimal Lor-
entz generators and as seen from Eq.~1! can be separate
into orbital and spin parts. Because ofemnab in Eq. ~6!, the
orbital parts ofJab do not contribute toWm; only the intrin-
sic spin componentsSab contribute. As shown in Ref.@4#

W̃•W̃ is a Casimir invariant with eigenvaluej ( j 11), with j

the spin of the particle.s is the eigenvalue ofv(3)•W̃, while

@v(1)6 iv(2)#•W̃ act similar to SU~2! raising and lowering
operators:

W̃•W̃up js&5 j ~ j 11!up js&,

v~3!•W̃up js&5sup js&,

@v~1!6 iv~2!#•W̃up js&5A~ j 7s!~ j 6s11!up js61&.
~7!

When v5(1,0,0,0), B(v) is the identity; in that case th
v( i ) are the same for all boost choices. However, whe
particle at rest is boosted top5mv, the direction of quanti-
r
a

er

f

a

zation will differ depending on the choice of boost, that
on v( i ). This shows that relativistic spin is most natural
defined in the rest frame of the particle.

Since parity is conserved in the strong interactions, it
necessary to know what the parity operation,pªdiag(1,
21,21,21) does to velocity states. For single-partic
states

UPup js&5UPuB~v !uprestj s&5UB~Pv !URP
UPuprestj s&

5huPp, j s&, ~8!

wherePB(v)5PB(v)PP5B(Pv)RPP; for canonical spin
boosts,RP is the identity rotation.h is the intrinsic parity of
the particle.

n-particle states are defined asn-fold tensor products of
single-particle states:

up1 j 1s1¯pnj nsn&ªup1 j 1s1&¯upnj nsn& ~9!

and their transformation properties are inherited from
single-particle transformation properties. As a first step
constructing simultaneously coupled states, we define ve
ity states as

uvk im i&ªUB~v !uk1 j 1m1¯knj nmn&

5(
s i

up1 j 1s1¯pnj nsn&)
i 51

n

Ds im i

j i $Rw@ki ,B~v !#%

~10!

with pi5B(v)ki , ( i 51
n k i50, ki5(v i ,k i), v i

5Ami
21k i•k i . Under Lorentz transformations velocit

states transform as

ULuvk im i&5ULUB~v !uk1 j 1m1¯knj nmn&

5UB~Lv !URw
uk1 j 1m1¯knj nmn&

5(
m i8

UB~Lv !uRwk1 , j 1m18¯Rwknj nmn8&

3) D
m

i8m i

j i @Rw~ki ,Rw!#

5(
m i8

uLv,Rwk i ,m i8&) D
m

i8m i

j i ~Rw!. ~11!

Here use has been made of the rotation property of canon
boosts, namely,Rw(ki ,Rw)5Rw . As seen in the Appendix
the definition of velocity states must be modified if boos
other than canonical boosts are used. Equation~11! states
that under a Lorentz transformationv goes toLv as ex-
pected, while the internal momentak i all undergo the same
~Wigner! rotation. Moreover, the spin components also u
dergo the same~Wigner! rotation, which means that orbita
and spin angular momentum can be coupled together exa
as is done nonrelativistically to obtain the total angular m
mentum j of the n-particle system. How this is done fo
simultaneously coupled orbital angular momentum state
the subject of the next section.

Under parity, a velocity state transforms as
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UPuvk im i&5UPUB~v !uk1 j 1m1 ,...,knj nmn&

5UB~Pv !UPuk1 j 1m1 ,...,knj nmn&

5)
i 51

h

h i uPv,Pk i ,m i&. ~12!

III. SIMULTANEOUSLY COUPLED ORBITAL ANGULAR
MOMENTUM STATES

The simultaneously coupled orbital angular moment
states to be constructed in this section have labelsv j s, the
four-velocity, total angular momentumj, and components
that describe the external features of the system and inte
labelsl, the relative orbital angular momentumr l , the com-
ponent of l along a body-fixed axis, as well asI (n), the
functionally independent set of subenergies and spin labes.
All of the internal variables are relativistic invariants, mea
ing that under a Lorentz transformation they remain u
changed. The mass of then-particle system is actually a
‘‘external’’ invariant, but it is more convenient to treat it as
function of variables inI (n). The mathematical machiner
needed to decompose ann-fold tensor product of single
particle states is discussed in Ref.@4#, and references therein
But the simultaneously coupled spin states constructed
Ref. @4# have internal variables that include the invariant s
projections. In this section the goal is to construct simu
neously coupled orbital statesuv j s,I (n) lr lss&.

To that end, define

uv lmlr l I ~n!m i&ªE
SO~3!

dRDmlr l

l* ~R!uv,Rk i~st!m i&,

~13!

where the velocity stateuv,Rk i(st)m i& has as variablesk i
5Rk i(st), with k i(st) a set of standard~body-fixed! vectors
satisfyingSk i(st)50. In the next section which deals wit
three-particle systems, the standard vectors will be chose
that k̂1(st)5 ẑ defines the body-fixedz axis, while k̂2(st)
Þ ẑ fixes thex-z plane. All invariant spin projections such a
r l are specified relative to such a body-fixed axis. Unde
Lorentz transformation the orbital angular momentum st
Eq. ~13! transforms as

ULuv lmlr l I ~n!m i&

5(
m i8

E
SO~3!

dRDmlr l

l* ~R!uLv,RwRk i~st!m i8&

3) D
m

i8m i

j i ~Rw!

5 (
ml8m i8

uLv,lml8r l I ~n!m i8&Dm
l8ml

l
~Rw!) D

m
i8m i

j i ~Rw!.

~14!

If all the intrinsic spinsj i were zero, the state~13! would
transform as a particle of spinl, as seen by comparing Eq
al

-
-

in

-

so

a
e

~14! with Eq. ~1!. Thusl is identified as the relativistic orbita
angular momentum of then-particle system and, as withr l ,
the projection ofl along a body-fixed axis, is a relativisti
invariant.

Though l, r l , and I (n) are relativistic invariants,ml and
m i are not. But since the arguments of the WignerD func-
tions that push aroundml and m i are all the same, all the
spins j 1¯ j n can be coupled together to give the total spins,
and thens coupled tol to give the total angular momentumj.
A simultaneously coupled orbital angular momentum stat
defined as

uv j s,I ~n!lr lss&ª( ^ lmlsmsu j s~ l s!&

3^ j 1m1 ...j nmnusms~s!&uv lmlr l I ~n!m i&.

~15!

^u& are SU~2! Clebsch-Gordan coefficients ands is a degen-
eracy parameter specifying how then spins j 1¯ j n are
coupled to form a total spins.

It is now straightforward to show that

ULuv j s,I ~n!lr lss&5( uLv, j s8,I ~n!lr lss&Ds8s
j

~Rw!

Uauv j s,I ~n!lr lss&5e2 imnv•auv j s,I ~n!lr lss& ~16!

indicating that the simultaneously coupled orbital state,
~15!, transforms as a particle of spinj and massmn , with
mn5A(Ski)

2 a function of the invariantsI (n) only. The
states~15! are called simultaneously coupled orbital angu
momentum states because there are no subsystem orbi
total angular momentum variables.

Under parity the simultaneously coupled orbital angu
momentum states transform as

UPuv j s,I ~n!lr lss&

5)
i 51

n

h i uPv, j s,IP~n!lr l8ss&Dr l r l8
l

@Ry~P!#

5)
i 51

n

h i~21! l 1r luPv, j s,IP~n!l ,2r lss&, ~17!

whereI p(n) is the parity transformed set of invariants.
To conclude this section, we compute the Racah coe

cients that connect simultaneously coupled orbital angu
momentum states to simultaneously coupled spin projec
states; these coefficients are needed in Sec. IV to com
the Racah connecting stepwise coupled states to sim
neously coupled orbital angular momentum states.

Now the simultaneously coupled orbital angular mome
tum states, Eq.~15!, can be written as



PRC 58 3621RELATIVISTIC SIMULTANEOUSLY COUPLED . . .
uv j s,I ~n!lr lss&5( ^ lmlsmsu j s~ ls!&^ j 1m1¯ j nmnusms~s!&E
SO~3!

dRDmlr l

l* ~R!UB~v !uRki~st! j im i&5( ^ lmlsmsu j s~ ls!&

3^ j 1m1¯ j nmnusms~s!&UB~v !E
SO~3!

dRDmlr l

l* ~R!URuki~st! j i r i&) Dr im i

j i ~R21!5( ^ lr lsrsu j r ~ ls!&

3^ j 1r 1¯ j nr nusrs~s!&UB~v !E
SO~3!

dRDsr
j* ~R!URuki~st! j i r i&. ~18!
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In the last line of Eq.~18! intertwining properties of Clebsch
Gordan coefficients have been used to rewrite the WigneD
functions.

The n-particle state of standard four-vectorski(st) can
now be coupled to give a simultaneously coupled spin p
jection state@see Ref.@4#, Eq. ~3.5!#. The result is

uki~st! j i r i&5(
j 8r 8

u0j 8r 8I ~n!r 1¯r n&

URuki~st! j i r i&5 (
j 8r 8s8

u0j 8s8r 8I ~n!r 1¯r n&Ds8r 8
j 8 ~R!.

~19!

Using the orthogonality properties ofD functions integrated
over RPSO(3) then gives

uv j s,I ~n!lr lss&5 (
rr i r s

^ lr lsrsu j r ~ ls!&

3^ j 1r 1¯ j nr nusrs~s!&uv j s,I ~n!rr i&

~20!

with inverse

uv j s,I ~n!rr i&5 (
lr l ssr s

^ j r ~ ls!u lr lsrs&

3^srs~s!u j 1r 1 ...j nr n&uv j s,I ~n!lr lss&.

~21!

For two-particle states this becomes

uv j s,m12ls&

5 (
r 1r 2r s

^ l0srsu j r s~ ls!&u j 1r 1 j 2r 2usrs&uv j s,m12r 1r 2&,

uv j s,m12r 1r 2&

5 (
lsrss

^ j r s~ ls!u l0srs&^srsu j 1r 1 j 2r 2&uv j s,m12ls&. ~22!

For example, a four-particle spin state with invariant
belsr ,r 1r 2r 3r 4 is connected to a simultaneously coupled
bital state with invariant labelsl, r l , ands along with step-
wise coupled spin labels that could be chosen, for exam
to bes12 ands34, the spin of the 12 and 34 particles, respe
tively. Equations ~20! and ~21! show that the Clebsch
-

-
-

e,
-

Gordan coefficients linking invariant spin labels to invaria
orbital labels themselves depend on only invariant labels

IV. RACAH COEFFICIENTS FOR THREE-PARTICLE
STATES

In this section we show how to connect stepwise coup
three-particle states to simultaneously coupled orbital sta
The generalization from three-particles ton-particles is
straightforward but tedious; moreover for more than thr
particles there are many different possible stepwise schem
The strategy for computing Racah coefficients for orbi
states is as follows. In the previous section the Racah c
ficients connecting simultaneously coupled spin project
states with simultaneously coupled orbital states were sh
to be products of Clebsch-Gordan coefficients. In Ref.@4# the
Racah coefficients connecting simultaneously coupled s
projection states with stepwise coupled spin projection sta
were shown to be products of WignerD functions. Combin-
ing these two results shows that the Racah coefficients c
necting simultaneously coupled orbital states with stepw
coupled orbital states are products of Clebsch-Gordan c
ficients and WignerD functions.

Using Eq.~20! and Eq.~3.1! of Ref. @4# gives

uv j s,I ~3!l 8r l8s8s&

5( ^ l 8r l8s8r s8u j r ~ l 8 j 8!&^ j 1r 18 j 2r 28 j 3r 38us8r s8~s!&UB~v !

3E dRDsr
j* ~R!URuk1~st!r 18 ,k2~st!r 28 ,k3~st!r 38&. ~23!

If now particle 1 is coupled to particle 2 and then 1
coupled to particle 3 and the orthogonality properties of
D function used, Eq.~23! becomes

uv j s,I ~3!l 8r l8s8s128 &

5( ^ l 8r l8s8r s8u j r ~ l 8s8!&^ j 1r 18 j 2r 28 j 3r 38us8r s8~s128 !&

3Dr 12r 11r 2

j 12 @R21~ k̂3
12!R~ k̂1

12!#D
r
18r 1

j 1* @R~ k̂2
1!#

3D
r
28r 2

j 2* @R~ k̂1
2!#D

r
38r 3

j 3* @R~ k̂12
3 !#Drr 121r 3

j $R@ k̂3~st!#%

3uv j s,mm12j 12r 12r 1r 2r 3&. ~24!
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The arguments of the variousD functions are always
specified by unit vectors obtained by deboosting the pre
ously chosen standard vectors to specific reference fram
The notationki

( j ) means the four vectorki(st) deboosted to
the frame wherek j50:

ki
~ j !
ªB21~v j !ki~st!,

ki
~ i !
ªB21~v i !ki~st!5S mi

0 D . ~25!

Thusk2
(1)5B21(v1)k2(st) is the deboosted four momentu

of particle 2 in the rest frame of particle 1.k3
12 means the

four momentum of particle 3 in the 112 rest frame; that is,
where
nt
n
t i
is
h
le
i-
es.

k1~st!1k2~st!5B~v12!S m12

0 D ~26!

with m12 the mass of the two-particle system,m12
2 5@k1(st)

1k2(st)#2. With these definitions the Euler angles of th
various D functions in Eq.~24! can always be written as
functions of the invariantsI (3)5$m12,m13,m23%.

Since one of the applications of simultaneously coup
states is to theNpp system in which the nucleon spin is12
and the pions are spinless, we choose the nucleon as pa
1 and computeD j 1@R( k̂2

1)#, wherek̂2
1 has azimuthal and po

lar angles w2
1 and u2

1, respectively. Now k2
(1)

5B21@k1(st)/m1#k2(st). But
cosu1
252

k2
1
•e3

uk2
1u

52
1

uk2
1u

B21S k1~st!

m1
D k2~st!•e352

1

uk2
1u

k2~st!•BS k1~st!

m1
De352

1

uk2
1u

k2~st!•v1~3!

52
1

uk2
1u

k2~st!•Fe32
e3•v1

11v1
0 ~v11e0!G5

1

uk2
1u Fk2~st!z2

k1~st!z

m11E1~st! S E2~st!1
k1~st!•k2~st!

m1
D G . ~27!

All of these momenta can be written as invariants. Thus

m12
2 5~k1

~1!1k2
~1!!25m1

21m2
212m1E2

15m1
21m2

212m1Am2
21~k2

1!2,

Am2
21~k2

1!25
1

2m1
@m12

2 2m1
22m2

2#,

m23
2 5@k1~st!1k2~st!1k3~st!2k1~st!#25m123

2 1m1
222m123E1~st!,

E1~st!5Am1
21@k1~st!#25

1

2m123
~m123

2 1m1
22m23

2 ! ~28!
ro-
and the like. The azimuthal angle

cosw2
1sin u2

152
1

uk2
1 k2

1
•e1 ,

sin w2
1sin u2

152
1

uk2
1u

k2
1
•e2 ~29!

can be computed in a similar manner.
The rotationR21( k̂3

12)R( k̂1
12) appearing as the argume

in the D j 12( ) function differs from the other rotations i
that—as will be shown—it is independent of the boost tha
chosen. We will show this for the middle Euler angle as it
the only one relevant for Racah coefficients. The azimut
Euler angles are all canceled off by the azimuthal ang
appearing in theD j 1, D j 2, andD j functions.

The middle Euler angle is

cosb3,15 ẑ•R21~ k̂3
12!R~ k̂1

12!ẑ5 k̂3
12
• k̂1

12. ~30!

But
s

al
s

m13
2 5~k3

121k1
12!25m3

21m1
212k3

12
•k1

125m1
21m3

2

12~E3
12E1

122uk3
12uuk1

12ucosb3,1!,

m123
2 5~k1

121k2
121k3

12!25m12
2 1m3

212m12E3
12,

m2
25~k1

121k2
122k1

12!25m12
2 1m1

222m12E1
12, ~31!

so

cosb3,15
1

2uk3
12uuk1

12u
@2E3

12E1
121m1

21m3
22m13

2 #,

E3
125

1

2m12
@m123

2 2m12
2 2m3

2#,

E1
125

1

2m12
@m12

2 1m1
22m2

2#; ~32!

thus all rotations appearing in theD functions of Eq.~24! can
be written as functions ofI (3). Moreover, rotations of the
form R21( )R( ) are independent of the boost, whereas
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tations of the formR( ) depend on the boost that is chos
~in this case canonical spin boosts!.

Equation ~24! gives the Racah coefficients connecti
uv j s,I (3)l 8r l8s8s128 & with the stepwise coupled spin proje
tion stateuv j s,mm12j 12r 12r 1r 2r 3&. Using the results of Eq
o-

E
sy

, E
ne

i
th

i

Da
~22!, with the variablesr 1 andr 2 replaced byl 12 ands12, the
orbital and spin angular momentum of the 1-2 system, a
the variablesr 12 and r 3 replaced byl ands, the orbital and
spin angular momentum of the three-particle system, gi
the desired Racah coefficients
e

uv j s,I ~3!l 8r l8s8s128 &5( ^ l 8r l8s8r s8u j r ~ l 8s8!&^ j 1r 18 j 2r 28 j 3r 38us8r s8~s128 !&dr 12r 11r 2

j 12 ~cosb3,1!

3 D
r
18r 1

j 1* @R~ k̂2
1!#D

r
28r 2

j 2* @R~ k̂1
2!#D

r
38r 3

j 3* @R~ k̂12
3 !#Drr 121r 3

j $R@ k̂3~st!#%^ j 12r̄ ~ l 12s12!u l 120s12r̄ &

3^s12r̄ ~ j 1 j 2!u j 1r 1 j 2r 2&^ j r̃ ~ l s!u l0sr̄&^sr̄u j 12r 12j 3r 3&uv j s,mm12ls j12l 12s12&. ~33!

The Racah coefficient is considerably simplified if only particle 1~the ‘‘nucleon’’! has spin while particles 2 and 3 ar
spinless. Then the degeneracy labelss ands12 disappear and

uv j s,I ~3!l 8r l8&5( ^ l 8r l8 j 1r 18u j r ~ l 8s1!&dr 12r 1

j 12 ~cosb3,1!Dr
18r 1

j 1* @R~ k̂2
1!#Drr 12

j $R@ k̂3~st!#%^ j 12r 1~ l 12s1!u l 120s1r 1&

3^ j r 12~ l j 12!u l0 j 12r 12&uv j s,mm12l j 12l 12&. ~34!
ari-

body
l

ce

cah

c-

et

cle
Equation ~34! is already suitable for describing res
nances in the final state for theNp system. In the reaction
Np→Npp, if the Np system results from the decay of aD
resonance, thenj 125

3
2 while m12 is the ‘‘mass’’ of theD

resonance. The threshold factor forD decay is given by
uk1

12u l 12. In the direct channel theNp→Npp reaction is
dominated by angular momentumj 5 3

2 , with m the ‘‘mass’’
of the D resonance and the threshold factoruk3(st)u l . Thus
the variables appearing in the stepwise coupled state of
~34! are the natural variables for resonances in the 1-2
tem.

However, if there are also resonances in thep-p or 2-3
system, the variables appearing in the stepwise scheme
~34!, are of little use. The relevant variables can be obtai
by interchanging variables pertaining to particles 1 and 3
Eq. ~33! to give a 2-3 coupling scheme, and then setting
spins of particles 2 and 3 equal to 0. The result is

uv j s,I ~3!l 8r l8&5( ^ l 8r l8 j 1r 18u j r ~ l 8 j 1!&dr 23 0

j 23 ~cosb1,3!

3D
r
18r 1

j 1* @R~ k̂23
1 !#Drr 11r 23

j @ k̂1~st!#

3^ j r̃ ~ ls!u l0sr̃&

3^ j r̃ u j 23r 23j 1r 1&uv j s,mlsm23j 23&, ~35!

which is now suitable for describing ap-p resonance, say
ther with j 2351. The relevant threshold factor isuk2

23u j 23 for
the decay, while the direct channel threshold factor
uk1(st)u l .

But experimentally final-state resonances are seen in
itz plots, where the relevant variables arem12, m23, and
m13, that is, the setI (3). If the invariant massm is held
q.
s-

q.
d
n
e

s

l-

fixed, cross sections inm12 andm23 show bands giving the
positions and widths of resonances. Then the natural v
ables to use arelr l and I (3).

In the model forpN production given in Ref.@8#, the
final-state resonances are described by a reduced three-
function u3 j@ lr l I (3)#. But for pN resonances the natura
variables to use areu3 j ( lmm12j 12l 12) while for pp reso-
nancesu3 j (mlsm23j 23). Simple choices for these resonan
functions then result inu3 j@ lr l I (3)#, in which all the spin
information about the resonances is given through the Ra
coefficients. For example, for ther resonance,j 2351, j 1
5 1

2 , and j 5 3
2 for the D functions in Eq.~35!.

If the three-body potential arises from two-body intera
tions, the Racah coefficients derived in Eq.~33! can be used
to write the kernel in simultaneously coupled variables. L

^v128 j 128 s128 m128 l 128 s128 uV12uv12j 12s12m12l 12s12&

5d3~v128 2v12!d j
128 j 12

ds
128 s12̂

m128 l 128 s128 uV12
j 12um12l 12s12&

~36!

be the two-body kernel for the 1-2 system on the two-parti
Hilbert space. If on the three-particle space

^v8 j 8s8,m8m128 l 8s8 j 128 l 128 s128 uV12uv j s,mm12ls j12l 12s12&

5d3~v82v !d j 8 jds8s^m128 l 128 s128 uV12
j 12um12l 12s12&, ~37!

then

^v̄8 j̄ 8s̄8, Ī 8~3! l̄ 8 r̄ l8s̄8s̄128 uV12uv̄ j̄ s̄, Ī ~3! l̄ r̄ l s̄s̄12&
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5X R
Ī 8~3! l̄ 8, r̄

l8s̄8s̄
128 ,m

128 l 8s8 j
128 l

128 s
128

j 8m8

3^v8 j 8s8,m8m128 l 8s8 j 128 l 128 s128 u

3V12uv j s,mm12ls j12l 12s12&Rm12ls j12l 12s12 , Ī ~3! l̄ r̄ l s̄s̄12

jm
,

~38!

where the Racah coefficientsR22
jm are

R
m12ls j12l 12s12 , Ī ~3! l̄ r̄ l s̄s̄12

jm

ª^v j s,mm12ls j12l 12s12uv j s, Ī ~3! l̄ r̄ l s̄s̄12&, ~39!

as given in Eq.~35!.

V. CONCLUSION

Though multiparticle states diagonal in the four mome
tum and spin projection variables of all the particles are na
ral to use for scattering amplitudes and cross sections, s
variables do not exhibit the spin properties of a system s
as the total angular momentum or the orbital angular m
mentum of some subsystem. Spin variables are importan
expressing conservation laws such as angular momen
conservation, or expressing properties of subsystems, su
the spin and mass of resonances, or the threshold behav
a resonance.

Even when the overall four-momentum and angular m
mentum variables are diagonal there are many poss
choices for the remaining invariant~under Lorentz transfor-
mations! variables. The goal of this paper has been to co
pute the~Racah! coefficients that connect these different po
sibilities. Unlike the Racah coefficients for angul
momentum, wherein the coefficients connect different st
wise couplings, for the Poincare´ group there is also the pos
sibility of simultaneous coupling, where all the particle va
ables are coupled at once to produce an overall fo
momentum, and angular momentum state@see Eq.~15!#.

Simultaneously coupled states provide a natural stand
with which to connect to any stepwise coupled state. Th
the strategy in this paper has been to define Racah co
cients as the coefficients connecting any stepwise cou
state to the simultaneously coupled state. Then the m
usual Racah coefficients connecting one stepwise cou
state to any other is the product of two such Racah coe
cients. As seen in Sec. IV these Poincare´ Racah coefficients
are products of SU~2! Clebsch-Gordan coefficients an
Wigner D functions; they are computed explicitly for thre
particle states in Eq.~33!.

There are actually two different types of simultaneou
coupled states. One called simultaneously coupled spin
jection states, has invariant labels that include the spin p
jections of all the constituent particles. Racah coefficients
such variables are treated in detail in Ref.@4#. The other
possibility, called simultaneously coupled orbital states,
invariant labels that include the total orbital angular mom
tum, as well as the total and subsystem spins@see Eq.~15!#.
Such variables are important in resonance analysis and
bar models and are the variables of main interest in
paper. Racah coefficients connecting these two types o
-
-
ch
h
-
or
m
as
of

-
le

-
-

-

r-

rd
s,
ffi-
ed
re
ed
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multaneously coupled states are given in Eqs.~20!, ~21!, and
~22!.

The main goal of this paper has been to compute Ra
coefficients connecting stepwise orbital states to simu
neously coupled orbital states. As shown in Sec. IV su
coefficients are of obvious utility in isobar models, where
multiparticle reaction proceeds through a series of re
nances. Each resonance has its associated mass, spin
orbital labels. But the variables describing resonances in
ferent channels are not compatible and~Racah! coefficients
are needed to connect them. Examples are given in Sec
for a three-particle system with variables for a ‘‘D’’ reso-
nance as against a ‘‘r’’ resonance.

The simultaneous coupled states analyzed in this pa
will be of most use in the point form of relativistic dynamic
@6#. In particular specifying the dynamics in terms of a ma
operator means that interaction parts of the mass oper
can be chosen as kernels in simultaneously or stepw
coupled variables. An explicit example is given in Ref.@8#
where a separable potential couples a two-body to a th
body Hilbert space to modelp-N production data.

The Racah coefficients computed in Sec. IV invol
Wigner D functions, in which the Euler angles are functio
of relativistic invariants. By making a definite choice o
boost, namely, a canonical boost@see Eq.~3!#, it is possible
to compute the angle dependence explicitly, as shown in
amples such as Eqs.~27!–~33!.

Racah coefficients connect different choices of invari
variables. It is also important to have the Clebsch-Gord
coefficients connectingn-fold single-particle states to angu
lar momentum states. Since simultaneously coupled orb
states have been chosen as a standard in this paper, we
lect the various formulas given throughout the paper to l
statesup1s1¯pnsn& @Eq. ~9!# to uv j s,I (n) lr lss& @Eq. ~15!#.
The result is

uv j s,I ~n!lr lss&5 (
mlms

m1 ...mn

^ lmlsmsu j s~ ls!&

3^ j 1m1¯ j nmnusms~s!&

3E
SO~3!

dRDmlr l

l* ~R!up1s1¯pnsn&

3)
i 51

n

Ds im i

j i $Rw@Rki~st!,B~v !#%,

where

pi5B~v !Rki~st!, Sk i~st!50,

p5(
i

pi5B~v !mn ,

mn
25S (

i
pi D 2

5S (
i

ki~st! D 2

.

The Clebsch-Gordan coefficients convertingn single-particle
states to a simultaneously coupled orbital state are then
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^p1s1¯pnsnuv j s,I ~n!lr ls&

5 (
mlms

m1 ...mn

^ lmlsmsu j s~ ls!&^ j 1m1¯ j nmnusms~s!&Dmlr l

l* ~R!

3)
i 51

n

Ds im i

j i $Rw@Rki~st!,B~v !#%;

Rw@Rki(st),B(v)# is a Wigner rotation whose arguments c
be computed along the lines given in Sec. IV.

To conclude it should be noted that no normalization c
ventions for the various states have been given. All of
various coupled states are built out of products of sing
particle states and hence inherit the normalizations cho
for single-particle states. These normalizations are wor
out in detail for covariantly normalized single-particle sta
in the Appendix of Ref.@8#. But since the Racah coefficien
connecting different states, all diagonal inv, j ,s, are prod-
ucts of SU~2! Clebsch-Gordan coefficients and WignerD
functions, the normalization of one such state relative to
other is fixed by the normalization of the Clebsch-Gord
coefficients andD functions.
it
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APPENDIX: VELOCITY STATES FOR ARBITRARY
BOOSTS; HELICITY AND FRONT FORM

VELOCITY STATES

Velocity states, states in which all the internal variab
transform under the same~Wigner! rotation were defined for
canonical spin in Eq.~10!. This definition must be modified
for boosts other than canonical boosts, and in particular
helicity and front form boosts. In place of Eq.~10!, write

uvk im i&ª(
m i8

UB~v !ukim i8&)
i 51

n

D
m

i8m i

j i @B21~ki !Bc~ki !#,

~A1!

whereBc(ki) is a canonical boost defined in Eq.~3!, B(ki) is
any other choice of boost, and the combinati
B21(ki)Bc(ki) is a rotation, a generalized Melosh rotatio
@7#. Under a Lorentz transformation, the velocity state tra
forms as
ULuvk im i&5ULUB~v !(
m i8

ukim i8&)
i 51

n

D
m

i8m i

j i @B21~ki !Bc~ki !#

5UB~Lv ! (
m i8m i9

uRwki ,m i9&)
i 51

n

D
m

i9m
i8

j i @Rw~ki ,Rw!#D
m

i8m i

j i @B21~ki !Bc~ki !#

5UB~Lv !(
m i9

uRwki ,m i9&)
i 51

n

D
m

i9m i

j i @B21~Rwki !Bc~Rwki !Rw#5(
m i8

uLv,Rwk im i8&)
i 51

n

D
m

i8m i

j i ~Rw!, ~A2!
which is the same as Eq.~11!. Thus, with the aid of the
generalized Melosh rotation, it is possible to define veloc
states for any type of boost.

Besides canonical spin the boosts most often used
helicity and front form boosts. They are distinguished by
choice ofvm( i ) given in Eq.~3c!, three spacelike unit vec
tors making up the last three columns of the boost ma
B(v). For canonical spin thevm( i ) are given in Eq.~4!.

Helicity boosts are defined by

BH~v !ªR~ v̂ !Lz~ uvu!5Fv0 0 0 uvu

v v̂1 v̂2 v0v̂G ,
vH

m~1!5S 0
v̂1

D , v̂15S cosu cosw
cosu sin w

2sin u
D ,

vH
m~2!5S 0

v̂2
D , v̂25S 2sin w

cosw
0

D ,
y

re
e

x

vH
m~3!5S uvu

v0v̂ D , v̂5S sin u cosw
sin u sin w

cosu
D ,

vH~ i !•vH~ j !52d i j . ~A3!

The Melosh rotation is given by

RM~v !5BH
21~v !Bc~v !

5@R~ v̂ !Lz~ uvu!#21R~ v̂ !Lz~ uvu!R21~ v̂ !5R21~ v̂ !.

~A4!

Front form boosts are usually defined using SL(2,C)
rather than SO~1,3!. But it is possible to definevF

m( i ) in
terms of a null vectornm5( n̂

1). Then



s.

3626 PRC 58W. H. KLINK
vF
m~3!ª

nm

n•v
2vm,

vF
m~ i !ªni

m2
ni•v
n•v

nm, i 51,2, ~A5!

where ni
m5( n̂i

0 ), such that ni•nj52d i j , n•ni50. It is

readily checked thatvF( i )•vF( j )52d i j , and v•vF( i )50
as required.

The corresponding Melosh rotation is
l

, R

,
.

RM~v !5BF
21~v !Bc~v !5gS vT

vF
T~1!

vF
T~2!

vF
T~3!

D g@vvc~1!vc~2!vc~3!#

5gS 1 0 0 0

0

0 vF~ i !•vc~ j !
D ,

RM~v ! i j 52vF~ i !•vc~ j !, ~A6!

which is straightforward but tedious to work out using Eq
~4! and ~A5!.
@1# See, for example, W. Glo¨ckle, The Quantum Mechanica
Three Body Problem~Springer Verlag, Berlin, 1983!, espe-
cially Chap. 3, Sec. 6.5.

@2# For a definition of induced representation, see for example
E. Warren and W. H. Klink, J. Math. Phys.11, 1155 ~1970!;
G. Mackey,The Theory of Induced Representations~Univer-
sity of Chicago Press, Chicago, 1955!.

@3# See, for example, L. C. Biedenharn and J. D. Louck,Angular
Momentum in Quantum Physics~Addison-Wesley, Reading
MA, 1981!; also W. H. Klink and T. Ton-That, J. Math. Phys
37, 6468~1996!.
.

@4# W. H. Klink, Ann. Phys.~N.Y.! 213, 31 ~1992!.
@5# M. Jacob and A. Wick, Ann. Phys.~N.Y.! 7, 401 ~1959!.
@6# P. A. M. Dirac, Rev. Mod. Phys.21, 392~1949!; B. D. Keister

and W. N. Polyzou, inAdvances in Nuclear Physics, edited by
J. W. Negele and E. W. Vogt~Plenum, New York, 1991!, Vol.
20, p. 225.

@7# H. D. Melosh, Phys. Rev. D9, 1095 ~1974!; see also F. Co-
ester, Progress in Particle Nuclear Physics, edited by A.
Faessler~Pergamon, New York, 1992!, Vol. 29.

@8# W. H. Klink and M. Rogers, Phys. Rev. C58, 3605 ~1998!,
preceding paper.


