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To carry out calculations dealing with relativistic multiparticle systems requires making a choice of variables
that describe the system. Simultaneously coupled states, whesangle-particle states are coupled together
simultaneously rather than in a stepwise fashion, are defined and the resulting variables compared with step-
wise variables. Generalized Racah coefficients that connect stepwise coupled states with simultaneously
coupled states are derived for three-particle systems and used to calculate properties of resonances in isobar
models. Invariants of simultaneously coupled states include orbital and spin angular momentum variables. It is
shown how these variables can be coupled together in exactly the same way as is done nonrelativistically.
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[. INTRODUCTION well as the overall four-velocity. One way to construct such
states is to stepwise couple theparticle states. For relativ-

To carry out calculations on multiparticle systems, foristic systems there is, however, another possibility, namely to
example, bound-state wave functions or scattering amplicouple all of the single-particle states together simulta-
tudes, it is necessary to make a choice of variables for theeously to obtain a state labeled by the overall four momen-
multiparticle system. Often the procedure for obtaining vari-tum, the total angular momentum and remaining variables;
ables is to couple the constituent variables together one atthese remaining variables are invariant variables of the whole
time, 1 to 2,(1,2) to 3, and so on, resulting in a stepwise system and are obtained from the velocity states by suitable
coupled scheme. Such a scheme is of obvious utility for detransformations, as shown in Sec. Ill.
fining a two-body potential between particles 1 and 2, but a A second goal of this paper is to construct simultaneously
two-body potential between particles 2 and 3 requires a difeoupled states that can serve as a standard relative to any
ferent stepwise scheme. Then coefficients are needed thsitepwise coupled states. In Sec. IV the coefficients relating
connect different stepwise schemes, and often one choosesy stepwise coupled state to the standard simultaneously
variables from one stepwise scheme as a standard and relatasupled state for three-particle systems are computed. Then
guantities such as kernels of operators naturally defined ithe coefficients relating different stepwise states are given
another stepwise scheme by generalized Racah coefficientgia the coefficients relating stepwise to simultaneously

For nonrelativistic quantum mechanical systems such a&oupled states. These coefficients are all products q2SU
procedure is workable and has been used in many calcul&lebsch-Gordan coefficients and Wigrizrfunctions.
tions of three and more body systeifld. For relativistic Simultaneously coupled states exist only for groups
multiparticle systems, however, the procedure is more comwhose irreducible representations can be written as induced
plicated, especially when the constituent particles have spirrepresentationg2]. This includes the Poincaigroup whose
One of the goals of this paper is to define states called verepresentations describe relativistic systems, as well as the
locity states having the property that internal variables suclalilei group describing nonrelativistic systems. It does not
as spin and orbital angular momenta of relativistic multipar-include groups such as the three-dimensional rotation group
ticle systems can be coupled together exactly as is done no®Q(3) or other compact groups. Hence, for these groups
relativistically. That is, just as a nonrelativistitparticle  there are no simultaneously coupled angular momentum
state|piu1- - -Pomn) (Pi is the momentum of théth particle  states and Racah coefficients simply connect different step-
and u; its spin projection can be rewriten as wise schemeg3].

[P, Kype1 - Kn,uny (With Ski=0) and then the spins and or- Reference[4] shows how to construct simultaneously
bital angular momenta coupled together, so too can a relativeoupled states in which the invariant variables include rela-
istic n-particle state |pyuy--posn) (p; is the four- tivistically invariant spin projections; these states, called si-
momentum of théth particle be rewritten as a velocity state multaneously coupled spin projection states are written
lv,kipq - -knun) (with Ski=0) and the angular momenta |vjo;l(n)rry---r,), whereo is a spin projection along a
coupled togethemp is the total momentum of the nonrelativ- space-fixed axis while is an invariant spin projection along
istic n-particle systemp=23p;, whereaw is the four veloc- @ body-fixed axis, with-j<ao, r<j. I(n) is a set of func-

ity of the relativistic n-particle systemp=1/(m,)p;, mﬁ tionally independent invariant subenergies needed to specify
=(3pi)?, the square of the mass of tmeparticle system. the entiren-particle system. For the three-particle system dis-
Section Il reviews the relativistic kinematics needed to de-cussed in Sec. IM,(3) consists of three variables that can be
fine velocity states. chosen asni,= (p;1+ pz)z, my3, and m,3, the invariant

The velocity states written above are not diagonal in thenasses of the 1-2, 1-3, and 2-3 subsystems, respectively. The
total angular momentum. It is often desirable to constructotal invariant mass= \/(p;+p,+ p3)zcan be expressed in
states that are diagonal in the total angular momentum a@erms ofmg,, m;3, and mys. The remaining labels in the

0556-2813/98/5%)/3617110)/$15.00 PRC 58 3617 ©1998 The American Physical Society



3618 W. H. KLINK PRC 58

simultaneously coupled spin projection state are invariant Il. REVIEW OF RELATIVISTIC KINEMATICS

splnh prog)ec\tll\cl)n va;]rlablgsl---(;% elgerl\éalL]Jces of operattors The irreducible representation space of the Poincare
such asiy- Wy, wherer; andVv; are thé four-momentum .., for single particles of mass and spin ofj is the

and Pauli-Lubanski operators of thé particle. The'; range  Gijpert spaceH=L2(R%) & VI, whereVi is the usual (2
between—j; andj;, wherej; is the spin of thath particle. 1)_gimensional space-particle space#{, are then appro-
Referencd4] shows how to construct the generalized Racafpyiately symmetrized or antisymmetrizeefold tensor prod-
coefficients connecting stepwise coupled states to simultgscts of single-particle spaces. Singg, is a representation
neously coupled spin projection states. If the spin projectiongpace of the Poincagroup, the actions of space time trans-
are helicities, then this procedure generalizes the two-particlgtions and Lorentz transformatiods are well defined.
coupling scheme of Jacob and WiE. It turns out to be more convenient to specify the Poincare

However, spin projection variables are often not as usefuroup action on states rather than wave functions. For a
in calculations as are orbital and spin angular momenta. I&jngle-particle state the group action is
particular, spin-dependent potentials such as spin orbit forces _
are not conveniently written in spin projection variables. The UJpjo)=e P 3pjo),
main goal of this paper is to construct simultaneously
coupled states in which the spin projection variables _
r,ry,ro--r, are replaced by, the relative orbital angular Ualpjo)= 2 _ |Ap,jo’)DL, (Ry). Q)

!

momentum of then-particle systenr,, the projection along o=l

a body-fixed axis, and spir{sollectively denoted bg). Sec- p is a four-momentum vector satisfying p=m? andp-a
tion 11l shows how to compute the coefficients connecting a::pﬂa =pTga, with g the Minkowski metric(1,—1,—1

- . . . M ¢l 1 1 ’
simultaneously -~ coupled spin  projection state _j, thq | grentz transformation e SO(1,3) sendp to Ap
[ja, I (N)rry-ry) with [vjo,I(n)Irs), a simultaneously 504 changes the spin projection componerR,, e SO(3) is
coupled orbital angular momentum state. Then in Sec. IV th%1 Wigner rotation, which is also sometimes written as

coefficients .connecting a stepwise coupled three—particlg2 (p,A) to emphasize that the rotati@, depends op and
state to a simultaneously coupled angular momentum stathWR is defined as
. W

are computed. As an application the kernel of a two-body
operator given in stepwise coupled variables is given in si- Ry(p,A):=B Y Av)AB(v), v:=p/m, )
multaneously coupled variables.

It should be noted that states are labeled by a fourwhereB(v) is a boost, a coset representative of( $3 with
velocity rather than the more usual three-momentum. Theespect to S(B), and thus a Lorentz transformation, which is
choice of four-velocity, three-momentum, or light front mo- completely specified by the four-velocity. It is called a
mentump, =p;+ip,, P+ =P+ Ps corresponds roughly to  boost because it takes the four-momentum of a particle at
the different forms of relativistic dynamics first proposed byrest p™S= (m,0) to the four-momentunp: p=B(v)p"
Dirac, namely, point, instant, and front-form dynam&.  This condition does not uniquely speciB(v) so there are
While the background for simultaneously coupled states is éany different choices of boosts possible corresponding to

point form of relativistic dynamics, it is possible to carry out jitferent types of relativistic spinDS, () is a WignerD
all the calculations of this paper equally well using three-¢,nction andj is the spin of the partliTcIUe.

momenta or front-form momenta. What is lost, however, is Though there are many different choices ®fv), ca-

relativistic covariance. In the point form of relativistic dy- 04 spin boosts have several properties that can be used

namics, all Lorentz transformations are kinematic and hencg0 advantage in defining simultaneously coupled states. For
the angular momentum coupling carried out in this papetya; reason only canonical spin boosts will be used in this

remains .Va.“d even in the presence of interactions. _ paper. There are various equivalent definitions of canonical
In a similar vein all the simultaneously coupled spin pro-

+]

jection states of Ref4] and the Racah coefficients connect- spin boosts:

ing them to stepwise coupled states are carried out for arbi- B(v):=R(3)A,(|V)R"Y(5), BT(v)=B(v) (3a
trary boosts. Boosts are certain Lorentz transformations,

coset representatives of the Lorentz group(58) with re- " VT

spect to the rotation group $8). They correspond to differ-

— T
ent possibilities of relativistic spin. The most popular spin v o+ vev (3b)
choices are canonical, helicity, and front-form spin; each cor- 1+0°

responds to a different choice of boost or coset representa-

tive. Though there are advantages to leaving the boosts arbi- =[v,v(1),v(2),v(3)]. (30
trary in the Racah coefficients, because canonical spin is _ ) ) -

often used in applications, and since velocity states are mo&(?)=R(¢,6,0) is the rotation specified by Euler angles
naturally defined using canonical spin boosts, only canonicaf: the azimuthal and polar angles of the unit velocity vector
spin will be used in the main body of the paper. By choosing? - It is embedded into the Lorentz group %SE((@))- A(|v])

a particular boost, all of the rotations appearing in theis a pure Lorentz transformation along thexis with com-
Wigner D functions can then be computed explicitly, asponents coslk=0v° and sinha=|v| given through the four-
shown in Sec. IV. The Appendix shows how to carry out thevelocity v=(v°v), (v°)?=1+v-v. Multiplying the matri-
calculations for arbitrary boosts, by introducing the notion ofces in Eq.(3a together gives a second way of writing out
a generalized Melosh rotatidid]. B(v), namely, Eq(3b).
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The most useful form oB(v) for this paper is Eq(30), zation will differ depending on the choice of boost, that is,
whereB(v) is written as 4 four-vectors, of which the firstis on v(i). This shows that relativistic spin is most naturally

v. In order to be a Lorentz transformation(i)-v(j)= defined in the rest frame of the particle.
— & and must also be orthogonal t, v-v(i)=0, i,j Since parity is conserved in the strong interactions, it is
=1,2,3. necessary to know what the parity operatian:=diag(1,
If e#:=5%, thenu(i) for canonical boosts can be written —1,—1,—1) does to velocity states. For single-particle
as states
H — resi — res
ph(i)= e~ i'vo (vt e, @ U7>|pJ0'>—U7>UB(u)|p 50'>—UB(7>u)URPU7>|p fo)

+ .
1o = 7|Pp.jo), ®

Boosts other then canonical spin boosts diffew{i). The _ _ . . .
Appendix givesv (i) for helicity and front-form boosts. where PB(v) = PB(v)PP=B(Pv)RyP; for canonical spin

The property that makes canonical boosts so useful fol{)hoeosgr'sé’lés the identity rotationz is the intrinsic parity of
simultaneously coupled states is that the Wigner rotation of a nf)particle. states are defined adold tensor products of

rotation is the same rotation: . ) )
single-particle states:

R ,R) =R, 5 . . . .
w(P.R) © [P1i 101" *Prin0m) =[P1i101)" **[Pninon) 9

a result proved in Ref{4]. Helicity and front-form boosts . . . . .

. . . and their transformation properties are inherited from the
also have special properties that make them useful in other. . X i )
contexts single-particle transformation properties. As a first step to

As shown in Ref[4] the labels of the statipjo) are all constructing simultaneously coupled states, we define veloc-

eigenvalues of operators built out of Lie algebra elements o\‘ty states as
the Poincaregroup. Thusp is the eigenvalue of the free
four-momentum operatdpf; , the exponential o, in Eq.

(1), while j and o are eigenvalues of the Pauli-Lubanski op- ) ) o
erator: =2 |p1]lo'1"'pnln0'n>i1:[l D, . {Rulki .B(v) ]}

lokimi):=Ug|Kij 11+ -Knjnitn)

1 b e (10)
W/-LZE E,uvaBPfrJ B,
with  p;i=B(v)ki, =L:ki=0, ki=(w;.k), o

=\/m2i+ki-ki. Under Lorentz transformations velocity

W.=3 €pvapV I, states transform as
1 Ualvkisi)=UxUg|Kaj 101" - “Knj ntn)
=5 eﬂvaﬁvyz e i i
2 = UB(AU)URW|k1] 11 Knnin)
VV::PfV/Mf , Mf2=PfPf (6) . ’ - ’
' ' ' o :2 UB(Av)|RWk1aJl:U“1'“RWkn] n:u“n>
The modified Pauli-Lubanski operatty* differs from W i
by having the mass taken out*” are the infinitesimal Lor- i
entz generators and as seen from E.can be separated XH D;_,#_[Rw(ki R ]

into orbital and spin parts. Because &f,,; in Eq. (6), the

orbital parts ofJ*# do not contribute t&*; only the intrin- i

sic spin componenty “# contribute. As shown in Ref4] :2 |Av. Rk, ui )] DM'{M(RW)- (13)
W-W is a Casimir invariant with eigenvaltjéj +1), with j Hi

the spin of the particler is the eigenvalue af (3)-W, while  Here use has been made of the rotation property of canonical
[v(1)=iv(2)]-W act similar to SW2) raising and lowering boosts, namelyR,(k; ,R,)=R,,. As seen in the Appendix
operators: the definition of velocity states must be modified if boosts
o other than canonical boosts are used. Equatidh states
W-Wpjo)=j(j+1)|pjo), that under a Lorentz transformatian goes toAv as ex-
pected, while the internal momenka all undergo the same
v(3)-W|pjo)y=0c|pjo), (Wignepn rotation. Moreover, the spin components also un-
dergo the saméWwigner rotation, which means that orbital
[v(l)iiv(Z)]~\7V|pja’>= Jizo)(jxo+1)|pjo= 1). and spin angular momentum can be coupled together exactly
as is done nonrelativistically to obtain the total angular mo-
mentumj of the n-particle system. How this is done for
When v=(1,0,0,0), B(v) is the identity; in that case the simultaneously coupled orbital angular momentum states is
v(i) are the same for all boost choices. However, when dhe subject of the next section.
particle at rest is boosted fw=muv, the direction of quanti- Under parity, a velocity state transforms as
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Uplokiuiy =UpUgq) Kej 11, Knjnitn) (14) with Eq.(1). Thusl is identified as the relativistic orbital
angular momentum of the-particle system and, as with,
=Ugp)UplKij1pa, - Knjnsn) the projection ofl along a body-fixed axis, is a relativistic
- invariant.
=11 7| Po. Pi i) (12) Thoughl, r, a_ndl(n) are relativistic invariantsr,n, and
i=1 i are not. But since the arguments of the Wigiefunc-
tions that push aroundh, and w; are all the same, all the
IIl. SIMULTANEOUSLY COUPLED ORBITAL ANGULAR spinsjy- -, can be coupled together to give the total spin
MOMENTUM STATES and thers coupled td to give the total angular momentum

A simultaneously coupled orbital angular momentum state is
The simultaneously coupled orbital angular momentundefined as

states to be constructed in this section have labgts the
four-velocity, total angular momentuin and componentr
that describe the external features of the system and internal
labelsl, the relative orbital angular momentum, the com-
ponent ofl along a body-fixed axis, as well d¢n), the
functionally independent set of subenergies and spin labels
All of the internal variables are relativistic invariants, mean-
ing that under a Lorentz transformation they remain un-
changed. The mass of theparticle system is actually an
“external” invariant, but it is more convenient to treat it as a

function of variables il (n). The mathematical machinery |y are SU2) Clebsch-Gordan coefficients asds a degen-
needed to decompose anfold tensor product of single- eracy parameter specifying how the spins j;--+j, are
particle states is discussed in Rief], and references therein. ¢qypled to form a total spis.

But the simu_ltaneously_coupled spin states (_:onst_ructed_ it is now straightforward to show that
Ref.[4] have internal variables that include the invariant spin
projections. In this section the goal is to construct simulta-
neously coupled orbital statésjo,l(n)Irss). _ _ .
To that end, define Ualvjo,l(n)irss)= 2 [Av,jo’ I(n)irssD!, (R,)

lvjo,l(n)lriss)=2>, (Imsmyjo(ly))

X(j 11 ---IntenlSM(S)) 0 IMyr 1 (N) ;).

(15

Ujvjo,l(n)lrissy=e M 3yjo,l(n)lrss) (16)
|v|m|r||(n),u,i>::fso(3)dRD|r:lrl(R)|v,Rki(St)/J,i>,
(13 indicating that the simultaneously coupled orbital state, Eq.
(15), transforms as a particle of spjnand massm,,, with
m,= \/(Eki)2 a function of the invariantd(n) only. The
where the velocity statev,Rki(st)u;) has as variable®;  states(15) are called simultaneously coupled orbital angular
=Rk;(st), withk;(st) a set of standartbody-fixed vectors  momentum states because there are no subsystem orbital or
SatisfyingEki(St)=O. In the next section which deals with total angu|ar momentum variables.
three-particle systems, the standard vectors will be chosen so Under parity the simultaneously coupled orbital angular
that k,(st)=2 defines the body-fixead axis, while k,(st)  momentum states transform as
# 2 fixes thex-z plane. All invariant spin projections such as
r, are specified relative to such a body-fixed axis. Under a )
Lorentz transformation the orbital angular momentum state Uplvjo,I(n)lrss)
Eq. (13) transforms as

1Py ic.1P ' !
U ol () I lPo.jo, 1 P(mir[s9D, L[R,(P)]

= 2 jsq3)dR Dlr:|r|(R)|AUvaRki(St)/*i,)

LI m(=0""Po,jo1 7)1, —1is8), (A7)

XH D:, M_(Rw) wherel 7(n) is the parity transformed set of invariants.
" To conclude this section, we compute the Racah coeffi-
, ol i cients that connect simultaneously coupled orbital angular
= E [Av,Im{rI(n)w >Dm|'m,(Rw)H Dﬂ_rui(Rw)- momentum states to simultaneously coupled spin projection
M ' states; these coefficients are needed in Sec. IV to compute
(14) the Racah connecting stepwise coupled states to simulta-
neously coupled orbital angular momentum states.
If all the intrinsic spinsj; were zero, the statél3) would Now the simultaneously coupled orbital angular momen-
transform as a particle of spin as seen by comparing Eq. tum states, Eq(15), can be written as
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lpje,l(n)lrss)=2 <Im.sng|ja<ls>><11m---jnunlsms»fsqs)dRDL?Irl<R>UB<U>|RI«<st>jim>=2 (Imsmfjo(ls))
><<1M--jnun|sng<s>>uB<U>JSq3)dRdrI,n(R)uRlki<st>jiri>H D), (RH=3 (Insrdjr(ls)

><<jlrl' "jnrn|srs(s)>uB(v)fsqa)dRD{:'(R)UR| ki(St)jiri>' (18)

In the last line of Eq(18) intertwining properties of Clebsch- Gordan coefficients linking invariant spin labels to invariant
Gordan coefficients have been used to rewrite the Wigher orbital labels themselves depend on only invariant labels.
functions.

The n-particle state of standard four-vectokqst) can
now be coupled to give a simultaneously coupled spin pro-
jection statgsee Ref[4], Eq.(3.5]. The result is

IV. RACAH COEFFICIENTS FOR THREE-PARTICLE
STATES

In this section we show how to connect stepwise coupled
[ki(st)jiri)= 2 |01 (N)ry---ry,) three-particle states to simultaneously coupled orbital states.
j'r! The generalization from three-particles teparticles is
straightforward but tedious; moreover for more than three-
Cefir\— - i’ particles there are many different possible stepwise schemes.
Urlki(sbiir= 25 10"o"r1 (3 To)Dge (R, The strategy for computing Racah coefficients for orbital
(190  states is as follows. In the previous section the Racah coef-
ficients connecting simultaneously coupled spin projection
Using the orthogonality properties &f functions integrated  states with simultaneously coupled orbital states were shown
overRe SO(3) then gives to be products of Clebsch-Gordan coefficients. In Réfthe
Racah coefficients connecting simultaneously coupled spin
projection states with stepwise coupled spin projection states
were shown to be products of WignBrfunctions. Combin-
ing these two results shows that the Racah coefficients con-
X(jar 1 Jalnlsrs(shlvjo,l(n)rry) necting simultaneously coupled orbital states with stepwise
(20) coupled orbital states are products of Clebsch-Gordan coef-
ficients and WigneD functions.
with inverse Using Eq.(20) and Eq.(3.1) of Ref. [4] gives

J-Irlu_/

Ivja,l(n)lr|ss>=z (Irysrgljr(ls))

picdmrry= 3 (rds)|irsry il 3)N'ris's)
Ir|ssrg
X(srg(8)|j1r1---jnrn)|vjo,1(n)ir;ss). = (1S rLir (1)) ar i or i af 58" T 4(9))Ugw)
(21)

For two-particle states this becomes Xf dRD (R)UglKa(SYr] ka(SUr2 ka(sr).  (23)

lvjo,mydls) If now particle 1 is coupled to particle 2 and then 1-2
coupled to particle 3 and the orthogonality properties of the
= >, (10sryjrs(15))j1r1j2r 2| Ste)|vj o, Myt 11 5), D function used, Eq(23) becomes
firols

: lvjo,I(3)I'r/s’'s]
[vjo,myfr,)

=3 (rdisllosry(srdisriiaraloiomids). @2 =3 (s rllir(s ) ardiarsiards risia)
For example, a four-particle spin state with invariant la- xDil; . [R‘l(Réz)R(R%Z)]Di}r [R(k3)]
belsr,rqr,r3r, is connected to a simultaneously coupled or- e 1t

bital state with invariant labelk r,, ands along with step- i ot <5 , .

wise coupled spin labels that could be chosen, for example, XD 7 [R(kD)ID 7 [R(k3,)1Dy, . {RIka(st1}

to bes;, andss,, the spin of the 12 and 34 particles, respec- 22 33

tively. Equations(20) and (21) show that the Clebsch- X |vjo,mmyyj1of 1o 1 of 3). (29
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The arguments of the varioud functions are always my,
specified by unit vectors obtained by deboosting the previ- ky(st) +ka(st)=B(v 12)( 0 ) (26)
ously chosen standard vectors to specific reference frames.
The notationki(” means the four vectds;(st) deboosted to

the frame wherd; =0: with m;, the mass of the two-particle systemZ,=[k;(st)

k-(j)==B_1(v-)ki(st) +ky(st)]?. With these definitions the Euler angles of the
! J various D functions in Eq.(24) can always be written as

' m; functions of the invariant$(3)={mj,,m3,My3}.
k§')=:B‘1(vi)ki(st):( 0). (25) Since one of the applications of simultaneously coupled
states is to thé& 77 system in which the nucleon spin is
Thusk$)=B"1(v,)ks(st) is the deboosted four momentum and the pions are spinless, we choose the nucleon as particle

of particle 2 in the rest frame of particle k3? means the 1 and compute')ll[R(kz)] wherek2 has azimuthal and po-
four momentum of particle 3 in the12 rest frame; thatis, lar angles ¢3 and 63, respectively. Now k"
where =B~ k,(st)/m,]k,(st). But

ki-e 1 k (st)) 1 (sb) 1
o _Ke€s 1 o yfka(sh) ‘ B(l ) .
Cos 01 |k%| |k%| ( m, Z(St) €3= |k2| 2( ) m, €3 |k2| 2 St) U1(3)
1 €3:U1 1 kl(St)Z ( kl(St) . kz(st))
ko (st ——7 (v1t+ey) |= 71 | Ko(St) ;= ——=—= | Ex(St) + ————| |. 2
~ i S0+ e 1o (vateo) = | kalse— et | Eals 5 (27
All of these momenta can be written as invariants. Thus
m2,= (kP +kP)2=m2+mZ+ 2m,EL=mZ+ m3+2m;yma+ (k2)?,
2_ 1 2
yms+ (k3)?= [mlz m; —m3],
m3s=[K1(Sh + ko(St) + K3(st) — Ky (S ]2=m7 5+ m2—2my,E 4 (SD),
2 2 1 2 2 2
Ei(s)= ymi+[Kki(sh]°= 5—— (Miz+mi—m3y) (28)
2My3
|
and the like. The azimuthal angle m2,= (ki%+k}?)2=m3+m?+ 2kiZ ki>=m2+mj
1ain pl 14 +2(E%2E12_|k§2||k%2|005,33,1),
COS ¢5Sin ;= — |k_1 ky-eq,
2 m2,.= (K1*+ k32+ k3% 2= m2,+ m3+ 2m, ,E 32
sin g3sin 63=— |k | K- €, (29) m3=(ki*+ kz’— ki) ?=mi,+ mi—2mEf*, (3D
so
can be computed in a similar manner. L
The rotationR™*(k3)R(k}?) appearing as the argument COS Ba 1= [2E22E124 m2 4 m2— m?
in the D/12( ) function differs from the other rotations in Fas 2l T2 T i3l
that—as will be shown—it is independent of the boost that is
chosen. We will show this for the middle Euler angle as it is £12_
the only one relevant for Racah coefficients. The azimuthal 37 2my, [mipq—mi,—m3],
Euler angles are all canceled off by the azimuthal angles
appearing in thé'1, D!2, andD! functions. L 1 )
The middle Euler angle is Ei™= 2m, [mi,+mi—m3]; (32)
cos Ba1=2-R™ M (ki) R(kj)z=k3? ki’ (30)  thus all rotations appearing in tiefunctions of Eq(24) can

be written as functions of(3). Moreover, rotations of the
But form R™1( )R( ) are independent of the boost, whereas ro-
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tations of the formR( ) depend on the boost that is chosen (22), with the variables, andr, replaced by, ands;,, the

(in this case canonical spin boosts orbital and spin angular momentum of the 1-2 system, and
Equation (24) gives the Racah coefficients connecting the variables ;, andr, replaced byl ands, the orbital and

[vjo,1(3)l'r{s’s;,) with the stepwise coupled spin projec- spin angular momentum of the three-particle system, gives

tion state|vjo,mmyyj1of 1oF 11 5F 3). Using the results of Eq. the desired Racah coefficients

|UJ'U,|(3)|'r|’S'Siz>:2 (I'rs"rgljr(1"s") ><11r112r213r3|s’r’(512))djr12r 1T, (cosBs,1)

X D'l IRk >]DJZ IR ki)]D“ [REID} . {RIKs(SH T} 1 U181 1108:)
X(s1 2 (Jai2)|iar 1d2r )T )|10STH(ST]j 1o 12 3F 3) v o, MMyZIS 1 15810). (33

The Racah coefficient is considerably simplified if only particléte “nucleon™) has spin while particles 2 and 3 are
spinless. Then the degeneracy latelnds;, disappear and

loja (3Nr]y=2 (I'r{jarilir(’ 31)>d]12 (005531)[)]1 [R(k 2) 1D} {RIKa(SYT}(j 12" 1(11550)[1 120817 1)

X(jr 121 12110] 12r 12 |vj o, mmylj 14 15). (34)

Equation (34) is already suitable for describing reso- fixed, cross sections im;, and m,; show bands giving the
nances in the final state for tiés system. In the reaction positions and widths of resonances. Then the natural vari-
N7— N, if the N7 system results from the decay of\a  ables to use ark; andl(3).
resonance, thef;,=3 while m,, is the “mass” of theA In the model formN production given in Ref[8], the
resonance. The threshold factor far decay is given by final-state resonances are described by a reduced three-body
|k12|'12. In the direct channel th&lm— N reaction is  function ug[IrI1(3)]. But for #N resonances the natural
dominated by angular momentujs 3, with mthe “mass”  variables to use ares;(Immy,jJ;;) while for 77 reso-
of the A resonance and the threshold facteg(st)'. Thus  nancesus;(mlsmygj,3). Simple choices for these resonance
the variables appearing in the stepwise coupled state of Efunctions then result inug;[Ir,1(3)], in which all the spin
(34) are the natural variables for resonances in the 1-2 sygnformation about the resonances is given through the Racah
tem. coefficients. For example, for thg resonancej,;=1, j;

However, if there are also resonances in ther or 2-3 =3, andj=3 for the D functions in Eq.(35).
system, the variables appearing in the stepwise scheme, Eq. If the three-body potential arises from two-body interac-
(34), are of little use. The relevant variables can be obtainedions, the Racah coefficients derived in Eg3) can be used
by interchanging variables pertaining to particles 1 and 3 irto write the kernel in simultaneously coupled variables. Let
Eq. (33) to give a 2-3 coupling scheme, and then setting the
spins of particles 2 and 3 equal to 0. The result is

(012 12011 15512 V12 U 12 12012M1 2 15510)

=8V, v1) i1 012012< my 12512|V My 15815)

ic @'r)=2 (I'r{jarilir(1'jD)d2 (cosByg
(36)
XD“ [R(kz9ID . [Ra(sh]
be the two-body kernel for the 1-2 system on the two-particle
X (jF(1s)|10ST) Hilbert space. If on the three-particle space

X(jTlj2ar 2aiar 1)vjo,mIsmpgiog), (39 T _ _
(v o’ ,m'mpl's"j1d 1581 Vidvjo,mmyds il 15810

which is now suitable for describing & 7 resonance, say =8%(v' —v) 818, (M 12312|V“2| Myl 12812, (37)
the p with j ;3= 1. The relevant threshold factor s3] 123 for
the decay, while the direct channel threshold factor is
|ka(st)l". then
But experimentally final-state resonances are seen in Dal-
itz plots, where the relevant variables arg,, m,;, and —
mys, that is, the set(3). If the invariant massm is held (v'j’a’.1"(3)1"T] S'S1Vidvj o, 1 (3)IT58;)
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i"m’ multaneously coupled states are given in Eg6), (21), and
-3 R s s it (22
The main goal of this paper has been to compute Racah
X{v'j o’ ,m myl’'s"j1l1,51 coefficients connecting stepwise orbital states to simulta-

. . im neously coupled orbital states. As shown in Sec. IV such
XVivjo,mmlsji 12512>Rm12|sj12,12512,7<3),7|7512, coefficients are of obvious utility in isobar models, where a
multiparticle reaction proceeds through a series of reso-

(38 nances. Each resonance has its associated mass, spin, and
orbital labels. But the variables describing resonances in dif-

.. m
where the Racah coefficienB™. are ferent channels are not compatible aithcah coefficients

jm o are needed to connect them. Examples are given in Sec. IV
myAsiyd 1811 (3)17 85;, for a three-particle system with variables for &™ reso-
) ) - = nance as against ap” resonance.
=(vjo,mmylsjiol1581]vj o, 1(3)IT88.5), (39 The simultaneous coupled states analyzed in this paper

will be of most use in the point form of relativistic dynamics

[6]. In particular specifying the dynamics in terms of a mass

operator means that interaction parts of the mass operator
V. CONCLUSION can be chosen as kernels in simultaneously or stepwise

Though multiparticle states diagonal in the four momen—Couplecj variables. An exp'I|C|t example is given in REg]
tum and spin projection variables of all the particles are natu\-Nhere a separable potential couples a.two-body to a three-
ral to use for scattering amplitudes and cross sections, suc,thOdy Hilbert space to T“Ode*"\' product|.on data. .
variables do not exhibit the spin properties of a system suc .The Racah' coefﬂuen';s computed in Sec. IV mvplve
as the total angular momentum or the orbital angular mo- |gner_D_fu_nc'§|ons,_ in which the E_uler angle_s_ are fur_lct|ons
mentum of some subsystem. Spin variables are important f f relativistic invariants. By making a dEf'_n'_te ch0|_ce of
expressing conservation laws such as angular momentu ost, namely, a canonical bogsee Eq._(3_)], Itis POSS'b'?
conservation, or expressing properties of subsystems, such i¢0mpute the angle dependence explicitly, as shown in ex-

the spin and mass of resonances, or the threshold behavior?)'fnples such as Eq(§27)—(33). . . . .
a resonance. Racah coefficients connect different choices of invariant

Even when the overall four-momentum and angular mo.variables. It is also important to have the Clebsch-Gordan

mentum variables are diagonal there are many possibl oefficients connecting-fqld sin_gle-particle states to angu-
choices for the remaining invariatinder Lorentz transfor- ar momentum states. Since simultaneously coupled orbital

mationg variables. The goal of this paper has been to comStates havg been chosen asa standard in this paper, we col-
pute the(Racal coefficients that connect these different pos-IeCt the various formulas given throughout the paper to link

sibilities. Unlike the Racah coefficients for angular Stt€SP101 -Pho) [EQ. (9] to uja,l(n)Irss) [Eq. (15)]

momentum, wherein the coefficients connect different step:rhe result is

wise couplings, for the Poincagroup there is also the pos-
sibility of simultaneous coupling, where all the particle vari- lvjo,1(n)lrss)= 2 (Im;smyjo(ls))
ables are coupled at once to produce an overall four- mmy
momentum, and angular momentum staee Eq(15)]. M1
Simultaneously coupled states provide a natural standard Co
with which to connect to any stepwise coupled state. Thus, X(iapa - TntnlSMLS)
the strategy in this paper has been to define Racah coeffi- o f dR
3)

as given in Eq(35).

Dln:|r (R) | Pio1-- 'pna'n>

cients as the coefficients connecting any stepwise coupled |

state to the simultaneously coupled state. Then the more
usual Racah coefficients connecting one stepwise coupled noo
state to any other is the product of two such Racah coeffi- XH D{,'i#i{Rw[RK(St)yB(v)]},
cients. As seen in Sec. IV these PoincRacah coefficients =t
are products of S(2) Clebsch-Gordan coefficients and
Wigner D functions; they are computed explicitly for three-
particle states in Eq33).

There are actually two different types of simultaneously Pi=B(v)RK(sY,
coupled states. One called simultaneously coupled spin pro-
jection states, has invariant labels that include the spin pro- _S pi=
jections of all the constituent particles. Racah coefficients for p= i pi=B(v)m,,
such variables are treated in detail in REf]. The other
possibility, called simultaneously coupled orbital states, has
invariant labels that include the total orbital angular momen- mﬁ:
tum, as well as the total and subsystem spsee Eq(15)].
Such variables are important in resonance analysis and iso-
bar models and are the variables of main interest in thidhe Clebsch-Gordan coefficients convertingingle-particle
paper. Racah coefficients connecting these two types of sstates to a simultaneously coupled orbital state are then

where

2ki(st)=0,

2

o[ 3 )
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P APPENDIX: VELOCITY STATES FOR ARBITRARY
Mn

BOOSTS; HELICITY AND FRONT FORM

ﬁ ! VELOCITY STATES

Xi:l D"i“i{RW[RK(St)'B(U)]}’ Velocity states, states in which all the internal variables

] ] ) transform under the sani@/ignen rotation were defined for

Ru[RK(st) B(v)] is a Wigner rotation whose arguments can canonical spin in Eq(10). This definition must be modified

be computed along the lines given in Sec. IV. for boosts other than canonical boosts, and in particular for
To conclude it should be noted that no normalization congjicity and front form boosts. In place of E€LO), write

ventions for the various states have been given. All of the

various coupled states are built out of products of single- no

particle states and hence inherit the normalizations chosen |vk;u;):=>, Ug,|kin! )] ] D", [B™Y(k)Be(k)]1,
for single-particle states. These normalizations are worked uf =1 Mk

out in detail for covariantly normalized single-particle states (A1)

in the Appendix of Ref[8]. But since the Racah coefficients

connecting different states, all diagonaldnj,o, are prod- whereB.(k;) is a canonical boost defined in E), B(k;) is
ucts of SU2) Clebsch-Gordan coefficients and Wigner any other choice of boost, and the combination
functions, the normalization of one such state relative to anB~1(k;)B.(k;) is a rotation, a generalized Melosh rotation
other is fixed by the normalization of the Clebsch-Gordan7]. Under a Lorentz transformation, the velocity state trans-
coefficients and functions. forms as

UA|UkiMi>:UAUB(u)Z |ki,U«i'>iHl Dilirﬂi[B_l(ki)Bc(ki)]

M

n
=Ugo) > Rk T D, [Ru(ki,R,IDY, [B7(k)Be(k))]
[N i=1 i Hi Hi

Hi K

n n
=Us(n) 2 [Ruki w1 Dy, [B7H(RK)B(RuK)IRI =2 [Av Rukiw)HIT D (Rw), (A2)

i
Hi Hi

which is the same as Edq11). Thus, with the aid of the sin 6 cos ¢
generalized Melosh rotation, it is possible to define velocity U,HL(S):( |V|A), 5= sin @ sin ¢
states for any type of boost. VoV

. X ; cosé
Besides canonical spin the boosts most often used are

helicity and front form boosts. They are distinguished by the

choice ofv#(i) given in Eq.(3c), three spacelike unit vec-

tors making up the last three columns of the boost matrix vu(i)-vp(j)=—24j. (A3)

B(v). For canonical spin the#(i) are given in Eq(4).
Helicity boosts are defined by The Melosh rotation is given by

v° 0 0 v

BH(U)::R(a)AZ(|V|): 01 62 Uol}

Ru(v) =By (v)Be(v)

cos COS(,D ~ -1 A~ —1/A —1/A
=[R(D)A R(D)A R =R .
Uﬁm:(?), 5| cososing |, [R(O)ALVD]*R@)AIVIR™H(8)=R(d)
V1 —sin 6 (A4)
0 —sing Front form boosts are usually defined using SO,
vﬁ(2)=<A ) D,=| cose |, rather than SQ.,3). But it is possible to define£(i) in
V2 0 terms of a null vecton":(%). Then
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M 3 — n’u — M UT
V()= v . oE(1)
Rum(v)=Bg " (v)Bc(v)=9 vl(2) glvvc(Dvc(2)ve(3)]
vE(3)
. ni-v .
vf(i)=ni———nk, =12, (A5) 1 0 0 0
:g 0 s
, 0 ve(i)-ve(i)
where nf*=(;), such thatn;-nj=—4;, n-n;=0. It is . )
readily checked thab(i)-v(j)=— ;. andv-ve(i)=0 Ru(w)ij= —ve()-vel)), (A6)
as required. which is straightforward but tedious to work out using Egs.
The corresponding Melosh rotation is (4) and (A5).
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