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Point form relativistic quantum mechanics and electromagnetic form factors

W. H. Klink
Department of Physics and Astronomy, The University of Iowa, Iowa City, Iowa 52242

~Received 26 January 1998!

A relativistic quantum mechanics of constituents is formulated in which particles are bound states of a mass
operator. The point form of relativistic dynamics is used, in which Lorentz transformations are kinematic, and
the four-momentum operator carries all the interactions. A general covariant expression for matrix elements of
the electromagnetic current operator is given in which the invariant form factors are reduced matrix elements
of the Poincare´ group. A point form relativistic impulse approximation is formulated, in which invariant form
factors of particles are given in terms of their underlying constituents.@S0556-2813~98!05512-5#

PACS number~s!: 24.10.Jv, 03.65.Ca, 11.30.Cp, 13.40.Gp
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I. INTRODUCTION

The goal of this and succeeding papers is to formulat
relativistic quantum mechanics of constituent particles,
bound states of which are the observed hadrons, and w
scattering states should account for such complicated
nomenon as multiparticle production reactions. The te
constituent particle is used to mean objects that transform
irreducible representations of the Poincare´ group with defi-
nite mass, spin, and internal symmetry quantum numb
Thus, constituent could mean the protons and neutrons
make up nuclei or it could mean the quarks that make up
hadrons. The many-particle Hilbert space of the constitue
is the tensor product of the individual constituent Hilbe
spaces; in this paper the number of constituents is fix
while in following papers~for example, Ref.@1#! the number
will be variable.

As is already evident in the language being used, the
phasis in these papers is on quantum mechanics, as opp
to quantum field theory. The goal is to formulate a relativ
tic quantum mechanics which is in spirit similar to nonre
tivistic quantum mechanics, where a Hamiltonian acting o
suitable Hilbert space specifies the bound states andSmatrix
of the system. In point form relativistic quantum mechan
the four-momentum operator replaces the Hamiltonian
as will be shown in Sec. II, suitably defined relativistic sta
have properties very similar to their nonrelativistic multipa
ticle counterparts.

As is well known there are a number of ways of form
lating a relativistic quantum mechanics, three of which Dir
@2# called the instant, front, and point forms. Calculations
spectra and form factors have been carried out using b
instant@3# and front form dynamics@4#. Moreover quantum
field theory is usually formulated as an instant form of d
namics, in which the interaction Lagrangian is integra
over a time constant surface, resulting in interactions in
energy and boost generators. More recently front form v
sions of quantum field theory have been developed@5#.

There has been no analogous development of point f
dynamics. The first use of the point form seems to have b
made by Sokolov in the 1970s@6#, to prove cluster propertie
for relativistic systems with a finite number of degrees
freedom. Lev@7# has compared some of the features of
point form with the instant and front forms, particularly wit
PRC 580556-2813/98/58~6!/3587~18!/$15.00
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regard to the cluster properties of electromagnetic curr
operators. Keister and Polyzou@8# discuss the point form
along with the other forms in their review article; howeve
there has been no investigation into the detailed propertie
the point form, both as regards comparing calculations
such quantities as form factors and scattering amplitu
with data or comparing with results of other few-body ca
culations.

The point form has a number of features that distinguis
from the other forms of dynamics. First those operators t
contain all the dynamics—namely, the four-momentu
operators—commute with one another, and can be simu
neously diagonalized. Since the Lorentz generators do
contain any interaction terms, the theory is manifestly co
riant. This means there is a more direct connection w
models motivated by quantum field theory. In fact a po
form quantum field theory could be developed by integrat
the interaction Lagrangian over the forward hyperboloid,
sulting in four-momentum operators with interactions in
four components. In Sec. III this construction will be used
couple the electromagnetic current operator to the pho
field.

Second, electromagnetic current operators at an arbit
space-time point are related to the electromagnetic cur
operator at a special space-time point~usually the space-time
origin, hence the name ‘‘point form’’! by translating from
the origin with the interaction dependent four-momentu
operators. The resulting electromagnetic current opera
automatically have the correct Poincare´ transformation prop-
erties @see Eq.~3.3!#, from which it follows—as will be
shown in Sec. III—that there are the correct number of in
pendent form factors for particles with spin. Moreover tim
like and spacelike momentum transfers are handled on
equal footing. The current operator at the space-time or
is not uniquely determined, since the only constraints it m
satisfy are Lorentz covariance and current conservation.

Finally, there is a close relationship with nonrelativist
quantum mechanics. In the contraction limit, when the sp
of light is much larger than any particle velocities, the inte
acting three-momentum operator goes to zero. Spin and
bital angular momentum can be coupled together exactly
is done nonrelativistically, yet the theory is Lorentz cova
ant, and the spin is given by the relativistic Pauli-Luban
operator.
3587 ©1998 The American Physical Society



om
e

-
a
a

ta

-
-

th
n

ns

c
ov
ca
tin
c

r i
o
n

ag

nd
a

m

m

-
re
u

ur
ar

i
d
y
n

d

se
he
in-
to

le

ed
e

tor
oin-
ad
ts,
ect
he
fine
an
ant

the
ile
a-

ces

-

ion

-

r
ir

3588 PRC 58W. H. KLINK
There are two different Poincare´ group actions on the
constituent Hilbert space. One is the action inherited fr
the single-particle spaces, since the relevant Hilbert spac
the tensor product of single-particle spaces. This action
called the free~or noninteracting! action, and results in op
erators representing free Lorentz transformations and sp
time translations. The infinitesimal space-time transform
tions generate the free four-momentum operatorPfr

m and the
free mass operatorM fr

25PfrPfr . The four-velocity operator
Vm is defined asPfr

mM fr
21 and the relativistic multiparticle

states mentioned previously can be chosen to be eigens
of the four-velocity operator.

The second Poincare´ action comes from the total four
momentum operatorPm, which is the sum of free and inter
acting four-momentum operatorsPm5Pfr

m1PI
m . Since the

Lorentz generators are not modified in the point form,
fundamental operator equations that must be satisfied ca
written as

@Pm,Pn#50,

ULPm,UL
215L21m

nPn,

whereUL is the unitary operator representing Lorentz tra
formations on the constituent Hilbert space.

The main problem in point form dynamics is to constru
interacting four-momentum operators satisfying the ab
equations. There are two known ways to do this; first one
use quantum field theory as a guide to construct interac
four-momentum operators; in particular for a given intera
tion Lagrangian the interacting four-momentum operato
constructed by integrating over the forward hyperboloid. F
the electromagnetic interaction, needed in this paper to a
lyze form factors, this construction results in the electrom
netic four-momentum operator having the form

Pem
m 5E d4xd~x•x2t2!u~x0!xmJn~x!An~x!,

where Jn(x) is the electromagnetic current operator a
An(x) the photon field operator. Appendix C shows th
Pm

ªPfr
m1Pem

m satisfies the Poincare´ commutation relations
if Jn(x) and An(x) are local. The integration definingPem

m

over the forward hyperboloid is specified by the proper ti
t.

A second way of constructing interacting four-momentu
operators, called the Bakamjian-Thomas construction@9#, is
to write Pm

ªMVm, where, if the total mass operatorM com-
mutes with the velocity operatorVm and Lorentz transforma
tions, the Poincare´ commutation relations given above a
satisfied. Further, if the mass operator is written as the s
of a free and interacting mass operatorM5M fr1M int , then
point form relativistic quantum mechanics has a struct
very similar to nonrelativistic quantum mechanics. In p
ticular, velocity states defined in Sec. II and analyzed
great detail in Ref.@10# have the property that orbital an
spin angular momentum can be coupled together exactl
is done nonrelativistically. Examples of the Bakamjia
Thomas construction are given in the following paper@1#,
where a separable interacting mass operator is introduce
analyzep-nucleon production reactions.
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The goal of the following series of papers is to make u
of the distinctive features of the point form to explore t
properties of few-body relativistic nuclear systems. This
cludes using a relativistic Lippman-Schwinger equation
analyze scattering and resonance phenomenon~see Ref.@1#!
as well as computing form factors, initially of such simp
systems as pions@11# and deuterons.

The goal of this paper is to develop the formalism need
to compute form factors in the point form. This will be don
in Sec. III by rewriting the electromagnetic current opera
as an irreducible tensor operator under the interacting P
carégroup. Using the Wigner-Eckhart theorem will then le
to the definition of form factors as reduced matrix elemen
for particles of arbitrary mass and spin, and with the corr
number of independent form factors. Section IV will use t
covariant representation of current matrix elements to de
a point form impulse approximation, so that form factors c
be calculated from one-body current operators. The relev
Poincare´ group Clebsch-Gordan coefficients needed for
Wigner-Eckhard theorem are derived in Appendix A, wh
the general covariance, including parity, of the current m
trix elements is shown in Appendix B.

II. RELATIVISTIC KINEMATICS AND DYNAMICS

A. Kinematics

The positive mass, positive energy representation spa
of the Poincare´ groupL(R3)3Vj form the Hilbert space for
constituent particles of massm and spinj; the Poincare´ group
transforms pointsx in Minkowski space tox85Lx1a,
wherex, x8, anda are four vectors,L is a Lorentz transfor-
mation, and the inner productx•x on Minkowski space is
given by

x•xªxTgx, x5S x0

x D , g5S 1

21

21

21

D
LPSO~1,3!ª$LPGL~4,R!uLTgL5g%. ~2.1!

Momentum statesup js& transform under Lorentz transfor
mations and translations as

ULup js&5(
s

Ds8s
j

~Rw!uLp js8&,

Uaup js&5eip•aup js&. ~2.2!

Here p is a four-momentum vector satisfyingp•p5m2,
where m is the mass of the constituent.Vj is the
(2 j 11)-dimensional representation space of the rotat
group SO~3! and Rw is a Wigner rotation defined by
Rw(p,L)ªB21(Lv)LB(v), with B(v) a boost, a coset rep
resentative of SO~1,3!/SO~3!; in particular, p
5B(v)p(rest), with p(rest) the rest frame four-vecto
(m,0,0,0) andvªp/m. Various types of boosts and the
properties are discussed in detail in Ref.@12#.
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The infinitesimal transformations of Eq.~2.2! generate the
operatorsPfr

m and Jab, out of which the free mass operato
and spin operators are formed:

Pfr•Pfr5M fr
2, Vm

ª

Pfr
m

M fr
,

Wm5 1
2 emnabJabPfr

g ~Pauli-Lubanski operator!,

W̃m5 1
2 emnabJabVg ~modified Pauli-Lubanski operator!.

~2.3!

Vm is the four-velocity operator, which, acting on a mome
tum eigenstate, has eigenvaluev. The labelsp, j, and s
appearing in the state, Eq.~2.2!, are eigenvalues of the op
eratorsPfr

m , W̃•W̃, andn•W̃ ~see Ref.@12# and the following

paper@10#!. The Casimir invariantW̃•W̃ has the eigenvalue
j ( j 11), in contrast to the usual Pauli-Lubanski operat
which has an additional mass factor;n is the momentum-
dependent four vectorB(v)m

3 ~see Ref.@10#!.
Many-particle states are defined as products of sin

particle states:

up1 j 1s1 ,...,pnj nsn&ªup1 j 1s1&¯pnj nsn&

ULup1 j 1s1 ,...,pnj nsn&

5)
k51

n

D
s

k8sk

j k ~Rwk
!u~Lp1! j 1s18 ,...,~Lpn! j nsn8&

Uaup1 j 1s1 ,...,pnj nsn&5e2 i (k51
n pk•aup1 j 1s1 ,...,pnj nsn&.

~2.4!

To develop a relativistic dynamics it is useful to ha
multiparticle states with labels describing then-particle sys-
tem as a whole, and labels describing the internal config
tion of the n-particle system. In Ref.@12# simultaneously
coupled states were introduced that have such internal
external variables. However, the internal variables do
include the orbital angular momentum of then-particle sys-
tem. In this paper we want to work with relativistic stat
related as closely as possible to nonrelativistic states, w
orbital angular momentum is a possible internal variable.
that end define a velocity state as

uv,k i ,m i&ªUB~v !uk1 j 1m1 ,...,knj nmn&,

( k i50, ~2.5!

ULuv,k im i&5ULUB~v !uk1 j 1m1 ,...,knj nmn&

5UB~Lv !URw
uk1 j 1m1 ,...,knj nmn&

5(
m i8

)
i 51

n

D
m

i8m i

j i @Rw~ki ,Rw!#uLv,Rwk i ,m i8&.

~2.6!

Rw is the Wigner rotationRw(v,L) and Rw(ki ,Rw) the
Wigner rotation of a Wigner rotation. If the boostB(ki) is
-

,

-

a-

nd
t

re
o

chosen to be a canonical boost, thenRw(ki ,Rw)5Rw †see
Eq. ~2.7!, Ref. @12#‡ and Eq.~2.6! becomes

ULuv,k i ,m i&5(
m i8

)
i 51

n

D
m

i8m i

j i ~Rw!uLv,Rwk i ,m i8&.

~2.7!

Since all of the rotations are the same, the spins can
coupled together to give an overall spin state, as is d
nonrelativistically. If a boost other than canonical spin
used, it is easy to modify Eq.~2.5! so that under Lorentz
transformations the velocity states still transform as in E
~2.7!. The steps needed to construct relativistic orbital an
lar momentum states from the velocity states, Eq.~2.5! is
carried out in detail in Ref.@10#. Under space-time transla
tions, velocity states transform as

Uauv,k im i&5UaUB~v !uk1 j 1m1 ,...,knj nmn&

5UB~v !UB21~v !auk1 j 1m1 ,...,knj nmn&

5e2 imnv•auv,k im i&, ~2.8!

wheremnª(Ami
21k ik i is the freen-particle mass.

If a becomes infinitesimal, the free four-momentum o
erator is seen to be

Pfr
muv,k i ,m i&5mnvmuv,k i ,m i& ~2.9!

so that the free mass operatorM frªAPfr•Pfr acting on
uv,k i ,m i& gives

M fruv,k i ,m i&5mnuv,k im i&, ~2.10!

while the free four-velocity operatorVm
ªPfr

m/M fr gives

Vmuv,k i ,m i&5vmuv,k i ,m i&, v•v511. ~2.11!

The connection between velocity states and single-part
states is given by

uv,k i ,m i&5UB~v !uk1 j 1m1 ,...,knj nmn&

5(
s i

)
i 51

n

Ds im i

j i @ki ,B~v !#up1 j 1s1 ,...,pnj nsn&;

~2.12!

^pi j is i uvk im i&5P i 51
n Ds im i

j i @Rw„ki ,B(v)…# with pi

5B(v)ki ; pª(pi5B(v)(0
mn)5vmn , so v5p/mn as ex-

pected.

B. Dynamics

Given the multiparticle Hilbert space, we want to intr
duce a relativistic dynamics by perturbing the free fou
momentum operatorPfr

m . There will then be interactions in
the spatial part of the four-momentum operator, as well
the time component of the four-momentum operatorP0,
which is the Hamiltonian. Dirac was the first to observe th
a relativistic dynamics could take various forms, three
which he called the point, instant, and front forms@2#. The
best known form of relativistic dynamics is the instant form
in which the three-momentum operator is not perturbed,
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instead interactions are put in the boost generators of Lor
transformations. Thus in the instant form Lorentz transf
mations are not kinematic, but the momentum operators
In contrast in the point form, all Lorentz transformations a
kinematic and all four momentum operators are dynamic

That introducing interactions in relativistic quantum m
chanics is more complicated than in nonrelativistic quant
mechanics can be seen from the Poincare´ commutator

@Ki ,Pj #5d i j P
0, ~2.13!

whereKi is a generator of Lorentz transformations along
i th axis, Pj is the momentum generator along thej th axis,
i , j 51,2,3, andP0 is the Hamiltonian. In the absence of in
teractions these generators, obtained from Eq.~2.2!, satisfy
Eq. ~2.13!. If interactions are added toPfr

m , Pfr
0→P05Pfr

0

1V, then in order that the commutation relation be satisfi
either Ki must be modified~instant form! or Pj must be
modified~point form!; the front form modifies pieces of bot
Pj and Ki as seen in Ref.@4#. In nonrelativistic quantum
mechanics, the right-hand side of Eq.~2.13! contracts to the
identity operator, so that when the free Hamiltonian is mo
fied to include interactions, it is not necessary to modifyKi
~which contracts to the nonrelativistic position operator! or
Pi .

A feature of the point form is that it is manifestly Loren
covariant. If the free four-momentum operator is perturb
Pfr

m→Pm
ªPfr

m1Pint
m , then the total four-momentum operat

Pm must satisfy the covariant Poincare´ commutation rela-
tions

@Pm,Pn#50,

ULPmUL
215L21m

nPn, ~2.14!

where, since Lorentz transformations are kinematic,UL is
given in Eq.~2.7!.

Bound and scattering states are eigenvectors of the m
operator, defined as

MªAP•P; ~2.15!

a fundamental requirement onM is that its spectrum be pos
tive. The associated spin spectrum for a givenPm is obtained
from the square of the Pauli-Lubanski operator, defined
Eq. ~2.3!.

A key issue in point form relativistic quantum mechani
is constructing four-momentum operators that satisfy
~2.14!. In this paper we assume that the strongly interact
four-momentum operatorPst

m is given; the goal is to analyz
the properties of electromagnetic current operators that h
definite transformation properties with respect toPst

m @see Eq.
~C3!# and in particular find a covariant expression for curre
matrix elements, in which the states are eigenstates ofPst

m . In
this analysis, the specific form ofPst

m is not needed; to cal
culate actual form factors requires of course that a spe
choice ofPst

m be made~see, for example, Ref.@11#!.
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III. ELECTROMAGNETIC CURRENT OPERATORS
AND FORM FACTORS

In this section we consider a hadronic four-momentu
operator which is the sum of strong, photon, and electrom
netic four-momentum operators:

Pm5Pst
m1Pg

m1Pem
m , ~3.1!

wherePst
m is the strongly interacting four-momentum oper

tor, Pg
m is the free photon four-momentum operator given

terms of photon creation and annihilation operators, andPem
m

the electromagnetic four-momentum operator; in the po
form Pem

m is obtained by integratingJn(x)An(x) over the
forward hyperboloid

Pem
m 5E d4xd~x•x2t2!u~x0!xmJn~x!An~x!, ~3.2!

with Jn(x) the hadronic current operator andAn(x) the pho-
ton field. The goal of this section is to find a covariant e
pression for matrix elements of the current operator,
which the invariant form factors are reduced matrix eleme
of the Poincare´ group. As shown in Appendix C, the had
ronic current operator must satisfy the following condition

]Jm~x!

]xm 50 ~current conservation!, ~3.3a!

ULJm~x!UL
215L21m

nJn~Lx! ~Lorentz covariance!,
~3.3b!

@Pst
n ,Jm~x!#5 i

]Jm

]xn
~space-time covariance!.

~3.3c!

We want to write the operatorJm(x) in such a way that it
transforms as an irreducible tensor operator under
strongly interacting Poincare´ group, for the matrix elements
of such an operatorJb(Q) can be reduced to Clebsch-Gorda
coefficients times reduced matrix elements, which are
invariant form factors. Write

Jm~x!ª(
b
E d4Qe2 iQ•xD@B~Q!#m

bJb~Q!, ~3.4!

where

b51,2,3 for Q2.0 ~ timelike!,

b51,2 for Q250 ~ lightlike!,

b50,1,2 for Q2,0 ~spacelike!, ~3.5!

and

D~L!m
nªLm

ngnn , with gmn5diag~1,21,21,21!,

the Minkowski metric. Note there is no sum ongnn in the
definition of D(L). B(Q) is a boost defined below. Sinc
the Poincare´ group properties of spacelike representatio
are not as well known as the timelike and lightlike repres
tations, and further, since the applications of the represe
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tion of current matrix elements is to spacelike moment
transfers, only the caseQ2,0 will be analyzed in detail in
this paper.

For Q2,0, write Q(st)ª(0,0,0,q) andR̃PSO(1,2) with

SO~1,2!ª$R̃PGL~3,R!uR̃g̃R̃T5g̃, g̃5diag~1,21,21!%.

~3.6!

R̃PSO(1,2) leaves Q(st) invariant, (0 1
R̃ 0)Q(st)5Q(st).

Choose boostsB(Q) @that is, coset representatives
SO~1,3! with respect to SO~1,2!# such thatL5B(Q)R̃, and
Q5B(Q)Q(st). Then

LB~Q!5B~LQ!R̃w , ~3.7!

whereR̃w is a spacelike Wigner ‘‘rotation’’ defined by

R̃wªB21~LQ!LB~Q!PSO~1,2!. ~3.8!

If the operatorJb(Q) of Eq. ~3.4! transforms as a space
like representation of the Lorentz subgroup

ULJb~Q!UL
215 (

b850

2

~R̃w!b8bJb8~LQ!, ~3.9!

thenJm(x) will transform as Eq.~3.3b!:

ULJm~x!UL
21

5 (
b8,b

E d4Qe2 iQ•xB~Q!b
mgbb~R̃w!b8bJb8~LQ!

5(
b8

E d4Qe2 iQ•xD@B~Q!~R̃w!21#b8
m Jb8~LQ!

5L21m
n(

b8
E d4Q8e2 iQ8•LxD@B~Q8!#b8

m Jb8~Q8!

5L21mJn~Lx!. ~3.10!

Further, if

@Pn,Jb~Q!#5QnJb~Q!, ~3.11!

then

@Pn,Jm~x!#5(
b
E d4Qe2 iQ•xD@B~Q!#m

b@Pn,Jb~Q!#

5 i
]Jm~x!

]xn
. ~3.12!

This means that ifJb(Q) transforms as an irreducible tens
operator under the interacting Poincare´ group, thenJm(x)
will automatically satisfy the covariance properties Eq
~3.3b! and ~3.3c!.

Finally, Eq. ~3.4! automatically incorporates current co
servation,]Jm/]xm50; note thatJb(Q) has only three com-
ponents inb for Q2,0, namely,b50,1,2. Current conserva
tion follows from the fact thatQmD@B(Q)#m

b50, for then
.

]Jm~x!

]xm 52 i(
b
E d4Qe2 iQ•xQmD@B~Q!#m

bJb~Q!50.

~3.13!

To show thatQmD@B(Q)#m
b50, notice thatB21(Q)Q

5Q(st)50 for b50,1,2. But

Q•B~Q!5QTgB~Q!5QTB21T~Q!g5@B21~Q!Q#Tg

5Q~st!Tg50 ~3.14!

for b50,1,2, which implies current conservation.
SinceJb(Q) transforms as a tensor operator, allJb(Q)’s

can be obtained from one standard, sayJ0@Q(st)#; that is,

UB~Q!J0@Q~st!#UB~Q!
21 5J0@B~Q!Q~st!#5J0~Q!

UR̃J0@Q~st!#U
R̃

21
5(

b
R̃b0Jb@Q~st!#, R̃PSO~1,2!.

~3.15!

Though this analysis has been carried out only for space
Q, it is clear that a similar analysis can be carried out forQ
timelike or lightlike.

Consider now statesup js& which are eigenstates ofPst
m ,

W̃•W̃, andn•W̃, the four-momentum, spin, and spin com
ponent. In perturbation theory the scattering amplitude
electrons scattering off a bound state of constituents is gi
by

^p8 j 8s8;ke8uS2I up js;ke&

5
2 ie2

~2p!3 E d4Q
1

Q2 d4~p82p2Q!d4~ke82ke1Q!

3^p8 j 8s8uJm~0!up js&^ke8uJe
n~0!uke&gmn , ~3.16!

where^ke8uJe
n(0)uke& is the electron current matrix elemen

with ke , ke8 the initial and final electron four momenta~elec-
tron spin labels have been suppressed!.

But

^p8 j 8s8u@Pst
m ,Jb~Q!#up js&5Qm^p8 j 8s8uJb~Q!up js&

~p8m2pm!^p8 j 8s8uJb~Q!up js&5Qm^p8 j 8s8uJb~Q!up js&
~3.17!

so that either
~a! p82p5Q, with ^p8 j 8s8uJb(Q)up js& nonzero, or
~b! p82pÞQ, in which casê p8 j 8s8uJb(Q)up js&50.
It thus follows that the hadronic current matrix eleme

can be written as

^p8 j 8s8uJm~0!up js&

5(
b

D@B~Q!#m
b^p8 j 8s8uJb~Q!up js&; ~3.18!

the matrix element ofJb(Q) is zero unlessQ5p82p which
is just the condition that a bound state of four-moment
p5mv produce a~possibly new! state of four-momentum
p85m8v85p1Q, with Q the four-momentum transfer o
the photon.
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Using the fact thatJb(Q) transforms as an irreducibl
tensor operator under the~interacting! Poincare´ group, the
matrix element, Eq.~3.18!, can be written as a product o
Clebsch-Gordan coefficients and reduced matrix elemen

^p8 j 8s8uJn~Q!up js&5(
r 8,r

^p8 j 8s8uQn,r 8r ;p js&

3^m8 j 8r 8iQ2im jr&, ~3.19!

where the sum overr 8 and r is between2 j 8%r 8% j 8, 2 j
%r % j such thatr 82r 50,61 andn50,61. @See Eq.~A1!.#
^p8 j 8s8uQn,r 8r ;p js& is a Poincare´ group Clebsch-Gordan
coefficient coupling a time-likep to a spacelikeQ to produce
a timelikep8. As shown in Appendix A it is the product o
three D functions times a four-dimensional delta functio
d4(p82p2Q), so that Eq.~3.19! indeed satisfies the com
mutator conditions for translational covariance as given
Eq. ~3.17!. The quantities

^m8 j 8r 8iQ2im jr&, ~3.20!

are reduced matrix elements, which, as will be shown, can
related to the definition of more usual invariant form facto
Equation ~3.19! is a consequence of the Wigner-Eckha
theorem for the Poincare´ group, in which the spin projection
labelsr 8 and r are degeneracy parameters~they are actually
eigenvalues ofW̃8•Q andW̃•Q, see Ref.@12#, p. 40!.

The connection with form factors defined as current m
trix elements evaluated in a standard frame is obtained
choosing a standard frame

p8~st!5S Am821pz8
2

0
0
pz8

D , p~st!5S Am21pz
2

0
0
pz

D ,
-

:

n

e
.
t

-
y

Q~st!5S 0
0
0
q
D ; ~3.21!

pz8 andpz are related to the invariantsm, m8 andQ2 in Eq.
~A7!. Then using the Clebsch-Gordan coefficients, Eq.~A10!
in the standard frame,

^p8~st! j 8r 8uJn@Q~st!#up~st! j r &5dn,r 82r^m8 j 8r 8iQ2im jr&.
~3.22!

For n50, r 85r and the change form factor is defined as

Fr
0
ª^p8~st! j 8r uJn50@Q~st!#up~st! j r &

5^m8 j 8,r 85r iQ2im jr&. ~3.23!

For n561, r 82r 561 and the current form factor is
defined as

Fr
6
ª^p8~st! j 8r 8uJx@Q~st!#6 iJy@Q~st!#up~st! j r &

5^m8 j 8,r 85r 61iQ2im jr&. ~3.24!

To convert these invariant form factors to Cartesian co
ponents, needed in Eq.~3.18!, we write

Fr 8r
b51

~5Fr 8r
x

!5
1

2
~Fr

11Fr
2!,

Fr 8r
b52

~5Fr 8r
y

!5
1

2i
~Fr

12Fr
2!. ~3.25!

Then the current matrix element, Eq.~3.18!, can be written
as
^p8 j 8s8uJm~x!up js&5(
b
E d4Qe2 iQ•xD@B~Q!#m

b^p8 j 8s8uJb~Q!up js&

5(
b
E d4Qe2 iQ•xd4~p82p2Q!(

r 8r

Lm
b~p,Q!Ds8r 8

j 8 ~Rw8 !Dsr
j* ~Rw!Fr 8r

b

5ei ~p82p!•x (
b,r 8r

Lm
b~p,Q!Ds8r 8

j 8 ~Rw8 !Fr 8r
b Drs

j ~Rw
21!, ~3.26!
f

where the Lorentz transformationLm
b(p,Q) @coset represen

tative of SO~1,3! with respect to SO~2!# is given by

L~p,Q!5S w0 ,w1 ,w2 ,
Q

q D , ~3.27!

with m̃w0
m5pm2(p•Q)/(Q2)Qm, m̃5Am21(p•Q)/q2

5E(st), Q52q2, w0
251, w0•Q50. w1 and w2 are two

four vectors in the Lorentz transformationL(p,Q), satisfy-
ing the relationswi•w05wi•Q50, wi

2521, i 51,2, and
w1•w250; they are given explicitly in Eq.~A18!. If the
masses of the initial and final states are the same,m85m,
thenw05(4m21q2)21/2(p1p8).

The Wigner rotationsRw , Rw8 in Eq. ~3.26! are defined by

Rw5B21~p!L~p,Q!B@p~st!#,

Rw8 5B21~p8!L~p,Q!B@p8~st!#; ~3.28!

their explicit form is given in Eq.~A21! for canonical spin
boosts and Eq.~A22! for helicity boosts and are functions o



fo

en

it

fo

e

o
nt
t

ca

ry

r-
s
cify

x
y
r-
at
nt,

the

de
ng

nt

si-
in

ted,

he

PRC 58 3593POINT FORM RELATIVISTIC QUANTUM MECHANICS . . .
p,p8 only, independent of the coset choice made
L(p,Q). Notice that if p5p(st) andp85p8(st), thenRw

5Rw8 5e, the identity rotation.
The translational and Lorentz covariance of the curr

matrix element representation, Eq.~3.26!, can now be readily
demonstrated. Ifa is an arbitrary space-time translation,
follows that

^p8 j 8s8uUa
21UaJm~x!Ua

21Uaup js&

5e2 i ~p82p!•a^p8 j 8s8uJm~x1a!up js&

5e2 i ~p82p!•aei ~p82p!•x1a

3 (
r 8r ,b

Lm
b~p,Q!Ds8r 8

j 8 ~Rw8 !Dsr
j* ~Rw!Fr 8r

b

5^p8 j 8s8uJm~x!up js&. ~3.29!

This means that it suffices to evaluate the matrix element
Jm(0); translational covariance, Eq.~3.3c! with Jm(x)
ªUxJ

m(0)Ux
21 is then automatically satisfied. Checking th

Lorentz covariance of Eq.~3.21! is a little more complicated
and is carried out in Appendix B~including parity covari-
ance!.

By virtue of current conservation, the third component
the standard current matrix eleme
^p8(st)j 8s8uJ3(0)up(st)j s& is zero. More generally curren
conservation is the condition that

~pm8 2pm!^p8 j 8s8uJm~0!up js&50; ~3.30!

but in the standard framepm8 (st)2pm(st)5Qm(st) has only a
z component which means the matrix element ofJ3(0) is
zero. Conversely, if̂ p8(st)j 8r 8uJ3(0)up(st)j r & is zero for
all r 8,r , then by boosting withL(p,Q), Eq. ~3.30! follows.

Thus we have shown that the current matrix elements
be written as

^p8 j 8s8I 8uJm~0!up jsI &

5 (
r 8,r ,b

Lm
b~p,Q!Ds8r 8

j 8 ~Rw8 !

3Fr 8r
b

@~p82p!2,I 8,I #Drs
j ~Rw

21!,

^p8 j 8s8I 8uJelec
m ~0!up jsI &

5(
r 8,r

w0
m~p,Q!Ds8r 8

j 8 ~Rw8 !

3Fr 8r
0

@~p82p!2,I 8,I #Drs
j ~Rw

21!,

^p8 j 8s8I 8uJmag
m ~0!up jsI &

5 (
b51,2
r 8,r

wm
b~p,Q!Ds8r 8

j 8 ~Rw8 !

3Fr 8r
b

@~p82p!2,I 8,I #Drs
j ~Rw

21!, ~3.31!

a manifestly covariant form valid for particles of arbitra
massesm8, m and spinsj 8, j . The labelsI 8 and I have been
r

t

r

f

n

included in the initial and final states to allow for multipa
ticle states whereI 8 and I might include subenergies, spin
of subsystems or any other invariant labels needed to spe
a multiparticle system@10,12#. Further, the reduced matri
elementsFr 8r

b become the invariant form factors given b
Yennie et al. @13# when the spin and mass of the final pa
ticle is the same as that of the initial particle. Notice th
although the representation for the current matrix eleme
Eq. ~3.31!, is covariant, all the spin dependence resides in
Wigner D j andD j 8 functions. There are no spinor labels,g
matrices or doubling of states for half-integer spin to inclu
parity. Moreover, in contrast to form factors defined usi
spinor variables~see, for example, Ref.@14#!, the reduced
matrix elementsFr 8r

b give the correct number of independe
form factors. Although the arguments of theD functions are
a bit complicated@see Eqs.~A21! and ~A22! for the exact
expressions# the representation, Eq.~3.31!, is basically the
same for all matrix elements, including higher spin tran
tions. This can be seen from the following examples,
which it is assumed that parity is conserved (h,h8 are the
intrinsic parities!:

~1! j 85 j 5 1
2 , Fr

05S A 0

0 AD , Fr 8r
b52

5S 0 B

B 0 D .

There is one electric and one magnetic form factor, rela
as discussed by Yennieet al. to the Dirac form factors by

A5eFF12k
Q2

4m2 F2G ,
B52eF uQ2u

2m
~F11kF2!G @ their Eq. ~A-22!#.

k is the anomalous magnetic moment.

~2! j 85 j 51, h85h, Fr
05S A1

A2

A1

D ,

Fr 8r
b52

5S 0 B1 0

B2 0 B2

0 B1 0
D .

There are two electric and two magnetic form factors. If t
initial and final particles are the same, then hermiticity@Eq.
~B16!# implies B25B1 and there is only one magnetic form
factor. The form factor is often written covariantly as

^p81s8uJm~0!up1s&

5
pm1p8m

2 H F1~Q2!@BT~p8!gB~p!#s8s

1
F2~Q2!

2m2 [(QTgB(p8)] s8[Q
TgB~p!] sJ

2
G1~Q2!

2
{[ QTgB~p8!] s8B~p!m

s

2B~p8!m
s[QTgB~p!] s}.
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~3! j 85 j 5 3
2 , h85h, Fr

005S A1

A2

A2

A1

D ,

Fr 8r
b52

5S 0 B1

B3 0 B2

B2 0 B3

B1 0

D .

There are two electric and three magnetic form factors. If
initial and final particles are the same, then hermiticity i
plies B35B1 and there are two magnetic form factors.

~4!

There is one electric and two magnetic form factors for
N1/2→Nj 8 transitions. The signs inFr 8r

b52 depend on the value

of h8h(21) j 81 j 12r 11 @see Eq.~B14!#.

IV. THE POINT FORM RELATIVISTIC IMPULSE
APPROXIMATION

The general idea behind the impulse approximation is
the electromagnetic properties of composite particles sho
be determined by the electromagnetic properties of their c
stituents. In particular the electromagnetic properties of h
rons thought of as bound states of constituents should
determined by the electromagnetic properties of the cons
ents. In practice this means approximating the electrom
netic current operatorJm(0) by one-body operators. Th
hope is that the matrix elements of the many-body curr
operator are small in comparison with the matrix elements
the one-body operator. How this approximation is to
made in the point form of relativistic quantum mechanics
the subject of this section. We will consider the general c
of a bound state ofn constituents in this section, and i
succeeding papers use the results to calculate deutero
well as hadronic form factors@11#.

Consider then a particle as a bound state ofn constituents
of massmi and spin j i5

1
2 , i 51 . . .n. Assume there is a

mass operatorM defined on the constituent Hilbert spaceHn
whose discrete spectrum includes a particle of massm, spinj,
and spin projections:

Mcp js5mcp js , p25m2; ~4.1!
e
-

ll

at
ld
n-
d-
be
u-
g-

t
f

e
s
e

as

j is the eigenvalue ofW̃•W̃, ands the eigenvalue ofn•W̃, as
discussed in Sec. II. Assume also that the constituents h
known invariant form factors so that for thei th constituent

^pi8s i8uJ~ i !
m ~0!upis i&5

ei

~2p!3 ū~pi8s i8!@gm~F1
~ i !12miF2

~ i !!

2~pi8
m1pi

m!F2
~ i !#u~pis i !, ~4.2!

whereF1
( i ) ,F2

( i ) are the invariant Dirac form factors for th
i th constituent. The goal is to compute the invariant fo
factor of the particle in terms of the invariant form factors
the underlying constituents. To this end write

Jm~0!5Jfr
m~0!1J.

m ~0!, ~4.3!

whereJfr
m(0) is the ‘‘free’’ or one-body operator and is of th

form

Jfr
m~0!5(

i 51

n

Ji
m~0!, ~4.4!

with Ji
m(0) the current operator of thei th constituent@Eq.

~4.2!#; J.
m (0) is the many-body current operator.

As shown in Sec. III the invariant form factor is the m
trix element of the current operator in the standard fram
That is,

Fr
05^p8~st! j 8r uJ0~0!up~st! j r &

Fr
65^p8~st! j 8r 61uJ6~0!up~st! j r &, ~4.5!

where Fr
0 and Fr

6 are the electric and the magnetic for
factors. Thus, what must be computed is the current ma
element in the standard frame. In terms of one-body a
many-body operators this is

^p8~st! j 8r 8uJm~0!up~st! j r &5^p8~st! j 8r 8uJfr
m~0!up~st! j r &

1^p8~st! j 8r 8uJ.
m ~0!up~st! j r &.

~4.6!

We define the point form impulse approximation to be

^p8~st! j 8r 8uJm~0!up~st! j r &>^p8~st! j 8r 8uJfr
m~0!up~st! j r &

~4.7!

for m50,61. Notice that for current conservation to b
valid, them53 component must include many-body curre
operators. That is, form53 the left-hand side of Eq.~4.7! is
zero @see Eq.~3.30!#, yet if the right-hand side of Eq.~4.7!
were evaluated form53, it would not in general be zero. It i
the addition of the many-body current matrix element th
makes the sum zero. More generally any operator, includ
two or more body operators, can be used in Eq.~4.7! without
violating Poincare´ covariance or current conservation.

The goal now is to evaluate the right-hand side of E
~4.7! for m5b50,61. Writing out the matrix element give
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Fr 8r
b

5^p8~st! j 8r 8uJfr
b~0!up~st! j r &

5X cp8~st! j 8r 8
* ~18¯n8!@^18uJ1

b~0!u1&

3d~2822!¯d~n82n!1¯1d~1821!¯

3d@~n821!2~n21!#^n8uJn
b~0!un&#cp~st! j r ~1¯n!.

~4.8!

The bound-state wave functions must be symmetric or a
symmetric under particle interchange. Since the impulse
rent matrix elements are symmetric under interchange of
ticles, the matrix element, Eq.~4.8!, is n times the matrix
element for particle 1 the struck particle.

The free particle variables used in the above wave fu
tions are not very convenient for carrying out the integ
tions. Choosing particle 1 as the struck particle, the rem
ing free particle labels can be coupled together to giv
multiparticle with four-momentum pn21 , mass mn21

ªApn21•pn21, spin j n21 , spin componentsn21 , and other
ti-
r-
r-

-
-
-
a

internal invariant labelsI n21 @10,12#. Then the stateu1¯n&
is written up1s1 ,pn21 j n21sn21I n21& and the matrix ele-
ment, Eq.~4.8!, becomes

Fr 8r
b

5n (
j n21

s,s18

E d3p1

2E1

d3p18

2E18
d4pn21dm~ I n21!cp8~st! j 8r 8

*

3~p18s18 ,pn21 j n21sn21I n21!^p18s18uJ1
b~0!up1s1&

3cp~st! j r ~p1s1 ,pn21 j n21sn21I n21!, ~4.9!

wheredm(I n21) is the measure for the internal variables
the multiparticle and depends on the choice of variables.
amples forn52 and 3 will be given subsequently.

The ‘‘multiparticle’’ can be coupled to particle 1 to giv
the velocity stateuvkm1mn21 j n21mn21I n21& for both initial
and final states. For the Bakamjian-Thomas construction
the four-momentum operator, the velocity label then b
comes the velocity of the initial or final state,v in or v f , and
the matrix element of Eq.~4.9! takes the simpler form
Fr 8r
b

5n (
j n21

m1m18mn21mn218

E dkdk8

v1vn21v18
dmn21dm~ I n21!cm8 j 8r 8

* ~k8m18mn218 j n21I n21!d3@k82B21~v f !B~v in!k#

3^p18s18uJ1
b~0!up1s1&Dm

18s
18

1/2*
$Rw@k18 ,B~v f !#%Dm

n218 mn21

j n21 $Rw@k,B21~v f !B~v in!#%Ds1m1

1/2 $Rw@k1 ,B~v in!#%

3cm jr~km1mn21 j n21I n21!, ~4.10!
ans-
where pn215B(v in)k, k5(Amn21
2 1k2,k), p15B(v in)k1 ,

k15(Am1
21k2,2k), with similar notation for the primed

variables. Now from Eqs.~A6! and ~A7!

p~st!5S Am21pz
2

0
0
pz

D 5mS cosha
0
0

sinh a
D ,

sinh a5
pz

m
5

m22q22m82

2qm
,

p8~st!5S Am821pz8
2

0
0
pz8

D 5m8S cosha8
0
0

sinh a8

D ,

sinh a85
pz8

m8
5

m21q22m82

2qm8
. ~4.11!

Since, in the standard frame,v f andv in have nox or y com-
ponents,
B21~v f !B~v in!5S coshD 0 0 sinhD

0 1 0 0

0 0 1 0

sinh D 0 0 coshD

D ,

~4.12!

where

D5a2a85sinh21S m22q22m82

2qm D
2sinh21S m21q22m82

2qm D
depends only on the invariant masses and momentum tr
fer. The delta function in Eq.~4.10! can then be written as

Amn21
2 1k825~coshD!Amn21

2 1k21~sinh D!k cosu,

k8sin u8cosw85k sin u cosw,

k8sin u8sin w85k sin u sin w,

k8cosu85~sinh D!Amn21
2 1k21~coshD!k cosu.

~4.13!
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Set sinhg8ª(k8/mn21), sinhg5(k/mn21), g,g8>0. Then Eq.
~4.13! becomes

coshg85coshD coshg1sinh D sinh g cosu,

tan w85tan w,

sinhg8 cosu85sinh D coshg1coshD sinh g cosu.
~4.14!

With the change of variablesk→ukuk̂→g, cosu,w, the
integration can be split into wave function and current ma
element integrations. Whenu50 or p,

coshg85coshD coshg6sinh D sinh g,

g85g1D,u50,
n

th
tte
le

le
ite

a-
al
x

g85g2D,u5p,g>D,

g852g1D,u5p,g,D, ~4.15!

and the integration over the independent variablesg,g8 is
betweeng85g2D and g85g1D. Further Eq.~4.14! can
be used to solve for the angles:

cosu5
coshg82coshD coshg

sinh D sinh g
, DÞ0

cosu85
coshg2coshD coshg8

sinh D sinh g8
,

w85w, ~4.16!

so that finally the form factor integral becomes
Fr 8r
b

5n (
j n21

l 8ml lml

m1m18mn218 mn21

E mn21
2 dmn21dm~ I n21!E sinh2gdg

A~m1 /mn21!21sinh2g

sinh2g8dg8

A~m1 /mn21!21sinh2g8

3cm8 j 8r 8
* ~g8l 8ml8m18mn218 j n21mn21I n21!Jb~g8gmn21 j n21Dm18m1mn218 mn21!cm jr~g lmlm1mn21 j n21mn21I n21!,

~4.17!

where

Jb~g8gmn21 j n21Dm18m1mn218 mn21!ªPl 8m
l8
~cosu8!Plml

~cosu!E dwei ~ml82ml !wD
m

n218 mn21

j n21 $Rw@k,B21~v f !B~v in!#%

3 (
s18s1

Dm
18s

18
1/2

$Rw
21@k18 ,B~v f !#%^p18s18uJ1

b~0!up1s1&Ds1m1

1/2 Rw@k1 ,B~v in!#. ~4.18!
ten
l is the relative orbital angular momentum of then-particle
bound state;ml is the projection. The form factor calculatio
has been split into a part involving only the internaln21
variables of the unstruck particles, and a part linking
struck particle with the current matrix element. These la
variables include the mass of the collective unstruck partic
mn21 andg,g8, related to the energies of the struck partic
The sums over the remaining discrete variables are lim
by their coupling toj and j 8, the initial and final angular
momenta. Examples will be given in the following par
graphs. The arguments of the Legendre polynomi
Plml

(cosu) andPl 8m
l8
(cosu8) are given in Eq.~4.16!.

The integration overg8 andg can be further simplified by
settingg65g86g; then
e
r
s

.
d

s,

E dg8dg5
1

2 E
D

`

dg1E
2D

1D

dg2 . ~4.19!

Finally, the arguments of the WignerD functions must be
evaluated. Now the argument of theD j n21 function in Eq.
~4.18! is the Wigner rotation

Rw@k,B21~v f !B~v in!#5B21~k8!B21~v f !B~v in!B~k!,
~4.20!

which, after a somewhat tedious calculation, can be writ
as the SU~2! element
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S u v

2v* , u* D ,uuu21uvu251:

u5
~vn211mn21!cosh~D/2!1k cosu sinh~D/2!

A~vn211mn21!~vn218 1mn21!
5

~11coshg!cosh~D/2!1sinh g cosu sin~D/2!

A~11coshg!~11coshg8!

5A 11coshg

11coshg8
cosh

D

2
1

coshg82coshD coshg

sinh D
sinh

D

2
,

v5
k sin ue2 iwsinh~D/2!

A~vn211mn21!~vn218 1mn21!
5

e2 iw

2 cosh~D/2!
A12cosh2g2cosh2D2cosh2g812 coshg8coshD coshg

~11coshg!~11coshg8!
,

~4.21!

which givesu andv as functions ofg, g8, D andw only.
The remaining two WignerD1/2 functions can be absorbed into the struck particle current matrix element. To se

consider the term multiplying the Dirac spinoru(p,s):

(
s1

ua~p1s1!Ds1m1

1/2 $Rw@k1 ,B~v in!#%5(
s1

Sas1
@B~p1!#Ss1m1

@B21~p1!B~v in!B~k1!#

5Sam1
@B~v in!B~k1!#5(

b
Sab@B~v in!#ub~k1m1!; ~4.22!

here use has been made of the intertwining properties of matrix elementsS(L) of the (1
2 ,0)% (0,1

2 ) representation of the
Lorentz group with respect to the Dirac spinorsu(p,s).

The relevant expression in Eq.~4.18! then becomes

(
s18s1

Dm
18s

18
1/2

$Rw
21@k18 ,B~v f !#%^p18s18uJ1

b~0!up1s1&Ds1m1

1/2 $Rw@k1 ,B~v in!#%

5Dm
18s

18
1/2

@B21~k18!B21~v f !B~p18!#ū~p18s18!@gb~F112mF2!2~p1
b1p18

b!F2#u~p1s1!Ds1m1

1/2 @B21~p1!B~v in!B~k1!#

5ū~k18m18!S@B21~v f !#@gb~F112m1F2!2~p1
b1p18

b!F2#S@B~v in!#u~k1m1!5B~v f !
b

nū~k18m18!$gn~F112m1F2!

2@k181B21~v f !B~v in!k1#nF2%S@B21~v f !B~v in!#u~k1m1!. ~4.23!
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B21(v f)B(v in) is given in Eq.~4.12! and is a purez axis
Lorentz boost depending onm, m8, andQ2 invariants. Thez
axis Lorentz transformationB(v f)

b
n also depends only on

invariants and can be taken outside the form factor integ
Thus the entire integral depends on momentum transfer
through the variableD, defined in Eq.~4.12!.

To conclude this section we give two examples that are
particular interest in form factor calculations, namely tw
body and three-body bound states. For a two-body w
function mn215m2 , the mass of the unstruck particle, an
j n215 j 2 , the spin of the unstruck particle. There are
additionalI n21 variables. The wave function is

cm jr~g lmlm1m2!,

and if the spins of the two particles are coupled tol, the
relative orbital angular momentum, to givej, the spin of the
compound, thenl is limited by Clebsch-Gordan coefficient

For three-particle bound states with particle 1 the stru
particle, particles 2 and 3 can be coupled to give a multip
ticle described by variablesp23, j 23, s23, l 23, and s23,
l.
ly

f
-
e

k
r-

wherel 23 ands23 are the orbital and spin angular momentu
of the 2-3 system.~The justification for being able to do
these stepwise couplings for relativistic systems is given
following paper, Ref.@10#.! Then the wave function vari-
ables are given by

cm jr~g lmlm1m23m23j 23l 23s23!,

and the sums overl 23 ands23 in Eq. ~4.17! are independen
of the current matrix kernel, Eq.~4.18!.

V. CONCLUSION

Though the point form of relativistic quantum mechani
may seem further removed from nonrelativistic quantum m
chanics than the instant form, there are a number of way
which it resembles nonrelativistic quantum mechanics;
shown in Sec. II, multiparticle velocity states have the pro
erty that under Lorentz transformations, the internal m
menta and spins transform like their nonrelativistic count
parts. In this case the overall four velocity of the sta
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replaces the total momentum nonrelativistically, and in c
trast to the instant form, the boosts which generate the
locity states are entirely kinematic. Further, unlike the inst
form, the point form Hamiltonian is additive in the ma
operators, meaning that various decompositions of the t
Hamiltonian needed in the interaction picture of time evo
tion are readily carried out. Also unlike both the instant a
front forms, the point form is manifestly covariant und
arbitrary Lorentz transformations.

Where the point form differs most strikingly from nonre
ativistic quantum mechanics is in the momentum opera
which carries interactions, and thus is not equal to the f
momentum operator. But in the limit whenc→` and the
Poincare´ group contracts to the Galilei group, the interacti
part of the momentum operator goes to zero leaving only
free momentum operator.

The main goal of this paper has been to examine pro
ties of electromagnetic current operators in the point fo
The hadronic electromagnetic current operatorJm(x) must
satisfy a number of constraints due to Poincare´ covariance
and current conservation. By defining a new current oper
Jb(Q) which transforms as an irreducible tensor opera
under the Poincare´ group, the constraints onJm(x) are auto-
matically satisfied. Moreover, in contrast to the difficulti
encountered with the front form in dealing with timelike an
lightlike momentum transfers, the point form operatorJb(Q)
deals with all these cases on an equal footing. Only
spacelike case has been discussed in this paper becaus
spacelike representations are the least well known of
Poincare´ group representations, and it is spacelike mom
tum transfers that are of most interest in applications. Uti
ing the tensor transformation properties ofJb(Q) allows one
to give a group theoretical derivation of form factors, as se
in Eq. ~3.20!; when supplemented with parity and time r
versal invariance, the electric and magnetic form factors
directly related to current matrix elements in Eq.~3.31!.
Relativistic invariance including parity also gives the corre
number of independent form factors, with no relations b
tween form factors, as is the case with front form calcu
tions @4#.

Moreover all current matrix elements have the same g
eral form. All the spin information for the initial and fina
states resides in the two WignerD functions; nevertheless, a
shown in Appendix B, under arbitrary Lorentz transform
tions the expression for the current matrix element,
~3.31!, is generally covariant. The distinction between ele
tric and magnetic form factors is not the usual one in that
four-vector multiplying the electric form factors@w0

m in Eq.
~3.31!# is orthogonal to the two four-vectors@w1

m ,w2
m in Eq.

~3.31!# multiplying the magnetic form factors. As seen
example 1 following Eq.~3.31!, for current matrix elements
of spin-12 systems, the electric and magnetic form factors
linear combinations of the usual Dirac and Pauli form fa
tors.

Form factors have been defined as reduced matrix
ments in the Poincare´ group Wigner-Eckhard theorem. Bu
an examination of the Poincare´ group Clebsch-Gordan coe
ficients @see Eq.~3.19!# shows that these reduced matrix e
ements are the current matrix elements in a standard fra
namely, forQ2 spacelike, that frame whereQ(st) has only a
z component. Since all Lorentz transformations are ki
-
e-
t

al
-
d

r,
e

e

r-
.

or
r

e
the
e
-
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n

re

t
-
-

n-

-
.
-
e

e
-

e-

e,

-

matic, magnetic current matrix elements in any other fra
connected by a Lorentz transformation along thez direction
to the standard frame, do not change. That is, the magn
form factors are the same in any frame connected to
standard frame by az-axis Lorentz transformation. The elec
tric form factors, however, differ from those of the standa
frame by a cosh factor arising from the Lorentz transform
tion. Therefore, form factors, defined as current matrix e
ments with final and initial momenta along thez axis only,
are very simply related to the form factors defined in th
paper. In particular, form factors in the rest frame of one
the particles differs by a factor depending on invariants on
from our standard form factors.

Although canonical spin boosts were chosen in Sec
@Eq. ~2.7!# to define velocity states, it is straightforward
generalize the definition of velocity states to include a
boost. This generalization is given in the appendix of R
@10#. In particular if helicity boosts are used in computing t
Wigner rotations occurring in the expression for the curr
matrix elements, the invariant form factors then coinci
with the so-called helicity form factors@15#.

Our second main result concerns the existence of a p
form relativistic impulse approximation. IfJb(Q) is written
as the sum of one-body and many-body operators, where
one-body operators are the current operators of the unde
ing constituents, we have shown that hadronic form fact
can be written entirely in terms of the form factors of th
underlying constituents; nevertheless, there must be ma
body currents as demonstrated in Ref.@16#. But as seen in
Eq. ~4.7! there are no effects of the many-body current m
trix elements on the hadronic form factors, while still pr
serving Poincare´ covariance and current conservation.

The invariant form factors are integrals over bound st
wave functions in the standard frame and the struck cons
ent current matrix elements. We have shown how to cho
wave function variables in which the (n21) unstruck con-
stituents are coupled together to form a multiparticle, wh
is then coupled to the struck constituent. Using these v
ables the form factor integral can be written in such a w
that all of the momentum transfer information@given through
the variableD, see Eq.~4.12!# resides in the limits of inte-
gration or in the matrix element of the struck particle. B
splitting the wave function variables into ‘‘struck’’ and ‘‘un
struck’’ variables it should be possible to separate the effe
of wave function and struck constituent current matrix e
ments on the momentum transfer dependence of the inva
form factors. These variables are being used to calculate
teron form factors for both elastic and quasielastic chann

APPENDIX A: CLEBSCH-GORDAN COEFFICIENTS
FOR SPACELIKE MOMENTUM TRANSFER

Because the current operatorJb(Q) @Eq. ~3.4!# transforms
as an irreducible tensor operator under the~interacting! Poin-
carégroup, the matrix elements of the current operator c
be reduced to Clebsch-Gordan coefficients times a redu
matrix element. The goal of this appendix is to compute
relevant Clebsch-Gordan coefficients forQ2 spacelike,
namely,̂ p8 j 8s8uQbr8r ;p js&; hereup js& is a timelike state
with four momentump, spin j, and spin projections, with
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transformation properties under the Poincare´ group given by
Eq. ~2.2!.

uQb& is a spacelike state with momentum transferQ2

,0; its Lorentz transformation properties are given in E
~3.9!. For calculating Clebsch-Gordan coefficients it is co
venient to switch from ‘‘Cartesian’’ coordinates,b50,1,2, to
spherical coordinatesn50,61. Then under Poincare´ trans-
formationsuQn& transforms as

ULuQn&5 (
n850,61

Dn8n~R̃w!uLQ,n8&,

UauQn&5e2 iQ•auQ,n&, ~A1!

whereR̃wPSO(1,2) is the Wigner ‘‘rotation’’ defined in Eq
~3.8!. Dn8n(R̃w) is R̃w written in spherical coordinates.
rti
.
-

To get the Clebsch-Gordan coefficients coupling a spa
like four momentumQ with ‘‘spin’’ 1 to a timelike four-
momentump with spin j resulting in a timelike four momen
tum p8 with spin j 8, it is actually more convenient to coupl
p8 with spin j 8 to a negative energyp̄52p with spin j to
get a spacelikeQ; this is done by writing

uQnr 8r &ªUB~Q!E
SO~1,2!

dR̃

3g̃nnDnn̄~R̃!UR̃up8~st! j 8r 8&u p̄~st! j r &,

~A2!

wherep8(st) andp̄(st) are standard four-vectors to be spe
fied, g̃nn is the SO~1,2! metric defined in Eq.~3.6!, andr 8r
are degeneracy parameters that are related to the indepe
invariant form factors. Then
ULuQnr 8r &5ULUB~Q!E
SO~1,2!

dR̃g̃nnDnn̄~R̃!UR̃up8~st! j 8r 8&u p̄~st! j r &

5UB~LQ!E
SO~1,2!

dR̃g̃nnDnn̄~R̃!UR̃wR̃up8~st! j 8r 8&u p̄~st! j r &

5UB~LQ!E
SO~1,2!

dR̃g̃nnDnn̄~R̃w
21R̃!UR̃up8~st! j 8r 8&u p̄~st! j r &5(

n8
Dn8n~R̃w!uLQ,n8r 8r &, ~A3!

so that the state defined in Eq.~A2! transforms correctly under Lorentz transformations as required by Eq.~A1!. In going from
the second to the third line of Eq.~A3! the invariance of the Haar measure of SO~1,2! was used.

Further,

UauQnr 8r &5UB~Q!E
SO~1,2!

dR̃g̃nnDnn̄~R̃!UR̃UR̃21B21~Q!aup8~st! j 8r 8&u p̄~st! j r &

5UB~Q!E
SO~1,2!

dR̃g̃nnDnn̄~R̃!e2 iQ~st!•R̃21B21~Q!aUR̃up8~st! j 8r 8&u p̄~st! j r &, ~A4!
s
e

whereQ(st) is defined to be

Q~st!ªp8~st!1 p̄~st!5p8~st!2p~st!. ~A5!

If Q(st) is chosen~following Yennieet al. @13#! to have the
form (0,0,0,q), with Q252q2,0, q.0, then

Q~st!•R̃21B21~Q!a5Q•a,

as required for the correct space-time translation prope
given in Eq.~A1!.

Set

p8~st!5@E8~st!,0,0,pz8#5~Am821pz,0,0,pz8!,

p~st!5@E~st!,0,0,pz#5~Am21pz,0,0,pz!, E8~st!5E~st!,

~A6!
es

with m8 and m the masses of the four vectorsp8(st) and
p(st), respectively. Substituting the choices forp8(st) and
p(st) given in Eq.~A6! into Eq. ~A5! gives

pz85
m21q22m82

2q
,

pz5
m22q22m82

2q
. ~A7!

Notice that ifm85m, the expressions forpz8 and pz reduce
to the Yennieet al. result @their Eq.~A-7!# @13#.

Since p8(st) and p(st) have zerox and y components,
they remain unchanged under a rotation about thez(53)
axis or thet(50) axis. If SO~1,2! is decomposed into coset
with respect to a rotation about thet axis, the Haar measur
dR̃ can be written asdR̃cdw, whereR̃c is some choice of
coset representative of SO~1,2! with respect to SO~2!. Then
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uQnr 8r &5UB~Q!E
SO~1,2!/SO~2!

dR̃cE
SO~2!

dwg̃nnDnn̄~R̃c!

3ei n̄wUR̃c
Uwup8~st! j 8r 8&u p̄~st! j r &

5UB~Q!E
SO~1,2!/SO~2!

dR̃cg̃nnDn,r 82r~R̃c!

3UR̃c
up8~st! j 8r 8&u p̄~st! j r &, ~A8!

where use has been made of the fact that the Wigner rota
of p8(st) with Rz(w) is just Rz(w). Thus,n̄5r 82r follows
from integrating the resulting exponentials overw.

Finally, the operationsB(Q)R̃c on the tensor produc
states can be carried out. NowB(Q)R̃c is a coset represen
tative of SO~1,3! with respect to SO~2! and is related top,
p8, andQ by

p5B~Q!R̃cp~st!,

p85B~Q!R̃cp8~st!,

Q5B~Q!R̃cQ~st!5B~Q!Q~st!. ~A9!

Carrying out the action ofB(Q) and R̃c in Eq. ~A8! then
gives the desired Clebsch-Gordan coefficients:

^p8 j 8s8uQn,r 8r ;p js&

5^p8 j 8s8; p̄ j suQn,r 8r &

5d4~p82p2Q!g̃nnDn,r 82r~R̃c!

3Ds8r 8
j 8 ~Rw8 !Dsr

j* ~Rw!. ~A10!

There are many different ways of choosing coset rep
sentativesL(p,Q) of SO~1,3! with respect to SO~2!. Instead
of writing L(p,Q)5B(Q)R̃c , which emphasizes the spac
like momentum transferQ, it is more convenient to write

L~p,Q!5B~w0!R, ~A11!

which emphasizes the timelike four-vectorm̃w0
m5pm

2(p•Q)/(Q2)Qm, introduced in Eq.~3.27!, and satisfying
w0

251, w0•Q50. Then

p5L~p,Q!p~st!5B~w0!Rp~st!,

p85L~p,Q!p8~st!5B~w0!Rp8~st!,

Q5L~p,Q!Q~st!5B~w0!RQ~st!,

w05L~p,Q!e05B~w0!e0 , ~A12!

wheree05(1,0,0,0). If B(w0) is chosen to be a canonica
boost,

Bc~w!5S wT

wm

I 1
w^ wT

11w0

D , ~A13!
on

-

then the coset representativeL(p,Q)5(w0 ,w1 ,w2 ,Q/q)
can be given explicitly. In particular,

Q

q
5B~w0!Re3 ,

Q0

q
5w0•Rẑ,

Q

q
5Rẑ1

w0

11w0
0 w0•Rẑ;

RẑªRz~w!Ry~u!ẑ5S sin u cosw
sin u sin w

cosu
D 5

Q

q
2

w0

11w0
0

Q0

q

~A14!

fixes the polar and azimuthal angles ofR in terms ofQ and
w0 ~or equivalently, in terms ofp andp8!.

Then

w1ªBc~w0!Re1 ,

w1
05w0•Rx̂,

w15Rx̂1
w0

11w0
0 w1

0 ~A15!

and

w2ªBc~w0!Re2 ,

w2
05w0•Rŷ,

w25Rŷ1
w0

11w0
0 w2

0. ~A16!

Rwª Rw @p(st),L(p,Q)# 5 B21( p)L(p, Q)B@p(st)#, and
Rw8 ª Rw @p8(st),L(p,Q)# 5 B21( p8)L(p, Q) B@ p8(st )#.
These Wigner rotations can be computed explicitly as fu
tions of v5p/m, v85p8/m8 by writing

RwB21@p~st!#5B21~p!L~p,Q!,

RwB21@p~st!#p8~st!5B21~p!L~p,Q!p8~st!5B21~p!p8.

~A17!

Now thex andy components ofB21@p(st)#p(st) are zero, so
that Rw is specified by the unit vector extracted fro
B21(p)p8. For canonical spin boosts

Bc
21~p!p85m8S v0 2vT

2v I 1
v^ vT

11v0

D S v08

v8 D

5m8F v•v8

v81v S v•v8

11v0
2v08D G . ~A18!
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The vector magnitude ofBc
21(p)p8 is m8A(v•v8)221, so

that the two angles in the Wigner rotation can be specified
the unit vector

n̂c~v,v8!5
v81v@v•v8/~11v0!2v08#

A~v•v8!221
. ~A19!

For Rw8 it is simply necessary to interchangev and v8.
Note that Eq.~A17! already shows thatRw and Rw8 do not
depend on the choice of the coset representativeL(p,Q).

For helicity boosts, with

BH~v !5R~ v̂ !Lz~ uvu!5~v,u1 ,u2 ,u3!,

v5S v0

v D5S v0

uvuv̂ D , u15S 0
cosu cosw
cosu sin w

2sin u
D ,

u25S 0
2sin w
cosw

0
D , u35S uvu

v0v̂ D , v̂5S sin u cosw
sin u sin w

cosu
D ,

~A20!

the Wigner rotations are obtained from
y
BH

21~v !p85m8gBT~v !gv85m8gS v•v8
u1•v8
u2•v8
u3•v8

D
5m8S v•v8

2u1•v8
2u2•v8
2u3•v8

D ; ~A21!

then the Wigner rotation for a helicity boost is given by

n̂H~v,v8!52S u1•v8
u2•v8
u3•v8

D Y A~v•v8!221

5S u1•v8
u2•v8

v0v̂•v82uvuv08
D Y A~v•v8!221.

~A22!

APPENDIX B: COVARIANCE OF THE CURRENT
MATRIX ELEMENT REPRESENTATION
UNDER LORENTZ TRANSFORMATIONS

To demonstrate the covariance of the representation of
current matrix element@Eq. ~3.26!# under Lorentz transfor-
mations use will be made of the Lorentz transformati
properties of states, Eq.~2.2!, and the transformation of cur
rent operators, Eq.~3.3b!. Inserting the identity operato
UL

21UL , LPSO(1,3), into the current matrix element give
^p8 j 8s8uUL
21ULJm~0!UL

21ULup js&

5L21m
nD s̄8s8

j 8* @Rw~p8,L!#^Lp8 j 8s̄8uJn~0!uLp, j s̄&D s̄s
j @Rw~p,L!#

5L21m
n (

b,r 8,r

Ln~Lp,LQ!Ds8s̄8
j 8 @Rw

21~p8,L!#D s̄8r 8
j 8 $Rw@p8~st!,L~Lp,LQ!#%Fr 8r

b

3Dr s̄
j $Rw

21@p~st!,L~Lp,LQ!#%D s̄s
j @Rw~p,L!#

5 (
b,r 8,r

L21L~Lp,LQ!m
bDs8r 8

j 8 $Rw
21~p8,L!Rw@p8~st!,L~Lp,LQ!#%Fr 8r

b Drs
j $Rw

21@p~st!,L~Lp,LQ!#Rw~p,L!%.

~B1!
,
f
Eq.
ta-
We must show that the last line of Eq.~B1! is equal to
^p8 j 8s8uJm(0)up js&.

Now L(p,Q) is a coset representative of SO~1,3! with
respect to SO~2!; that means for any elementLPSO(1,3)
one can write

L5L~p,Q!Rz , RzPSO~2!. ~B2!

L(p,Q) is defined by the relations

p5L~p,Q!p~st!, ~B3!
Q5L~p,Q!Q~st!.

Once the coset representativeL(p,Q) has been determined
Rz5L21(p,Q)L. Since LL(p,Q) is also an element o
SO~1,3!, it too can be decomposed into cosets, as in
~B2!, but with different arguments for the coset represen
tive, sayp̄ andQ̄. Then

LL~p,Q!5L~ p̄,Q̄!Rz ,

LL~p,Q!p~st!5L~ p̄,Q̄!Rzp~st!,
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Lp5 p̄,

LL~p,Q!Q~st!5L~ p̄,Q̄!RzQ~st!,

LQ5Q̄; ~B4!

that is p̄5Lp, Q̄5LQ, so that for any Lorentz transforma
tion L,

LL~p,Q!5L~Lp,LQ!Rz , ~B5!

and as with Wigner rotations, Rz
5L21(Lp,LQ)LL(p,Q), but this will not be needed in
the following discussion.

Using these results the Wigner rotations that appear in
D functions in Eq.~B1! can be written as

Rw
21$@p~st!,L~Lp,LQ!#Rw~p,L!%

5B21@p~st!#L21~Lp,LQ!B~Lp!B21~Lp!LB~p!

5B21@p~st!#RzL
21~p,Q!B~p!

5RzRw
21@p~st!,L~p,Q!#;

Drs
j $Rw

21@p~st!,L~Lp,LQ!#Rw~p,L!%

5e2 ir wDrs
j $Rw

21@p~st!,L~p,Q!#%. ~B6!

A similar result holds forDs8r 8
j 8 () in Eq. ~B1!. Substituting

Eqs. ~B6! and ~B5! into Eq. ~B1!, then gives
^p8 j 8s8uJm(0)up js&, which was to be shown.

The current matrix element representation is also cov
ant with respect to parity. Parity is the operation that takex
to 2x, leaving the time component unchanged. As a matri
is equal to the metricg5diag(1,21,21,21). The action of
parity,P, on timelike states is given by

UPup js&5UPUB~p!up~rest! j s&5UPB~p!PUPup~rest! j s&

5hUB~Pp!URP~p!up~rest! j s&

5h(
s̄

uPp, j s̄&D s̄s
j @RP~p!#, ~B7!

where use has been made of the fact thatPB(p)P is a proper
Lorentz transformation, so it can be decomposed into co
with respect to SO~3!:

RP~p!ªB21~Pp!PB~p!P, ~B8!

with h the intrinsic parity. Similarly for the current operato

UPJ
0~0!UP

215J0~0!,

UPJ
i~0!Up

2152Ji~0!, i 51,2,3. ~B9!

Now since covariance has been demonstrated for arbit
continuous Lorentz transformations, it suffices to investig
the effects of parity on standard states, which can then
boosted to arbitrary states. Following Yennieet al. it is more
convenient to useP2ªPRy(p), which only changes the 2
component, for thenP2p(st)5p(st). It follows that
e

i-

it

ts

ry
e
e

UP2
up~st! j r &5URy~p!UPup~st! j r &

5hURy~p!uPp~st! j r̄ &Dr̄r
j $RP@p~st!#%

5hup~st! j r% &Dr% r
j $Rw@Pp~st!,Ry~p!#RP@p~st!#%.

~B10!

But

Rw@Pp~st!,Ry~p!#RP@p~st!#

5B21@p~st!#Ry~p!B@Pp~st!#B21@Pp~st!#PB@p~st!#P

5B21@p~st!#P2B@p~st!#P2Ry~p!5Ry~p!. ~B11!

Therefore,

UP2
up~st! j r &5hup~st! j r̄ &Dr̄r

j @Ry~p!#

5hup~st! j ,2r &~21! j 2r , ~B12!

for all boosts, including canonical and helicity boosts, th
have purez axis Lorentz transformations as elements.

Then

Fr 8r
b

5^p8~st! j 8r 8uJb~0!up~st! j r &

5^p8~st! j 8r 8uUP2
UP2

Jb~0!UP2
UP2

up~st! j r &

5hh8~21! j 82r 8~21! j 2r

3^p8~st! j 8, 2r 8uP2Jb~0!up~st! j ,2r &. ~B13!

For the electric form factorsb50, r 85r and

Fr
05h8h~21! j 81rF2r

0 ~21! j 1r ,

F2r
0 5h8h~21! j 81 j 12rFr

0. ~B14!

If the initial and final particles are the same, thenh85h,
j 85 j , and F2r

0 5Fr
0 for any spin j. Further, time reversa

invariance means thatFr
0 is real @13#.

For the magnetic form factors it is most convenient
switch back to spherical coordinates@see Eq.~3.25!#, for then

Fr
15^p8~st! j 8r 8uJx1 iJyup~st! j r &

5^p8~st! j 8r 8uUP2
UP2

~Jx1 iJy!UP2
UP2

up~st! j r &

5~21! j 81r 8h8h^p8~st! j 12r 8uJx1 iJyup~st! j ,2r &

3~21! j 1r

5h8h~21! j 81 j 12r 11F2r
2 , r 85r 11,

Fr 8r
b51

5
1

2
@Fr

11~21! j 1 j 812r 11h8hF2r
1 #, r 85r 11,

Fr 8r
b52

5
1

2i
@Fr

12~21! j 1 j 812r 11h8hF2r
1 #. ~B15!

Time reversal invariance now implies that theFr
1 are pure

imaginary, which when written asiB1(r ), give
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Fr 8r
b51

5
i

2
@B1~r !1~21! j 1 j 812r 11B1~2r !#,

Fr 8r
b52

5
1

2
@B1~r !2~21! j 1 j 812r 11B1~2r !#, r 85r 11.

~B16!

Again if the initial and final particles are the same,h85h,
j 85 j , and (21)2 j 12r 11521, in agreement with Yennie
et al. @their Eq.~A-12b!#.

Finally if the initial and final particles are the same, t
hermiticity of the current operator can be used to get furt
relations on the invariant form factors:

Fr 8r
b

5^p8~st! j r 8uJb~0!up~st! j r &

5^p~st! j r uJb~0!up8~st! j r 8&* 5Frr 8
b* , b51,2.

~B17!

Note that the momenta ofp(st) andp8(st) are equal and
opposite form85m @Eq. ~A7!#. A Lorentz transformation
that takes p(st)5(Am21pz,0,0,2pz) to (Am21pz,0,0,
1pz), means, using the covariance proved earlier in t
appendix, thatFr 8r

b is Hermitian inr 8 and r.

APPENDIX C: POINCARÉ COVARIANCE OF THE FOUR-
MOMENTUM OPERATOR

In this appendix we find conditions under which the to
four-momentum operator given in Eq.~3.1!, Pm5Pst

m1Pg
m

1Pem
m , the sum of the strong, photon, and electromagn
r

s

l

ic

four-momentum operators, satisfies the Poincare´ conditions
given in Eq.~2.14!, namely,

@Pm,Pn#50,

ULPmUL
215L21m

nPn.

The proof that@Pm,Pn#50 is carried out in several steps
Since by assumption

@Pst
m1Pg

m ,Pst
n 1Pg

n #50, ~C1!

it suffices to show that@Pem
m ,Pem

n #50 and @Pst
m1Pg

m ,Pem
n #

1@Pem
m ,Pst

n 1Pg
n #50. Consider first the commutator

@Pem
m ,Pem

n #

5E d4xd4yd~x•x2t2!d~y•y2t2!u~x0!u~y0!xmyn

3@Ja~x!Aa~x!,Jb~y!Ab~y!#. ~C2!

Now the integration is over timelikex and y, with (x2y)2

52t222x•y,0, so that ifJa(x) is local, the commutator in
Eq. ~C2! is zero.

Further, under space-time translations, Ua

5e2 i (Pst1Pg)•a, we require that

UaJm~x!Ua
215Jm~x1a!,

UaAm~x!Ua
215Am~x1a!. ~C3!

Then
UaPem
m Ua

215E d4xd~x•x2t2!u~x0!xmUaJa~x!Aa~x!Ua
215E d4xd~x•x2t2!u~x0!xmJa~x1a!Aa~x1a!,

@Pst
m1Pg

m ,Pem
n #5E d4xd~x•x2t2!u~x0!xn

]

]xm
Ja~x!Aa~x!,

@Pst
m1Pg

m ,Pem
n #1@Pem

m ,Pst
n 1Pg

n #5@Pst
m1Pg

m ,Pem
n #2@Pst

n 1Pg
n ,Pem

m #

5E d4xd~x•x2t2!u~x0!S xn
]

]xm
2xm

]

]xn
D Ja~x!Aa~x!50. ~C4!
-

y,
The last line of Eq. ~C4! follows from the fact that
Ja(x)Aa(x) is a scalar density, ULJa(x)Aa(x)UL

21

5Ja(Lx)Aa(Lx), for then

E d4xd~x•x2t2!u~x0!ULJa~x!Aa~x!UL
21

5E d4xd~x•x2t2!u~x0!Ja~Lx!Aa~Lx!

5E d4xd~x•x2t2!u~x0!Ja~x!Aa~x!. ~C5!
Since Eq.~C5! holds for all Lorentz transformations, for in
finitesimal Lorentz transformations the integral in Eq.~C4! is
zero.

Thus,

@Pm,Pn#5@Pst
m1Pg

m1Pem
m ,Pst

n 1Pg
n1Pem

m #

5@Pst
m1Pg

m ,Pst
n 1Pg

n #1@Pem
m ,Pem

n #

1$@Pst
m1Pg

m ,Pem
n #2@Pst

n 1Pg
n ,Pem

m #%

50, ~C6!

since each of the three terms are separately zero. Finall
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ULPem
m UL

215E d4xd~x•x2t2!u~x0!xmJa~Lx!Aa~Lx!

5L21m
nPem

n ; ~C7!

from this it follows thatULPmUL
215L21m

nPn, and thus Eq.
~2.14! is satisfied forPm defined in Eq.~3.2!.

It remains to show that in the nonrelativistic limit,Pem

50 andPem
0 5Hem is the usual electromagnetic interactio

Group theoretically these limits correspond to contractin
representation of the Poincare´ group to the Galilei group by
letting c, the speed of light, go to infinity. Inserting factors
c givesx05ct and
V

N

et
a

Pem
m 5E d4xd@x•x2~ct!2#xmu~ct!Ja~x!Aa~x!

5E d3x

A~ct!21x•x
S ct

x D m

Ja~x!Aa~x!;

lim
c→`

Pem5E d3x

ct
xJa~x!Aa~x!50

lim
c→`

Pem
0 5E d3x

ct
ctJa~x!Aa~x!5E d3xJa~x!Aa~x!

5Hem
nonrel. ~C8!
m
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