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Dynamical isobar models andp-N scattering data

W. H. Klink and M. Rogers
Department of Physics and Astronomy, The University of Iowa, Iowa City, Iowa 52242

~Received 26 January 1998!

Isobar amplitudes for pion-nucleon elastic and production reactions are constructed from a dynamical
theory. The framework of point form relativistic quantum mechanics is used to derive a relativistic Lippmann-
Schwinger equation linking elastic and production channels. The dynamics is contained in a mass operator
which is the sum of a free and interacting mass operator. For a separable interacting mass operator, the
Lippmann-Schwinger equations can be solved analytically; the resulting matrix equations have determinants
whose zeros give the positions of multiple resonances in the same angular momentum channels. Though
varying parameters to fit data is highly nonlinear, procedures are developed for fitting elastic and inelastic data.
Fits to data are presented for theP33 partial wave channel in pion-nucleon scattering.
@S0556-2813~98!05112-7#
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I. INTRODUCTION

Over the past 15 years a number of models have b
developed to fit pion-nucleon scattering data, including b
the elastic and production channels@1–5#. In some of these
models, amplitudes are written as Feynman diagrams
procedures developed to enforce inelastic unitarity@1–3#.
Other models use anSmatrix or modifiedK matrix approach
in which the three particle final states are written as qu
two-body states@4–5#. Such models are not dynamical
that they do not have a Hamiltonian~or mass operator! to
model the resonances. Consequently it is difficult to treat
thresholds for newly opening channels correctly.

Coupled channel models that treat relativity correc
have been developed by Gross and Surya@3# and Fuda@6#
for thepN system. In these models resonances such as tD
resonance are treated as particles. In this paper we deve
coupled channel method for gettingpN→pN and pN
→ppN amplitudes which is dynamical and in which th
direct channel resonances arise as poles in the scattering
plitudes. Since the amplitudes come from a dynamical the
they automatically incorporate inelastic unitarity and corr
threshold properties. Relativity is of course crucial, since i
impossible to have genuine production reactions in nonr
tivistic quantum mechanics.

The framework for developing a dynamical isobar mod
is point form relativistic quantum mechanics. There are
number of ways of doing relativistic quantum mechanics
systems with a finite number of degrees of freedom, ca
by Dirac the instant, front and point forms of relativist
quantum mechanics@7#; each of these forms has various a
vantages and disadvantages, and all forms are, in any e
more complicated than nonrelativistic quantum mechan
Aside from being manifestly covariant, a feature of the po
form is that it is possible to define so-called velocity stat
in which orbital and spin angular momentum can be coup
together exactly as is done nonrelativistically; this prope
of velocity states, discussed in great detail in the followi
paper@8#, is a key ingredient in developing an isobar mod
in which resonances are defined by their masses, widths,
spins.
PRC 580556-2813/98/58~6!/3605~12!/$15.00
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In point form relativistic quantum mechanics, all intera
tions are put into the four-momentum operatorPm, general-
izing nonrelativistic quantum mechanics where all intera
tions are put into the Hamiltonian. Thus in the point form
there are not only interactions in the HamiltonianH5P0 but
also the momentum operatorPW . But in contrast to the othe
forms, all the Lorentz transformations, rotations as well
pure boosts, are kinematic, and hence the unitary opera
representing Lorentz transformations are the same as
noninteracting particles.

The problem then is to construct interacting fou
momentum operators on the appropriate Hilbert space, wh
in this paper is taken to be the direct sum of two- and thr
particle Hilbert spaces, namely,HpN%HppN . In contrast to
the previous paper@9#, wherePm was constructed from loca
currents, here we use the so-called Bakamjian-Thomas
struction@10#, in which Pm5MVm, the product of the mass
operator and four-velocity operator, satisfyingVmVm5I , the
identity operator. The four-velocity operator is purely kin
matic, so all the dynamics resides in the mass operatorM.

The mass operator can be written as a sum of free
interacting mass operatorsM5M fr1V, whereM fr is given
from representations of the Poincare´ group, whileV contains
the dynamics. The time-dependent Schro¨dinger equation is
generalized toPmcx5 i\(]cx /]xm), which becomes a mas
operator eigenvalue problem whenPm5MVm:

Mc5vc, cPHpN%HppN .

Though this equation is relativistic, when velocity state va
ables are used the structure is very similar to the nonrela
istic case.

In particular, scattering states are associated with the c
tinuous part of the spectrum ofM, in which case it is possible
to rewrite the above equation as a relativistic Lippman
Schwinger equation. The derivation of the relativis
Lippmann-Schwinger in point form relativistic quantum m
chanics is carried out in Sec. II.

In Sec. III the interacting mass operatorV is chosen to
have a certain separable form, from which we show how
derive isobar amplitudes. In general, of course, the relati
3605 ©1998 The American Physical Society
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3606 PRC 58W. H. KLINK AND M. ROGERS
tic Lippmann-Schwinger equation cannot be any more ea
solved than the nonrelativistic one. But as in the nonrela
istic cases, it is possible to solve the equation analytically
certain types of potentials, including separable potenti
For such potentials, the solutions reduce to linear ma
equations, which when solved, have denominators that h
determinants@calledD(v), see Eq.~58!# whose zeros deter
mine the positions of thes channel resonances.

Using suitably chosen input functions for the separa
potential results in a closed form expression for the ela
and production partial wave amplitudes. These input fu
tions contain certain parameters that can be adjusted t
data. But the relation between the parameters appearin
the input functions and the data is nonlinear, so it is a n
trivial task to fit the data by varying the input parameters

In Sec. IV we develop a fitting procedure by starting w
parameters that have no inelasticity; in this case it is re
tively easy to fit the direct channel resonances@the D~1232!
and D~1600! as well as the antiresonance at 1400 MeV
the P33 case#. Then by slowly increasing the inelasticity
such that at each step the resonance parameters are refi
possible to fit the full inelastic data. In this paper we sh
how our procedure works for partial cross sections and
gand plots for theP33 channel.

II. POINT FORM RELATIVISTIC QUANTUM
MECHANICS

In this section we review the elements of point form re
tivistic quantum mechanics needed to formulate the rela
istic Lippmann-Schwinger equation, from which the scatt
ing amplitudes are obtained. Details of point form relativis
quantum mechanics are presented in Refs.@8,9,11#.

All forms of relativistic quantum mechanics are related
how interactions are put into the ten generators of the P
carégroup. In the point form the six generators of Loren
transformations are all kinematic, meaning they do not c
tain any interacting terms. All of the interactions appear
the four-momentum operator. These operators are the
erators of space-time displacements, in analogy to the Ha
tonian which produces time translations in nonrelativis
quantum mechanics. A key difference is that in nonrelativ
tic quantum mechanics the momentum operator that ge
ates spatial displacements contains no interactions, whil
point form relativistic quantum mechanics the generator
spatial displacements must contain interactions in order
the entire theory be manifestly covariant.

The generalization of the time-dependent Schro¨dinger
equation in point form relativistic quantum mechanics is

Pmcx5 i\
]

]xm
cx , ~1!

wherePm is the four-momentum operator andcx is an ele-
ment of the Hilbert space. In this paper the Hilbert space w
be chosen to be the direct sum of a two-particle Hilbert sp
with a three-particle Hilbert space, withPm containing inter-
actions that mix the two spaces, and hence cause produ
reactions. More generally a four-momentum operator can
constructed that acts on any number of Hilbert spaces.x is a
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Minkowski space-time point,x5(ct,x), and cx means the
wave function of the system at the space-time pointx.

As shown in Ref.@9# Pm must satisfy the Poincare´ rela-
tions

@Pm,Pn#50, m,n50,1,2,3,

ULPmUL
215~L21!m

nPn, ~2!

whereL is an arbitrary Lorentz transformation andUL the
unitary operator representingL. Since the four operatorsPm

commute with each other, a mass operator

MªAP•P ~3!

can be defined; the spectrum of this operator gives the bo
states~discrete spectrum! and scattering states~continuous
spectrum!. In this paper we will deal only with the continu
ous spectrum and rewrite Eq.~1! in the form of a relativistic
Lippmann-Schwinger equation.

To construct an interacting four-momentum operator,
begin by reviewing the Poincare´ action for a single particle.
For a single particle of massm and spinj, the Poincare´ action
on a four-momentum eigenstate is given by

Pfr
mup, j ,s&5pmup, j ,s&,

ULup, j ,s&5(
s8

uLp, j ,s8&Ds8s
j Rw~p,L!,

wherePfr
m is the noninteracting~free! four-momentum opera-

tor, with eigenvalues satisfying

p•pªpmpm5m2. ~4!

s is the spin projection, whileRw is a Wigner rotation, an
element of the rotation group depending onp and L.
Ds8s

j
@Rw(p,L)# is an SO~3! Wigner D function ~see Refs.

@8# and @9#!.
The four-velocity operator is defined to be

Vm
ªM fr

21Pfr
m ~5!

and satisfiesV•V5I , the identity operator. In what is calle
the Bakamjian-Thomas construction@10# interactions are in-
troduced by perturbing the free mass operatorM fr

ªAPfr•Pfr so that the four-momentum operator becomes

Pm5MVm, ~6!

whereM is the sum of a free and interacting mass opera

M5M fr1V, ~7!

which must satisfy

@Vm,M #50,

ULMUL
215M , ~8!

in order that

@Pm,Pn#5@MVm,MVn#50, ~9!
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ULPmUL
215ULMVmUL

215M ~L21!m
nVn5~L21!m

nPn,
~10!

as required in Eq.~2!.
An n-particle state is the product ofn one-particle states

From this it follows that

Pfr
mup1 , j 1 ,s1 ,...,pn , j n ,sn&

5(
i 51

n

pi
mup1 , j 1 ,s1 ,...,pn , j n ,sn&,

ULup1 , j 1 ,s1 ,...,pn , j n ,sn&

5(
i 51

n

uLp1 , j 1 ,s1 ,...,Lpn , j n ,sn&)
i

Ds
i8s i

j
Rw~pi ,L!.

~11!

Each of the WignerD functions in Eq.~11! have different
arguments so they cannot be coupled together.

As shown in Ref.@8# it is possible to define velocity state
that have the property that the spins can be coupled toge
as is done nonrelativistically. Set

uv,ki ,m i&

5up1 , j 1 ,s1 ,...,pn , j n ,sn&)
i 51

n

Ds im i

j $Rw@ki ,B~v !#%,

~12!

whereB(v) is a boost, a special Lorentz transformation c
rying pi to ki5B21(v)pi , with (k i50. Then as shown in
Ref. @8#,

Pfr
muv,k i ,m i&5mnvmuv,k im i&,

ULuv,k i ,m i&5uL,Rwk i ,m i8&)
i 51

n

Dm
i8 ,m i

j
~Rw!. ~13!

That is, under a Lorentz transformationL, the overall four
velocity v ~which satisfiesv•v51! goes toLv, while the
internal momentak i ~satisfying( ik i50! are all rotated by
the same~Wigner! rotation, which is also the same rotatio
appearing in theD functionsDm

i8 ,m i

j
(Rw). Thus for velocity

states, all the spinsj i can be coupled together to form a sta
with overall spins, as is done nonrelativistically.mn is the
mass of the noninteractingn-particle system, given by

mn5(
i 51

n

Ami
21k i

2. ~14!

The action of the various operators on velocity states is

M fruv,k i ,m i&5mnuv,k im i&,

Vmuv,k i ,m i&5vmuv,k im i&

Pfr
m5M frV

m. ~15!

To construct an interacting mass operator that satisfies
~8!, it is easiest to convert the velocity statesuv,k i ,m i& to
er,

-

q.

velocity statesuv, j ,s;j& of definite angular momentumj ,s
and degeneracy parametersj. If the kernel of the mass op
erator satisfies

^v8, j 8,s8,j8uM uv, j ,s,j&

5~11uvu2!1/2d3~v2v8!d j , j 8ds,s8^j8uM uj&, ~16!

thenM will automatically satisfy Eq.~8!.
There are a number of different coupling schemes

combiningn-particles with spinsj 1 ,s1 ,...,j n ,sn into over-
all j ands states. A coupling scheme is chosen to provid
set of kinematic variables naturally suited to describing
phenomena under consideration. Since the isobar mode
sumes an intermediate quasi-two-body state, it is natura
use a stepwise coupling which combines the spins of the
particles in the final-state resonance. If there are final-s
resonances among different combinations of the final-s
particles, things are more complicated since the scatte
amplitudes must be expressed in a common set of varia
so that any interaction written in terms of a two-body clust
other than the one corresponding to the chosen set of k
matic variables in which the partial-wave amplitudes are
rametrized, has to be transformed to those variables via
cah coefficients. How this is done is described in Ref.@8#. In
this paper we will consider only resonances between
specific final-state particles, specificallypN→pD,D→pN,
and higher mass resonances in the same~D! channel.~See
Fig. 1.!

Since isobar analysis is generally done in terms of par
waves, the natural variables should include total spinj, or-
bital angular momentuml, combined spin of the~i,j! cluster
of final-state particlesj i , j , and their relative orbital angula
momentuml i , j . With this choice of variables the states fo
the two-body Hilbert space are~neglecting isospin!

uv, j ,s;v,l &,

wherev, j, s, andl are as defined above andv is the eigen-
value of the free mass operator. For the three-body Hilb
space, the variables are

uv, j ,s;v,l ,v12, j 12,l 12&,

where all other variables are as defined above andv12 is the
invariant mass of the 1-2 cluster. The details of the constr
tion and normalization of these states are left to the App
dix. Parametrizing the kernel of the mass operator in term
these variables naturally generates a generalized partial-w
expansion as the scattering amplitudes in these variables
just the partial-wave amplitudes. This also is shown in
Appendix.

The coupled-channel Hilbert space for single pion p
duction is

FIG. 1. An example of the isobar mechanism.
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Hª~HN^Hp! % ~HN^Hp ^Hp!. ~17!

The first part (HN^Hp) is just the space of two-body state
~now including isospin!

uv,I ,I z , j ,s;v,l &

with wave functions

c2~v,I ,I z , j ,s;v,l !5^v,I ,I z ,s;v,l uc2&. ~18!

The second part (HN^Hp ^Hp) is the space of the three
body states

uv,I ,I z , j ,s;v,l ,I 12,v12, j 12,l 12&

with wave functions

c3~v,I ,I z , j ,s;v,l ,v12,I 12, j 12,l 12!

5^v,I ,I z , j ,s;v,l ,v12,I 12, j 12,l 12uc3&. ~19!

A state in the full model space is denoted by

u &5S uv,I ,I z , j ,s;v,l &

uv,I ,I z , j ,s;v,l ,v12,I 12, j 12,l 12&
D , ~20!

and the wave functions have the form

C5S c2~v,I ,I z , j ,s;v,l !
c3~v,I ,I z , j ,s;v,l ,v12,I 12, j 12,l 12!

D . ~21!

The full inner product on this space is

^FuC&5~11uvu2!1/2d3~v2v8!

3d j , j 8ds,s8~^w2uc2&1^w3uc3&!,

where the variablesv, j ,s are extracted from the remainde
of the inner product because of relativistic invariance;
reduced inner product is then

^w2uc2&5(
I ,I z

(
l
E

m12

`

dv
v2k~v!

4

3w2* ~ I ,I z , j ;v,l !c2~ I ,I z , j ;v,l !. ~22!

^w3uc3&5 (
I ,I z ,I 12

(
l

(
l 12

E
m123

`

dvE
m12

v2m3
dv12

3
v2k3~v,v12!k1

12~v12!

8
w3*

3~ I ,I z , j ;v,l ,I 12, j 12,v12,l 12!

3c3~ I ,I z , j ,v,l ,I 12, j 12,v12,l 12!. ~23!

The normalization and phase space conventions used a
are derived in the Appendix.

If the mass operator is also invariant with respect to is
pin, then-body tom-body kernel must satisfy
e

ve

-

^v8,I 8,I z8 , j 8,s8,jn8uM uv,I ,I z , j ,s,jm&

5~11uvu2!1/2d3~v2v8!d I ,I 8d I z ,I
z8
d j , j 8ds,s8^jn8uMI j

ujm&,

~24!

wherejn8 andjm are the remaining ‘‘internal’’ variables fo
the n- and m-body systems, respectively. We denote t
coupled-channel mass operator by

~MI j
!nmª^jn8uMI j

ujm&. ~25!

For our models this can be written in obvious notation as

MI j
5S ^NpuMI j

uNp& ^NpuMI j
uNpp&

^NppuMI j
uNp& ^NppuMI j

uNpp& D . ~26!

Using Eq. ~14!, the free mass operator in a velocity sta
basis becomes

M fr5S (
i 51

2

Auk i u21mi
2 0

0 (
i 51

3

Auk i u21mi
2D . ~27!

Writing the mass operator as a sum of free and interac
parts, Eq.~7!, and having extracted the four-velocity, th
time-dependent relativistic Schro¨dinger equation, Eq.~1!, be-
comes the time-independent Schro¨dinger equation on the re
duced space

~M fr1V!uC&5M uC&5vuC&, ~28!

where v is the eigenvalue of the mass operator for t
coupled-channel system. The Lippmann-Schwinger equa
is

uC6&5uF&1G~6 !VuC6&, ~29!

where

~v2M fr!uF&50, ~30!

and

Gnm
~6 !

ªdn,m@v2~M fr!n6 i«#21. ~31!

III. THE SEPARABLE POTENTIAL

The isobar model assumes production partial-wave am
tudes of the form

AI j
pN→ppN5(

sb

Aj ,sb

pN→pbAj b ,sb

b→pN , ~32!

whereAj ,sb

pN→pb is the amplitude for the production of th

quasi-two-body statepb, with b some hadronic resonance
andAj b ,sb

b→pN the decay amplitude forb. In this paper, for

simplicity, we only consider one isobar as shown in Fig. 1
is possible to model such amplitudes with the followin
separable potential:
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VªS (
a

lauu2
a&^u2

au (
a

xauu2
a&^u3

au

(
a

xa* uu3
a&^u2

au 0
D . ~33!

The indexa is related to the number ofs-channel resonance
which in this study will be theD~1232! and D~1660! reso-
nances. The final-state resonance, in our case is also tD
resonance.uu2

a& and uu3
a& are input functions whose form i

discussed in the following paragraphs, andla and xa are
parameters that measure the strengths of the various
nances.

It will be shown that the relevant amplitudes obtain
with this potential are of the form

AI j
pN→pN5 (

a,a8
u2I j

a ~v,l !T22
a,a8~v,I , j !u2I j

a8* ~v,l !, ~34!

and

AI j
pN→ppN5 (

a,a8
u3I j

a ~v,l ,v12,I 12, j 12,l 12!

3T32
a,a8~v,I , j !u2I j

a8* ~v,l !, ~35!

where the functionsu2I j
a* (v,l ) contain the initial state vari-

ables and the functions u2I j
a (v,l ) and

u3I j
a (v,l ,v12,I (12) , j 12,l 12) the final-state variables. Then

the potential forpN scattering in theP33 channel will be
nonzero only forI 5 3

2 , j 5 3
2 and I 125

3
2 , j 125

3
2 . The isobar

amplitude for producing theDp quasi-two-body state mixe
the spin projectionssb among the partial-wave channels
such a way that thel 51 orbital angular momentum chann
is the only one that conserves parity.

Given the initial state

uF in&5S uf2
in&

0 D , ~36!

and interacting stateuC& denoted by
so-

uC&5S uc2&
uc3&

D , ~37!

inserting the potential~33! into the Lippmann-Schwinge
equation, Eq.~29! results in the following pair of coupled
equations:

uc2&5uf2
in&1 (

a851

n

G2la8uu2
a8&^u2

a8uc2&

1 (
a51

n

G2xa8uu2
a8&^u3

a8uc3&, ~38!

uc3&5 (
a851

n

G3xauu3
a8&^u2

a8uc2&. ~39!

Multiplying both sides bŷ u2
au gives

^u2
auc2&5^u2

auf2
in&1 (

a851

n

g2
a,a8~v!la8^u2

a8uc2&

1 (
a851

n

g2
a,a8~v!xa8^u3

a9uc3&, ~40!

^u3
auc3&5 (

a851

n

g3
a,a8~v!xa8^u2

a8uc2&, ~41!

where

g2
a,a8~v!ª^u2

auG2uu2
a8&

5 (
l 51,2

E
m12

`

dv8
v82k~v8!

4

u2I j
a* ~v8,l !u2I j

a8 ~v8,l !

v2v81 i«
,

~42!
g3
a,a8~v!ª^u3

auG3uu3
a8&5 (

l 50,1
(

l 1251,2
E

m123

`

dv8E
m12

v2m3
dv12

v2k3~v8,v12!k1
12~v12!

8

3
u3I j

a* ~v8,l ,I 12, j 12,v12,l 12!u3I j
a8a8~v8,l ,I 12, j 12,v12,l 12!

v2v81 i«
. ~43!
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Inserting Eq.~41! into ~40!, one finds

^u2
auc2&5^u2

auf2
in&1 (

a851

n

g2
a,a8~v!la8^u2

a8uc2&

1 (
a851

n

(
a951

n

g2I j
a,a8~v!xa8g3

a8,a9~v!xa9^u2
a9uc2&

~44!

which can be written in matrix notation as

@ I2g2~v!L#u25u2
in , ~45!

where

u25^u2
a ,c2&,
a

ha

e

n

u2
in5^u2

a ,f2
in&,

L5l1xg3x,

~l!aa8ªdaa8la ,

~x!aa8ªdaa8xa . ~46!

The hermiticity of the potential~33! requires that all thel
be real. Equation~45! can be rewritten as

u25@ I2g2~v!L#21u2
in , ~47!

which yields the amplitude
AI j
pN→pN~v!5^f2

outuVuC&5 (
a51

n

~la^f2
outuu2

a&^u2
auc2&1xa^f2

outuu2
a&^u3

auc3&!

5 (
a51

n S la^f2
outuu2

a&^u2
auc2&11^f2

outuu2
a& (

a851

n

xag3
a,a8~v!xa8^u2

a8uc2& D
5 (

a51

n

^f2
outuu2

a&S da,a8la81 (
a851

n

xag3
a,a8~v!xa8D ^u2

a8uc2&5u2
out†

•L@ I2g2~v!L#21
•u2

in5u2
out†T22u2

in ,

~48!
of
r
,

-

e
d
ng
where

T22ªL@ I2g2~v!L#215@ I2Lg2~v!#21L. ~49!

This matrix solution has the usual structure of
Lippmann-Schwinger equation, althoughL contains the in-
elasticity due to the presence of the open three-particle c
nel. ThepN→ppN amplitude is

ApN→ppN~v!5^f3
outuVuC&5(

a
^f3

outuu3
a&xa^u2

auc2&

5u3
outx@ I2g2~v!L#21u2

in5u3
outT32u2

in ~50!

with

T32ªx@ I2g2~v!L#21u2
in . ~51!

We must now make choices foru2I j (v,l ) and
u3I j (v l I 12v12j 12l 12) as input functions for the partial wav
amplitudes. A simple choice foru2 which is square inte-
grable and had the correct threshold behavior can be give
terms of the basic input function used in this paper

uK~k,l !ª
kl

~k21K2!n~ l ! ,
n-

in

u2I j
a ~v,l !5

k* ~v! l

„k* ~v!21KaI j
2

…

n~ l ! 5uKa
~k* ,l !, ~52!

wherek* (v) is the relativistic center of mass momentum
the two-particle system, andK is an adjustable paramete
used for fitting data. Since we are fitting partial-wave dataI
and j are fixed for each channel andK then depends ona
only. n( l ) is an integer depending onl; it is chosen to be the
smallest integer that makesu2 square integrable in the re
duced two-body space, namely,n( l )5( l 13)/2.

Since theD resonance decays intopN, u3 is chosen to be
of the form

u3I j
a ~v l I 12v12j 12l 12!

5
k3* ~v,v12!

l

@k3* ~v,v12!
21KaI j

2 #n~ l !

3
GD

2~v122vD!

k1
12~v12!

l 12

@k1
12~v12!

21K0I 12j 12

2 #n~ l 12!

5uKa
~k3* ,l !

GD

2~v122vD!
uK0

~k1
12,l 12!, ~53!

wherek3* (v,v12) is the magnitude of the momentum of th
outgoing~nonresonant! p in the overall center of mass, an
k1

12 is the magnitude of the momentum of the outgoi
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nucleon in theNp center of mass@which is the~12! center of
mass#. The values of the parametersGD andvD in the Breit-
Wigner terms are taken from the Particle Data Book, nam
vD51232 MeV andGD5120 MeV.

As seen in Eq.~53!, for a fixedI,j, u3 depends on param
eters Ka and K0 . Since the numerical calculation of th

three-body Greens’ function,g3I j
aa8(v), Eq. ~43!, is relatively

complicated, to make the fitting procedure simpler we ha
chosen all theKa to have the same value, namely,K0 , which

is fixed to be 800 MeV. Theng3I j
aa8(v) has the same valu

for all a, a8, and the matrixL, Eq. ~46! simplifies to

L5l1g3I j ~v!x•x. ~54!

The significance ofg3I j (v) andx are as follows: For purely
elastic scattering, withx50, L equals the real diagonal ma
trix l. Using the form ofu3I j , Eq. ~53! in the definition of
g3I j (v), Eq. ~43!, showsg3I j (v) to be a nonpositive, rea
function of v below the production threshold, which be
comes complex above threshold. The 2→2 amplitudes of
Eq. ~48! lie on the unitarity circle, that is,ApN→pN(v)
5sindeid when Im@g3(v)#50, but take the form

AI j
pN2pN~v!5h sin deid ~55!

with the inelasticity parameterh<1 whenL has a nonzero
imaginary component. This implies that 12h(v)
;Im g3(v); hence the shape of Img3(v) controls the rate a
which the inelasticity changes with energy whilex controls
the degree of inelasticity~production! which may occur.

The quality Re@g3(v)# can take appreciable values belo
threshold. This doesnot result in any deviation from the
unitarity circle below threshold~only the imaginary part doe
this and that is zero below threshold! but it doesproduce a
phase shift relative to the elastic amplitude with the samel.
Thus, it is necessary to take account of thex i ’s when adjust-
ing the parameters to fit resonances below the produc
threshold.

Consider now parametrizing the resonances in the ela
case (L5l). For a single resonance it is sufficient to use
singleu2 function but there is not a one-to-one relation b
tween resonances andu2 functions as shown by the follow
ing considerations: for a singleu2 ,

@ I2Lg2I j ~v!#21→
1

12lg2~v!
.

Simple square integrableu2’s enforce certain generic prop
erties ing2(v). Consider

g2~v!5 (
l 51,2

E
m12

`

dv8
v2k~v8!

4

uu2 j I ~v8,l !u2

v2v81 i«

5PE
m12

`

dv8
F~v8!

v2v8
2 ipF~v!, ~56!

where

F~v!ª(
l

v2k~v!

4
uu2 j I ~v,l !u2 . ~57!
y,

e

n

tic

-

Now, the numeratorF(v8) is a positive definite function of
v8. For a given value ofv above threshold, the denominato
has an integrable singularity and changes sign from nega
to positive atv5v8. Near threshold, i.e.,v→m12, the prin-
cipal value part approaches a negative-definite constant v
while the singular part goes to zero. Asv→`, the principal
value part approaches zero from above while the sing
part approaches zero from below.

A resonance occurs when the real part of the denomin
vanishes. That is, when

05Re$@ I2Lg2I j ~v!#%512PE
m12

`

dv8
F~v8!

v2v8
.

There is only oneu2 here and for most reasonable choices
u2 the principal value integral will not significantly oscillat
in passing from its threshold value to its asymptotic limit
`. For the input functions used in this paper, the types
behavior are exhausted by the following two cases. The
case has Re@12lg2(v)# starting out negative, passin
through zero once and asymptotically approaching one. T
behavior produces one resonance and the phase shift go
p as v goes to`. In the second case, Re@12lg2(v)# starts
out positive, passes through zero from above and b
through zero from below to again approach one asympt
cally. The first zero produces an antiresonance followed b
resonance and the phase shift is negative until after the a
resonance.

For two input functionsu2
1 andu2

2 the same possibilities
occur as for a singleu2 function but with the following ad-
ditional possibilities. There may now be a triple of zeroes
Re$@I2Lg2I j (v)#% giving rise to a combination of a reso
nance followed by an antiresonance followed by anot
resonance. It is also possible to have four zeroes making
a succession of two resonance-antiresonance pairs. Fin
there is a third possibility, in which Re$@I2Lg2I j (v)#% only
has two zeroes but there is a zero of Im$@I2Lg2I j (v)#% oc-
curring between them (d l5p). There are two resonance
with a zero of the amplitude occurring between them, ana
gous to the Ramsauer-Townsend effect@12# in electron atom
scattering.

Evidently the number of input functions is related to t
number of allowed resonances but not quite in a simple o
to-one fashion. The objective in this paper is to fit two
three resonances so we need at least two input functi
However, with only two input functions of the form abov
the resonance masses and widths predicted by the mode
very tightly constrained by nonlinear relations so it may n
in general be possible to fit the data. Using three input fu
tions makes it possible to get the masses and widths righ
two resonances along with a possible third. In addition, i
advantageous to model the two resonances with a Ramsa
Townsend–like zero between them because if there is
antiresonance between, say, theD~1232! and theD~1600!,
the potential is never sufficiently attractive to give reaso
able widths and requires so much inelasticity to bring
antiresonance down that the amplitudes are highly unst
and oscillatory in the parameter space.

Setting

D~v!ªu@ I2g2~v!L#u ~58!
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means that the general condition for the position of a re
nance is ReD(v)50. Expanding the partial wave amplitud
AI j

pN→pN(v) @Eq. ~48!# about the resonance frequency th
gives the resonance width as

G

2
5

Im D~v!

~d/dv!Re D~v!uv5vR

, ~59!

wherevR is the position of the resonance ReD(vR)50.

IV. FITTING DATA

We have shown that a separable potential of the fo
given in Eq.~33! very naturally models isobar amplitude
The direct channel resonances are given by the zeroes o
determinant ReD(v), Eq. ~58!, while the final-state reso
nances in the production amplitudes are given through theu3
functions, Eq. ~53!. Nevertheless, though the relativist
Lippmann-Schwinger equation with a separable potential
duces to a linear matrix equation, the expressions for
amplitudes in terms of the parameters of typical input fu
tions are in general, highly nonlinear. When producti

FIG. 2. Re@D(v)# with Im@D(v)#.0, x050.

FIG. 3. Re@D(v)# with Im@D(v)#.0, x050.4.
o-

the

e-
e
-

channels are open, the nonlinearity is particularly evident
seen in the oscillatory behavior of attempted fits to the da
As a result it is extremely unlikely that a straightforwa
attempt at a nonlinear fit will converge to a good fit unle
one starts with parameters that are already very close to b
fit parameters.

Since the parameters of the final-state resonance are
by theD resonance parameters@see Eq.~53!#, the goal of this
section is to fit the~multiple! resonances in the direct chan
nel of thepN→pN reaction, as well as the inelasticity du
to the pN→ppN channel. With the three-particle Green
function parameters all fixed, the remaining parameters
la andxa from the separable potential, Eq.~33!, and theKa
from theu2 functions, Eq.~51!. For a51,2,3 there are nine
parameters to fit two resonances@D~1232! andD~1600!# and
antiresonance~at 1420 MeV!, their widths, and their
strengths.

Because of the highly nonlinear relation between the re
nance position and widths and theKa appearing in the two-
body Green’s functions, our fitting strategy is to begin w
purely elastic scattering,xa50, fit the resonance~and anti-
resonance! positions and widths, and then slowly turn on th

FIG. 4. Re@D(v)# with Im@D(v)#.0, x050.8.

FIG. 5. Re@D(v)# and Im@D(v)# with x051.2.
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inelasticity, at each step readjusting thela andKa to fit the
resonances. When increasing the inelasticity~all xa are cho-
sen at first to have the samex0 value!, resonances may no
only change positions or widths, they may actually disa
pear, reflecting the fact that the number of solutions to
resonance conditions, Eq.~58! have changed. This is show
in Figs. 2–6, in whichx0 is changed in increments of 0.4; i
these figures K15405 MeV, K25420 MeV, and K3
5460 MeV, while l1525.893104, l251.253105, and
l3528.913104 ~in MeV!.

In Figs. 7–10, the real part ofD(v) is positive below
threshold and then goes to zero at 1232 MeV with a nega
slope. However, as seen in Eq.~59!, since the imaginary par
of D(v) is negative here, a resonance rather than an a
resonance results. Atv51400 MeV, ImD(v)50, resulting
in the Ramsauer-Townsend–like effect, mentioned in
previous section. Figure 7 shows the case of no inelasti
(x050), while Figs. 8–10 show shifts with increasing i
elasticityx0 . In Fig. 10 the point at which ImD(v)50 has
shifted sufficiently to produce an antiresonance at ab
1400 MeV. Herel1526.073104, l2527.993104, and
l3521.683105 ~in MeV!.

FIG. 6. Re@D(v)# and Im@D(v)# with x051.4.

FIG. 7. Re@D(v)# and Im@D(v)# with x050.
-
e

e

ti-

e
ty

ut

To fit the P33 data, we have variedx0 for a rough fit.
Then by varying thexa separately and making small adjus
ments in Ka , we have obtained the following fits to th
partial cross section data~Fig. 11 for P33! and Argand plot
~Fig. 12 for P33!. Table I shows the parameters giving th
P33 fit, while Table II gives theP33 parameters. The order
of magnitude ofl i(;107) and x i(;104) in Table II came
about mainly from the normalization of theu2 andu3 input
functions given in Eqs.~52! and ~53!.

V. CONCLUSION

We have shown how to use point form relativistic qua
tum mechanics to construct a dynamical isobar model
couples production to elastic channels with the correct p
duction thresholds and inelastic unitarity. In this paper
have taken the model Hilbert space to be the direct sum
pion-nucleon and two-pion nucleon space, though the
malism is easily extended to other channels and more t
three particle spaces. The point form has interactions in
four of the momentum operators; nonetheless it is possibl

FIG. 8. Re@D(v)# and Im@D(v)# with x050.4.

FIG. 9. Re@D(v)# and Im@D(v)# with x050.8.
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3614 PRC 58W. H. KLINK AND M. ROGERS
specify the dynamics by a single mass operator@see Eq.~6!#,
analogous to the Hamiltonian in nonrelativistic quantum m
chanics. If the mass operator is chosen to have a sepa
form @see Eq.~33!#, the resulting Lippmann-Schwinger equ
tion can be solved analytically. The elastic and product
amplitudes then depend on certain input functions@Eqs.~52!
and ~53!# as well as the inverse of a matrix@Eq. ~47!#. The
zeros of the real part of the determinant of this matrix loc
the positions of the various resonances in a given ang
momentum channel, while the imaginary part is related
the widths of the resonances. By increasing the numbe
input functions, it is possible to generate more and m
resonances in the sameL2I ,2j channel. In this paper we hav
focused on theP33 channel with resonances at 1232 a
1600 MeV.

In contrast, the final state resonances in the produc
channel are determined solely by the parameters of theu3I j
input functions@Eq. ~53!#. Thus the final state resonances a
not related in any necessary way to the direct channel r
nances. This corresponds experimentally to the fact that fi
state resonances are seen in distributions in subenergy

FIG. 10. Re@D(v)# and Im@D(v)# with x051.0.

FIG. 11. P33 Partial cross section vs c.m.s. energy.
-
ble

n

e
ar
o
of
e

n

o-
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ri-

ables~Dalitz plots!, at a fixed total energy, while direct chan
nel resonances are seen in total cross section data.

The isobar model developed in this paper is to be c
trasted with other models, such as those given in Refs.@1–6#
~see also Refs.@11,13,14# for NN models!, where resonance
such as theD resonance are treated as particles, with th
own Hilbert spaces. In our model the only particles are pio
and nucleons, and resonances such as theD resonance appea
as poles in the partial wave scattering amplitudes. And
the final state resonances there is noDp channel, only aD
resonance in theppN channel. Such a treatment of res
nances is closely related to earlier attempts at fittingpN
data, as seen for example in Refs.@15# and@16#. However, in
contrast to our work, in these references a pureS matrix
approach, with no Hamiltonian or mass operator, was us

The biggest shortcoming in the model developed in t
paper is that final state resonances other than the delta
nance have not been taken into account. Thus, theNr state,
which is a possible final state in theNpp system, as well as
other p-p resonances, have been ignored in theu3I j func-
tions, Eq.~53!. The reason is that the natural variables f
describing such resonances includev23 and j 23, the mass
and spin of thep-p system. But these variables are incom
patible with the 1-2 type variables used in theu3I j functions.
What is needed are Racah coefficients that connect diffe
stepwise coupling schemes. In a following paper@8# we de-
rive the coefficients that connect any stepwise coupl
scheme to a so-called simultaneously coupled scheme
which the variables include the subenergies used in Da
plots. These Racah coefficients are products of Clebs
Gordan coefficients and WignerD functions and contain al
the spin information about the final state resonances.

Though final state resonances other thanD resonances are
not included in theu3I j input functions, it is still possible to
get good fits for the elastic partial cross sections and ine
ticity data in some channels. In Figs. 11 and 12 we ha
obtained good fits to plots given by Manleyet al. @4# for the
P33 channel, from which the resonance parameters give
Tables I and II have been extracted. TheP33 channel is,
however, a particularly clean channel, with no other interf
ing resonances. In other channels such as theP11 channel it

FIG. 12. P33 Argand plot.
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will be necessary to take into account other resonances
as ther resonance mentioned in the previous paragraph
get good fits.

The main focus of this paper has been to develop an
bar model from a dynamical theory, in this case point fo
relativistic quantum mechanics. The separable poten
used in the mass operator allow for a great deal of freedom
the input functions used for fitting data. However, it is po
sible to use more realistic potentials in the elastic chan
while retaining the separable form for that part of the m
operator that mixes two and three particle spaces, thus s
lating the effect of multiparticle channels on two-body cha
nels: For example, in form factor calculations of the de
teron, both elastic and breakup, it is necessary to include
effects of pion production at sufficiently high energies. Usi
a realistic N-N potential for the deuteron along with th
separable potential provides a simple way to include prod
tion in deuteron form factor calculations.
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APPENDIX: RELATIVISTIC KINEMATICS

The four-velocity is defined in terms of the fou
momentum by

pm
ªvvm,

where

vªA(
i 51

n

pi
2.

Here, the square denotes the four-vector dot product. Th
the ~positive! square root of the Mandlestams variable. The
invariant mass~or subenergy! of the 12 cluster is

v12ªAp1
21p2

2.

Frequent use is made of several special kinematic fu
tions corresponding to free-particle momenta in certain L
entz frames. These follow from the well-known formula f
the center of mass momentum for two free particles w
massesm1 andm2 . Inverting the equation

v5Ak21m1
21Ak21m2

2,

we find

k~v!5
A~v21m1

22m2
2!224v2m1

2

2v
.

TABLE I. P33 resonance parameters.

Resonance M* ~MeV! G* ~MeV! M fit ~MeV! Gfit ~MeV!

D~1232! 1232 '120 1234.9 126.1
D~1600! 1600 '350 1638.1 378.0
ch
to

o-

ls
in
-
l,
s
u-
-
-
he

c-

is

c-
-

h

Extending this, the center of mass momentum of particle 3
a three-body system in terms of the overall mass and the
cluster subenergy is

k3~v,v12!5
A~v21v12

2 2m3
2!224v2v12

2

2v
.

And finally, the momentum of particle 1 in the 12 center
momentum system is given by

k1
12~v12!5

A~v12
2 1m12m2

2!224v12
2 m1

2

2v12
.

These exhaust the special momenta used since we only
sider final states with clusters in particles 1 and 2 but it
clear how one extends the above notation to other cases

For normalizations it is convenient to adopt the invaria
measure

d3pi

2Ei
ªd4piu~pi

0!d~pi
22mi

2!,

where Ei5Api
21mi

2 for states in momentum space. The
the momentum states are normalized as follows:

^pi ,s i upi8 ,s i8&52Eid
3~pi2pi8!,

which implies that plane-wave states, in these units, hav
density of 2Ei particles of typei per unit volume.

Using the above normalizations the differential cross s
tion for n-body scattering is

ds5
1

4vk* ~v!
~2p!4d4~pf2pi !(

a
u^ f uTu i &u2 )

a51

n
d3pa

2Ea
,

where^ f uTu i & is the scattering amplitude.
For converting to velocity states the respective measu

are given by

(
s1

d3p1

2E1

d3p2

2E2
5(

s1

d3v
4~11uvu2!1/2 dvv2k* ~v!dp̂1

5
d3v

4~11uvu2!1/2 dvv2k* ~v!(
j s l

TABLE II. P33 fitting parameters.

Parameter Value

K0 800 MeV/c
K1 400 MeV/c
K2 410 MeV/c
K3 465 MeV/c
l1 23.923333107 MeV
l2 25.042673107 MeV
l3 22.585213108 MeV
x1 2.72653104 MeV
x2 2.18663104 MeV
x3 4.18543104 MeV
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and

(
s1

d3p1

2E1

d3p2

2E2

d3p3

2E3

5(
s1

d3v
8~11uvu2!1/2 dvv2k12* ~v,v12!k1

12~v12!dp̂12* dp̂1
12

5
d3v

8~11uvu2!1/2 dvv2dv12k12* ~v,v12!k1
12~v12!(

j s l
(

j 12l 12

.

Relations for determining masses and widths.The masses
and widths for the resonances can be determined from
isobar amplitudes by expanding the amplitudes about
resonance energy and equating the first-order expres
with a Breit-Wigner resonance form. TheNp→Np ampli-
tude has the form

AI j
pN→pN~v!5^f2

outuVuC&5u2
out†

•L@ I2g2~v!L#21
•u2

in

5u2
out†T22u2

in , ~A1!

where

T225L@ I2g2~v!L#215@ I2Lg2~v!#21L ~A2!

and

L5l1xg3x.
.

he
e
on

Now, the energy dependent complex component ofL due
to inelasticity does not change the pole structure of the a
plitude, and because it is second order ing3 does not signifi-
cantly shift the phase for physically reasonable inelasticit
Thus, the condition for determining the position of a res
nance with inelasticity is just that the real part of the det
minant

D~v!ªuL@ I2g2~v!L#u

vanishes. Therefore we determine the resonance massesv by

Re@D~v!#50.

Near resonance the amplitude has the approximate form

AI j
pN→pN~v!'h Im@D~v!#$Re@D~v!#1 i Im@D~v!#%21,

whereh is the usual inelasticity parameter at the resona
energy. Expanding the denominator aboutv and recalling
that the zeroth-order term vanishes at resonance results
Breit-Wigner form for the amplitude where we identify th
resonance width via

G

2
5

Im@D~v!#

d/dv Re@D~v!#uv5vR

.
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