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Elastic scattering between two cluster nucle{A, B=4) at medium and high energies
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In the framework of the Glauber multiple scattering theory, the complete expafsioich contains
2A%B_1 termg of the Glauber amplitude of elastic scattering between two négIBi=4 is obtained. Using
double Gaussian density consistent with the electron-scattering experiments, the differential cross section
(nuclear-Coulomb) is calculated and compared with the experimental data. It is shown that, in general, higher
order terms give a substantial improvement in comparison with the previous optical limit results at relatively
large scattering angles. The effect of invoking a phase-variation in the nucleon-nyblBpramplitude is
examined. We found that the presence of the phase variation improves our results, especially at the minima of
the diffraction pattern[S0556-281®8)07012-5

PACS numbdps): 25.70.Bc, 21.30.Fe, 24.10.Cn

I. INTRODUCTION drawbacks, Franco and Varm#®] expanded the optical
phase-shift function in terms of an infinite series, and re-
For more than three decades, the Glauber multiple scastricted their calculations to the fourth order term in order to
tering theory(GMST) [1,2] has been considered as one ofimprove the usual optical limitwhich represents the first
the most successful theories in describing hadron-nucleugrm of this series Also, they treated in a consistent way the
elastic scattering at medium and high energies. One of the.m. correlation and the effect of the Coulomb interaction.
main conclusions obtained in this description is that the sucwhen these calculations were applied to the 1.37 Gel?C
cessive higher order multiple scattering processes, especialifastic scattering dafd 9], significant improvement was ob-
at large target mass number, play an important role in obtained. However, a little disagreement was observed at large
taining better fitting at high momentum transfer. scattering angles. They attributed it to the truncation of the
The confidence in this theory encouraged the extension diigher order terms in the series, as well as the single Gauss-
its application to nucleus-nucleus collisions, but it has beeran form factor employed. On the other hand, their investi-
pointed ouf3—6] that the analytical treatment becomes moregations showed that the fourth order calculations are not ad-
complex and tedious in its numerical realization. This is dueequate when both projectile and target nuclei become
to the numerous multiple scattering teri2*—1 termg  heavier. Since all the multiple scattering terms are not differ-
during the collision between nuclei of mass numb&rsB  ent, Yin et al. [20,21] succeeded in introducing a compre-
which make the evaluation of the scattering amplitude sdensive method for classifying these terms into setferred
difficult and lengthy. Also, the application of the conven- to as orbit$. Each orbit contains the scattering terms, each of
tional way of factorizing out the center-of-mass correlationwhich gives equal contribution to the scattering amplitude.
[3] in the Glauber approximation leads to an unphysical di-The number of scattering terms contained in each drbit
vergence in the cross sections at large momentum transfégrred to as the length of the orpind the orbits themselves
[4,6] even if we consider the full Glauber multiple scattering were found with the aid of the theory of permutation groups.
terms and the suitable density functiof@esg., Gaussian and Using a double Gaussian density function, they applied this
harmonic oscillator functions Although in Ref.[6] the au- method to calculate the complete expansion of the scattering
thors showed that this divergence is removed by includingamplitude of “a-a’ collision [20]. The theoretical results
the c.m. correlation to the same order as the scattering term@&gere in good agreement with the experimental data even at
but this in turn makes the numerical calculations more comiarge values of momentum transfer. Further applications of
plicated. Owing to these difficulties, several approximationthe above method using various forms of Gaussian density
techniques have been made to simplify the calculation of thand nucleon-nucleotNN) scattering amplitude for collisions
nucleus-nucleus elastic scattering amplit{@le18. The ear- between composite systems have been carried282#25.
lier approximation, was the so-called “the optical limit re- An excellent agreement of the theoretical results with the
sult” [3], and it is obtained by considering a series expansiororresponding experimental data has been obtained. As a
of the optical phase-shift function in the limit of large pro- matter of fact, the method has proven to be useful for colli-
jectile and target mass numbers. In this limit, the single scatsions between nuclei of mass numbetd. But for heavier
tering terms in the phase-shift expansion are only considerediuclei, the expansion terms describing different multiple
The analysis of heavy-ion elastic collisions in this opticalscattering processes became so numerous to the extent that it
limit showed serious disagreemerits8,14—117, especially would be very tedious and time consuming process to clas-
the largeq divergence[4]. In an attempt to remove these sify these terms using the above-mentioned method. Re-
cently, Huand 26] proposed an interesting technique, based
on dividing the projectile and target nuclei into clusters of
* Author to whom the correspondence should be addressed.  equal number of nucleons, in order to make the application
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of Yin’s method tractable. With elaborate treatment, Huangamplitude,n=Z,Zge?/#v is the usual Coulomb parameter,
derived an integral formula to calculate the complete expanand)(fZAZB is the extended charge correction to the Coulomb

sion of the Qlauber a.mplitude of multiple scattgring bet""ee’bhase shift functiony g is the total nuclear phase-shift func-
two composite nuclei where the density function was takeny, resulting from the interaction between nucleisand

to be a double Gaussian form. We calculated the elastic scafy,cleusB. For given projectile and target ground state wave
tering differential cross sections fora“a” collision using  ¢,nctions Yag(b) is given by

Huang’s approach27], and the results were in good agree-

ment with the experimental daf@28]. The success in this exflixas(P)]=(¥a({riHPe({r{}|
treatment and the absence of similar calculation for heavier _
masses motivated us to investigate the elastic collisions be- xexdixap(b,{s}{sHI¥aVs), (2

tween two composite nuclé”, B=4) in the framework of ) o .

the Glauber multiple scattering theory using the methods in"here Wa(¥g) is the projectile (targe} wave function,

troduced in Refs[20,26. The full elastic scattering differ- Which depends on the position vectdrs}({r;}) of the pro-

ential cross sections (nuclea€oulomb) were determined Jjectile (targel nucleons whose projections on the impact pa-

by choosing a double Gaussian density function with paramtameter plane arés}({s/}). Adopting the approximation in

eters obtained by fitting the electron scattering dag-33.  Ref.[6], in which x g is equal to the sum of aNN phase-

Recently, the globat-dependent phase was invoked in the shift functionsy;; , we can write

NN scattering amplitude by Franco and Y@2,23. The A B

authors showed that the introduction of this phase brought L ,

the Glauber model predictions closer to the experimental re- XAB(b’{S*}’{Si})_;l ,Zl Xij(b+§—5)). ®)

sults for the elastic scattering of theparticle on light nu-

clei. Very recently, further analysis has been mf@e-371  The profile functionl’ is defined in terms of the phase shift

to examine whether the phase is actually important or notfunction as

This analysis, however, showed that the phase gives better )

account for the data of hadron-nucle[B6], «-**C, and I'(b)=1—exdix(b)]. (4)

«-%%Ca [37] elastic scattering at high momentum transfer.

Furthermore, it indicated that this phase has its strongest e

fect in processes where higher orders of interference are A B

dominateq. _The best deter_mination is obtained when one FAB(bi{Si}a{Sj,}):]-_H H [1_Fij(b+si_sj,)]- (5)

uses realistic nucleon density, precise nucleon-nucleon am- i=1j=1

plitudes and coupling of inelastic channels. Since the present .

work contains much more complicated interference of higher Cl€ary, EQ.(5) for A, B=4 contains too many terms to

orders, thus it is helpful to study the role of such phase o€ Of any practicable use for evaluating the full multiple

our calculations. scattering series of the Glauber amplitude. To avoid this
The present paper contains three more sections and &fcPlem, we have used Huang's treatmi@8] in which both

appendix. Section Il is devoted to the analytic expression oprojectile and target nuclei are assumed to have cluster struc-

the nucleus-nucleus elastic scattering amplitude. In Sec. 1furé and the classification of the scattering terms by Yin's

the results and a discussion @1°C, a-°Ca, 12C-1%C, and method[20] is employed. This is performed as follows: Fol-

160-12C are presented. The conclusion is given in Sec. Iv!oWing Huang's method, suppose that there klrg clusters

We exhibit the orbits, the lengths, addmatrices(described N nucleusA andMg clusters in nucleus and there aré/y
in Sec. 1) in the Appendix. nucleons in each clustéMy should be a common divisor

for the nucleusA and nucleusB), thenTI 5z takes the form

]f-_|ence, the total profile function takes the form

Il. THEORETICAL FRAMEWORK 1'\115 1""_!{\1 I'V'_f I'V_'i\l
. . . Fag=1— 1-Ti, i 5(b+S.—S 51,
According to Glauber's multiple scattering theory, the AB =1 a=1]j=1 5:1[ iajoDF S~ S5)]
elastic scattering amplitude between nuclei of mass number (6)

A, B and atomic numbeZ, ,Zgz may be written a$38 i ) )
Ar4B My $38] whereT';,, ;5 represents the profile function of scattering be-

" tween theath nucleon of theth cluster inA and th nucleon
FAB(Q)=H(Q)[f'§tZAZB(q)+if (kb)2in+1 of the jth cluster inB. Using Yin's method in which the
0 permutation theory is adopted to classify the scattering
terms,I",5 can be reexpressed as

X{1—exiixc;,,.(0)+ixas(b) [} o(ab)db|, My
I'pg=— T A
1) AB % ;M 1(pq ,Ll)
here,H(q) is the center-of-mass correction facf8i, q is Mo Mo (M2
where, i -of- i ,qi
the momentum transferred from the projectile nucléus Xl:[l 111 |% g QEER
2

the target nucleuB, k is the incident momentum of the pro-
jectile nucleus, andb is the impact parameter vector. My My ]Aij(l‘lr)‘ﬂl)

. (7)

fEtZAZB(q) is the point charge approximation of the Coulomb X Hl ;11 (=T jo) imioti2 ;)
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TABLE I. Parameters of the nucleon-nucleon amplitude. TABLE Il. Best fit parameters of the nuclear density.
E/A (MeV/nucleon oy (fm?) DNN B%(fm» Ref. Nucleus o? (fm™? a3 (fm? D (r?y*2 (fm)
1.08 3.35 0.45 0.07 [20] “He 0.65 5 0.48 1.65
1.27 3.95 —-0.35 0.11 [20] 2c 0.284 0.5 0.688 2.49
100 5.295 1.435 0.51 [39] %0 0.195 0.44 0.60 2.65
120 4.5 0.95 051 [39] “ca 0.119 0.44 0.165 3.57
200 3.2 0.6 0.02 [18]
3425 2.84 0.26 0.045 [18]

Ma Mg [Mz

My
FAB=—§ 2 Tu(ma 1l 2 2 Toluz Ny

. :lJ:l 1y

whereM ;=M X Mg, My=MyXMy, T1(T,) is the length
of the orbit C“l’}‘ﬂl)[(MZ’)‘Mz)] of the permutation group My My

G1= Sm,®Swg (G2= S @S, x<—g>ﬂ2exp[—2 > (0+Su—S9%Aa)s
a=1 6=1

Ajj(perh g A g js(p2:N )]

X (p2.\,,)l2a (11)

]Aij(ﬂly)\ﬂl)

is theijth (i @j 6th) element of the matrix

A(pqg N [A(uo N _ .
(1 “1)[ (2 “2)] Now, we need to describe the wave function of the system to

) . . perform the integration of Eq2). Consider the approxima-
representing the orbit. The elements of these matrices havg,, in which the nucleons inside any cluster and the clusters

only two values; 1 wheil';; (orI'i,,; ;) appears in the expan- hemselves inside the nucleus are completely uncorrelated.
sion term and O when it is absept.is the order of scattering Then we can write

and\ , is the serial index used to number the orbits of order
. [All these orbits, lengths and matrices are given in the
Appendix] ', j 5 is related to theNN elastic scattering am- Ma My Mg My

plitude, f;, 5 by (avs*=I1 IL parial1 11 potrin. (12

1 _
Ciojol D)= g | oo 0, @®
el 2miky a 1o wherep, and pg are the normalized single particle density

functions and are chosen to be of the double Gaussian type
whereky is the wave number of the incident nucleon.

Assuming, for simplicity, that all thé&lN amplitudes are
equal(which is approximately true at high eneigy; ,,j s can afyagy
be parametrized b}23,37 pi(r)=

2 .2
3 3 ap [eXp(—a,r)
(a3,—D,ai,)m 4

K —D.exp(— a3 r?
fia,j&(Q):%:(i‘Fp)eiaqzlz, (9) YOXPA(—ag,r9)]

1
. . . . =X [Ejexp—af,rA)]"
whereq is theNN total cross section andis the ratio of the m=0
real to the imaginary part of the forward amplitude.is , 2 2\1(1-m)
taken to be complexa=32+iy?, where 82 is the slope X[Ez exp—az,r)] ' (13
parameter of thé\N elastic scattering cross section ayfdis
the phase variation parameter of til scattering amplitude.
The parameters, p, andB? can all be obtained from theN
scattering measurements, whi}¢ is considered as a free
parameter. Inserting Eq9) into Eq. (8), we obtain aiyagy _ Dyafyagy

E/ = E! =
1 3 3 3/21 2 3 3 3/2
7 (a3,—D,ai,)m 7 (a3,—D,ai,)m

where

Tiajs(b+Sa—S5=0 exd —(b+S,~—§/;)?/2a]

(10
and with y=A,B. a;, a,, andD are parameters whose values
are obtained from the experimental electromagnetic form
factor of the given nucleus. The incident direction of the
9= 7 (1—ip). nucleusA is chosen to be theaxis andy g in Eq.(2) has no
4ma dependence on such variable, so the integration of(Eq.

over z is straightforward. Thus, after integrating ovgrthe
Substituting Eq(10) into Eq. (7), I' og takes the form wave function of the system can be written as
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TABLE IIl. Orbits, lengths, andA matrices forG=S,®S,.
Total number of orbits (including the orbits not shower.

i b T(pesN ) AN y)
1 1 4 1000
2 1 2 1100
2 2 2 1001

With the wave function(14) and the profile functior(11),
and after integrating over the remaining variabkeandy,
Eq. (2) takes the form

Ma Mg
exdixasl= 1+2 2 Ta(pa, )\Ml)H H {ZyRiteahuy),
(15
where
My 1
TSRS
a=1 nia=0 1 |]§—
XCa(Mig, ... Nim ) Ca(j1, - ljmy)
M;
X2 2 Talpa Ny, — 912
K2 Ny,
XR[MZ’)\Mz'A(MZ’)\,U«Z)’nil"'"niMN’Ijl""’IjMN]

X(exq_W[MZJ\,uZ!A(MZ!)\MZ)v

Nizse Mg ljzse-djm JB%)-
The details of the integration process grandy and the
functionsR and W appearing in Eq(15) are given in Ref.
[26]. Obviously, Eq.(15) in the present form has an advan-
tage in reducing the computer CPU time spent in the calcu-
lations by restoringZ at A;;=0,1.

Finally, in order to estimate the extended charge Coulomb

phase-shift functions(EzAzB, we used the same analysis as

stated in Ref[38]. The analytical formula developed using
double Gaussian density functions is

TABLE IV. Orbits, lengths, and\ matrices forS;®S;. Total
number of orbits (including the orbits not shown25.

2 W T(mNp) A(p\y)

1 1 9 100000000
2 1 18 110000000
2 2 18 100010000
3 1 6 111000000
3 2 36 110001000
3 3 36 110100000
3 4 6 100010001
4 1 36 111100000
4 2 36 110101000
4 3 9 110110000
4 4 36 110100001
4 5 9 011100100
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TABLE VI. Orbits, lengths, and\ matrices forS,® S;. Total
number of orbits (including the orbits not shown36.

M Ny T(pNp) A(pNy) M W T(piNy) A(p,N )
1 1 12 100000000000 1 1 12 100000000000
2 1 30 110000000000 2 1 12 110000000000
2 2 6 100000100000 2 2 18 100100000000
2 3 30 100000010000 2 3 36 100010000000
3 1 40 111000000000 3 1 4 111000000000
3 2 60 110000100000 3 2 72 110100000000
j i 1:8 E;’gggggéggg 3 3 36 110001000000
4 2 120 111000100000 8 4 12 100100100000
v B v S S 2 o00i000i000

4 4 15 110000110000
4 5 120 110000101000 4 1 36 111100000000
4 6 90 110000001100 4 2 18 110110000000
5 1 12 111110000000 4 3 36 110101000000
5 2 120 111100100000 4 4 72 110100100000
5 3 60 111100000010 4 5 72 110100010000
5 4 120 111000110000 4 6 144 110100001000
5 5 360 111000100100 4 7 36 011100100000
5 6 120 111000000110 4 8 3 100100100100
6 1 2 111111000000 4 9 24 100100100010
6 2 60 111110100000 4 10 18 100100010010
6 3 12 111110000001 4 11 36 100100010001
6 4 180 111100110000 5 1 36 111110000000
6 5 240 111100100010 5 2 36 111100100000
6 6 30 111100000011 5 3 72 111100010000
6 7 20 111000111000 5 4 7 110110100000
6 8 180 111000110100 5 5 7 110101100000
6 9 180 111000100110 c 5 36 110110001000
6 10 20 111000000111 c . I 110100100100
5 8 72 110100100010
5 9 72 110100100001
XCz,74(0) =N{M2a[ 1+ Mg —Myz] 5 10 72 110100010001
2 12 2 12 5 11 144 110101010000
X [MaaB1(@1aD7) = MiaBa(a2,07)] 5 12 12 011100100100
+Mal MgE1(Cy3b?) —M1gE4(C1ob?)] 5 13 72 101100010010
~M1a[M2gE1(Caib?) ~ MigEr(Co09) ]} : > ™ 1110150000
(16) 6 3 72 111110001000
6 4 12 111100100100
where 6 5 72 111100100010
6 6 24 111100010001
el N 6 7 12 110110110000
G “aatal) =12, 6 8 72 110110101000
AipT @ JB)

6 9 24 110101011000
, 6 10 36 110110100100
Mo = Dpaj, 6 11 36 110101100100
(a3 -DLad)) 6 12 36 110110100010
6 13 144 110101100010
and 6 14 72 110101010001
6 15 72 110011100100
. 6 16 72 110110100001
M., = 2L L—AB 6 17 18 110110001001

T3 R~ 3
(a3 —Dpayy) ’
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TABLE VII. Orbits, lengths andA-matrices forS,® S,. Total number of orbits (including the orbits not show91.
M Ny T(miN ) A(miNy) w o T(miN ) A(miN,)
1 1 16 1000000000000000 7 4 288 1111100010000100
2 1 48 1100000000000000 7 5 192 1111100001000010
2 2 72 1000010000000000 7 6 288 1110111010000000
3 1 32 1110000000000000 7 7 576 1110110110000000
3 2 288 1100001000000000 7 8 96 1110111000010000
3 3 144 1100100000000000 7 9 1152 1110110010010000
3 4 96 1000010000100000 7 10 576 1110110000110000
4 1 8 1111000000000000 7 11 576 1110110000100001
4 2 288 1110100000000000 7 12 576 1110110100100000
4 3 96 1110000100000000 7 13 288 1011110011000000
4 4 288 1100101000000000 7 14 576 1011110010000100
4 5 72 1100001100000000 7 15 576 1101101001100000
4 6 288 1100001000010000 7 16 288 1101110000100010
4 7 36 1100110000000000 7 17 576 1110100100100100
4 8 576 1100100000100000 7 18 1152 0111110000101000
4 9 144 0110100010000000 7 19 16 1111100010001000
4 10 24 1000010000100001 7 20 288 1110110010100000
5 1 96 1111100000000000 7 21 1152 1110110010000001
5 2 288 1110110000000000 7 22 144 0111110010001000
5 3 288 1110100100000000 7 23 576 1110100110000100
5 4 576 1110100001000000 7 24 144 1100110000110010
5 5 576 1110100000010000 7 25 576 0110110010010010
5 6 96 0111100010000000 7 26 96 0110110010100001
5 7 576 1100101000010000 8 1 12 1111111100000000
5 8 576 1100001110000000 8 2 576 1111111010000000
5 9 144 1110100010000000 8 3 192 1111111000010000
5 10 144 1100110000100000 8 4 144 1111110011000000
5 11 576 0110110010000000 8 5 576 1111110010100000
5 12 288 1100100000100001 8 6 144 1111110000110000
5 13 144 0110100010000001 8 7 288 1111110010000100
6 1 144 1111110000000000 8 8 1152 1111110010000010
6 2 96 1111100010000000 8 9 288 1111110000100001
6 3 288 1111100001000000 8 10 288 1110110111000000
6 4 48 1110111000000000 8 11 288 1110110100110000
6 5 144 1110110100000000 8 12 288 1110111010000001
6 6 576 1110100110000000 8 13 48 1110111000010001
6 7 576 1110110000100000 8 14 288 1110111010010000
6 8 576 1110110000010000 8 15 576 1110110000110001
6 9 1152 1110010110000000 8 16 1152 1011110010100100
6 10 575 0111110010000000 8 17 576 1110100100110100
6 11 192 1110100001000010 8 18 288 1111011010001000
6 12 288 0111100001001000 8 19 1152 1101111010100000
6 13 576 1100101001010000 8 20 288 0111111010001000
6 14 144 1100110000110000 8 21 1152 1101111010000010
6 15 288 0011110010000100 8 22 288 1110110100100001
6 16 576 1110100001000001 8 23 576 1011110011000010
6 17 576 1110110010000000 8 24 144 1111110010001000
6 18 144 1110100010000001 8 25 144 1110111011000000
6 19 16 0111100010001000 8 26 144 1110110110000100
6 20 96 1100101001100000 8 27 288 1110110010100001
6 21 72 1100110000100001 8 28 576 1011011011001000
6 22 576 1100101001000001 8 29 576 1110110010010010
6 23 288 0101101001001000 8 30 288 0111101011001000
7 1 96 1111111000000000 8 31 18 1100110000110011
7 2 576 1111110010000000 8 32 72 0110110010010011
7 3 576 1111110000100000
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and E;(x)=—Ei(x) is the exponential integral function. sponding results given in Ref18]. This shows the impor-

With the results of Eqs(15) and(16), the scattering ampli- tance of the higher multiple scattering processes. Clearly our
tude F5p(g) can be obtained by performing the integration calculation still do not reproduce successfully the experimen-
in Eq. (1) numerically. Whence the angular distribution of tal data at 2.4 GeV. This disagreement was attributed previ-

the elastic scattering is given by ously [18] to the increase in the nuclear transparency when
the incident energy increases and it can be improved if one
do(9) —|F ag(q)|2 (17) uses the coupled-channel treatm¢B?]. For the case of
dQ AB ' 160-12C collision at bombarding energy 1.503 GeV, Fig. 9,

our results are significantly better than those given in Ref.
Ill. RESULTS AND DISCUSSION [18] especially at higher angles.
) ) On the other hand, we have carried out an extensive nu-
_In the framework of the formalism presented in the pre-perical calculations at various nonzero values of the phase
\k/)|otgs sfectlon,tw?* ha\ie calcul?ted the eIastllgcang%e(xzr distrigarametery? in order to investigate how thg-dependent
12uC'?QC°r a dslgoolzrcw:u%%artrheac I(t)'ns'l namiztizy, » L4, dphase exf{(—iY’9?)/2] invoked in theNN amplitude affects
o, and FO="L. The Ineoretical results were comparedy, o, jeys-nucleus scattering. The calculations showed that
with the available experimental data given in Rdf3]. The : ; o 5
. X for a given value of the ratio parameigrthe variation ofy
inputs needed to perform our calculations are the paramete[gadS t0 either an overall increase or decrease in the esti-
included in theNN scattering amplitudes and the nuclear ! v ! . ! '
ated values of the cross sections. Indeed, we found that

densities. For thé&NN parameters, we have used the values" s X :
given in Table 1. The density parameters describing the nuSUch & change in tzhe_ cross section takes place depending on
clei considered are determined by fitting the electromagnetif® Signs of andy*, i.e., if p is positive, the negative value
form factors measured experimenta]89—33. Our best fit ~ Of ¥* increases the cross section while the positive value
leads to the results shown in Table II. decreases it and vice versa. Hence, a nonzero valug for
Since the center of mass correction fackbfq) takes a  implies a single nonzero value for’ as well. This in fact
rather complicated form, we have used the approximatiogrees with what was predicted before by Ahmad and Alvi
[37] [35] from a potential model calculation. However, the best
, ) , results pf the present calculation; are shovyn by the solid
H(q)=ex;{q— ((r >A+ (r‘)s curves in our figures. On comparing the so_lld cutae 2
16\ A B ' #+0) with the dashed curvéat y?=0) in each figure, we can
note that the influence of the phase is obvious only at the
where(r?), and(r?)y are the mean square radii of the pro- minima and is roughly notable at the momentum transfers
jectile and target nucle{see Table I, respectively. We where no minima originally occurred. In general, taking this
tested our codes in computing the differential cross sectiophase into account gives better agreement with the

for a-a elastic scattering at incident momenta of 4.32, 5.07 gcattering data, Figs. 1-3, while the improvement is confined

and 7 GeV£ and the results obtained, Figs. 1, 2, and 3, agregt the minima of the results obtained for the other reactions
well with the experimental datg28,40. The results for the presented in Figs. 4-9.

angular distribution of the elastic scattering of 1.37 GeV
particles on'?C and“°Ca nuclei are shown in Figs. 4 and 5,
respectively, as dashed curves. In Fig. 4, the calculation re-
produces thé?C data up to the angular rang® € 9), while

for larger angles just the qualitative trend is accounted for. In the present work, the elastic scattering between two
Obviously, there is an overall shift for the theoretical curvenuclei (A,B=4) has been reinvestigated by evaluating the
toward lower angles with an underestimation for the valuedull multiple scattering expansion of the Glauber amplitude
of the cross sections, especially at large angles. We have for the collisionsa-?C anda-%°Ca at a bombarding energy
mention here that although the complete expansion of thequal to 1.37 GeV*?C-%C at energies 1.016, 1.44, and 2.4
multiple scattering are considered in our calculations, no sigéeV, and®0-1%C at energy equals 1.503 GeV. In compari-
nificant difference in describing the-1?C data was obtained son with previous optical limit resultsingle scattering cal-

in comparison with the optical limit results presented in Ref.culationg, the calculated angular distributions obtained here
[18]. A more elaborate treatment of the center-of-mass corshowed that the inclusion of the higher order terms provides
relation similar to that utilized in Ref6] may produce better a more satisfactory fits with the experimental data, especially
agreement with the experimental data. kef’Ca case, Fig. at large angles. As a matter of fact, the theoretical results
5, the theoretical situation is better than the cas®®f The  now nicely reproduce the data of 1.37 GeVparticle on
data are reasonably reproduced with a smaller shift awa$§°Ca, °C-*°C at 1.016 and 1.44 GeV, as well £0-1°C at
from the forward angles. In comparison with the results forl.503 GeV while they are still in disagreement with the data
a-*%Ca shown in Ref[18], our calculations gave better of a-?C and?C-'%C at 1.37 and 2.4 GeV, respectively. Itis
agreement with the experimental data in this case, especialtyur belief that the application of the work of Franco and
at the minima. The predicted angular distribution'&€-'“C ~ Varma[6] for the center of mass correlation may enhance
collision at the energies 1.016, 1.44, and 2.4 GeV is showmur calculations. By invoking a phase in thiN amplitude,

in Figs. 6-8, respectively. We observe from these figuresur results showed that a better agreement with the experi-
that a substantial improvement in fitting the data is obtainedmental data is obtained at the minima of the diffraction pat-
particularly at large angles, in comparison with the corre-terns in comparison with the free-phase calculations.

IV. CONCLUSION
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APPENDIX

This appendix contains tables in which we present the
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TABLE VIII. Orbits, lengths, and\ matrices forS;® S,,. Total
number of orbits (including the orbits not shown]0.

orbits, lengths, and matrices employed in our calculations.

We obtained them by enumerating and investigating all the
possible combinations of collisions according to their permu-

tation [20]. In the present work, the elastic collisionsa,
a-12C, a-*°Ca, ?C-*°C, and '%0-*?C have been studied.

Each reaction according to its assumed cluster structure

needs the orbits, lengths, addmatrices of the group&;
=Sum,® Sy, andG, =Sy ® Sy, (defined in Sec. )l For the

M N, T(pNy) A(p,\y)

1 1 10 1000000000
2 1 45 1100000000
3 1 120 1110000000
4 1 210 1111000000
5 1 252 1111100000

a-a case, we took the two-particle system as a cluster par-

ticle. Therefore, under such cluster structukéy,=Mg
=My=2. For thea-'°C case, the cluster structure is taken
asM =2, Mg=6, andM =2, while for the case of-*°Ca,

we have arranged it dd ,=1, Mg=10, andM y=4. For the
12c12C case, Mp=3, Mg=3, and My=4, while for
160-17C, My=4, Mg=3, andM y=4. For the sake of brev-
ity, we give only the tables of the nonsimilar groudsables
[I=VII). In these tables, the first column represents the or
der of multiple scattering: which ranges from 1 tanXn
while N, in the second column represents the serial inde
used to number the orbits of ordar The third column rep-
resents the length of the orf3i(x,\ ,). In the fourth column

i

the mXxn-digit binary numbers give th& matrices of the
groupG=S,®S,. The firstn digits are the element4;,
i=1,2,...n; the nextn digits areA,;,..., and thelastn
digits areA ;.

By symmetry, the orbits, lengths admatrices foru's,
which are not shown in our tables, could be easily deduced
from the tables. This is carried out by using the results for
order '’ =mxn—pu and interchange the 0's and 1's Af
#',\,7). The indices\, and \ ,, are the same and the
ngths T(u,\,) and T(u',\,/) are equal. The matrix
A(mxn,1) has elements;; equal 1.

[1] R. J. Glauberlectures in Theoretical Physicsdited by W. E.
Brittin and L. G. Dunham{Wiley, New York, 1959, Vol. 1, p.
315.

[2] V. Franco and R. J. Glauber, Phys. R&42, 1195(1966.

[3] W. Czyz and L. C. Maximon, Ann. Phy&N.Y.) 52, 59(1969.

[4] V. Franco and A. Tekou, Phys. Rev.X®, 658 (1977).

[5] G. K. Varma, Nucl. PhysA297, 465 (1978.

[6] V. Franco and G. K. Varma, Phys. Rev.18, 349 (1978.

[7] P. J. Karol, Phys. Rev. €1, 1203(1974.

[8] G. Faldt, H. Pilkuhn, and H. G. Sclaile, Ann. Phykl.Y.) 82,
326 (1974.

[9] J. Hufner, K. Schafer, and B. Schurmann, Phys. Red2C
1888(1975.

[10] Y. Abgral et al,, Nucl. Phys.A277, 477 (1976.

[11] A. Biales, M. Bleszynski, and W. Czyz, Nucl. Phy&l11, 461
(1976.

[12] G. D. Alkhazovet al, Nucl. Phys.A280, 365 (1977).

[13] J. Y. Hostachyet al, Nucl. Phys.A490, 441 (1977.

[14] I. V. Andreev and A. V. Chernov, Sov. J. Nucl. Phg8 243
(1978.

[15] I. V. Andreev and L. A. Khein, Sov. J. Nucl. Phy28, 770
(1978.

[16] R. D. Viollier and E. Turtschi, Ann. PhysN.Y.) 124, 290
(1980.

[17] A. P. Gasparyamt al,, Sov. J. Nucl. Phys34, 739 (198J).

[18] S. M. Lenzi, A. Vitturi, and F. Zardi, Phys. Rev. 40, 2114
(1989.

[19] A. Chaumeauet al, Nucl. Phys.A267, 413(1976.

[20] Yichun Yin et al, Nucl. Phys.A440, 685(1985.

[21] Y. Yin et al, Chin. Phys.6, 93 (1986; Phys. Energ. Fortis
Phys. Nucl.9, 569 (1985.

[22] V. Franco and Y. Yin, Phys. Rev. Le®5, 1059(1985.

[23] V. Franco and Y. Yin, Phys. Rev. 84, 608(1986.

[24] Zhen-giang Tan, Zheng-Jin Lin, Pan-Ning Yan, and Chong-En
Wu, J. Phys. GL6, 1697 (1990.

[25] Zong-Jin Lin, Shu-Xia Yu, Xiang Zhong Huang,
Chong-En Wu, J. Phys. &7, 1159(1991).

[26] Huang Xiang Zhong, Phys. Rev. &1, 2700(1995.

[27] A. S. Shalaby, M. M. H. EL-Gogary, and M. Y. M. to Hassan,
Phys. Rev. (56, 2889(1997).

[28] F. L. Fabbriet al., Nucl. Phys.A338, 421(1980.

[29] R. F. Frosch, J. S. Mc-Carthy, R. E. Rand, and M. R. Yearian,
Phys. Rev.160, 874 (1967).

[30] H. Grannell, Phys. Rew48 1107(1966.

[31] J. H. Fregeaux, Phys. Ret04, 225(1956.

[32] H. F. Ehreberg, R. Hofstadter, V. Mayer-Berkhout, D. G.
Rovenhall, and S. E. Sobottka, Phys. R&¥3 666 (1959.

[33] N. S. Afanasiev, U. V. Kovoliov, A. S. Omelianenko, S. A.
Savitzki, V. M. Khvastunov, and N. S. Shevchenko, Yad. Fiz.
5, 318(1967.

[34] R. J. Lombard and J. P. Moillet, Phys. Rev. 41, R1348
(1990.

[35] I. Ahmad and M. A. Alvi, Phys. Rev. @8, 3126(1993.

[36] Ruan Wenying and Liu Youyan, J. Phys.Z%, 537 (1995.

[37] Ji-feng Liu, Yu-shun Zhang, Chano-yun Yang, Jun-feng Shen,
and B. A. Robson, Phys. Rev. 8, 2509(1996.

[38] V. Franco and G. K. Varma, Phys. Rev.12, 225(1975.

[39] L. Ray, Phys. Rev. @0, 1857(1979.

[40] L. Sattaet al, Phys. Lett.139B, 263(1984).

and



