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Dynamical isobar models and#w-N scattering data
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Isobar amplitudes for pion-nucleon elastic and production reactions are constructed from a dynamical
theory. The framework of point form relativistic quantum mechanics is used to derive a relativistic Lippmann-
Schwinger equation linking elastic and production channels. The dynamics is contained in a mass operator
which is the sum of a free and interacting mass operator. For a separable interacting mass operator, the
Lippmann-Schwinger equations can be solved analytically; the resulting matrix equations have determinants
whose zeros give the positions of multiple resonances in the same angular momentum channels. Though
varying parameters to fit data is highly nonlinear, procedures are developed for fitting elastic and inelastic data.
Fits to data are presented for tRg; partial wave channel in pion-nucleon scattering.
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I. INTRODUCTION In point form relativistic quantum mechanics, all interac-
tions are put into the four-momentum operalit, general-
Over the past 15 years a number of models have beeiging nonrelativistic quantum mechanics where all interac-
developed to fit pion-nucleon scattering data, including botHions are put into the Hamiltonian. Thus in the point form,
the elastic and production channéis-5]. In some of these there are not only interactions in the Hamiltonidr- PO but
models, amplitudes are written as Feynman diagrams anglso the momentum operaté. But in contrast to the other
procedures developed to enforce inelastic unitafity-3].  forms, all the Lorentz transformations, rotations as well as
Other models use a@matrix or modifiedk matrix approach pure boosts, are kinematic, and hence the unitary operators
in which the three particle final states are written as quasirepresenting Lorentz transformations are the same as for
two-body state§4-5]. Such models are not dynamical in noninteracting particles.

that they do not have a Hamiltonidor mass operatrto The problem then is to construct interacting four-
model the resonances. Co_nsequently it is difficult to treat thenomentum operators on the appropriate Hilbert space, which
thresholds for newly opening channels correctly. in this paper is taken to be the direct sum of two- and three-

Coupled channel models that treat relativity correctlyparticle Hilbert spaces, namel ® ... In contrast to
have been developed by Gross and SuBjaand Fudd6]  the previous papd®], whereP* was constructed from local
for the wN system. In these models resonances such a4 the currents, here we use the so-called Bakamjian-Thomas con-
resonance are treated as particles. In this paper we develogsguction[10], in which P#=MV*#, the product of the mass
coupled channel method for gettingN—«N and =N  operator and four-velocity operator, satisfyMgV,=1, the
— N amplitudes which is dynamical and in which the identity operator. The four-velocity operator is purely kine-
direct channel resonances arise as poles in the scattering amatic, so all the dynamics resides in the mass opeidtor
plitudes. Since the amplitudes come from a dynamical theory The mass operator can be written as a sum of free and
they automatically incorporate inelastic unitarity and correctinteracting mass operatod =M, +V, whereMy, is given
threshold properties. Relativity is of course crucial, since it isrom representations of the Poincay®up, whileV contains
impossible to have genuine production reactions in nonrelathe dynamics. The time-dependent Sclinger equation is
tivistic quantum mechanics. generalized tP* i, =% (i, /x,), which becomes a mass

The framework for developing a dynamical isobar modelpperator eigenvalue problem whé =M V*:
is point form relativistic quantum mechanics. There are a
number of ways of doing relativistic quantum mechanics for My=owip, YpeH NOHpmn-
systems with a finite number of degrees of freedom, called
by Dirac the instant, front and point forms of relativistic Though this equation is relativistic, when velocity state vari-
guantum mechanid¥]; each of these forms has various ad- ables are used the structure is very similar to the nonrelativ-
vantages and disadvantages, and all forms are, in any evergfic case.
more complicated than nonrelativistic quantum mechanics. In particular, scattering states are associated with the con-
Aside from being manifestly covariant, a feature of the pointtinuous part of the spectrum df, in which case it is possible
form is that it is possible to define so-called velocity statesfo rewrite the above equation as a relativistic Lippmann-
in which orbital and spin angular momentum can be coupledschwinger equation. The derivation of the relativistic
together exactly as is done nonrelativistically; this propertyLippmann-Schwinger in point form relativistic quantum me-
of velocity states, discussed in great detail in the followingchanics is carried out in Sec. II.
paper(8], is a key ingredient in developing an isobar model, In Sec. Il the interacting mass operatdris chosen to
in which resonances are defined by their masses, widths, ardive a certain separable form, from which we show how to
spins. derive isobar amplitudes. In general, of course, the relativis-
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tic Lippmann-Schwinger equation cannot be any more easilylinkowski space-time pointx=(ct,x), and i, means the
solved than the nonrelativistic one. But as in the nonrelativivave function of the system at the space-time paint

istic cases, it is possible to solve the equation analytically for As shown in Ref[9] P* must satisfy the Poincanela-
certain types of potentials, including separable potentialStons
For such potentials, the solutions reduce to linear matrix

equations, which when solved, have denominators that have [P¥*P"]=0, u&,v=0,1,2,3,
determinant$calledD (w), see Eq(58)] whose zeros deter-
mine the positions of the channel resonances. UAP“UX1=(A*1)“VPV, (2)

Using suitably chosen input functions for the separable
potential results in a closed form expression for the elastigvhere A is an arbitrary Lorentz transformation akt, the
and production partial wave amplitudes. These input funcunitary operator representing Since the four operatoi3*
tions contain certain parameters that can be adjusted to fRommute with each other, a mass operator
data. But the relation between the parameters appearing in
the input functions and the data is nonlinear, so it is a non- M:=yP-P ©)

trivial task to fit the data by varying the input parameters. can be defined; the spectrum of this operator gives the bound

In Sec. IV we develop a fitting procedure by starting with . ) ;
parameters that have no inelasticity; in this case it is reIa—St‘F"tes(OIISCrete spectrujnand scattering stategontinuous

tively easy to fit the direct channel resonanfie A(1232 spectrum. In this paper we W|Il_deal only with the continu-

and A(1600 as well as the antiresonance at 1400 MeV forOUS spectrum aqd rewrite EQ].) in the form of a relativistic

the P33 casd. Then by slowly increasing the inelasticity, Llppmann—Schwmg(_ar equap|on%

such that at each step the resonance parameters are refit, i isT.O constrgct an n;;[eract'mg our-mc]c)mentgm Ioperat'olr, we

possible to fit the full inelastic data. In this paper we show, cgin by reviewing the Pomcam:no_n_ or a single particle.
For a single particle of mags and spinj, the Poincaraction

how our procedure works for partial cross sections and Ar- . L
on a four-momentum eigenstate is given by
gand plots for theP 35 channel.

Plp.j,o)=p*|p.j,0),
Il. POINT FORM RELATIVISTIC QUANTUM
MECHANICS Ualpj.o)=2 [Ap.j,a" )DL, Ru(p.A),

In this section we review the elements of point form rela- 7
fciv@stic_ quantum mec_hanics needed to formullate the relativwherep# is the noninteractingfree) four-momentum opera-
istic Lippmann-Schwinger equation, from which the scatter-tor \ith eigenvalues satisfying
ing amplitudes are obtained. Details of point form relativistic
quantum mechanics are presented in Rg®,11]. p-pi=pHp,=m?. (4

All forms of relativistic quantum mechanics are related to
how interactions are put into the ten generators of the Poine is the spin projection, whil&,, is a Wigner rotation, an
caregroup. In the point form the six generators of Lorentz element of the rotation group depending gnand A.
transformations are all kinematic, meaning they do not conD'a_,a_[RW(p,A)] is an S@3) Wigner D function (see Refs.
tain any interacting terms. All of the interactions appear in[g] and[9]).
the four-momentum operator. These operators are the gen- The four-velocity operator is defined to be
erators of space-time displacements, in analogy to the Hamil-
tonian which produces time translations in nonrelativistic V=M 1PA (5)
guantum mechanics. A key difference is that in nonrelativis-
tic quantum mechanics the momentum operator that geneand satisfie/- V=1, the identity operator. In what is called
ates spatial displacements contains no interactions, while ithe Bakamjian-Thomas constructigtO] interactions are in-
point form relativistic quantum mechanics the generator otroduced by perturbing the free mass operathf;,
spatial displacements must contain interactions in order that- /P, - P, so that the four-momentum operator becomes
the entire theory be manifestly covariant.

The generalization of the time-dependent Sdimger PA=MVH (6)

equation in point form relativistic quantum mechanics is _ _ _
whereM is the sum of a free and interacting mass operator

. M=M;+V, 7
Py =it = — i, M f @
# which must satisfy
whereP# is the four-momentum operator anjg is an ele- [V#4,M]=0,
ment of the Hilbert space. In this paper the Hilbert space will
be chosen to be the direct sum of a two-particle Hilbert space UM lez M. (8)

with a three-particle Hilbert space, with* containing inter-

actions that mix the two spaces, and hence cause productign order that

reactions. More generally a four-momentum operator can be

constructed that acts on any number of Hilbert spacésa [P¥,P"]=[MV#* MV"]=0, 9
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U, PAULI=U MVAU  P=M(A Y4 Vo= (A 7Y P,
(10

as required in Eq(2).
An n-particle state is the product of one-particle states.
From this it follows that

P#|pl,j1,0'l,___,pn s Tn) FIG. 1. An example of the isobar mechanism.

" u ) velocity statedv,j,o;€) of definite angular momentujn o
221 PEIPL 1,01, Pnyin ), and degeneracy parametefsif the kernel of the mass op-
erator satisfies

UA|p11j1!Ulv"'!pnvjn!o-r'l> <U,,j,,0',,§’|M|U,j,(T,§>

:E |Ap11j1’0'1v---’Apnrjnio'n>H DL’U.RW(pivA)- :(1+|v|2)1/26\?(v_v’)51,1’50,0’<§’|M|§>- (16)
i=1 i il

(1)  thenM will automatically satisfy Eq(8).
There are a number of different coupling schemes for
Each of the WigneD functions in Eq.(11) have different  combiningn-particles with sping,o4,....jn,o, into over-
arguments so they cannot be coupled together. all j and o states. A coupling scheme is chosen to provide a
As shown in Ref[8] it is possible to define velocity states set of kinematic variables naturally suited to describing the
that have the property that the spins can be coupled togethgshenomena under consideration. Since the isobar model as-

as is done nonrelativistically. Set sumes an intermediate quasi-two-body state, it is natural to
use a stepwise coupling which combines the spins of the two

[0,k w1) particles in the final-state resonance. If there are final-state
n resonances among different combinations of the final-state

_ ; ; j ) particles, things are more complicated since the scattering
=IPLinon Py ’U”>i1:[1 Dot Ralki BT}, amplitudes must be expressed in a common set of variables

(12  so that any interaction written in terms of a two-body cluster,

) ] ) other than the one corresponding to the chosen set of kine-
whereB(v) is a boost, a special Lorentz transformation car-matic variables in which the partial-wave amplitudes are pa-
rying p; to ki=B~*(v)p;, with =k;=0. Then as shown in  rametrized, has to be transformed to those variables via Ra-
Ref.[8], cah coefficients. How this is done is described in R&f. In
this paper we will consider only resonances between two
specific final-state particles, specificaltyN— 7A,A— 7N,
and higher mass resonances in the safechannel.(See
Fig. 1)

Since isobar analysis is generally done in terms of partial
waves, the natural variables should include total gpior-
That is, under a Lorentz transformatidg the overall four  bital angular momenturh combined spin of théi,j) cluster
velocity v (which satisfiewy-v=1) goes toAv, while the  of final-state particleg; ;, and their relative orbital angular
internal momentd; (satisfying=;k;=0) are all rotated by momentuml; ;. With this choice of variables the states for
the samegWigner) rotation, which is also the same rotation the two-body Hilbert space af@eglecting isospin

appearing in thé® functionsDJM., M-(RW)' Thus for velocity

Pilv ki, mi)=mu*lv,Kiwi),

n
UA|U1kivlu’i>=|AvRWkiwu‘i,>i];[l Dfui’ ’Mi(RW)- (13)

- v.j,om,0),
states, all the sping can be coupled together to form a state | )

with overall spins, as is done nonrelativisticallyn, is the  wherev, j, o, andl are as defined above aagdis the eigen-

mass of the noninteractingparticle system, given by value of the free mass operator. For the three-body Hilbert
N space, the variables are
mn:izl VmI2+kI2 (14) |l),j,0';(l),|,(1)12,j12,|12>,

where all other variables are as defined above@apds the

The action of the various operators on velocity states is ! ) .
P y invariant mass of the 1-2 cluster. The details of the construc-

Mg lv,Ki i) =mp|v,kiw), tion and normalization of these states are left to the Appen-
dix. Parametrizing the kernel of the mass operator in terms of
VA ki i) =0v"|v, ki) these variables naturally generates a generalized partial-wave
expansion as the scattering amplitudes in these variables are
PE=MgV-. (15)  Just the partial-wave amplitudes. This also is shown in the
Appendix.

To construct an interacting mass operator that satisfies Eq. The coupled-channel Hilbert space for single pion pro-
(8), it is easiest to convert the velocity statesk;,u;) to  duction is
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H:=(HN®H,)®(HNOH®H,). 17) "0 ENM v, L, ) o €

The first part ¢{y®H.,) is just the space of two-body states ~ =(1+ |v|2)1/266(v_v,)5l,|’5IZ,|£5j,j’5a,a’<§r,1|Mlj|§m>v
(now including isospih (24

v.L1z.) 00,1 whereé, and &, are the remaining “internal” variables for
the n- and m-body systems, respectively. We denote the

with wave functions coupled-channel mass operator by

oo, L,1,,),00,1)=(v,1,1,,0;0,

¢2>- (18 (Mlj)nm:=<§r,1|Mlj|§m>' (25

The second part{{y®H,.®H,) is the space of the three- For our models this can be written in obvious notation as
body states
<N7T|M|j|N’7T> <N7T|M|j|N’7T7T>

. . M, — .
o112, 050,012, 012,f12,112) 'j <N7T’7T|M|j|N7T> <N7T’7T|M|j|N7T7T>

with wave functions

(26)

Using Eq.(14), the free mass operator in a velocity state

. . basis becomes
3(v,1,15,],0 0,1, 012,112,]12,112)

. . 2
=l j 00,012,112, 12,11 ¢3). (19 zl M2+ m? 0
=

A state in the full model space is denoted by M=

v,L,1;,j,00,l
|>=(| otz o) ) 20

v,L,1,,j,000,0,012,112,]12,112)

; 27)
0 3, Ik

Writing the mass operator as a sum of free and interacting
parts, Eq.(7), and having extracted the four-velocity, the
time-dependent relativistic Schtimger equation, Eq1), be-

. comes the time-independent Sctfirgger equation on the re-
Yo(vllz ), w.]) ) (21  duced space

lr//3(ville!J1U;walvw121|12’112!|12) '

and the wave functions have the form

'\If:

M+ V)W) =M[¥)= 0| V), (28)
The full inner product on this space is
where w is the eigenvalue of the mass operator for the
(P|W)=(1+ lv|®)Y26%(v—0v") coupled-channel system. The Lippmann-Schwinger equation

IS
X 5],] ! 50’,0”(<QDZ| l//2> + <¢3| ¢3>),

|\I't>:|¢)>+G(i)V|\I'r>’ (29
where the variables,j,o are extracted from the remainder
of the inner product because of relativistic invariance; thevhere
reduced inner product is then
P (@—Mg)|®)=0, (30)
o w’k(w)
(edi)=2 3 | do—7F and
1z 12 + . _
Gl =m0~ (Mg)nris] %, (3D)

Xz (LlzJio D)l el (22
Ill. THE SEPARABLE POTENTIAL

o) m—m3

(@alpa)= E 2 2 d‘”j doyp The isobar model assumes production partial-wave ampli-
Izl 1 T Jmyps myo

tudes of the form

wK3(w,0)K(01)

P3 aN— 77 7N— — T
8 AN TN= Aj,gﬁ BAjBﬁ,aﬁN' (32)
. . 98
X(I1|Z!J;w!|1|1211121w12!|12) N 8
. . where AT~ is the amplitude for the production of the
X'#3('!IZ!]vwv|!|12!]12!w12!|12)' (23) J'(TB p p

guasi-two-body staterB, with 8 some hadronic resonance,
—aN ; ;
The normalization and phase space conventions used abo@gd AjBB,(rﬂ the decay amplitude fop. In this paper, for
are derived in the Appendix. simplicity, we only consider one isobar as shown in Fig. 1. It
If the mass operator is also invariant with respect to isosis possible to model such amplitudes with the following
pin, then-body tom-body kernel must satisfy separable potential:



PRC 58 DYNAMICAL ISOBAR MODELS AND #-N SCATTERING DATA 3609

|’/’2>),

Soadupusl S xalugug ={j53

Vi= . (33
§x§IU§><US‘I 0

(37

inserting the potential33) into the Lippmann-Schwinger
equation, Eq.(29) results in the following pair of coupled

_ ) equations:
The indexe is related to the number sfchannel resonances

which in this study will be theA(1232 and A(1660 reso-

nances. The final-state resonance, in our case is alsa the _ n ) ,
resonanceju$) and|ug) are input functions whose form is [42) =M+ D, Goh g Wug | ir)
discussed in the following paragraphs, axg and y, are a'=1
parameters that measure the strengths of the various reso-
nances. n ) .

It will be shown that the relevant amplitudes obtained +;1 Goxar|us Xug |¢3), (38)

with this potential are of the form

n
ATNTN= 3 ug (@) T3 (0,Liug) (w,]), (349 [Wa)= 2 Gaxalus Xu3 [42). (39)
a,a’ a'=1
and Multiplying both sides by(u| gives
A’TTN_)WWN: ug); ,I; ;I 1- ;I o a| gi . a,a’ a'
! aZa' ay(@l oz liz]iz 122 (US| o) =(us|$S)+ 2 95 ()N @{Uf )
a'=1
XT% (w,,)ug) (o), (35) n , )
+ 2 05 (@)xar(U§ |¥), (40
a'=1
where the functionwgﬁ(w,l) contain the initial state vari-
ables and the functions  u3;(w,l) and
ugjj(o,l,012,112),j 12,112 the final-state variables. Then, N " v "
the potential formN scattering in thePs3 channel will be (uglys)= ,2,1 95" (@) xar(U3 [#2), (41)

nonzero only fod =2, j=2 andl,=2, j;,=3. The isobar
amplitude for producing thd 7 quasi-two-body state mixes
the spin projectiongr; among the partial-wave channels in
such a way that the=1 orbital angular momentum channel
is the only one that conserves parity.

Given the initial state

where

95" (w)=(ug|Glu3")

|<I>"‘>=("’;2n ) (36 -5 [ ' 2k(w') ugh (o’ Hugi(',])

1) : )
112 Jmy, 4 w—w'+ie

and interacting statgl) denoted by (42

2 ' 12
' / * ©—Mmg 0°k3(o', w1k (w1
05" (@ =(ugleug)= 3 3 [ dor [ o, =

=0,115-1,2

123 mi2

akx ! 1 CY,CY, ! 1
XUSIj(w Dili2,012, 012,112 U5 (@', 1,112,]12, @12,112)

w—w'+ie

(43
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Inserting Eq.(41) into (40), one finds n=(ug, m)
n
(ug]y)=(us| M+ X 95 (@)@ {Ug |2 A=N+xsx,
a'=1
n n
! ’ " " (A)aa’::éaa’)\a’
2 Z 021" (@) X093 " (@) xo{U3 |2)
(44) (X)aa’:: 5aa’Xa . (46)
which can be written in matrix notation as The hermiticity of the potential33) requires that all tha
0 be real. Equatiori45) can be rewritten as
[I—g(w)A]u=uy, (45)
where Up=[1—0p(w)A] tuf, (47)
Up=(uz , ), which yields the amplitude

AT (0) =(@8"VIW) = 2, (nu{ 5" uz)(ugl o) + xa( 85 Tug) (U5l ¥)

-3 ( SIS )+ +(92u8) D xag;"“’<w>xaf<u§’|¢2>)

a'=1
n
2 u2>( Saahar T 2 Xagg'a(w)Xa')Wg|¢2>:Ugu”‘1\[|_gz(w)/\]_l‘Ug]:UngTZZU?-
a= o' =1
(48)
|
where k* ()’
Ug”(w,l): :UKa(k*,l), (52)

B ) (K* (w)2+KZ,)"D
To=All = G(0)A] '=[1-Agy(w)] A, (49)
wherek* (w) is the relativistic center of mass momentum of
This matrix solution has the usual structure of athe two-particle system, ani is an adjustable parameter
Lippmann-Schwinger equation, althoughcontains the in- used for fitting data. Since we are fitting partial-wave data,
elasticity due to the presence of the open three-particle cha@nd]j are fixed for each channel ard then depends om
nel. ThemN— 77N amplitude is only. n(l) is an integer depending dnit is chosen to be the
smallest integer that makes, square integrable in the re-
duced two-body space, namely(l)= (I +3)/2.
A™NZTINCG) = (3| ) = D, (dIug) xo(Us| i) Since theA resonance decays inteN, us is chosen to be
“ of the form

_UOU'[X[I g (w)A] 1 |n utT U (50) N .
: ’ % ugyj (@l 12015] 121 12)

with k3 (0, 019)'
T rR* 2, k2 1)
Tar=xll— G @) A] "0 (51 k3 (0, 022"+ Ky
o Ta kif(w19)'22
We must now rr_1ake ch0|_ces foruz,,-(w,l)_ and 2(w12 03) (KA w1)2+K2, j 2]n<|12>
Ugjj(@ll 15015 10 19) as input functions for the partial wave 121
amplitudes. A simple choice fou, which is square inte- T,

grable and had the correct threshold behavior can be given in =uy (k3.1 ooy Uk, (Ki%,112), (53
terms of the basic input function used in this paper 12 %A

wherekj (w,1,) is the magnitude of the momentum of the
U (K, 1) o= outgoing(nonresonantsr in the overall center of mass, and
K T (K2+ K2 ki? is the magnitude of the momentum of the outgoing
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nucleon in theN 7 center of maspwhich is the(12) center of
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Now, the numeratoF(w") is a positive definite function of
w'. For a given value ok above threshold, the denominator

Wigner terms are taken from the Particle Data Book, namelyhas an integrable singularity and changes sign from negative

w,=1232 MeV andl’y, =120 MeV.

to positive atw= w’. Near threshold, i.e@w—m,,, the prin-

As seen in Eq(53), for a fixedl,j, u; depends on param- cipal value part approaches a negative-definite constant value
etersK, and K,. Since the numerical calculation of the while the singular part goes to zero. As—, the principal

three-body Greens’ functioggl‘}/(w), Eq.(43), is relatively

value part approaches zero from above while the singular

complicated, to make the fitting procedure simpler we havé®@rt approaches zero from below.

chosen all th& , to have the same value, namefyy, which

is fixed to be 800 MeV. Thelgg’fj"(w) has the same value

for all @, @', and the matrixA, Eq. (46) simplifies to
A=N+03(0)x x- (54

The significance 083 () and x are as follows: For purely

elastic scattering, witly=0, A equals the real diagonal ma-

trix N. Using the form ofug;, Eq. (53) in the definition of
gsij(w), EQ. (43), showsgs;(w) to be a nonpositive, real

function of w below the production threshold, which be-

comes complex above threshold. The-2 amplitudes of
Eq. (48) lie on the unitarity circle, that isA™~™(w)
=sin &€ when Infgs(w)]=0, but take the form

AMN=™(»)= 5 sin se'?

" (55)

with the inelasticity parametep<1 whenA has a nonzero
imaginary component. This implies that —Ip(w)
~Im g;(w); hence the shape of lgy(w) controls the rate at
which the inelasticity changes with energy whijlecontrols
the degree of inelasticityproduction which may occur.

A resonance occurs when the real part of the denominator
vanishes. That is, when

© F 4
do’ (e ),
w—w

0=Re{[| ~Agyj(w)]}=1—-P

myo

There is only onel, here and for most reasonable choices of
U, the principal value integral will not significantly oscillate
in passing from its threshold value to its asymptotic limit at
o, For the input functions used in this paper, the types of
behavior are exhausted by the following two cases. The first
case has Ré—\g,(w)] starting out negative, passing
through zero once and asymptotically approaching one. This
behavior produces one resonance and the phase shift goes to
7 as w goes tow, In the second case, Re-\gy(w)] starts
out positive, passes through zero from above and back
through zero from below to again approach one asymptoti-
cally. The first zero produces an antiresonance followed by a
resonance and the phase shift is negative until after the anti-
resonance.

For two input functionsu andu3 the same possibilities
occur as for a single, function but with the following ad-

The quality Rggs(w)] can take appreciable values below ditional possibilities. There may now be a triple of zeroes of

threshold. This doe®ot result in any deviation from the

unitarity circle below threshol(bnly the imaginary part does

this and that is zero below threshpldut it doesproduce a

phase shift relative to the elastic amplitude with the same

Thus, it is necessary to take account of jhis when adjust-

Re{[l — Agyj(w)]} giving rise to a combination of a reso-
nance followed by an antiresonance followed by another
resonance. It is also possible to have four zeroes making up
a succession of two resonance-antiresonance pairs. Finally,
there is a third possibility, in which R — Ag,;(w)]} only

ing the parameters to fit resonances below the productioRas two zeroes but there is a zero offlin- Agy;(w)]} oc-

threshold.

curring between them§= ). There are two resonances

Consider now parametrizing the resonances in the elasti¢ith a zero of the amplitude occurring between them, analo-
case A=X\). For a single resonance it is sufficient to use agous to the Ramsauer-Townsend effeid] in electron atom
singleu, function but there is not a one-to-one relation be-scattering.

tween resonances ang functions as shown by the follow-

ing considerations: for a singls,,

1

[l—Agzu(w)Tl—’ng(w)'

Simple square integrable,’s enforce certain generic prop-

erties ing,(w). Consider

* w?k(w") |U2j|(w',|)|2
gZ(w):|:21’2 mlzdw 4 w—w' +ie
* Flo')
=P do’ —imF(w), (56)
ml2 w—w
where
0’k(w)
Flo)=21 —— lugi(o,D?. (57)

Evidently the number of input functions is related to the
number of allowed resonances but not quite in a simple one-
to-one fashion. The objective in this paper is to fit two or
three resonances so we need at least two input functions.
However, with only two input functions of the form above,
the resonance masses and widths predicted by the model are
very tightly constrained by nonlinear relations so it may not
in general be possible to fit the data. Using three input func-
tions makes it possible to get the masses and widths right for
two resonances along with a possible third. In addition, it is
advantageous to model the two resonances with a Ramsauer-
Townsend-like zero between them because if there is an
antiresonance between, say, th€1232 and theA(1600),
the potential is never sufficiently attractive to give reason-
able widths and requires so much inelasticity to bring the
antiresonance down that the amplitudes are highly unstable
and oscillatory in the parameter space.

Setting

D(w):=[[1=gy(w)A]l (58)
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FIG. 2. RéD(w)] with Im[D()]>0, xo=0. FIG. 4. RED(w)] with IM[D(w)]>0, xo=0.8.

means that the general condition for the position of a resochannels are open, the nonlinearity is particularly evident, as
nance is R&®(w)=0. Expanding the partial wave amplitude seen in the oscillatory behavior of attempted fits to the data.

AE}NH”N(w) [Eq. (48)] about the resonance frequency thenAs a result it is extremely unlikely that a straightforward
gives the resonance width as attempt at a nonlinear fit will converge to a good fit unless
one starts with parameters that are already very close to best-
I Im D(w) fit parameters.

2~ (dldw)ReD (@), (59

Since the parameters of the final-state resonance are fixed
by theA resonance parametdsee Eq(53)], the goal of this
wherewg is the position of the resonance Réwg)=0. section is to fit thgmultiple) resonances in the direct chan-

nel of thewN— 7N reaction, as well as the inelasticity due
to the sN— 77N channel. With the three-particle Green’s
function parameters all fixed, the remaining parameters are

We have shown that a separable potential of the form\« @ndx, from the separable potential, E§3), and theK,,
given in Eq.(33) very naturally models isobar amplitudes. from theu, functions, Eq(51). Fora=1,2,3 there are nine
The direct channel resonances are given by the zeroes of ti@rameters to fit two resonandel(1232 andA(1600] and
determinant R®(w), Eq. (58), while the final-state reso- antiresonance(at 1420 MeV, their widths, and their
nances in the production amplitudes are given throughuithe Strengths. . . .
functions, Eq.(53). Nevertheless, though the relativistic ~ Because of the highly nonlinear relation between the reso-
Lippmann-Schwinger equation with a separable potential ref@nce position and widths and tKg, appearing in the two-
duces to a linear matrix equation, the expressions for th€0dy Green's functions, our fitting strategy is to begin with
amplitudes in terms of the parameters of typical input funcPurely elastic scatteringy, =0, fit the resonancéand anti-
tions are in general, highly nonlinear. When productionf€sonancepositions and widths, and then slowly turn on the

IV. FITTING DATA

3 3
oF oF
2F W 2F
T 4F 3 “F
2 oF c 6F
8F sF
10f 10F
a2 12
asf 14fF
] S S TP S S e S T T TP SR
1000 1200 1400 1600 1800 2000 1000 1200 1400 7600 1800 2000
o (MeV) o (MeV)

FIG. 3. R§D(w)] with Im[D(w)]>0, xo="0.4. FIG. 5. R¢D(w)] and INfD(w)] with xo=1.2.
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FIG. 6. R¢D(w)] and InfD(w)] with xo=1.4. FIG. 8. R¢D(w)] and InfD(w)] with xo=0.4.

inelasticity, at each step readjusting thg andK , to fit the

res;]on?gtr:etsé V\:]h?/n |tr;]creasmg \t/h? gelrastlc;a]lynxa arr?] Ch?]' i Then by varying they,, separately and making small adjust-
sen at Tirst to have the samg valus, resonances may not o i in K., we have obtained the following fits to the

only change positions or widths, they may actually disap-__ .. . ;
pear, reflecting the fact that the number of solutions to th Smal cross section datig. 11 for P3y) and Argan_d_ plot
L - ig. 12 for P33). Table | shows the parameters giving the
resonance conditions, E(8) have changed. This is shown it whil bl . h h d
in Figs. 2—6, in whichy, is changed in increments of 0.4; in P33 fit, while Table Il gives thePg; parameters. The orders
' ’ 0 - of magnitude ofz;(~10") and x;(~10% in Table Il came

these  figures K, =405 MeV, 'K,=420 MeV, and K, about mainly from the normalization of the andus input
— ; - _ - 3
=460 MeV, while A\;=—5.89x10*, \,=1.25x10°, and functions given in Eqs(52) and (53).

A3=—8.91X 10* (in MeV).

In Figs. 7-10, the real part dd(w) is positive below
threshold and then goes to zero at 1232 MeV with a negative V. CONCLUSION
slope. However, as seen in H§9), since the imaginary part

of D(w) is negative here, a resonance rather than an ant;, I (8% B0V T B es B8 B ST
resonance results. Ab=1400 MeV, ImD(w)=0, resulting y

in the Ramsauer-Townsend—like effect. mentioned in thec:ouple:s production to elastic channels with the correct pro-

previous section. Figure 7 shows the case of no melasncndumIOn thresholds and _|nelast|c unitarity. In th'S paper we
i o . i S ave taken the model Hilbert space to be the direct sum of a
(x0=0), while Figs. 8—10 show shifts with increasing in- . .
e . ) : _ pion-nucleon and two-pion nucleon space, though the for-
elasticity xyo. In Fig. 10 the point at which InD(w)=0 has L ;
) - . malism is easily extended to other channels and more than
shifted sufficiently to produce an antiresonance at abou

three particle spaces. The point form has interactions in all
1400 MeV. Hereh;=—6.07x10%, \,=—7.99x 10%, and _ - € .
Na= — 1.68<10F (in MeV). four of the momentum operators; nonetheless it is possible to

To fit the P33 data, we have varieg, for a rough fit.
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FIG. 7. R&D(w)] and IMD(w)] with xo—0. FIG. 9. R¢D(w)] and InfD(w)] with y,=0.8.
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FIG. 10. RéD(w)] and InfD(w)] with yo=1.0.

FIG. 12. P33 Argand plot.

specify the dynamics by a single mass operggee Eq(6)],  aples(Dalitz plots, at a fixed total energy, while direct chan-
analogous to the Hamiltonian in nonrelativistic quantum me+,g| resonances are seen in total cross section data.
chanics. If the mass operator is chosen to have a separable The isobar model developed in this paper is to be con-
form[see Eq(33)], the resulting Lippmann-Schwinger equa- yrasted with other models, such as those given in R&fs6]
tion can be solved analytically. The elastic and productiongee also Refg11,13,14 for NN model$, where resonances
amplitudes then depend on certain input functifiégs.(52)  gych as thed resonance are treated as particles, with their
and (53)] as well as the inverse of a matiiq. (47)]. The oy Hilbert spaces. In our model the only particles are pions
zeros of the real part of the determinant of this matrix locate;nq nucleons. and resonances such ad ttesonance appear
the positions of the various resonances in a given angulgfs poles in the partial wave scattering amplitudes. And for
momentum channel, while the imaginary part is related tQpe final state resonances there is&m channel, only aA
the widths of the resonances. By increasing the number Gfesonance in thermN channel. Such a treatment of reso-
input functions, it is possible to generate more and Morg,ances is closely related to earlier attempts at fittirly
resonances in the samg, »; cha_mnel. In this paper we have data, as seen for example in Rdfi5] and[16]. However, in
focused on thePs; channel with resonances at 1232 andcontrast to our work, in these references a pSrenatrix
1600 MeV. _ _ _ approach, with no Hamiltonian or mass operator, was used.
In contrast, the final state resonances in the production’ The biggest shortcoming in the model developed in this

channel are determined solely by the parameters ofigfje  paper is that final state resonances other than the delta reso-
input functiong Eq. (53)]. Thus the final state resonances aregnce have not been taken into account. ThusNipestate,

not related in any necessary way to the direct channel resqypich js a possible final state in ther system, as well as
nances. This corresponds experimentally to the fact that fingdiner - resonances. have been ignored in thg func-

state resonances are seen in distributions in subenergy Vafipns, Eq.(53). The reason is that the natural variables for

describing such resonances include; and j,3;, the mass
and spin of ther-7 system. But these variables are incom-
patible with the 1-2 type variables used in thg; functions.
o Data What is needed are Racah coefficients that connect different
stepwise coupling schemes. In a following paf@rwe de-
rive the coefficients that connect any stepwise coupling
scheme to a so-called simultaneously coupled scheme, in
which the variables include the subenergies used in Dalitz
plots. These Racah coefficients are products of Clebsch-
Gordan coefficients and Wign& functions and contain all
the spin information about the final state resonances.
Though final state resonances other tharesonances are
not included in theus; input functions, it is still possible to
get good fits for the elastic partial cross sections and inelas-
ticity data in some channels. In Figs. 11 and 12 we have
g obtained good fits to plots given by Manley al.[4] for the
'12'00' - '14'00' - '16'00' ST '20'00 P35 channel, from which the resonance parameters gi_ven in
o (MeV) Tables | and II' have been extracted. Tﬁgg channgl is,
however, a particularly clean channel, with no other interfer-
FIG. 11. P45 Partial cross section vs c.m.s. energy. ing resonances. In other channels such asPthechannel it
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TABLE |. P33 resonance parameters. TABLE II. P33 fitting parameters.
Resonance M* (MeV) TI'* (MeV) Mg (MeV) Ty (MeV) Parameter Value
A(1232 1232 ~120 1234.9 126.1 Ko 800 MeVic
A(1600 1600 ~350 1638.1 378.0 K1 400 MeVic
K, 410 MeV/c
) ) Kz 465 MeVic
will be necessary to take into account other resonances such Ay —3.92333x 107 MeV
as thep resonance mentioned in the previous paragraph to A, — 504267 10 MeV
get good fits. _ _ s —2.58521x 10° MeV
The main focus of this paper has been to develop an iso-
. S . X1 2.7265<10* MeV
bar model from a dynamical theory, in this case point form X 2 1866< 10" MeV
- . . . . 2 .
relativistic quantum mechanics. The separable potentials o 4.1854¢ 10" MeV

used in the mass operator allow for a great deal of freedom in
the input functions used for fitting data. However, it is pos-

sible to use more realistic potentials in the elastic Channe'Extending this, the center of mass momentum of particle 3 of

while retaining the separable form for that part of the mass, three-body system in terms of the overall mass and the 12
operator that mixes two and three particle spaces, thus simyyster subenergy is

lating the effect of multiparticle channels on two-body chan-

nels: For example, in form factor calculations of the deu- V(02 + 02— m2)?— 402w,
teron, both elastic and breakup, it is necessary to include the ks(w,w10)= 5 .
effects of pion production at sufficiently high energies. Using @
a realisticN-N p.otential- for thg deuteron al_ong with the And finally, the momentum of particle 1 in the 12 center of
separable potential provides a simple way to include pmducr'nomentum system is given by

tion in deuteron form factor calculations.

2 2y 7>
V(w2,+m—m3)2—4w?m?
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These exhaust the special momenta used since we only con-

sider final states with clusters in particles 1 and 2 but it is

APPENDIX: RELATIVISTIC KINEMATICS clear how one extends the above notation to other cases.
The four-velocity is defined in terms of the four- For normalizations it is convenient to adopt the invariant
momentum by measure
d3p;
Mz o™ i
Pt S5 =0*pi0(p0) 3(pZ—m),
I

where

the momentum states are normalized as follows:

n where Ei:\/p?+ m? for states in momentum space. Then,
w = ; p|2

pi,oilp o Y=2E;83(p;—p!),
Here, the square denotes the four-vector dot product. This is (procrilpi o) ' C
the (positive) square root of the Mandlestasvariable. The  which implies that plane-wave states, in these units, have a

invariant masgor subenergyof the 12 cluster is density of E; particles of type per unit volume.
Using the above normalizations the differential cross sec-
_ 2 2 : . .
w1:=/p1t+Ps. tion for n-body scattering is

Frequent use is made of several special kinematic func- 4 - n d3p,
tions corresponding to free-particle momenta in certain Lor-40= Tok* (@) (27) y(pf_pi)g [(FI T Cgl T
entz frames. These follow from the well-known formula for
the center of mass momentum for two free particles withyhere(f|T|i) is the scattering amplitude.

massesn, andm,. Inverting the equation For converting to velocity states the respective measures
are given by
w= k2 +mi+ k?+m3,
d3p, d®p, d%v
. = 21% S
we find % 2E, 2E, % ITEENEIEL: doo™k* (w)dp;
\/(a)2+ m%—m§)2—4w2m§ d%

k(a))= :Wﬁ dwwzk*(cu)z

jol

2w
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and
3 3 3 Now, the energy dependent complex component afue
d”p; d°p, d°ps to inelasticity does not change the pole structure of the am-
o 2E; 2E, 2E; plitude, and because it is second ordegirdoes not signifi-
3 cantly shift the phase for physically reasonable inelasticities.
:2 d°v doo?k* 0,01k z)dp*zdblz Thus, the condition for determining the position of a reso-
< 8(1+[v[®™? 1247 1 AT R2E nance with inelasticity is just that the real part of the deter-
& minant
:W dwwzdwlzk’l‘z(w,wlz)kiz(wlz)z 1_2': . . ~
7 i (0):=|A[l - gp(w)A]]

Relations for determining masses and widffise masses ) )
and widths for the resonances can be determined from thganishes. Therefore we determine the resonance masses

isobar amplitudes by expanding the amplitudes about the

resonance energy and equating the first-order expression R¢D(w)]=0.
with a Breit-Wigner resonance form. Thér— Nz ampli-
tude has the form Near resonance the amplitude has the approximate form
AT ™M) = (43" IVIW) =ug"" Al = gy(@)A] - ug AN ™(w)~ 7 Im[D(w) {RED(w)]+i Im[D(w)]} ",
=ug"" Ty, (A1)

where 7 is the usual inelasticity parameter at the resonance
energy. Expanding the denominator abeutand recalling
where that the zeroth-order term vanishes at resonance results in a
Breit-Wigner form for the amplitude where we identify the
Too=A[l—g(w)A] 1=[1-Agy(w)] *A  (A2) resonance width via

IM[D(w)]
d/dw RED(0)][o- 0y

and

r
_ 2
A=\+ x03x-
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