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A relativistic quantum mechanics of constituents is formulated in which particles are bound states of a mass
operator. The point form of relativistic dynamics is used, in which Lorentz transformations are kinematic, and
the four-momentum operator carries all the interactions. A general covariant expression for matrix elements of
the electromagnetic current operator is given in which the invariant form factors are reduced matrix elements
of the Poincaregroup. A point form relativistic impulse approximation is formulated, in which invariant form
factors of particles are given in terms of their underlying constitu¢88556-28188)05512-3

PACS numbes): 24.10.Jv, 03.65.Ca, 11.30.Cp, 13.40.Gp

[. INTRODUCTION regard to the cluster properties of electromagnetic current
operators. Keister and Polyzd@8] discuss the point form
The goal of this and succeeding papers is to formulate along with the other forms in their review article; however,
relativistic quantum mechanics of constituent particles, thehere has been no investigation into the detailed properties of
bound states of which are the observed hadrons, and whosiee point form, both as regards comparing calculations of
scattering states should account for such complicated phesuch quantities as form factors and scattering amplitudes
nomenon as multiparticle production reactions. The ternwith data or comparing with results of other few-body cal-
constituent particle is used to mean objects that transform asulations.
irreducible representations of the Poincgreup with defi- The point form has a number of features that distinguish it
nite mass, spin, and internal symmetry quantum numbergrom the other forms of dynamics. First those operators that
Thus, constituent could mean the protons and neutrons thabntain all the dynamics—namely, the four-momentum
make up nuclei or it could mean the quarks that make up theperators—commute with one another, and can be simulta-
hadrons. The many-particle Hilbert space of the constituenteeously diagonalized. Since the Lorentz generators do not
is the tensor product of the individual constituent Hilbertcontain any interaction terms, the theory is manifestly cova-
spaces; in this paper the number of constituents is fixedijant. This means there is a more direct connection with
while in following papergfor example, Ref[1]) the number models motivated by quantum field theory. In fact a point
will be variable. form quantum field theory could be developed by integrating
As is already evident in the language being used, the enthe interaction Lagrangian over the forward hyperboloid, re-
phasis in these papers is on quantum mechanics, as opposadting in four-momentum operators with interactions in all
to quantum field theory. The goal is to formulate a relativis-four components. In Sec. 1l this construction will be used to
tic quantum mechanics which is in spirit similar to nonrela-couple the electromagnetic current operator to the photon
tivistic quantum mechanics, where a Hamiltonian acting on dield.
suitable Hilbert space specifies the bound statesSandtrix Second, electromagnetic current operators at an arbitrary
of the system. In point form relativistic quantum mechanicsspace-time point are related to the electromagnetic current
the four-momentum operator replaces the Hamiltonian andperator at a special space-time pdusually the space-time
as will be shown in Sec. Il, suitably defined relativistic statesorigin, hence the name “point form)’by translating from
have properties very similar to their nonrelativistic multipar-the origin with the interaction dependent four-momentum
ticle counterparts. operators. The resulting electromagnetic current operators
As is well known there are a number of ways of formu- automatically have the correct Poincaransformation prop-
lating a relativistic quantum mechanics, three of which Diracerties [see Eq.(3.3)], from which it follows—as will be
[2] called the instant, front, and point forms. Calculations ofshown in Sec. lll—that there are the correct number of inde-
spectra and form factors have been carried out using bothendent form factors for particles with spin. Moreover time-
instant[3] and front form dynamic$4]. Moreover quantum like and spacelike momentum transfers are handled on an
field theory is usually formulated as an instant form of dy-equal footing. The current operator at the space-time origin
namics, in which the interaction Lagrangian is integrateds not uniquely determined, since the only constraints it must
over a time constant surface, resulting in interactions in thesatisfy are Lorentz covariance and current conservation.
energy and boost generators. More recently front form ver- Finally, there is a close relationship with nonrelativistic
sions of quantum field theory have been develofgd guantum mechanics. In the contraction limit, when the speed
There has been no analogous development of point formf light is much larger than any particle velocities, the inter-
dynamics. The first use of the point form seems to have beeacting three-momentum operator goes to zero. Spin and or-
made by Sokolov in the 197(08], to prove cluster properties bital angular momentum can be coupled together exactly as
for relativistic systems with a finite number of degrees ofis done nonrelativistically, yet the theory is Lorentz covari-
freedom. LeVv{7] has compared some of the features of theant, and the spin is given by the relativistic Pauli-Lubanski
point form with the instant and front forms, particularly with operator.
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There are two different Poincargroup actions on the The goal of the following series of papers is to make use
constituent Hilbert space. One is the action inherited fronof the distinctive features of the point form to explore the
the single-particle spaces, since the relevant Hilbert space fgoperties of few-body relativistic nuclear systems. This in-
the tensor product of single-particle spaces. This action isludes using a relativistic Lippman-Schwinger equation to
called the freglor noninteracting action, and results in op- analyze scattering and resonance phenomésea Ref[1])
erators representing free Lorentz transformations and spacas well as computing form factors, initially of such simple
time translations. The infinitesimal space-time transformasystems as piond 1] and deuterons.
tions generate the free four-momentum oper#&tfyrand the The goal of this paper is to develop the formalism needed
free mass operathler: P« P . The four-velocity operator t[O compute form fc’_:l(_ZtOFS in the point form._ This will be done
V* is defined asP#M; * and the relativistic multiparticle I Sec. lll by rewriting the electromagnetic current operator

states mentioned previously can be chosen to be eigensta@s an irreducible tensor operator under the interacting Poin-
of the four-velocity operator. caregroup. Using the Wigner-Eckhart theorem will then lead

The second Poincaraction comes from the total four- to the definition of form factors as reduced matrix elements,
momentum operatoP*, which is the sum of free and inter- for particles of arbitrary mass and spin, and with the correct
acting four-momentum operatol®“=P#+ P#. Since the numb_er of mdepende_nt form factors. Se_ct|on IV will use the
Lorentz generators are not modified in the point form, thecovariant representation of current matrix elements to define

fundamental operator equations that must be satisfied can [dePCINt form impulse approximation, so that form factors can
e calculated from one-body current operators. The relevant

written as Poincaregroup Clebsch-Gordan coefficients needed for the
[P~ P"]=0, Wigner-Eckhard theorem are derived in Appendix A, while
the general covariance, including parity, of the current ma-
UApu,lezA—luvpvy trix elements is shown in Appendix B.
whereU , is the unitary operator representing Lorentz trans- || RELATIVISTIC KINEMATICS AND DYNAMICS
formations on the constituent Hilbert space. _ _
The main problem in point form dynamics is to construct A. Kinematics

interacting four-momentum operators satisfying the above The positive mass, positive energy representation spaces
equations. There are two known ways to do this; first one cagf the PoincargyroupL(R3) x V! form the Hilbert space for

use quantum field theory as a guide to construct interactingonstituent particles of massand spinyj; the Poincargroup
four-momentum operators; in particular for a given interac-ransforms pointsx in Minkowski space tox’'=AX+a,

tion Lagrangian the interacting four-momentum operator isyherex, x', anda are four vectorsA is a Lorentz transfor-

constructed by integrating over the forward hyperboloid. Formation, and the inner produat x on Minkowski space is
the electromagnetic interaction, needed in this paper to angjiven by

lyze form factors, this construction results in the electromag-
netic four-momentum operator having the form 1

Pem= f d*x8(x- x—72) 0(x°) X3 (X)A,(X), X x=x1gx, x=

where J”(x) is the electromagnetic current operator and
A,(x) the photon field operator. Appendix C shows that
P#:=P{+ P4 satisfies the Poincareommutation relations
if J”(x) andA,(x) are local. The integration defining4, )
over the forward hyperboloid is specified by the proper timeMomentum stategpjo) transform under Lorentz transfor-
7__ mations and translations as

A second way of constructing interacting four-momentum
operators, called the Bakamjian-Thomas construdt@jnis . - .,
to write P“:=MV*, where, if the total mass operatidrcom- UAlpJU):; D,/ (Rw)lApjo’),
mutes with the velocity operat&* and Lorentz transforma-
tions, the Poincareommutation relations given above are
satisfied. Further, if the mass operator is written as the sum
of a free and interacting mass operalibr= M+ M;,;, then
point form relativistic quantum mechanics has a structuréere p is a four-momentum vector satisfying- p=m?,
very similar to nonrelativistic quantum mechanics. In par-where m is the mass of the constituenV’ is the
ticular, velocity states defined in Sec. Il and analyzed in(2j+1)-dimensional representation space of the rotation
great detail in Ref[10] have the property that orbital and group S@3) and R, is a Wigner rotation defined by
spin angular momentum can be coupled together exactly a8, (p,A):=B~*(Av)AB(v), with B(v) a boost, a coset rep-
is done nonrelativistically. Examples of the Bakamijian-resentative of SQ@,3/SO@3); in particular, p
Thomas construction are given in the following papgl, =B(v)p(rest), with p(rest) the rest frame four-vector
where a separable interacting mass operator is introduced (mn,0,0,0) andv:=p/m. Various types of boosts and their
analyzem-nucleon production reactions. properties are discussed in detail in Rgf2)].

AeSQ(1,3:={AeGL(4R)|ATgA=g}. (2.))

Ualpjo)y=€P2pjo). 2.2
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The infinitesimal transformations of E(.2) generate the chosen to be a canonical boost, theg(k; ,R,) =R, [see
operatorsP# and J*#, out of which the free mass operator Eq. (2.7), Ref.[12]] and Eq.(2.6) becomes
and spin operators are formed:

n
P Ualo.kiomi)= D', (RW|Av, Rk, ).
Pfr~Pfr=Mf2r, V’“==M—fr, A|U i M|> % i];[l "i'“i( W)| U, RyK :U“|>
fr (27)
W, =3 €,,q5*?P] (Pauli-Lubanski operator Since all of the rotations are the same, the spins can be

_ coupled together to give an overall spin state, as is done
wﬂ=%emﬁJaﬂv7 (modified Pauli-Lubanski operator nonrelativistically. If a boost other than canonical spin is
(2.3 used, it is easy to modify Eq2.5 so that under Lorentz

) ] ] . transformations the velocity states still transform as in Eq.
V# is the four-velocity operator, which, acting on a momen-(2 7). The steps needed to construct relativistic orbital angu-
tum eigenstate, has eigenvalue The labelsp, j, and o |3y momentum states from the velocity states, Bj5) is
appearing in the state, E(.2), are eigenvalues of the 0p- carried out in detail in Ref{10]. Under space-time transla-
eratorsPf , W-W, andn-W (see Ref[12] and the following  tions, velocity states transform as

paper[10]). The Casimir invariantV- W has the eigenvalues Ualo ko) = UnUgio Kal o

j(j+1), in contrast to the usual Pauli-Lubanski operator, alv Kimi) =UaUp) Kaj 11, Knjnitn)

which has an additional mass factor;is the momentum- =Ug)Up-11p1al Kii 115+ Kni nt

dependent four vectdB(v)*; (see Ref[10]). é( )7l olntin)
Many-particle states are defined as products of single- =e ™" v ki), (2.9

particle states: ) )
wheremn=:2\/mi2+ kik; is the freen-particle mass.

|P1J10 1+ Prin0n) :=|P1J101) **Prin0n) If a becomes infinitesimal, the free four-momentum op-
erator is seen to be

UalP1j101,- - :Prinon)

. Pilv, ki, mi)=muu#v ki, mi) (2.9
=H DL",U(ka)|(Ap1)jlai,...,(Apn)jnar’]> so that the free mass operat®hs:=\Ps- Py acting on
UalP1j101,. . Prjnon) =€ Zk=1P 3 p1j 101, ....Pni nTn)- Ml ki, mi)=mplv, ki), (2.10
(2.4 while the free four-velocity operatdr#:=P§ /My, gives
To develop a relativistic dynamics it is useful to have " . _
multiparticle states with labels describing theparticle sys- VEu ki ) =vH o K pi), veo=+10 (211

tem as a whole, and labels describing the internal configura- g connection between velocity states and single-particle
tion of the n-particle system. In Ref[12] simultaneously sc!ates is given by

coupled states were introduced that have such internal an
external variables. However, the internal variables do not [v,k;,u;)=Ug,|Kij1t1,- .. Knintn)
include the orbital angular momentum of theparticle sys- N
tem. In this paper we want to work with relativistic states S 11 D [k B . . .
related as closely as possible to nonrelativistic states, where T 1l oy K ()][P1j101,-- Painon);
orbital angular momentum is a possible internal variable. To

that end define a velocity state as (2.12

<pijia'i|Uki/~Li>:Hin=1DJ;Tii#i[Rw(ki B(v))] with pi
=B(v)ki; p=2p;=B(v)(y"=vm,, sov=p/m, as ex-
2 k=0, (2.5 pected.

o 1=

|U1ki aMi>==UB(U)|k1j 1M1 Kn nMn)r

B. Dynamics

Ul kini)=UnUs)lKal1pea, - Knbnin) Given the multiparticle Hilbert space, we want to intro-
:UB(AU)URW|k1j 141y Knjnten) duce a relativistic dynamics by perturbing the free four-
momentum operatoP4 . There will then be interactions in
n i , the spatial part of the four-momentum operator, as well as
ZZ il;[l DMir’ui[Rw(ki R 1 Av, RyKi i ) the time component of the four-momentum operaldf;
Hi which is the Hamiltonian. Dirac was the first to observe that
(2.6) a relativistic dynamics could take various forms, three of
which he called the point, instant, and front forfr®. The
Ry is the Wigner rotationR,(v,A) and R,(k;,R,) the  best known form of relativistic dynamics is the instant form,
Wigner rotation of a Wigner rotation. If the booB(k;) is  in which the three-momentum operator is not perturbed, but
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instead interactions are put in the boost generators of Lorentz 1ll. ELECTROMAGNETIC CURRENT OPERATORS
transformations. Thus in the instant form Lorentz transfor- AND FORM FACTORS
mations are not kinematic, but the momentum operators are.
In contrast in the point form, all Lorentz transformations are
kinematic and all four momentum operators are dynamic.
That introducing interactions in relativistic quantum me-
chanics .is more complicated than in .r]onrelativistic guantum Ph—Phyphyph 3.1)
mechanics can be seen from the Poincammutator stooyooem

In this section we consider a hadronic four-momentum
operator which is the sum of strong, photon, and electromag-
netic four-momentum operators:

whereP% is the strongly interacting four-momentum opera-
tor, P% is the free photon four-momentum operator given in
terms of photon creation and annihilation operators, Bf)d
whereK; is a generator of Lorentz transformations along thethe electromagnetic four-momentum operator; in the point
ith axis, P, is the momentum generator along tte axis,  form P4 is obtained by integrating”(x)A,(x) over the
i,j=1,2,3, andPP is the Hamiltonian. In the absence of in- forward hyperboloid

teractions these generators, obtained from @), satisfy
Eq. (2.13. If interactions are added tB%, PY—P°=p2
+V, then in order that the commutation relation be satisfied,
either K; must be modified(instant form or P; must be _ _
modified (point form); the front form modifies pieces of both With J”(x) the hadronic current operator aAg(x) the pho-

P; andK; as seen in Ref[4]. In nonrelativistic quantum ton field. The goal of this section is to find a covariant ex-
mechanics, the right-hand side of B8.13 contracts to the Pression for matrix elements of the current operator, in
identity operator, so that when the free Hamiltonian is modi-Which the invariant form factors are reduced matrix elements
fied to include interactions, it is not necessary to modify  Of the Poincaregroup. As shown in Appendix C, the had-
(which contracts to the nonrelativistic position operator ronic current operator must satisfy the following conditions:
P.

[Ki,Pj]zéijPO, (2139

Pgmzf d*x8(x-x— 72) 0(x°)x*I*(x)A (X), (3.2

i
A fgature of the point form is that it is manife;tly Lorentz aJ“(Mx) =0 (current conservation (3.33
covariant. If the free four-momentum operator is perturbed, 2
Pi— P#:=P{+ Pf;, then the total four-momentum operator 1 1 )
P# must satisfy the covariant Poincacemmutation rela- UpJ¥(x)Uy"=A""#,J"(AX) (Lorentz covarianck
tions (3.3b
o
[P~,P¥]=0, [P&,I*(x)]=i X (space-time covariange
(3.30
UpPHU = AT PY, (2.14 We want to write the operata¥“(x) in such a way that it

transforms as an irreducible tensor operator under the
strongly interacting Poincargroup, for the matrix elements
of such an operatal,(Q) can be reduced to Clebsch-Gordan
ggefficients times reduced matrix elements, which are the
invariant form factors. Write

where, since Lorentz transformations are kinemdtig, is
given in Eq.(2.7).

Bound and scattering states are eigenvectors of the ma
operator, defined as

M) s= 40— iQ-X "
Moy P (215 Ix)=2 f d'Qe ' "D[B(Q)"p(Q). (3.4
where
a fundamental requirement & is that its spectrum be posi-
tive. The associated spin spectrum for a gifhis obtained b=1,2,3 for Q>>0 (timelike),
from the square of the Pauli-Lubanski operator, defined in
Eqg. (2.3. b=1,2 for Q2=0 (lightlike),
A key issue in point form relativistic quantum mechanics
is constructing four-momentum operators that satisfy Eq. b=0,1,2 for Q<0 (spacelike, (3.9

(2.14. In this paper we assume that the strongly interacting

four-momentum operatd?%, is given; the goal is to analyze and

the properties of electromagnetic current operators that have 4 oAl : A a1

definite transformation properties with respecPtp[see Eq. D(A)",:=AR\G,y, With gy, =diag1,~1-1.~1),

(C3)] and in particular find a covariant expression for currentthe Minkowski metric. Note there is no sum o, in the
matrix elements, in which the states are eigenstat&;ofin definition of D(A). B(Q) is a boost defined below. Since
this analysis, the specific form &t is not needed; to cal- the Poincaregroup properties of spacelike representations
culate actual form factors requires of course that a specifiare not as well known as the timelike and lightlike represen-
choice of P4 be made(see, for example, Ref11]). tations, and further, since the applications of the representa-
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tion of current matrix elements is to spacelike momentum 5J3#(x)

transfers, only the cas®?<0 will be analyzed in detail in
this paper.
For Q2<0, write Q(st):=(0,0,0q) andRe SO(1,2) with

SO(1,2:={Re GL(3R)|RGR"=9, G=diag1,—1,—1)}.
(3.6)

ReSO(1,2) leavesQ(st) invariant, FY)Q(st)=Q(st).
Choose boostsB(Q) [that is, coset representatives of
SO(1,3) with respect to SA,2)] such thatA =B(Q)R, and
Q=B(Q)Q(st). Then
AB(Q=B(AQRy, (3.7
whereR,, is a spacelike Wigner “rotation” defined by
R,=B "Y(AQ)AB(Q)eSQ1,2). (3.9

If the operatord,(Q) of Eq. (3.4) transforms as a space-
like representation of the Lorentz subgroup

2
Uado(QU =2 (Ryppdo(AQ), (3.9

b’=0
thenJ*(x) will transform as Eq(3.3b:

U, JH4(x)U,

=2, | d*Qe °B(Q)¢gbp(Ru)bpJp (AQ)
b’.b

=, | d*Qe '°”D[B(Q)(Ry) 11 3p (AQ)
bl

=ATH2 [ diQe T DIB(QN T (Q)
=A"HJI"(AX). (3.10
Further, if

[P".3(Q1=Q"Iy(Q), (3.13

then

[P"J(x)]= % J d*Qe™'**D[B(Q)]*[P",3n(Q)]

L 93(x)
T,

. (3.12

This means that i8,(Q) transforms as an irreducible tensor

operator under the interacting Poincageup, thenJ#(x)
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R D) f d'Qe™12*Q, D[B(Q)]#4J(Q) =0.
(3.13

To show thatQ,D[B(Q)]#,=0, notice thatB~1(Q)Q
=Q(st)=0 for b=0,1,2. But

Q-B(Q)=Q"gB(Q)=Q"B *"(Q)g=[B XQ)Q]'g
=Q(shTg=0 (3.19

for b=0,1,2, which implies current conservation.
SinceJy(Q) transforms as a tensor operator, H(Q)’s
can be obtained from one standard, dgyQ(st)]; that is,

UgJo[Q(s9]1Ug0)=Jo[B(Q)Q(sH]=Jo(Q)

URI[Q(sD]UZ "= Reodo[Q(st], ReSQ12).
(3.15

Though this analysis has been carried out only for spacelike
Q, it is clear that a similar analysis can be carried out@or
timelike or lightlike.

Consider now statelpjo) which are eigenstates &%,
W-W, andn-W, the four-momentum, spin, and spin com-
ponent. In perturbation theory the scattering amplitude for
electrons scattering off a bound state of constituents is given

by
(p'j" 0" ke|S—1|pjoike)
—ie? a1 ,
=am? | ¥R &P -p-Q
X(p'j"o"[3*(0)|pjo)(ke|Ie(0)Ke)T s » (3.16

where(k;|JZ(0)|ke) is the electron current matrix element,
with ke, k¢ the initial and final electron four momentelec-
tron spin labels have been suppregsed

But

(p'j"o'[[P&.In(Q]IPjo)=Q*(p'j" o’ [In(Q)Pjo)

(P #*=p*)P'j"0"[Ip(Q)|pjo)=Q*(p'j o'|Ip(Q)|Pjo)
(3.17)

S (ke—ke+ Q)

so that either

(@ p’—p=Q, with (p'j" 0"’ |Js(Q)|pje) nonzero, or

(b) p'—p#Q, in which casegp'j’ o’ [J5(Q)|pjo)=0.

It thus follows that the hadronic current matrix element
can be written as

(p'j"a’[3%(0)|pjo)

=§ D[B(Q)]*w(p'j o' |In(Q)|pjc); (3.18

will automatically satisfy the covariance properties Egs.

(3.3b and(3.30.

Finally, Eq.(3.4) automatically incorporates current con-
servation,dJ#/9x*=0; note thatl,(Q) has only three com-
ponents irb for Q2<0, namelyb=0,1,2. Current conserva-
tion follows from the fact thaQ ,D[B(Q) ]“,=0, for then

the matrix element o3, (Q) is zero unles®=p’' —p which

is just the condition that a bound state of four-momentum
p=my produce a(possibly new state of four-momentum
p'=m'v'=p+Q, with Q the four-momentum transfer of
the photon.
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Using the fact thatl,(Q) transforms as an irreducible
tensor operator under thignteracting Poincaregroup, the
matrix element, Eq(3.18, can be written as a product of
Clebsch-Gordan coefficients and reduced matrix elements:

(p'i"o’'13,(Q)|pioy=2> (p'j'o’|Qu,r'r;pjo)
r'r

X(m'j'r'|Q¥Imjr),  (3.19

where the sum over’ andr is between—|'=r'=j’, —j
=r=j suchthar’'—r=0,=1 andv=0,*1.[See Eq(Al).]
(p’'j'a’'|Qu,r'r;pjo) is a Poincaregroup Clebsch-Gordan
coefficient coupling a time-likp to a spaceliké to produce

a timelikep’. As shown in Appendix A it is the product of
three D functions times a four-dimensional delta function
5*(p'—p—Q), so that Eq(3.19 indeed satisfies the com-

W. H. KLINK
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Q(st= (3.2)

o O O o

p. andp, are related to the invariants, m’ andQ? in Eq.
(A7). Then using the Clebsch-Gordan coefficients, @&d.0)
in the standard frame,

(p"(sH"r'[3,LQsHIIP(SYir) =8,/ (m'j 1| Q¥ mjr).
(3.22

For v=0, r’=r and the change form factor is defined as
FP:=(p' (9 'r|3,-o[ Q(s1IP(sD]r)

=(m'j’,r'=r[Q¥|mjr). (3.23

mutator conditions for translational covariance as given in

Eqg. (3.17). The quantities

(m'j"r’[Qmjr), (3.20

are reduced matrix elements, which, as will be shown, can be
related to the definition of more usual invariant form factors.

Equation (3.19 is a consequence of the Wigner-Eckhart
theorem for the Poincargroup, in which the spin projection
labelsr’ andr are degeneracy parametétisey are actually

eigenvalues ofV’ - Q andW- Q, see Ref[12], p. 40.

The connection with form factors defined as current ma-
trix elements evaluated in a standard frame is obtained by

choosing a standard frame
/m/2+ p/2
z

0
0

P,

0
Pz

p’(st)= p(st)=

For v==1, r'—r==1 and the current form factor is
defined as

Fo=(p’(shj'r'|I[Q(sh1=iI[Q(sH]|p(shjr)
=(m’j’",r'=r+1|Q?|mjr). (3.24

To convert these invariant form factors to Cartesian com-
ponents, needed in E(B.18, we write

b=1
Fr’r

1 ]
(=F})=5 (F +F),

_ 1 _
Ff’,,z(:l:{,r):ﬁ(F,*—Fr ). (3.29

Then the current matrix element, E@.18, can be written
as

010’13 0lpio) =3 | dQe @ DIB(QI(p'} 0713,(Q)]pi)

-3

b

=gl —p)x E A*,(p,Q)D

b,r'r

where the Lorentz transformatiox,(p,Q) [coset represen-
tative of SA1,3) with respect to SQ)] is given by

A(p!Q):(WO!leW21 %) 1 (327)
with  fwg=p*—(p-Q)/(Q?)Q*, M=ym?+(p-Q)/¢®

=E(st), Q=—@? w5=1, wo-Q=0. w; andw, are two
four vectors in the Lorentz transformation(p,Q), satisfy-
ing the relationsw;-wy=w;-Q=0, Wi2=—1, i=1,2, and

[ aQe 5o -p-Q)S A%y(p.QIDL (R (RFY,

ir’r’(R\:V)FE’rDiu(Rv;l)l (326)

wq-wW,=0; they are given explicitly in Eq(A18). If the
masses of the initial and final states are the samles m,
thenwy=(4m?+q%) YAp+p’).

The Wigner rotation®,,, R;, in Eq. (3.26 are defined by

Rw=B"*(P)A(p,Q)BLp(st],
Ry=B"*(p")A(p,Q)BLp'(sh]; (3.28

their explicit form is given in Eq(A21) for canonical spin
boosts and EqA22) for helicity boosts and are functions of
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p,p’ only, independent of the coset choice made forincluded in the initial and final states to allow for multipar-
A(p,Q). Notice that ifp=p(st) andp’=p’(st), thenR,, ticle states wheré' and| might include subenergies, spins
=R;,=e, the identity rotation. of subsystems or any other invariant labels needed to specify
The translational and Lorentz covariance of the curreng multiparticle systeni10,12. Further, the reduced matrix
matrix element representation, £§.26), can now be readily eIementst’,r become the invariant form factors given by
demonstrated. I is an arbitrary space-time translation, it Yennie et al. [13] when the spin and mass of the final par-
follows that ticle is the same as that of the initial particle. Notice that
although the representation for the current matrix element,
Eq.(3.3)), is covariant, all the spin dependence resides in the
Wigner D/ and DI’ functions. There are no spinor labets,
matrices or doubling of states for half-integer spin to include
parity. Moreover, in contrast to form factors defined using
spinor variablegsee, for example, Refl4]), the reduced
matrix elementslsff,r give the correct number of independent
form factors. Although the arguments of tBefunctions are
a hit complicated see Eqs(A21) and (A22) for the exact
expressiongthe representation, E¢3.31), is basically the

. . ) _ same for all matrix elements, including higher spin transi-
This means that it suffices to evaluate the matrix element fof, ).« This can be seen from the following examples, in
J#(0); translational covariance, Eq(3.39 with J*(x) which it is assumed that parity is conserveg, ' are the
:=UXJ"(O)U;l is then automatically satisfied. Checking the

. . g f intrinsic parities:
Lorentz covariance of Eq3.2]) is a little more complicated

(p'j' o' |U3 U J4(x) U, U, pjo)
=e (P "Pap il o | I (x+a)|pjo)
— g i(p'=p)agi(p’—p)-x+a
X >, A*y(p,Q)D!, (RL)D(R,FY,
r'r.b

=(p'j"o'[I*X)|pjo). (3.29

and is carried out in Appendix Bincluding parity covari- L 0 A O by [0 B
ance. (1) ji'=i=3z F/= o A" FriTlg of
By virtue of current conservation, the third component of
the standard current matrix element There is one electric and one magnetic form factor, related,

(p’(st)j’o'|3%(0)|p(st)j o) is zero. More generally current as discussed by Yenni al. to the Dirac form factors by

conservation is the condition that )

(PL=PuXpP"]"0'[3#(0)|pjo)=0; (3.30

but in the standard frarrm;t(st)— p.(st)=Q,(st) has only a
z component which means the matrix elementJ30) is
zero. Conversely, ifp’(st)j'r’|J3(0)|p(st)jr) is zero for
all r',r, then by boosting with\ (p,Q), Eg. (3.30 follows.

A=e

Fl_K W F2

Q7

B=2e om (F1+«F5)| [their Eq. (A-22)].

k is the anomalous magnetic moment.

Thus we have shown that the current matrix elements can

be written as
(p'j"o’1'[I*(0)|pjal)

= > A%(P,QD!. (R}

r’',r.b

XFLL(p'=p)2 1" 11D](RY),
(P o' 1"|34ed O pjarl)
=E w4(p,Q)DY, (R}
XFL L(p'=p)2 1" 11D} (RY),

(p'j"a"1"|Iad O)|pjol)

> why(p,.Q)D!, L(RY)
b=1,2

r’r

XFy[(p'—p)2 1" 11DI(R,Y), (3.3D)

a manifestly covariant form valid for particles of arbitrary
massesn’, mand sping’,j. The labeld’ andl have been

Ay
(2) j'=j=1, #'=n F= Az :
Ay
0 B, O
FP,?=[ B, 0 B
0 B, O

There are two electric and two magnetic form factors. If the
initial and final particles are the same, then hermiti¢iy.
(B16)] implies B,=B; and there is only one magnetic form
factor. The form factor is often written covariantly as

(p'10'[3#(0)|plo)
_pttp#
-2
N F2(Q?)
2m?

3 G1(Q?
2

—B(p")*,[QTgB(p)] ,}-

F1(Q3)[BT(p")gB(P)]ye

[(Q"gB(p")][QTgB(P)],

{{Q"gB(p" )1, B(p)*,
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Ay j is the eigenvalue ofV- W, ando the eigenvalue ofi- W, as
A, discussed in Sec. Il. Assume also that the constituents have
(3) j'=j=3 75'=7 FO= A , known invariant form factors so that for th#éh constituent
2
Ay T & s () (i)
(pi o |J(i)(0)|pi0'i>= (27)3 u(p; o )L y*(Fi'+2mFy’)
0 B , :
' —(p“+pFU(pe), (4.2
bes | Bs 0 B
Fr = : ON=I0) invari i
B, 0 Bj whereF}’ ,F3’ are the invariant Dirac form factors for the

B, 0 ith constituent. The goal is to compute the invariant form
factor of the particle in terms of the invariant form factors of

There are two electric and three magnetic form factors. If thé[he underlying constituents. To this end write

initial and final particles are the same, then hermiticity im-

plies B;=B; and there are two magnetic form factors. J#4(0)=34(0)+32(0), (4.3
(4) 2 +1 whereJ£(0) is the “free” or one-body operator and is of the
— form
A0
j, >4 y ] = 3 ) Fr? = n
. © © (0=, 3(0), (4.4
0 A =1
2;'+1
~ with J#(0) the current operator of thigh constituenfEq.
- +B, 0 B, 0 (4.2)]; J4(0) is the many-body current operator.
Fit= 0 ol As shown in Sec. lll the invariant form factor is the ma-
0 B, 0 B, trix element of the current operator in the standard frame.
That is,
0_ ' i 0 H
There is one electric and two magnetic form factors for all Fr=(p'(shj'r[I°(0)|p(st)jr)

NY2_,NI" transitions. The signs iﬁ:’,:r2 depend on the value

Of 77/77(_1)]’+j+2|’+1 [See Eq(Bl4)] Frt:<p,(3t)] ’ri1|‘Jt(0)|p(St)Jr>1 (45)

where F? and F;~ are the electric and the magnetic form
IV. THE POINT FORM RELATIVISTIC IMPULSE factors. Thus, what must be computed is the current matrix
APPROXIMATION element in the standard frame. In terms of one-body and

The general idea behind the impulse approximation is thalpany-body operators this is

the electromagnetic properties of composite particles should , . . .

be determined by the electromagnetic properties of their contP’ (D] "r'[3#(0)[p(stjr)=(p’ (st ’r"|If(0)|p(sbjr)
stituents. In particular the electromagnetic properties of had- gt 1 :
rons thought of as bound states of constituents should be +(p"(shj'r'[IL(0)|p(shjr).
determined by the electromagnetic properties of the constitu- (4.9
ents. In practice this means approximating the electromag-

netic current operatod*(0) by one-body operators. The  We define the point form impulse approximation to be
hope is that the matrix elements of the many-body current

operator are small in comparison with the matrix elements of (p’(st)j'r’|I*0)|p(shjry=(p’(st)j'r'|I(0)|p(shjr)

the one-body operator. How this approximation is to be 4.
made in the point form of relativistic quantum mechanics is

the subject of this section. We will consider the general casgyr ;,=0,+1. Notice that for current conservation to be

of a bound state oh constituents in this section, and in ygjid, the x=3 component must include many-body current
succeeding papers use the results to calculate deuteron @serators. That is, for =3 the left-hand side of Eq4.7) is
well as hadronic form factorgl1]. zero[see Eq.(3.30], yet if the right-hand side of Eq4.7)

Consider then a particle as a bound state obnstituents  yere evaluated for.= 3, it would not in general be zero. It is
of massm; and spinj;=3, i=1...n. Assume there is a the addition of the many-body current matrix element that
mass operatad¥l defined on the constituent Hilbert Spale  makes the sum zero. More generally any operator, including
whose discrete spectrum includes a particle of masinj,  two or more body operators, can be used in @d?) without
and spin projectior: violating Poincarecovariance or current conservation.

The goal now is to evaluate the right-hand side of Eg.
Moo =Mippjy, P2=m?; (4.1) (4.7 for u=b=0,=1. Writing out the matrix element gives
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P, =(p'(shj'r’|32(0)|p(shjr)

:i Ve sojrer (1

X 8(2'—2)--

---n")[(17]35(0)|1)
S(n"—n)+---+8(1'—1)- -

X 5[([1’ _1)_(n_ 1)]<n’|‘]g(o)|n>]'r/fp(st)jr(1' n)
(4.8

The bound-state wave functions must be symmetric or anti-
symmetric under particle interchange. Since the impulse cur-
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internal invariant labels,,_; [10,12. Then the stat¢l---n)

is written |p1o1,Pn_1in-10n-1ln_1) and the matrix ele-
ment, Eq.(4.8), becomes

r,zj

X(P1071,Pn-1n-107m-1l n—l)<p:/LO':,L|J?(O)| P101)
(4.9

d3p1
2E, 2E’

Pr—1du(ln- 1)¢

T(st)j'r’

X ‘pp(st)jr(plo'l Pn-1dn-10n-1ln-1),

rent matrix elements are symmetric under interchange of pamwheredu(l,,_4) is the measure for the internal variables of

ticles, the matrix element, Eq4.8), is n times the matrix

element for particle 1 the struck particle.

the multiparticle and depends on the choice of variables. Ex-
amples forn=2 and 3 will be given subsequently.

The free particle variables used in the above wave func- The “multiparticle” can be coupled to particle 1 to give
tions are not very convenient for carrying out the integra-the velocity statévku,m, 1j,_14n_1ln_1) for both initial
tions. Choosing particle 1 as the struck particle, the remainand final states. For the Bakamjian-Thomas construction of
ing free particle labels can be coupled together to give ahe four-momentum operator, the velocity label then be-

multiparticle with four-momentump,_;, mass m,_;

:=\Pn_1'Pn-1, SPINjr_1, SPIN cOMponent,_,, and other

!
B on S dkdk
r'r ;
in-1 Wi1Wp— 10 1
MMt 1t q
1/2*

><<pl‘71|~]1(0)|pl(T1>D

X ‘ﬁmjr(k:uvllun—lj n-1ln-1),

where p,_1=B(vin)k, k=(ym 1""(2 K), p1=B(vin)ky,

kl—(\/m12+ k?,—k), with S|m|Iar notation for the primed

variables. Now from EqS/A6) and (A7)

ym?+p2 cosha
N o |_ 0
P, sinh «
sinha= — i
¢ 2gm '
ym'2+p.? cosha
! — O — ! 0
p (St) 0 =m 0 ]
[0 sinh a
’ m2+q _ 2
. y_ Pz _
sinha'=—; —qu, . (4.11

Since, in the standard frame; andv;, have nox or y com-
ponents,

- dmy_du(l,— 1)l/lmj et (k Miﬂrﬁ—ljn—lln—l)ﬁ[k,_

o (Rulk; B DY

comes the velocity of the initial or final state,, or v¢, and
the matrix element of Eq4.9) takes the simpler form

B~ (v1)B(vin)K]

Rk B (0B }D5, {Rulky,B(vin) 1}
(4.10
|
coshA 0 0 sinhA
. 10 0
B~ (vy)B(vin) = 0 0 1 0o |
sinhA 0 0 coshA
(4.12
where
m2_ 2_m12
A=a—a’=sinh_1(—q )
2gm
m2+ 2_mr2
—sinh ! q—)
2qm

depends only on the invariant masses and momentum trans-
fer. The delta function in Eq4.10 can then be written as

JmZ_, +k’2=(coshA)m2_,+kZ+(sinh A)k cos 6,
k’sin 8’ cos ¢’ =k sin 6 cos ¢,
k’sin 8’sin ¢’ =k sin 6 sin ¢,

k'cos@’ =

(sinh A)ym2_,+kZ+ (coshA)k cos 6.
(4.13
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Set sinhy’:=(k'/m,_,), sinhy=(k/m,_1), v,y'=0. Then Eq.

(4.13 becomes
coshy’=coshA coshy+sinh A sinhy cosé,
tan ¢’ =tan o,
sinhy’ cos #' =sinh A coshy+coshA sinh vy cosé.

(4.14

With the change of variablek— |k|k— v, cosé,¢, the

integration can be split into wave function and current matrix

element integrations. Whef=0 or ,
coshy’=coshA coshy*sinh A sinh v,

v'=vy+A,0=0,

W. H. KLINK
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v'=y—A,0=m,y=A,

v'=—vy+ A, 0=m,y<A, (4.15

and the integration over the independent variableg’ is
betweeny’=y—A and y'=vy+A. Further Eq.(4.14 can
be used to solve for the angles:

coshy’ —coshA coshy

COS0=——GhA sinhy 270

coshy—coshA coshy’
cosf’' = - : ; ,
sinh A sinh y

o' =0, (4.16

so that finally the form factor integral becomes

sintfydy sintfy'dy’
FP =n m2_,dm,_.d I_f
o anq n-10Mh-2da(ln-2) V(my/m,_q)%+sintty \(my/m,_;)%+sintty’
1" mylm,

KAMIBY_1Hn—1
. b . .
X ‘ﬁ;lj ,r,( y'l ,mllﬂiﬂé—lj n—1Mp—1lh—1)3°(y ymp_4j nflA/*i:lelu*r,]—L“nfl) 'pmjr( VI g pin—1jn—1Mp-1ln-1),

(4.17)

where

' : ' ' ’ icm! — in—
Jb('y YMn-1jn-1Apipapn - 1Mn-1) ==P|/m|f(0080 )P|m|(COS 0)] d‘Pel(m' mlep Nt

My 1Mn—

1{Rw[k,l?fl(vf)B(vm)]}

12 — ’ o
x 2 Dy (R TKL B0 IKP1oi95(0)[p1o)DL%, Rulks B(oi]. (418
0'10'1
|
| is the relative orbital angular momentum of theparticle 1 (o +A
bound statern, is the projection. The form factor calculation f dy'dy=3 L dy. f_A dy-. (4.19

has been split into a part involving only the intermat 1
variables of the unstruck particles, and a part linking the
struck particle with the current matrix element. These latter Finally, the arguments of the Wignér functions must be
variables include the mass of the collective unstruck particlegyaluated. Now the argument of tiEn-1 function in Eq.
m,—; andy,y’, related to the energies of the struck particle.(4.18) is the Wigner rotation
The sums over the remaining discrete variables are limited
by their coupling toj andj’, the initial and final angular
momenta. Examples will be given in the following para-
graphs. The arguments of the Legendre polynomials,
Pim,(cos6) and P|,m|r(cos¢9’) are given in Eq(4.16).

The integration oveyy’ andy can be further simplified by which, after a somewhat tedious calculation, can be written
settingy.= vy’ *vy; then as the S2) element

Rul[k,B™ (v)B(vin)1=B~*(k")B~*(v1)B(vin)B(k),
(4.20
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Jul2+]v|2=1:

—v*, u*

(wp_1+my_1)cosiA/2)+k cos 6 sinh(A/2) (1+coshy)cosiHA/2)+sinhy cos 6§ sin(A/2)
u: =

V(w1 + My ) (@) +Myy) V(1+coshy)(1+coshy’)
B [ 1+coshy hA N coshy’—coshA coshy hA
~ V1+coshy’ coshy sinh A sz
k sin #e”'¢sinn(A/2) e ¢ \/1—005!?3/— cosifA —costy’ +2 coshy’coshA coshy
v= = 7 ,
V(wp_1+my_) (o) _,+m,_;) 2CoslA/2) (1+coshy)(1+coshy’)

(4.21

which givesu andv as functions ofy, y', A and ¢ only.
The remaining two WigneD? functions can be absorbed into the struck particle current matrix element. To see this
consider the term multiplying the Dirac spino(p,o):

2 Ua(p1o1)DY2, {Rulks,B(0in)1}= 2 Sue [B(P1)]S,,,[B ™ (P1)B(vin)B(Ky)]
g1

o1
=S, [B(vin)B(k1) 1= % Supl B(vin) Jupg(Kips); (4.22

here use has been made of the intertwining properties of matrix elerBenfsof the (3,0)@(0,3) representation of the
Lorentz group with respect to the Dirac spinar, o).
The relevant expression in E¢.18 then becomes

2 D7 ARIKG B0 H(Pioi95(0)]pro1)DY, {Rulks B(uin) ]}
0'10'1

=D,7 (B~ (kB (v)B(p)JU(p; o[ Y (F1+ 2mFy) = (p5+ pi°)F2]u(p1o) D, [B™(p)B(vin)B(ky)]

=U(kiu)SIB™ ) YP(F1+2miF o) — (p5+ piP) F2lSIB(vin) Ju(kyps) = B(vg) Utk w){ y"(F 1+ 2myFy)
—[k1+B X (v1)B(vin ki "Fo} SIB~Hv)B(vin) Ju(kypuy). (4.23

B Y(v¢)B(viy) is given in Eq.(4.12 and is a purez axis  Wherel,3 ands,; are the orbital and spin angular momentum
Lorentz boost depending on, m’, andQ? invariants. The ~ of the 2-3 system(The justification for being able to do
axis Lorentz transformatiol(v;)®, also depends only on these stepwise couplings for relativistic systems is given in a
invariants and can be taken outside the form factor integrafollowing paper, Ref[10].) Then the wave function vari-
Thus the entire integral depends on momentum transfer onlgbles are given by
through the variabld\, defined in Eq(4.12.

To conclude this section we give two examples that are of e (YIM| @1 f223M23) 23l 23523),
particular interest in form factor calculations, namely two-
body and three-body bound states. For a two-body wavand the sums ovdi; ands,s in Eq. (4.17) are independent
function m,_;=m,, the mass of the unstruck particle, and of the current matrix kernel, E¢4.18).
In—1=]2, the spin of the unstruck particle. There are no
additionall ,_, variables. The wave function is V. CONCLUSION

D (VIM g i), Though the point form of relativistic quantum mechanics
may seem further removed from nonrelativistic quantum me-
and if the spins of the two particles are coupledltdhe chanics than the instant form, there are a number of ways in
relative orbital angular momentum, to giyethe spin of the which it resembles nonrelativistic quantum mechanics; as
compound, the is limited by Clebsch-Gordan coefficients. shown in Sec. Il, multiparticle velocity states have the prop-
For three-particle bound states with particle 1 the struclerty that under Lorentz transformations, the internal mo-
particle, particles 2 and 3 can be coupled to give a multiparmenta and spins transform like their nonrelativistic counter-
ticle described by variablep,s, jo3, 023, |23, and sys, parts. In this case the overall four velocity of the state
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replaces the total momentum nonrelativistically, and in conmatic, magnetic current matrix elements in any other frame
trast to the instant form, the boosts which generate the vezonnected by a Lorentz transformation along thdirection
locity states are entirely kinematic. Further, unlike the instanto the standard frame, do not change. That is, the magnetic
form, the point form Hamiltonian is additive in the mass form factors are the same in any frame connected to the
operators, meaning that various decompositions of the totatandard frame by zaxis Lorentz transformation. The elec-
Hamiltonian needed in the interaction picture of time evolu-tric form factors, however, differ from those of the standard
tion are readily carried out. Also unlike both the instant andframe by a cosh factor arising from the Lorentz transforma-
front forms, the point form is manifestly covariant under tion. Therefore, form factors, defined as current matrix ele-
arbitrary Lorentz transformations. ments with final and initial momenta along tkeaxis only,
_Where the point form differs most strikingly from nonrel- are very simply related to the form factors defined in this
ativistic quantum mechanics is in the momentum operatoraner. In particular, form factors in the rest frame of one of

which carries interactions,_and thLljs.is not equal to the freg,q particles differs by a factor depending on invariants only,
momentum operator. But in the limit when—o and the from our standard form factors.

Poincaregroup contracts to the Galilei group, the interacting Although canonical spin boosts were chosen in Sec. Il

part of the momentum operator goes to zero leaving only tthq. (2.7)] to define velocity states, it is straightforward to

freehmomgntum ?p?rﬁ'_[or. has b . Igeneralize the definition of velocity states to include any
The main goal of this paper has been to examine propets, ot This generalization is given in the appendix of Ref.

ties of electromagnetic current operators in the point formpy g ' particular if helicity boosts are used in computing the
Th(_a hadronic electromagne'_uc current ope_rglb(x) must Wigner rotations occurring in the expression for the current
satisfy a number of constraints ,dl_Je to Poinceowariance iy elements, the invariant form factors then coincide
and current conservation. By defining a new current operatoy it the so-called helicity form factorg5].

Jp(Q) which transforms as an irreducible tensor operator o second main result concerns the existence of a point
under the Poincargroup, the constraints ait'(x) are auto- o m rejativistic impulse approximation. F,(Q) is written

matically satisfied. Moreover, in contrast to the difficulties o the sum of one-body and many-body operators, where the
E_znco.untered with the front form in de:almg with timelike and one-body operators are the current operators of the underly-
lightlike momentum transfers, the point form operalgfQ)  jng constituents, we have shown that hadronic form factors

deals with all these cases on an equal footing. Only th@4n pe written entirely in terms of the form factors of the
spacel!ke case has bgen discussed in this paper because t erlying constituents; nevertheless, there must be many-
spacelike representations are the least well known of thBody currents as demonstrated in Rif6]. But as seen in

Poincaregroup representations, and it is spacelike momengq 4 7) there are no effects of the many-body current ma-
tum transfers that are of most interest in applications. Utiliz4,ix elements on the hadronic form factors. while still pre-

ing the tensor transformation propertieslg{Q) allows one  gerying Poincareovariance and current conservation.
to give a group theoretical derivation of form factors, as seen he invariant form factors are integrals over bound state

in Eq. (3.20; when supplemented with parity and time re- yaye functions in the standard frame and the struck constitu-
versal invariance, the electric and magnetic form factors ar@nt current matrix elements. We have shown how to choose

directly related to current matrix elements in B@.3D.  \yaye function variables in which then¢-1) unstruck con-
Relativistic invariance including parity also gives the correctgyiients are coupled together to form a multiparticle, which

number of independent form factors, with no relations beg then coupled to the struck constituent. Using these vari-

?Neer[]AEorm factors, as is the case with front form calcula-gpes the form factor integral can be written in such a way
ions [4].

) that all of the momentum transfer informatifgiven through
Moreover all current matrix elements have the same genge yariableA, see Eq(4.12] resides in the limits of inte-
eral form. All the spin information for the initial and final gration or in the matrix element of the struck particle. By
states r¢_35|des in the two ngnrfu_nctlons; nevertheless, as splitting the wave function variables into “struck” and “un-
shown in Appendix B, under arbitrary Lorentz transforma-guck” variables it should be possible to separate the effects
tions the expression for the current matrix element, Edof waye function and struck constituent current matrix ele-
(3.3D), is generally covariant. The distinction between elec-ygnts on the momentum transfer dependence of the invariant
tric and magnetic form factors is not the usual one in that thgqm, tactors. These variables are being used to calculate deu-

four-vector multiplying the electric form factofsvy in EQ.  teron form factors for both elastic and quasielastic channels.
(3.31] is orthogonal to the two four-vectofs/f w4 in Eq.

(3.31)] multiplying the magnetic form factors. As seen in
example 1 following Eq(3.321), for current matrix elements APPENDIX A: CLEBSCH-GORDAN COEFFICIENTS

of spin+4 systems, the electric and magnetic form factors are FOR SPACELIKE MOMENTUM TRANSFER
linear combinations of the usual Dirac and Pauli form fac-
tors. Because the current operatly(Q) [Eqg. (3.4)] transforms

Form factors have been defined as reduced matrix eleas an irreducible tensor operator under (ingeracting Poin-
ments in the Poincargroup Wigner-Eckhard theorem. But caregroup, the matrix elements of the current operator can
an examination of the Poincaggoup Clebsch-Gordan coef- be reduced to Clebsch-Gordan coefficients times a reduced
ficients[see Eq(3.19] shows that these reduced matrix el- matrix element. The goal of this appendix is to compute the
ements are the current matrix elements in a standard frameelevant Clebsch-Gordan coefficients f@? spacelike,
namely, forQ? spacelike, that frame whe@(st) has only a namely(p’j’c’|Qbr'r;pjo); here|pjo) is a timelike state
z component. Since all Lorentz transformations are kinewith four momentump, spinj, and spin projectioro, with
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transformation properties under the Poircgreup given by To get the Clebsch-Gordan coefficients coupling a space-

Eq. (2.2. like four momentumQ with “spin” 1 to a timelike four-
|Qb) is a spacelike state with momentum transf@f momentump with spinj resulting in a timelike four momen-

<0; its Lorentz transformation properties are given in Eq.tump’ with spinj’, it is actually more convenient to couple

(3.9). For calculating Clebsch-Gordan coefficients it is con-P’ With spinj’ to a negative energp= —p with spinj to

venient to switch from “Cartesian” coordinates=0,1,2, to g€t a spacelik&; this is done by writing

spherical coordinates=0,=1. Then under Poincargans-

formations|Qv) transforms as |er’r>:=UB(Q)f dR
S0(1,2)
UA|QV>: ,2 DV’V(§W)|AQ1V,>! X’QVVDV;(’IEQ)Ur?lp,(St)j,r,>|H(St)jr>'
v'=0,x1 (A2)
UlQu)=e"'"?Q,»), (A1) wherep’(st) andp(st) are standard four-vectors to be speci-

~ ) . . L . fied,Q,, is the S@1,2) metric defined in Eq(3.6), andr'r
whereR,, e SO(1,2) is the Wigner “rotation” defined in Eq. are degeneracy parameters that are related to the independent
(3.9. D,/ ,(Ry) is Ry, written in spherical coordinates. invariant form factors. Then

UA|QVr'r>:UAUB(Q)quZ)dﬁ@wDﬁ(ﬁ)UHp’(St)j 'r")[p(sHjr)
=Ugrq) Jsou 2)d~R§,,,,DV,,%~R)U§W§|p’(St)j 'r")p(shjr)

=uB(A@qulz)dﬁ@WDV;(’F"ew%ualp'(st)j'r'>|6<st>jr>=2 D, (RWIAQ¥'T'T),  (A3)

so that the state defined in E@\2) transforms correctly under Lorentz transformations as required by Hg. In going from
the second to the third line of E¢A3) the invariance of the Haar measure of (3Q2) was used.

Further,
Ua|Qur'r)=Ug(q) dRg,,D i RIURUR-15-1q)alP’ (s ') P(sbir)
SQ(1,2)
=Ug(o) f dRg,,D,(R)e QR 18 @aygip (shjr)[p(shir), (A4)
SQ(1,2)
|
whereQ(st) is defined to be with m’ and m the masses of the four vectops (st) and
p(st), respectively. Substituting the choices for(st) and
Q(st):=p’ (st +p(st)=p’(st)—p(st). (A5)  p(st) given in Eq.(A6) into Eq. (A5) gives
2,0 2 2
If Q(st) is choserfollowing Yennieet al.[13]) to have the P, =m+q—m,
form (0,0,0q), with Q2= —q2<0, g>0, then z 2q
~ 2_ N2 A2
Q(sh-R B YQ)a=Q-a, pzz%_ (A7)

as required for the correct space-time translation propertie&I ice that ifm’ — h . fap! and d
given in Eq.(A1). otice that ifm’=m, the expressions fgp, andp, reduce

Set to the Yennieet al. result[their Eq.(A-7)] [13].
Since p’(st) andp(st) have zerax and y components,
) , , - , they remain unchanged under a rotation about zfwe 3)
p'(sh=[E"(sY),0,0p;]=(ym'“+p;,0,0p,), axis or thet(=0) axis. If S41,2) is decomposed into cosets
with respect to a rotation about thexis, the Haar measure
p(st=[E(s1),0,0p,]=(ym?+p,,0,0p,), E'(st=E(st), dR can be written asiR.dp, whereR, is some choice of
(AB) coset representative of $02) with respect to S(2). Then
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’ - 5 - then the coset representative(p,Q)=(wg,W,W5,Q/q)
|Qur r>:UB(Q)f dRcf d¢§,,D,(Re) can be given explicitly. In particular,
SO(1,2/502) s02)

xe"?Ug U,lp’(sbj'r")[Plstjr)
:UB(Q)f dRG,,D, —(Ro)
SQ(1,2/S0(2)

X UR [P’ (0]t [PTsvir), (A8)

where use has been made of the fact that the Wigner rotation

of p’(st) with R,(¢) is justR,(¢). Thus,v=r'—r follows
from integrating the resulting exponentials over

Finally, the operationsB(Q)R, on the tensor product

states can be carried out. NdB(Q)R, is a coset represen-
tative of SG1,3) with respect to S) and is related t,

p’, andQ by
p=B(QRcp(sY),
P’ =B(Q)R:p’ (s,
Q=B(Q)R.Q(s) =B(Q)Q(sb.

Carrying out the action oB(Q) andR. in Eq. (A8) then
gives the desired Clebsch-Gordan coefficients:

(A9)

(p'j"0’|Qu,r'r;pjo)
=(p'j'o’;pio|Qu,r'r)
= y(p,_p_Q)ngv,r'—r(ﬁc)

xD!, (RL)DI*(R,). (A10)

Q
azB(Wo)RQg,

0
%:WO.R’\Z’

sin 6 cos ¢
sin @ sin ¢
cosé

QW @
q 1+wy q

(A14)

|

fixes the polar and azimuthal angles®in terms ofQ and
wy (or equivalently, in terms op andp’).
Then

RZ=R,(¢) Ry( 0)z= (

wy:=Bc(Wp)Rey,
wi=wy- RX,

0

~ 0
W,= RX+ mg Wy (A15)

and
Wy:=B(Wo)Re&,,

Wg: Wo' R’y,

There are many different ways of choosing coset repre-

sentatives\ (p,Q) of SO(1,3) with respect to S(2). Instead

of writing A(p,Q)=B(Q)R., which emphasizes the space-
like momentum transfe®, it is more convenient to write

A(p,Q)=B(wo)R,
which emphasizes the timelike four-vectamwg=p*
—(p-Q)/(Q?Q*, introduced in Eq(3.27), and satisfying
wi=1, W,-Q=0. Then

p=A(p,Q)p(st)=B(wo)Rp(st),
p'=A(p,Q)p’(sh)=B(wo)Rp' (s,

Q=A(p,Q)Q(sh=B(wo)RQ(st),

(A11)

wo=A(p,Q)ey=B(Wp)ey, (A12)
whereey,=(1,0,0,0). IfB(wp) is chosen to be a canonical
boost,

wH
BC(W) = we WT ’ (A13)

|+
1+wP

W,=RY+ 1+3vg w, (A16)
Ryi= Ry [P(st),A(p,Q)] = B~ *(p)A(p, Q)B[p(st)], and
Ry, = Ry [p'(st), A(p,Q)] =B~ *(p')A(p, Q) B[ p’(st)].
These Wigner rotations can be computed explicitly as func-

tions ofv=p/m, v'=p’/m’ by writing
RuB™[p(sh]=B Y (p)A(p,Q),
RwB ™ P(shIp’(sh)=B~(p)A(p,Q)p'(sh=B~*(p)p’.
(AL17)

Now thex andy components oB ™[ p(st)]p(st) are zero, so
that R, is specified by the unit vector extracted from
B Y(p)p’. For canonical spin boosts

Vo _VT ,
- ! li v
B '(pp'=m’| _ - vev (Vf’)
1+Uo
v-v'
=m'| , v’ ,) (A18)
V' +Vv —Uy
+Uo




PRC 58 POINT FORM RELATIVISTIC QUANTUM MECHANICS . .. 3601

The vector magnitude dB_ *(p)p’ is m'(v-v")?—1, so v
that the two angles in the Wigner rotation can be specified by . . up-o’
the unit vector By (v)p'=m'gB'(v)gv'=m’g Uy’
Us-v’
Vv +V[V-V/(1+vo)—vg] 3
Au(V,V')= — > (A19 -
(v-v")—1
_ | Tuet A2l
For R,, it is simply necessary to interchangeandv’. =m —us-v’ |’ (A21)
Note that Eq.(A17) already shows thaR,, and R;, do not —uz-v’

depend on the choice of the coset representatife, Q).

For helicity boosts, with then the Wigner rotation for a helicity boost is given by

ul‘l),
A — 0! 2_
Bu(v)=R(®)A(|V)) = (v,uy,Uz,Ug), Ay(vv)=—| tzv / Vw-v')T=1
U3'U’
O /
= U l)
Vo Vo Cos # cos ¢
= = ) V' —|v
USlv )T M7 cos@sing | vod: | lvo
—sin 6 (A22)
APPENDIX B: COVARIANCE OF THE CURRENT
0 MATRIX ELEMENT REPRESENTATION
“sing |V| sin 6 cos ¢ UNDER LORENTZ TRANSFORMATIONS
2= cose |’ 3_(00{))' 0 sin 6 sin ¢ To demonstrate the covariance of the representation of the
0 cos ¢ current matrix elemenitEq. (3.26)] under Lorentz transfor-
(A20) mations use will be made of the Lorentz transformation
properties of states, ER.2), and the transformation of cur-
rent operators, Eq(3.3b. Inserting the identity operator
the Wigner rotations are obtained from UXIUA, A € SO(1,3), into the current matrix element gives

o' |UxMUAI#(0)U U, pjo)
=A",DL* IR(p',A)(Ap'j '@ [3(0)|Ap,jT)DL [Ry(p,A)]

=A7H, 3 AAP,AQ)D) IR (P, M)IDL, {Ru[p' (30, A(AD,AQ)I}FY,,
b,r’,r

x D! 4R, Y p(st), A(Ap,AQ)T}DL [R,(p,A)]

= A TAAPAQMDY, ARLA(P' AR (Y, A(AP,AQ)TIF?, DI {Ry[p(sh,A(AP,AQ)IRy(p,A)}.

b,r',r
(BY)

We must show that the last line of EB1) is equal to Q=A(p,Q)Q(st).
(p'j’0’13#(0)|pjo).

Now A(p,Q) is a coset representative of 8CB) with Once the coset representatiép,Q) has been determined,
respect to S); that means for any elemerte SO(1,3) R,=A"}(p,Q)A. Since AA(p,Q) is also an element of

one can write SQ(1,3), it too can be decomposed into cosets, as in Eq.
(B2), but with @‘ferent arguments for the coset representa-
A=A(p,QR,, R,eSO2). (B2) tive, sayp andQ. Then
A(p,Q) is defined by the relations AA(P,Q) =A(PQ)R,,

p=A(p,Q)p(sy, (B3) AA(p,Q)p(sh=A(P,Q)R,p(sb),
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Ap=p, Up,Ip(shjr)y=Ug (mUplp(shjr)
AA(P,Q)Q(sth=A(P,Q)R,Q(sY, = 7UR (| PP(SHITIDIARA P(SH]}
AQza; (B4) = 7]|p(St)jr=>D£:r{Rw[Pp(St)iRy( W)]RP[p(St)]}
o (B10)
that isp=Ap, Q=AQ, so that for any Lorentz transforma-
tion A, But
AA(pP,Q)=A(Ap,AQ)R,, (85  RulPp(sh,Ry(m) IR p(st]
and as with Wigner rotations, R, =B P(shIRy(m)B[Pp(sh]B~ "[Pp(sy1PBLp(sh]P
=A"Y(Ap,AQ)AA(p,Q), but this will not be needed in =B‘l[p(st)]PzB[p(st)]PzRy(w)=Ry(w). (B11)

the following discussion.
Using these results the Wigner rotations that appear in th&herefore,
D functions in Eq.(B1) can be written as

R p(sh AP A R(p.A)] Up,|p(shir)=nlp(shiT)DEIRy(m)]
W p S ’ pl W p;

—B [p(sy]A"(Ap,AQ)B(Ap)B~{(AP)AB(p) = alp(s0l, =D (812
o i Hp0s 2 s, kg arrc ety s,
=R,R,[p(sh),A(p.Q)]; Then
D!, {R, [p(s0,A(Ap,AQ)IR,(p,A)} F7= (P (s0] 1| 3°(0) p(sDir)
—e "¢Dl IR p(sh,A(p,Q)]}. (B6) =(p'(shj'r'|Up,Up,I°(0)UpUp |p(sh)jr)

imi i it =77/ (=1 (=)
A similar result holds foD () in Eq. (B1). Substituting
Egs. (B6) and (B5) into Eq. (B1l), then gives X{p'(shj’, —r'|P,I°0)|p(sh)j,—r). (B13)
(p'j'a'|3*(0)|pjo), which was to be shown.
The current matrix element representation is also covariFor the electric form factorb=0, r’=r and
ant with respect to parity. Parity is the operation that takes

to —x, leaving the time component unchanged. As a matrix it FO= 2/ p(—1)/" "R (—1)i*T,

is equal to the metrig=diag(1,-1,—1,—1). The action of

parity, P, on timelike states is given by FO =g n(—1)1 Ti+2rgo, (B14)
Uplpjo)=UpUgp|p(reshjo)=UpgppUP p(reshjo) If the initial and final particles are the same, theh= 7,

j'=j, and F9r=F? for any spinj. Further, time reversal
invariance means thﬂ? is real[13].

: For the magnetic form factors it is most convenient to
= 71; |Pp,jo)DL [R(P)], (B7)  switch back to spherical coordinatege Eq(3.25)], for then

=nUgppU RP(p)| p(resbjo)

where use has been made of the fact fP(p) P is a proper Fi=(p'(sbj'r'|3,+idy|p(st)jr)
Lorentz transformation, so it can be decomposed into cosets eafyi ! ; ;
with respect to SC): g = (p' (1)1 |Up,Up,(3,+13,)Up,Up P(SOT)

Rp(p)=B~X(Pp)PB(p)P, (B9) ==y p(p (sYia— 1 [3+idy (st 1)
_1\]tr
with 7 the intrinsic parity. Similarly for the current operator *(=1)
UpI°(0)Up*=3%0) =g (= DIIEED et
- _ - . ., 1 -
UpJi(0)U, '=-J'(0), i=1,.23. (B9) Ff’,f:i [Fr+(—1) i 2+l pF ], r/=r+1,
Now since covariance has been demonstrated for arbitrary L
continuous Lorentz transformations, it suffices to investigate pb=2_ ~ [FF—(—1)iti'*2+1 6% 1 (B15)

the effects of parity on standard states, which can then be Y
boosted to arbitrary states. Following Yeneteal. it is more

convenient to usé>,:=PR (), which only changes the 2 Time reversal invariance now implies that thg are pure
component, for theP,p(st)=p(st). It follows that imaginary, which when written a8 ,(r), give
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boq | e orn four-momentum operators, satisfies the Poinaaeditions
Foi =5 [Ba(N+(=D" B (1], given in Eq.(2.14), namely,

[P~,P"]=0,
. 1
Fon2=>[Bo(r)—(—1)i*" 241 (=)}, r'=r+1.

o2 U P*UL =A% PP,
(B16)

o o ] ] The proof thaf P#,P”]=0 is carried out in several steps.
Again if the initial and final particles are the samg,= 7,  gjnce by assumption

j’=j, and (-1)2*2*1=—1 in agreement with Yennie

et al. [their Eq.(A-12b)]. [P&+ Py Pyt PI]=0, (Cy
Finally if the initial and final particles are the same, the

hermiticity of the current operator can be used to get furtheit suffices to show thalPg,,,Pe,]=0 and[ P&+ P4, Pgl

relations on the invariant form factors: +[Pém,Pst P, ]1=0. Consider first the commutator
Foe=(p’(sjr’|3°(0)[p(sDjr) [Pl Pinl
=(p(sjr|3°(0)|p’ (svir )* =Fy,, b=1,2.

617 =f d*xd*y8(x-x—72) 8(y-y— %) 8(x°) 6(y°) x*y"

@ B
Note that the momenta gi(st) andp’(st) are equal and XLIX)AL(X), I5(Y) Ag(y)]. (C2)

opposite form’=m [Eq. (A7)]. A Lorentz transformation Now the integration is over timelike andy, with (x—y)?
that takes p(st)=(Vvm“+p,,0,0-p;) to (Ym"+p;00, —2:2_2y.y<0, so that ifJ*(x) is local, the commutator in
+p,), means, using the covariance proved earlier in thiszg (c2) is zero.
appendix, thaf;,, is Hermitian inr’ andr. Further, under  space-time translations, U,
) =e '(PstPy) 3 we require that
APPENDIX C: POINCARE COVARIANCE OF THE FOUR-
MOMENTUM OPERATOR U4 U, =J%(x+a),

In this appendix we find conditions under which the total U AX(X)U; t=AX(x+a). (C3)
four-momentum operator given in E(.1), P*=P§+PY
+ P4, the sum of the strong, photon, and electromagnetidhen

Uan‘mU,.;l:f d4x5(x‘x—72)G(XO)X"UaJ“(x)Aa(x)U;1=f d*x8(x-x— 72) (x°)x*JI¥(x+a)A,(x+a),

J
[PL+ Py Py l= f d*x3(x- x=7) 9(X°)X” — = I*(X)Au(X),
M

[Pt PY  Peml + [ Pem, Pst PYI=[P&+ Py Peml = [Pgrt P, Per]

Jd Jd
zf d4x6(x-x—72)6(x°)(x" X o )J“(X)Aa(x)zo. (C4)
i v

The last line of Eq.(C4) follows from the fact that Since Eq.(C5) holds for all Lorentz transformations, for in-
J¥X)A,(x) is a scalar density,U,J¥x)A,(x)U* finitesimal Lorentz transformations the integral in EQ4) is

=J*(AX)A,(AX), for then Zero.
Thus,

[P#,PY]=[Pl+Ph+ Pl PLt Pl +PL]

em?
f d*xS8(x-x—72) O(x°)U , I*(X)A,(x)U v, pr v
=[P&+ Py Pt PI1+[Pém, Peml

= f d*x8(x-x— 72) 6(x°)I*(AX)A (AX) H{[P&+PY ,Peml —[Pet P PEnl}
=0, (C6)

_ 4 _ 2 0\ 1o
_f ™% (%X = 77) B(x7) JH(X) An(X). (€5 since each of the three terms are separately zero. Finally,
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UAPg‘me:f d*x8(x- x— 72) B(X°)x*I¥(AX) A (AX) Pgm=f d*x [ x-x—(c7)2]x*A(ct) I4(X)A,(X)

=AM, Pen (C7) ct

f d3x (
Ver)?+x-x | X
from this it follows thatU , P#U *= A~ P”, and thus Eq.

3
(2.19) is satisfied forP* defined in Eq(3.2). lim Pem=f d_x xJ4(x)A,(x)=0
It remains to show that in the nonrelativistic limPg,y, c—o cr
=0 and PgmzHem is the usual electromagnetic interaction. 3
Group theoretically these limits correspond to contracting a i, pO :f 2 crI4(x)A (X):j d3xJ*(X)A ()
representation of the Poincageoup to the Galilei group by e oM cT “ “
letting c, the speed of light, go to infinity. Inserting factors of

)73
) JUX)AL(X);

c givesx®=ct and =Hgoe. (Cy)
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