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Elastic scattering between two cluster nuclei„A, B>4… at medium and high energies

M. M. H. El-Gogary,1,* A. S. Shalaby,2 and M. Y. M. Hassan1
1Physics Department, Faculty of Science, Cairo University, Giza, Egypt

2Physics Department, Faculty of Science, Cairo University, Beni Suef branch, Egypt
~Received 20 April 1998!

In the framework of the Glauber multiple scattering theory, the complete expansion~which contains
2A3B21 terms! of the Glauber amplitude of elastic scattering between two nucleiA, B>4 is obtained. Using
double Gaussian density consistent with the electron-scattering experiments, the differential cross section
(nuclear1Coulomb) is calculated and compared with the experimental data. It is shown that, in general, higher
order terms give a substantial improvement in comparison with the previous optical limit results at relatively
large scattering angles. The effect of invoking a phase-variation in the nucleon-nucleon~NN! amplitude is
examined. We found that the presence of the phase variation improves our results, especially at the minima of
the diffraction pattern.@S0556-2813~98!07012-5#

PACS number~s!: 25.70.Bc, 21.30.Fe, 24.10.Cn
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I. INTRODUCTION

For more than three decades, the Glauber multiple s
tering theory~GMST! @1,2# has been considered as one
the most successful theories in describing hadron-nuc
elastic scattering at medium and high energies. One of
main conclusions obtained in this description is that the s
cessive higher order multiple scattering processes, espec
at large target mass number, play an important role in
taining better fitting at high momentum transfer.

The confidence in this theory encouraged the extensio
its application to nucleus-nucleus collisions, but it has be
pointed out@3–6# that the analytical treatment becomes mo
complex and tedious in its numerical realization. This is d
to the numerous multiple scattering terms~2A3B21 terms!
during the collision between nuclei of mass numbersA, B
which make the evaluation of the scattering amplitude
difficult and lengthy. Also, the application of the conve
tional way of factorizing out the center-of-mass correlati
@3# in the Glauber approximation leads to an unphysical
vergence in the cross sections at large momentum tran
@4,6# even if we consider the full Glauber multiple scatteri
terms and the suitable density functions~e.g., Gaussian and
harmonic oscillator functions!. Although in Ref.@6# the au-
thors showed that this divergence is removed by includ
the c.m. correlation to the same order as the scattering te
but this in turn makes the numerical calculations more co
plicated. Owing to these difficulties, several approximat
techniques have been made to simplify the calculation of
nucleus-nucleus elastic scattering amplitude@3–18#. The ear-
lier approximation, was the so-called ‘‘the optical limit re
sult’’ @3#, and it is obtained by considering a series expans
of the optical phase-shift function in the limit of large pr
jectile and target mass numbers. In this limit, the single s
tering terms in the phase-shift expansion are only conside
The analysis of heavy-ion elastic collisions in this optic
limit showed serious disagreements@4,8,14–17#, especially
the largeq divergence@4#. In an attempt to remove thes
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drawbacks, Franco and Varma@6# expanded the optica
phase-shift function in terms of an infinite series, and
stricted their calculations to the fourth order term in order
improve the usual optical limit~which represents the firs
term of this series!. Also, they treated in a consistent way th
c.m. correlation and the effect of the Coulomb interactio
When these calculations were applied to the 1.37 GeVa-12C
elastic scattering data@19#, significant improvement was ob
tained. However, a little disagreement was observed at la
scattering angles. They attributed it to the truncation of
higher order terms in the series, as well as the single Ga
ian form factor employed. On the other hand, their inves
gations showed that the fourth order calculations are not
equate when both projectile and target nuclei beco
heavier. Since all the multiple scattering terms are not diff
ent, Yin et al. @20,21# succeeded in introducing a compr
hensive method for classifying these terms into sets~referred
to as orbits!. Each orbit contains the scattering terms, each
which gives equal contribution to the scattering amplitud
The number of scattering terms contained in each orbit~re-
ferred to as the length of the orbit! and the orbits themselve
were found with the aid of the theory of permutation group
Using a double Gaussian density function, they applied
method to calculate the complete expansion of the scatte
amplitude of ‘‘a-a’’ collision @20#. The theoretical results
were in good agreement with the experimental data eve
large values of momentum transfer. Further applications
the above method using various forms of Gaussian den
and nucleon-nucleon~NN! scattering amplitude for collisions
between composite systems have been carried out@22–25#.
An excellent agreement of the theoretical results with
corresponding experimental data has been obtained. A
matter of fact, the method has proven to be useful for co
sions between nuclei of mass numbers<4. But for heavier
nuclei, the expansion terms describing different multip
scattering processes became so numerous to the extent t
would be very tedious and time consuming process to c
sify these terms using the above-mentioned method.
cently, Huang@26# proposed an interesting technique, bas
on dividing the projectile and target nuclei into clusters
equal number of nucleons, in order to make the applicat
3513 ©1998 The American Physical Society
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of Yin’s method tractable. With elaborate treatment, Hua
derived an integral formula to calculate the complete exp
sion of the Glauber amplitude of multiple scattering betwe
two composite nuclei where the density function was tak
to be a double Gaussian form. We calculated the elastic s
tering differential cross sections for ‘‘a-a’’ collision using
Huang’s approach@27#, and the results were in good agre
ment with the experimental data@28#. The success in this
treatment and the absence of similar calculation for hea
masses motivated us to investigate the elastic collisions
tween two composite nuclei~A, B>4! in the framework of
the Glauber multiple scattering theory using the methods
troduced in Refs.@20,26#. The full elastic scattering differ-
ential cross sections (nuclear1Coulomb) were determined
by choosing a double Gaussian density function with para
eters obtained by fitting the electron scattering data@29–33#.
Recently, the globalq-dependent phase was invoked in t
NN scattering amplitude by Franco and Yin@22,23#. The
authors showed that the introduction of this phase brou
the Glauber model predictions closer to the experimental
sults for the elastic scattering of thea particle on light nu-
clei. Very recently, further analysis has been made@34–37#
to examine whether the phase is actually important or n
This analysis, however, showed that the phase gives b
account for the data of hadron-nucleus@36#, a-12C, and
a-40Ca @37# elastic scattering at high momentum transf
Furthermore, it indicated that this phase has its stronges
fect in processes where higher orders of interference
dominated. The best determination is obtained when
uses realistic nucleon density, precise nucleon-nucleon
plitudes and coupling of inelastic channels. Since the pre
work contains much more complicated interference of hig
orders, thus it is helpful to study the role of such phase
our calculations.

The present paper contains three more sections an
appendix. Section II is devoted to the analytic expression
the nucleus-nucleus elastic scattering amplitude. In Sec.
the results and a discussion ofa-12C, a-40Ca, 12C-12C, and
16O-12C are presented. The conclusion is given in Sec.
We exhibit the orbits, the lengths, andD matrices~described
in Sec. II! in the Appendix.

II. THEORETICAL FRAMEWORK

According to Glauber’s multiple scattering theory, th
elastic scattering amplitude between nuclei of mass num
A, B and atomic numberZA ,ZB may be written as@38#

FAB~q!5H~q!F f cZAZB

pt ~q!1 i E
0

`

~kb!2in11

3$12exp@ ixczAzB

E ~b!1 ixAB~b!#%J0~qb!dbG ,
~1!

where,H(q) is the center-of-mass correction factor@3#, q is
the momentum transferred from the projectile nucleusA to
the target nucleusB, k is the incident momentum of the pro
jectile nucleus, andb is the impact parameter vecto
f cZAZB

pt (q) is the point charge approximation of the Coulom
g
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amplitude,n5ZAZBe2/\v is the usual Coulomb paramete
andxcZAZB

E is the extended charge correction to the Coulo

phase shift function.xAB is the total nuclear phase-shift func
tion resulting from the interaction between nucleusA and
nucleusB. For given projectile and target ground state wa
functions,xAB(b) is given by

exp@ ixAB~b!#5^CA~$r i%!CB~$r j8%!u

3exp@ ixAB~b,$si%,$sj8%!#uCACB&, ~2!

where CA(CB) is the projectile ~target! wave function,
which depends on the position vectors$r i%($r j8%) of the pro-
jectile ~target! nucleons whose projections on the impact p
rameter plane are$si%($sj8%). Adopting the approximation in
Ref. @6#, in which xAB is equal to the sum of allNN phase-
shift functionsx i j , we can write

xAB~b,$si%,$sj8%!5(
i 51

A

(
j 51

B

x i j ~b1si2sj8!. ~3!

The profile functionG is defined in terms of the phase sh
function as

G~b!512exp@ ix~b!#. ~4!

Hence, the total profile function takes the form

GAB~b,$si%,$sj8%!512)
i 51

A

)
j 51

B

@12G i j ~b1si2sj8!#. ~5!

Clearly, Eq.~5! for A, B>4 contains too many terms t
be of any practicable use for evaluating the full multip
scattering series of the Glauber amplitude. To avoid t
problem, we have used Huang’s treatment@26# in which both
projectile and target nuclei are assumed to have cluster s
ture and the classification of the scattering terms by Yi
method@20# is employed. This is performed as follows: Fo
lowing Huang’s method, suppose that there areMA clusters
in nucleusA andMB clusters in nucleusB and there areMN
nucleons in each cluster~MN should be a common diviso
for the nucleusA and nucleusB!, thenGAB takes the form

GAB512)
i 51

MA

)
a51

MN F)
j 51

MB

)
d51

MN

@12G ia, j d~b1Sia2Sj d8 !#G ,

~6!

whereG ia, j d represents the profile function of scattering b
tween theath nucleon of thei th cluster inA anddth nucleon
of the j th cluster inB. Using Yin’s method in which the
permutation theory is adopted to classify the scatter
terms,GAB can be reexpressed as

GAB52(
m1

M1

(
lm1

T1~m1 ,lm1
!

3)
i 51

MA

)
j 51

MB H (
m2

M2

(
lm2

T2~m2 ,lm2
!

3 )
MN

)
MN

~2G ia, j d!D ia, j d~m2 ,lm2
!J D i j ~m1 ,lm1

!

, ~7!

a51 d51
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whereM15MA3MB , M25MN3MN , T1(T2) is the length
of the orbit (m1 ,lm1

)@(m2 ,lm2
)# of the permutation group

G15SMA
^ SMB

(G25SMN
^ SMN

),

D i j ~m1 ,lm1
!@D ia, j d~m2 ,lm2

!#

is the i j th (ia j dth) element of the matrix

D~m1 ,lm1
!@D~m2 ,lm2

!#

representing the orbit. The elements of these matrices h
only two values; 1 whenG i j ~or G ia, j d! appears in the expan
sion term and 0 when it is absent.m is the order of scattering
andlm is the serial index used to number the orbits of ord
m. @All these orbits, lengths andD matrices are given in the
Appendix.# G ia, j d is related to theNN elastic scattering am
plitude, f ia, j d by

G ia, j d~b!5
1

2p ikN
E d2qe2~ iq•b! f ia, j d~q!, ~8!

wherekN is the wave number of the incident nucleon.
Assuming, for simplicity, that all theNN amplitudes are

equal~which is approximately true at high energy!, f ia, j d can
be parametrized by@23,37#

f ia, j d~q!5
kNs

4p
~ i 1r!e2aq2/2, ~9!

wheres is theNN total cross section andr is the ratio of the
real to the imaginary part of the forward amplitude.a is
taken to be complex;a5b21 ig2, where b2 is the slope
parameter of theNN elastic scattering cross section andg2 is
the phase variation parameter of theNN scattering amplitude
The parameterss, r, andb2 can all be obtained from theNN
scattering measurements, whileg2 is considered as a fre
parameter. Inserting Eq.~9! into Eq. ~8!, we obtain

G ia, j d~b1Sia2Sj d8 !5g exp@2~b1Sia2Sj d8 !2/2a#
~10!

and

g5
s

4pa
~12 ir!.

Substituting Eq.~10! into Eq. ~7!, GAB takes the form

TABLE I. Parameters of the nucleon-nucleon amplitude.

E/A ~MeV/nucleon! sNN ~fm2! rNN b2 ~fm2! Ref.

1.08 3.35 0.45 0.07 @20#

1.27 3.95 20.35 0.11 @20#

100 5.295 1.435 0.51 @39#

120 4.5 0.95 0.51 @39#

200 3.2 0.6 0.02 @18#

342.5 2.84 0.26 0.045 @18#
ve

r

GAB52(
m1

M1

(
lm1

T1~m1 ,lm1
!)
i 51

MA

)
j 51

MB H (
m2

M2

(
lm2

T2~m2 ,lm2
!

3~2g!m2expF2 (
a51

MN

(
d51

MN

~b1Sia2Sj d8 !2D ia, j d

3~m2 ,lm2
!/2aG J D i j ~m1 ,lm1

!

. ~11!

Now, we need to describe the wave function of the system
perform the integration of Eq.~2!. Consider the approxima
tion in which the nucleons inside any cluster and the clus
themselves inside the nucleus are completely uncorrela
Then, we can write

uCACBu25)
i 51

MA

)
a51

MN

rA~r ia!)
j 51

MB

)
d51

MN

rB~r j d8 !, ~12!

whererA and rB are the normalized single particle densi
functions and are chosen to be of the double Gaussian t

r r~r !5
a1g

3 a2g
3

~a2g
3 2Dga1g

3 !p3/2 @exp~2a1g
2 r 2!

2Dgexp~2a2g
2 r 2!#

5 (
m50

1

@E1g8 exp~2a1g
2 r 2!#m

3@E2g8 exp~2a2g
2 r 2!#~12m!, ~13!

where

E1g8 5
a1g

3 a2g
3

~a2g
3 2Dga1g

3 !p3/2, E2g8 5
2Dga1g

3 a2g
3

~a2g
3 2Dga1g

3 !p3/2

with g5A,B. a1 , a2 , andD are parameters whose value
are obtained from the experimental electromagnetic fo
factor of the given nucleus. The incident direction of t
nucleusA is chosen to be thez axis andxAB in Eq. ~2! has no
dependence on such variable, so the integration of Eq.~2!
over z is straightforward. Thus, after integrating overz, the
wave function of the system can be written as

TABLE II. Best fit parameters of the nuclear density.

Nucleus a1
2 ~fm22! a2

2 ~fm22! D ^r 2&1/2 ~fm!

4He 0.65 5 0.48 1.65
12C 0.284 0.5 0.688 2.49
16O 0.195 0.44 0.60 2.65
40Ca 0.119 0.44 0.165 3.57
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FIG. 1. Elastic differential cross section for~a-a! reaction at
incident momentum 4.32 GeV/c. The dashed curve is the consta
phase result (g250). The solid curve is obtained with phase vari
tion @g252 (GeV/c)22#. The dots are the experimental data.

FIG. 2. Elastic differential cross section for the~a-a! reaction at
incident momentum 5.07 GeV/c. The dashed curve is the consta
phase result (g250). The solid curve is obtained with phase vari
tion @g253 (GeV/c)22#. The dots are the experimental data.
FIG. 3. Elastic differential cross section for thea-a reaction at
incident momentum 7 GeV/c. The dashed curve is the consta
phase result (g250). The solid curve is obtained with phase vari
tion @g255 (GeV/c)22#. The dots are the experimental data.

FIG. 4. Elastic differential cross section for thea-12C reaction
at 1.37 GeV. The dashed curve is the constant phase resultg2

50). The solid curve is obtained with phase variation@g25
22 (GeV/c)22#. The dots are the experimental data.
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FIG. 5. Elastic differential cross section fora-40Ca reaction at
1.37 GeV. The dashed curve is the constant phase result (g250).
The solid curve is obtained with phase variation@g2

522 (GeV/c)22#. The dots are the experimental data.

FIG. 6. Elastic differential cross section for12C-12C reaction at
1.016 GeV. The dashed curve is the constant phase resultg2

50). The solid curve is obtained with phase variation@g2

523 (GeV/c)22#. The dots are the experimental data.
FIG. 7. Elastic differential cross section for12C-12C reaction at
1.44 GeV. The dashed curve is the constant phase result (g250).
The solid curve is obtained with phase variation@g2

523 (GeV/c)22#. The dots are the experimental data.

FIG. 8. Elastic differential cross section for12C-12C reaction at
2.4 GeV. The dashed curve is the constant phase result (g250).
The solid curve is obtained with phase variation@g25
28 (GeV/c)22#. The dots are the experimental data.
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uCA~$si%!CB~$sj8%!u2

5E uCA~$r i%!CB~$r j8%!u2S )
i 51

MA

)
a51

MN

dziaD
3S )

j 51

MB

)
d51

MN

dzj d8 D 5)
i 51

MA

)
j 51

MB F S )
a51

MN

(
nia50

1 D
3S )

d51

MN

(
l j d50

1 D CA~ni1 ,...,niM N
!

3CB~ l j 1 ,...,l jM N
!expS 2 (

a51

MN

bA
2~nia!sia

2

2 (
d51

MN

bB
2~ l j d!sj d8

2D G ,

where

CA~ni1 ,...,niM N
!5E

A1

~MN2(
a51

MN nia!
3E

A2

(
a51

MN nia,

CB~ l j 1 ,...,l jM N
!5E

B1

~MN2(
d51

MN l j d!
3E

B2

(
d51

MN l j d,

bg
2~r !5a1g

2 ~12r !1a2g
2 g, g5nia ,l j d , ~14!

and

E1g5S Ap

a1g
DE1g8 , E2g5S Ap

a2g
DE2g8 .

FIG. 9. Elastic different cross section for16O-12C reaction at
1.503 GeV. The dashed curve is the constant phase resultg2

50). The solid curve is obtained with phase variation@g2

523 (GeV/c)22#. The dots are the experimental data.
With the wave function~14! and the profile function~11!,
and after integrating over the remaining variablesx and y,
Eq. ~2! takes the form

exp@ ixAB#511(
m1

M1

(
lm1

T1~m1 ,lm1
!)
i 51

MA

)
j 51

MB

$Z%D i j ~m1 ,lm1
!,

~15!

where

Z5S )
a51

MN

(
nia50

1 D S )
d51

MN

(
l j d50

1 D
3CA~ni1 ,...,niM N

!CB~ l j 1 ,...,l jM N
!

3(
m2

M2

(
lm2

T2~m2 ,lm2
!@2g#m2

3R@m2 ,lm2
,D~m2 ,lm2

!,ni1 ,...,niM N
,l j 1 ,...,l jM N

#

3„exp$2W@m2 ,lm2
,D~m2 ,lm2

!,

ni1 ,...,niM N
,l j 1 ,...,l jM N

#b2%….

The details of the integration process onx and y and the
functionsR and W appearing in Eq.~15! are given in Ref.
@26#. Obviously, Eq.~15! in the present form has an adva
tage in reducing the computer CPU time spent in the ca
lations by restoringZ at D i j 50,1.

Finally, in order to estimate the extended charge Coulo
phase-shift functionxcZAZB

E , we used the same analysis

stated in Ref.@38#. The analytical formula developed usin
double Gaussian density functions is

TABLE III. Orbits, lengths, andD matrices forG5S2^ S2 .
Total number of orbits (including the orbits not shown)55.

m lm T(m,lm) D(m,lm)

1 1 4 1000
2 1 2 1100
2 2 2 1001

TABLE IV. Orbits, lengths, andD matrices forS3^ S3 . Total
number of orbits (including the orbits not shown)525.

m lm T(m,lm) D(m,lm)

1 1 9 100000000
2 1 18 110000000
2 2 18 100010000
3 1 6 111000000
3 2 36 110001000
3 3 36 110100000
3 4 6 100010001
4 1 36 111100000
4 2 36 110101000
4 3 9 110110000
4 4 36 110100001
4 5 9 011100100



PRC 58 3519ELASTIC SCATTERING BETWEEN TWO CLUSTER . . .
xCZAZB

E ~b!5n$M2A@11M2B2M1B#

3@M2AE1~a1A
2 b2!2M1AE1~a2A

2 b2!#

1M2A@M2BE1~C11b
2!2M1BE1~C12b

2!#

2M1A@M2BE1~C21b
2!2M1BE1~C22b

2!#%,

~16!

where

Ci j 5
a iA

2 a jB
2

~a iA
2 1a jB

2 !
, i , j 51,2,

M1L5
DLa1L

3

~a2L
3 2DLa1L

3 !

and

M2L5
a2L

3

~a2L
3 2DLa1L

3 !
, L5A,B

TABLE V. Orbits, lengths, andD matrices forG5S2^ S6 . To-
tal number of orbits (including the orbits not shown)549.

m lm T(m,lm) D(m,lm)

1 1 12 100000000000
2 1 30 110000000000
2 2 6 100000100000
2 3 30 100000010000
3 1 40 111000000000
3 2 60 110000100000
3 3 120 110000001000
4 1 30 111100000000
4 2 120 111000100000
4 3 120 111000000100
4 4 15 110000110000
4 5 120 110000101000
4 6 90 110000001100
5 1 12 111110000000
5 2 120 111100100000
5 3 60 111100000010
5 4 120 111000110000
5 5 360 111000100100
5 6 120 111000000110
6 1 2 111111000000
6 2 60 111110100000
6 3 12 111110000001
6 4 180 111100110000
6 5 240 111100100010
6 6 30 111100000011
6 7 20 111000111000
6 8 180 111000110100
6 9 180 111000100110
6 10 20 111000000111
TABLE VI. Orbits, lengths, andD matrices forS4^ S3 . Total
number of orbits (including the orbits not shown)586.

m lm T(m,lm) D(m,lm)

1 1 12 100000000000

2 1 12 110000000000

2 2 18 100100000000

2 3 36 100010000000

3 1 4 111000000000

3 2 72 110100000000

3 3 36 110001000000

3 4 12 100100100000

3 5 24 100010001000

3 6 72 100100010000

4 1 36 111100000000

4 2 18 110110000000

4 3 36 110101000000

4 4 72 110100100000

4 5 72 110100010000

4 6 144 110100001000

4 7 36 011100100000

4 8 3 100100100100

4 9 24 100100100010

4 10 18 100100010010

4 11 36 100100010001

5 1 36 111110000000

5 2 36 111100100000

5 3 72 111100010000

5 4 72 110110100000

5 5 72 110101100000

5 6 36 110110001000

5 7 24 110100100100

5 8 72 110100100010

5 9 72 110100100001

5 10 72 110100010001

5 11 144 110101010000

5 12 12 011100100100

5 13 72 101100010010

6 1 6 111111000000

6 2 144 111110100000

6 3 72 111110001000

6 4 12 111100100100

6 5 72 111100100010

6 6 24 111100010001

6 7 12 110110110000

6 8 72 110110101000

6 9 24 110101011000

6 10 36 110110100100

6 11 36 110101100100

6 12 36 110110100010

6 13 144 110101100010

6 14 72 110101010001

6 15 72 110011100100

6 16 72 110110100001

6 17 18 110110001001
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TABLE VII. Orbits, lengths andD-matrices forS4^ S4 . Total number of orbits (including the orbits not shown)5191.

m lm T(m,lm) D(m,lm) m lm T(m,lm) D(m,lm)

1 1 16 1000000000000000
2 1 48 1100000000000000
2 2 72 1000010000000000
3 1 32 1110000000000000
3 2 288 1100001000000000
3 3 144 1100100000000000
3 4 96 1000010000100000
4 1 8 1111000000000000
4 2 288 1110100000000000
4 3 96 1110000100000000
4 4 288 1100101000000000
4 5 72 1100001100000000
4 6 288 1100001000010000
4 7 36 1100110000000000
4 8 576 1100100000100000
4 9 144 0110100010000000
4 10 24 1000010000100001
5 1 96 1111100000000000
5 2 288 1110110000000000
5 3 288 1110100100000000
5 4 576 1110100001000000
5 5 576 1110100000010000
5 6 96 0111100010000000
5 7 576 1100101000010000
5 8 576 1100001110000000
5 9 144 1110100010000000
5 10 144 1100110000100000
5 11 576 0110110010000000
5 12 288 1100100000100001
5 13 144 0110100010000001
6 1 144 1111110000000000
6 2 96 1111100010000000
6 3 288 1111100001000000
6 4 48 1110111000000000
6 5 144 1110110100000000
6 6 576 1110100110000000
6 7 576 1110110000100000
6 8 576 1110110000010000
6 9 1152 1110010110000000
6 10 575 0111110010000000
6 11 192 1110100001000010
6 12 288 0111100001001000
6 13 576 1100101001010000
6 14 144 1100110000110000
6 15 288 0011110010000100
6 16 576 1110100001000001
6 17 576 1110110010000000
6 18 144 1110100010000001
6 19 16 0111100010001000
6 20 96 1100101001100000
6 21 72 1100110000100001
6 22 576 1100101001000001
6 23 288 0101101001001000
7 1 96 1111111000000000
7 2 576 1111110010000000
7 3 576 1111110000100000

7 4 288 1111100010000100
7 5 192 1111100001000010
7 6 288 1110111010000000
7 7 576 1110110110000000
7 8 96 1110111000010000
7 9 1152 1110110010010000
7 10 576 1110110000110000
7 11 576 1110110000100001
7 12 576 1110110100100000
7 13 288 1011110011000000
7 14 576 1011110010000100
7 15 576 1101101001100000
7 16 288 1101110000100010
7 17 576 1110100100100100
7 18 1152 0111110000101000
7 19 16 1111100010001000
7 20 288 1110110010100000
7 21 1152 1110110010000001
7 22 144 0111110010001000
7 23 576 1110100110000100
7 24 144 1100110000110010
7 25 576 0110110010010010
7 26 96 0110110010100001
8 1 12 1111111100000000
8 2 576 1111111010000000
8 3 192 1111111000010000
8 4 144 1111110011000000
8 5 576 1111110010100000
8 6 144 1111110000110000
8 7 288 1111110010000100
8 8 1152 1111110010000010
8 9 288 1111110000100001
8 10 288 1110110111000000
8 11 288 1110110100110000
8 12 288 1110111010000001
8 13 48 1110111000010001
8 14 288 1110111010010000
8 15 576 1110110000110001
8 16 1152 1011110010100100
8 17 576 1110100100110100
8 18 288 1111011010001000
8 19 1152 1101111010100000
8 20 288 0111111010001000
8 21 1152 1101111010000010
8 22 288 1110110100100001
8 23 576 1011110011000010
8 24 144 1111110010001000
8 25 144 1110111011000000
8 26 144 1110110110000100
8 27 288 1110110010100001
8 28 576 1011011011001000
8 29 576 1110110010010010
8 30 288 0111101011001000
8 31 18 1100110000110011
8 32 72 0110110010010011
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and E1(x)52Ei(x) is the exponential integral function
With the results of Eqs.~15! and ~16!, the scattering ampli-
tude FAB(q) can be obtained by performing the integrati
in Eq. ~1! numerically. Whence the angular distribution
the elastic scattering is given by

ds~q!

dV
5uFAB~q!u2. ~17!

III. RESULTS AND DISCUSSION

In the framework of the formalism presented in the p
vious section, we have calculated the elastic angular di
bution for a set of nuclear reactions; namely,a-12C, a-40Ca,
12C-12C, and16O-12C. The theoretical results were compar
with the available experimental data given in Ref.@18#. The
inputs needed to perform our calculations are the parame
included in theNN scattering amplitudes and the nucle
densities. For theNN parameters, we have used the valu
given in Table I. The density parameters describing the
clei considered are determined by fitting the electromagn
form factors measured experimentally@29–33#. Our best fit
leads to the results shown in Table II.

Since the center of mass correction factorH(q) takes a
rather complicated form, we have used the approxima
@37#

H~q!5expFq2

16 S ^r 2&A

A
1

^r 2&B

B D G ,
where^r 2&A and^r 2&B are the mean square radii of the pr
jectile and target nuclei~see Table II!, respectively. We
tested our codes in computing the differential cross sec
for a-a elastic scattering at incident momenta of 4.32, 5.
and 7 GeV/c and the results obtained, Figs. 1, 2, and 3, ag
well with the experimental data@28,40#. The results for the
angular distribution of the elastic scattering of 1.37 GeVa
particles on12C and40Ca nuclei are shown in Figs. 4 and
respectively, as dashed curves. In Fig. 4, the calculation
produces the12C data up to the angular range (Q<9), while
for larger angles just the qualitative trend is accounted
Obviously, there is an overall shift for the theoretical cur
toward lower angles with an underestimation for the valu
of the cross sections, especially at large angles. We hav
mention here that although the complete expansion of
multiple scattering are considered in our calculations, no
nificant difference in describing thea-12C data was obtained
in comparison with the optical limit results presented in R
@18#. A more elaborate treatment of the center-of-mass c
relation similar to that utilized in Ref.@6# may produce bette
agreement with the experimental data. Fora-40Ca case, Fig.
5, the theoretical situation is better than the case of12C. The
data are reasonably reproduced with a smaller shift a
from the forward angles. In comparison with the results
a-40Ca shown in Ref.@18#, our calculations gave bette
agreement with the experimental data in this case, espec
at the minima. The predicted angular distribution of12C-12C
collision at the energies 1.016, 1.44, and 2.4 GeV is sho
in Figs. 6–8, respectively. We observe from these figu
that a substantial improvement in fitting the data is obtain
particularly at large angles, in comparison with the cor
-
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sponding results given in Ref.@18#. This shows the impor-
tance of the higher multiple scattering processes. Clearly
calculation still do not reproduce successfully the experim
tal data at 2.4 GeV. This disagreement was attributed pr
ously @18# to the increase in the nuclear transparency wh
the incident energy increases and it can be improved if
uses the coupled-channel treatment@37#. For the case of
16O-12C collision at bombarding energy 1.503 GeV, Fig.
our results are significantly better than those given in R
@18# especially at higher angles.

On the other hand, we have carried out an extensive
merical calculations at various nonzero values of the ph
parameterg2 in order to investigate how theq-dependent
phase exp@(2ig2q2)/2# invoked in theNN amplitude affects
the nucleus-nucleus scattering. The calculations showed
for a given value of the ratio parameterr, the variation ofg2

leads to either an overall increase or decrease in the
mated values of the cross sections. Indeed, we found
such a change in the cross section takes place dependin
the signs ofr andg2, i.e., if r is positive, the negative value
of g2 increases the cross section while the positive va
decreases it and vice versa. Hence, a nonzero value fr
implies a single nonzero value forg2 as well. This in fact
agrees with what was predicted before by Ahmad and A
@35# from a potential model calculation. However, the be
results of the present calculations are shown by the s
curves in our figures. On comparing the solid curve~at g2

Þ0! with the dashed curve~at g250! in each figure, we can
note that the influence of the phase is obvious only at
minima and is roughly notable at the momentum transf
where no minima originally occurred. In general, taking th
phase into account gives better agreement with thea-
scattering data, Figs. 1–3, while the improvement is confin
at the minima of the results obtained for the other reacti
presented in Figs. 4–9.

IV. CONCLUSION

In the present work, the elastic scattering between t
nuclei (A,B>4) has been reinvestigated by evaluating t
full multiple scattering expansion of the Glauber amplitu
for the collisionsa-12C anda-40Ca at a bombarding energ
equal to 1.37 GeV,12C-12C at energies 1.016, 1.44, and 2
GeV, and16O-12C at energy equals 1.503 GeV. In compa
son with previous optical limit results~single scattering cal-
culations!, the calculated angular distributions obtained he
showed that the inclusion of the higher order terms provi
a more satisfactory fits with the experimental data, especi
at large angles. As a matter of fact, the theoretical res
now nicely reproduce the data of 1.37 GeVa particle on
40Ca, 12C-12C at 1.016 and 1.44 GeV, as well as16O-12C at
1.503 GeV while they are still in disagreement with the da
of a-12C and12C-12C at 1.37 and 2.4 GeV, respectively. It
our belief that the application of the work of Franco a
Varma @6# for the center of mass correlation may enhan
our calculations. By invoking a phase in theNN amplitude,
our results showed that a better agreement with the exp
mental data is obtained at the minima of the diffraction p
terns in comparison with the free-phase calculations.
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APPENDIX

This appendix contains tables in which we present
orbits, lengths, andD matrices employed in our calculation
We obtained them by enumerating and investigating all
possible combinations of collisions according to their perm
tation @20#. In the present work, the elastic collisionsa-a,
a-12C, a-40Ca, 12C-12C, and 16O-12C have been studied
Each reaction according to its assumed cluster struc
needs the orbits, lengths, andD matrices of the groupsG1
5SMA

^ SMB
andG25SMN

^ SMN
~defined in Sec. II!. For the

a-a case, we took the two-particle system as a cluster p
ticle. Therefore, under such cluster structureMA5MB
5MN52. For thea-12C case, the cluster structure is tak
asMA52, MB56, andMN52, while for the case ofa-40Ca,
we have arranged it asMA51, MB510, andMN54. For the
12C-12C case, MA53, MB53, and MN54, while for
16O-12C, MA54, MB53, andMN54. For the sake of brev
ity, we give only the tables of the nonsimilar groups~Tables
III–VIII !. In these tables, the first column represents the
der of multiple scatteringm which ranges from 1 tom3n
while lm in the second column represents the serial ind
used to number the orbits of orderm. The third column rep-
resents the length of the orbitT(m,lm). In the fourth column
e

e
-

re

r-

r-

x

the m3n-digit binary numbers give theD matrices of the
group G5Sm^ Sn . The firstn digits are the elementsD1i ,
i 51,2, . . . ,n; the nextn digits areD2i ,..., and thelast n
digits areDmi .

By symmetry, the orbits, lengths andD matrices form’s,
which are not shown in our tables, could be easily dedu
from the tables. This is carried out by using the results
order m85m3n2m and interchange the 0’s and 1’s ofD
(m8,lm8). The indiceslm and lm8 are the same and th
lengths T(m,lm) and T(m8,lm8) are equal. The matrix
D(m3n,1) has elementsD i j equal 1.

TABLE VIII. Orbits, lengths, andD matrices forS1^ S10. Total
number of orbits (including the orbits not shown)510.

m lm T(m,lm) D(m,lm)

1 1 10 1000000000
2 1 45 1100000000
3 1 120 1110000000
4 1 210 1111000000
5 1 252 1111100000
En

d

n,

an,
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