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Collective coordinates, shape transitions, and shape coexistence: A microscopic approach

Takashi Nakatsukasa* and Niels R. Walet†

Department of Physics, UMIST, P.O. Box 88, Manchester M60 1QD, United Kingdom
~Received 31 July 1998!

We investigate a description of shape mixing and shape transitions using collective coordinates. To that end
we apply a theory of adiabatic large-amplitude motion to a simplified nuclear shell model, where the approxi-
mate results can be contrasted with exact diagonalizations. We find excellent agreement for different regimes,
and contrast the results with those from a more standard calculation using a quadrupole constraint. We show
that the method employed in this work selects diabatic~crossing! potential energy curves where these are
appropriate, and discuss the implications for a microscopic study of shape coexistence.
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I. INTRODUCTION

In order to describe processes in nuclei involving lar
excursions from equilibrium, such as shape coexistenc
fission, we cannot use the small-amplitude harmonic exp
sion about a stationary mean-field state provided by
random-phase approximation~RPA!. Various methods exis
to deal with large-amplitude motion, many of which are r
viewed in Ref. @1#. This reference also sets out the ba
formalism on which our work is based.

We have recently embarked on a study into the proper
of collective motion in systems with pairing. In a first app
cation we have analyzed properties of collective motion i
semimicroscopic model of nucleons interacting through
pairing force, coupled to a single harmonic variable giving
macroscopic description of the remaining degrees of freed
@2#. We have used the local-harmonic approximation, wh
is equivalent to the generalized valley approximation fo
single collective coordinate@1#, to analyze the collective mo
tion. To our surprise it has turned out that the system au
matically selects either diabatic or adiabatic collective s
faces according to the strength of the pairing interacti
However, since this model is not fully microscopic, we fe
that it would be beneficial to study a fully microscop
Hamiltonian. This does not mean that we wish to fully igno
the success of the unified model by Bohr and Mottels
which indicates that the semimacroscopic approach desc
many nuclear phenomena quite well, but rather that we w
to understand such behavior from a microscopic viewpo
We thus feel that it is desirable to test the methodology fo
fully microscopic Hamiltonian which is able to describ
nuclear systems from vibrational to deformed.

To this end we investigate the collective motion in a m
croscopic model which describes a system of nucleons in
acting through a simplified version of the pairing-plu
quadruple force@3#. Although the Hamiltonian has a ver
simple form, we shall see that the model can reproduce
qualitative features of many kinds of interesting situatio
observed in real nuclei. In this work we shall concentrate
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the spherical-to-deformed transition, and nuclei with sha
coexistence, where more than one equilibrium shape pla
role.

In the case of a single-j shell the model Hamiltonian is
built from the generators of an o(4) algebra, which mak
exact diagonalization feasible. The model has been origin
developed to describeKp501 excitations in deformed nu
clei @3#, and has also been used as a test-bed for var
methods used in the calculation of collective excitations s
as the boson expansion method@4#, the self-consistent col-
lective coordinate method@5#, and a semiclassical metho
@6#. The model can be generalized to multiple shells, wher
has been used to investigate shape-coexistence pheno
@7#. Finally, a similar model has been used to study the c
lective mass parameter in finite superconducting systems@8#.

Although the low-lying spectra in nuclei are mostly dom
nated by the quadrupole phonon (Jp521) excitations, the
anharmonicity is very important for many nuclei, especia
in a shape-transition region, where the nature of the grou
state changes rapidly with particle number. For instance,
even-even Sm isotopes show a typical example of the sph
cal to deformed shape transition in which the spectr
shows a strong anharmonicity between the sphericalN
<84) and deformed (N>90) nuclei, especially for
148,150Sm. These phenomena are primarily related to
competition between the monopole and quadrupole inte
tions among the valence particles outside a closed core.
pairing-plus-quadrupole model, originally proposed by Bo
and Mottelson, was designed to describe this competi
and is quite well able to reproduce the most important
pects of the experimental data~see Ref.@9#, and references
therein!. Later the boson expansion method has been app
to the same model~with an additional quadrupole pairin
interaction! for the description of the shape transition in th
Sm isotopes@10#, which shows excellent agreement with th
experimental data. Since theO(4) model is very similar to
the pairing-plus-quadrupole model, it would be of significa
interest to see whether our method of large amplitude col
tive motion is able to properly describe the shape transit
phenomena in this exactly solvable model.

The importance of shape-coexistence in nuclear phy
can be seen from the multitude of theoretical approaches
the amount of experimental data as compiled in Ref.@11#.
3397 ©1998 The American Physical Society
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An important example can be found in even semimagic
and Pb isotopes, where the ground states are spherical. H
ever, deformed excitedJp501 states have been observed
low-excitation energies in many of these nuclei. These
cited states are regarded as states associated with proton
particle-two-hole (2p-2h) excitations across the close
shell. Using the Nilsson picture, which shows down-slop
single-particle levels above the proton closed shell, and
sloping levels below it, it is possible to assign a configurat
of two particles lying on down-sloping levels and two hol
on up-sloping levels. The configuration-constrained Nilss
Strutinsky calculations as performed by Bengtsson
Nazarewicz@12# have suggested that the diabatic potent
energy curve obtained by switching off the interaction b
tween the 2p-2h and the ground-state (0p-0h) configuration
gives more accurate picture than the conventional adiab
potential energy. This question, whether the nuclear col
tive potential is adiabatic or diabatic, is quite old, and w
originally raised by Hill and Wheeler@13#. We have shown
in our previous work@2# that, using a method to self
consistently determine collective coordinates, the system
self selects either an adiabatic or a diabatic collective p
according to the properties of the interaction. It is our aim
investigate in theO(4) model whether the method is able
provide us with useful information about shape mixing, a
to test whether it makes useful predictions whether the
lective potential energy is diabatic or adiabatic.

In Sec. II, the theory of adiabatic large amplitude colle
tive motion is briefly reviewed. A problem peculiar to th
model under consideration, related to the special characte
the zero modes, is dealt with by a prescription to remove
zero-mode degrees of freedom. In Sec. III, theO(4) model
in a single-j shell is described, and we discuss the appli
tions of our methodology to the model. In Sec. IV, a gen
alization of theO(4) model to multiple shells is introduced
We then investigate the large amplitude collective motion
a set of parameters which describe transitional~from vibra-
tional to deformed! nuclei. In Sec. V, we use a proton
neutron form of the Hamiltonian, which can be used to d
scribe shape coexistence. We show how our method sele
diabatic or adiabatic potential energy curve. Finally, we g
some conclusion and present an outlook in Sec. VI.

II. FORMALISM

A. Review of methodology for the local
harmonic approximation

We briefly review the local harmonic approximatio
~LHA !, as a method in adiabatic large amplitude collect
motion ~ALACM !. A full discussion of the method can b
found in Ref.@1#. We use the convention that the repeat
appearance of the same symbol (a,b, . . . ;i , j , . . . ) as an
upper and lower index denotes a sum over the relevant in
over all allowed values. We also use the convention tha
comma in a lower index denotes the derivative with resp
to a coordinate, thusF ,a5]F/]ja.

Our approach to large amplitude collective motion is a
plicable for classical Hamiltonian systems which have a
netic energy quadratic in momentum only. Since most s
tems, especially the mean-field problems of nuclear phys
do not satisfy this requirement, we are forced to truncate
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full HamiltonianH(j,p) to second order,

Had~j,p!5
1

2
Babpapb1V~j!, a,b51, . . . ,n.

~2.1!

Here the mass tensorBab depends in general on the coord
natesja and is defined by expansion of the Hamiltonian
second order in momenta

Bab5
]2H

]pa]pb
U

p50

. ~2.2!

Thus all terms of more than quadratic order in momenta
neglected. This is only possible when the higher-order te
are small, which is definitely true in the small~zero! velocity
limit. It is in this sense that the theory may be regarded as
adiabatic theory. The tensorBab , which is defined as the
inverse ofBab (BagBgb5db

a), plays the role of metric ten-
sor in the Riemannian formulation of the local harmonic a
proximation below.

Collective coordinatesxi and intrinsic~noncollective! co-
ordinatesxa which are decoupled from each other, are a
sumed to be reached by making a point transformation, c
serving the quadratic nature of Eq.~2.1!,

xi5 f i~j! ~ i 51, . . . ,K !, ~2.3!

xa5 f a~j! ~a5K11, . . . ,n!. ~2.4!

In this section, we use symbols (a,b, . . . ) asindices of the
original coordinates, (m,n, . . . ) for the newcoordinates af-
ter the transformation, (i , j , . . . ) for collective coordinates,
and (a,b, . . . ) for intrinsic coordinates. The requiremen
that the motion is exactly restricted to a collective subsp
S ~defined byxa50), yields three conditions

B̄ai50, V̄,a50, ~2.5!

B̄,a
i j 50. ~2.6!

These three conditions are only satisfied for exactly dec
pled collective motion, a rare occurrence indeed. It is the
fore practical to combine these three decoupling conditi
into two sets of conditions, that are satisfied even when
exact collective subspace exists. The conditions chosen
those that determine the bottom of a valley in the poten
landscape, which is, under certain conditions, an approxi
tion to a decoupled subspace. The quality of this decoup
can be measured, see below. In this work we prefer to w
with the LHA. In the default case of a single collective c
ordinate only (K51), the basic equations of this formalism
can be written as

V,a5l f ,a
1 , ~2.7!

BbgV;ag f ,b
1 5v2f ,a

1 . ~2.8!

The second of these equations is the local harmonic~or local
RPA! equation from which the method derives its name. T
covariant derivative~denoted by a semicolon! in the left-
hand side of Eq.~2.8! is defined by
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V;ab[V,ab2Gab
g V,g , ~2.9!

with the affine connectionG defined in the standard way i
terms of the metric tensorBab as

Gbg
a 5

1

2
Bad~Bdb,g1Bdg,b2Bbg,d!. ~2.10!

Equations ~2.7! and ~2.8! must be solved as a sel
consistent pair, except at stationary points, where the R
~2.8! is independent of the force equation~2.7!. This allows
us to bootstrap our way up from such a stationary point. T
procedure constructs a path by finding successive poin
which an eigenvectorf ,a

1 of the covariant RPA equation~2.8!
satisfies the force condition~2.7! at the same time. It is worth
noting that since the equations at every point can be so
independently, no computational error is accumulated w
calculating the collective path, which is a problem with, e.
the formalism of Goeke and Reinhard@14#.

The quality of decoupling can be measured by compar
two different collective mass parameters that can be ca
lated in the theory. If we calculate the derivativesdja/dx1 in
terms of the tangents of the path, we find

B̌115
dja

dx1
Bab

djb

dx1
. ~2.11!

The other mass parameter can be obtained by using
eigenvectorsf ,a

1 obtained from the covariant RPA equatio

B̄115 f ,a
1 Bab f ,b

1 . ~2.12!

This is equal to (B̄11)
21 if the decoupling is exact. There

fore, we define the decoupling measureD as

D5~B̌11!B̄
1121. ~2.13!

The size of this measureD indicates the quality of decou
pling. The smaller its value, the better the decoupling.

B. Removal of spurious modes

In this section we discuss how to treat the spurio
modes. A typical example is given by the Nambu-Goldsto
~NG! mode associated with the violation of particle-numb
conservation. We have presented a method adding a
straint to the original LHA formalism, in order to find
collective subspace orthogonal to the NG modes@2#. How-
ever, in the model to be discussed here this method does
work because of a divergence problem associated with
fact that the model has an exact zero mass parameter,
det(Bab)50. Instead, in this paper, we choose to remove
NG degrees of freedom explicitly.

For the models to be discussed in the following sectio
the modes associated with a change in average particle n
ber are given by a linear combination of coordinates:

f̃ NG~j!5 (
a51

n

caja, ~2.14!
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whereca is a constant. The problem is that this mode lea
to a zero eigenvalue of the mass

Bab f̃ ,b
NG5Babcb50. ~2.15!

This means that we cannot invert the mass matrix. The o
sensible way to deal with this is to remove these degree
freedom from our space, by defining a new set of coor
nates,j̃m5 f̃ m(j). These are required to satisfy

Bab f̃ ,b
m Þ0 for ;a andm51, . . . ,n2M , ~2.16!

Bab f̃ ,b
m 50 for ;a andm5n2M11, . . . ,n,

~2.17!

where we assume that there areM NG modes (m.n2M ).
Then, we may formulate the LHA in the space ofn2M

dimension,$j̃m%m51, . . . ,n2M , in which det(Bmn)Þ0:

M m
n f ,n

i 5~v i !2f ,m
i , ~2.18!

M m
n [Ṽ;m

,n 5B̃nn8Ṽ;n8m , ~2.19!

where indicesm,n, . . . , arerunning only from 1 ton2M .
Our aim is to provide a feasible method to calculate t
LHA, namely to calculate the mass parameterB̃nn8, potential
Ṽ( j̃), and their derivatives.

The second equation~2.17! determines tangent vectors o
the NG modes. The rest of coordinatesf̃ m for m51, . . . ,n
2M are arbitrary as long as their derivatives are linea
independent from the others. The full Jacobian matrixf̃ ,a

m

allows us to define the derivatives of inverse transformati
g̃,m

a as the inverse off̃ ,

f̃ ,b
m g̃,n

b 5dn
m , f̃ ,b

m g̃,m
a 5db

a . ~2.20!

Since all f̃ ,a
m are constant~independent of coordinates!, all

g̃,m
a are also constant and the derivativesf̃ ,ab

m ~or g̃,ab
m ) all

vanish. This implies that within the NG subspace the co
nection vanishes,G50, and the geometric character of th
transformation of any tensor is fully determined in the su
space that does not contain the NG modes. One can use
to calculate the new mass parameter and its derivatives

B̃mn5 f̃ ,a
m Bab f̃ ,b

n , ~2.21!

B̃,l
mn5 f̃ ,a

m B,g
ab f̃ ,b

n g̃,l
g ~2.22!

and the derivatives of potential as

Ṽ,m5g̃,m
a V,a , ~2.23!

Ṽ,mn5g̃,m
a g̃,n

b V,ab . ~2.24!

III. THE O„4… MODEL

We shall first study the properties of the single-shellO(4)
model. We define fermionic operatorscjm

† andcjm that create
or annihilate a particle in theJz5m substate. In terms o
these operators we define four pairing (P, P†, P̃, and P̃†)
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and two multipole operators (N and Q) that close under
commutation, and generate the algebra o(4),

P†5 (
m.0

cjm
† cjm̄

† , P̃†5 (
m.0

s jmcjm
† cjm̄

† , ~3.1!

N5(
m

cjm
† cjm , Q5(

m
s jmcjm

† cjm , ~3.2!

s jm5H 11 for umu,V/2 ,

21 for umu>V/2 .
~3.3!

Here we need to require that the pair multiplici
V5 j 11/2 is an even integer in order for the algebra t
close. The sign ofs jm is chosen so as to mimic the behavi
of the matrix elements of the axial quadrupole opera
^ jmur 2Y20u jm&, and we shall callQ the quadrupole operato
in the remainder of this work, even though it does not ca
the correct multipolarity.

As is well-known, the algebra o(4) is isomorphic
su(2)% su(2). This can be made explicit in terms of th
quasispin operators

A15 1
2 ~P†1 P̃†!5A2

† , A05 1
4 ~N1Q2V!, ~3.4!

B15 1
2 ~P†2 P̃†!5B2

† , B05 1
4 ~N2Q2V!, ~3.5!

which generate two independent su(2) algebras

@A1 ,A2#52A0 , @B1 ,B2#52B0 , ~3.6!

@A0 ,A6#56A6 , @B0 ,B6#56B6 , ~3.7!

@Am ,Bm8#50. ~3.8!

The Hamiltonian of the model is chosen as a simple q
dratic form in ~some of! the generators of o(4),

H52GP†P2 1
2 kQ2, ~3.9!

and mimics the pairing-plus-quadrupole model that has b
such a successful phenomenological model in heavy nu
@9#. Even though the Hamiltonian looks simple, it does n
have a closed-form solution@it does not haveO(4) dynami-
cal symmetry#. Nevertheless a numerically exact solution f
the Hamiltonian~3.9! can be obtained by simple diagona
ization. To this end one rewrites the Hamiltonian in terms
the quasispin operatorsA andB

H52G~A11B1!~A21B2!22k~A02B0!2.
~3.10!

This Hamiltonian commutes with the total particle numb
N52(A01B0)1V, and there are no further constants of t
motion. The pairing force tends to align the two quasis
vectorsA andB, so as to obtain the maximal pairing matr
elements, while the quadrupole force tends to dealign th
@to maximize (A02B0)2#. In this picture, the nonintegrabil
ity of the model, as well as the physics described, is rela
to the competition between the pairing and the quadrup
force. This is identical to a competition between alignme
and dealignment of the quasispins.
r
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For a fixed number of particlesN52n0 , we construct
from the vacuum stateu0& all states with a constant numbe
of generatorsA1 andB1

un0 ,ka&5F ~V/22ka!! ~V/22n01ka!!

$~V/2!! %2ka! ~n02ka!!
G 1/2

A
1

kaB
1

n02kau0&,

~3.11!

where 0<ka<n0 . Finding the eigenvectors of the Hami
tonian now involves a trivial matrix diagonalization in th
basis of dimension (n011).

A. The coherent-state representation and the TDHFB
equations of motion

The mean-field description of the Hamiltonian~3.10! is
most easily based on the use of a product of su(2) cohe
states, one for theAm subalgebra, and another for theBm one.
Each of these states is characterized by a complex varia
za andzb @15#. The time-dependent mean-field dynamics
this parametrization is the classical Hamiltonian problem
shall apply our methodology to. We can also parametrize
coherent state with four real angles@6,15#

uza ,zb&5exp@zaA12za* A21zbB12zb* B2#u0&,
~3.12!

5S cos
u

2
cos

x

2D V/2

expF tan
u

2
exp~2 if!A1

1tan
x

2
exp~2 ic!B1G u0&, ~3.13!

where we have used

za5
u

2
exp~2 if!, zb5

x

2
exp~2 ic!. ~3.14!

The time-dependent Hartree-Fock Bogoliubov~TDHFB!
equations are in this case the classical equations of mo
obtained from the stationary condition of the coherent-st
actiondS50, where

S@z#5E t

dt^za ,zbu i ] t2Huza ,zb&, ~3.15!

5E t

dt
V

2 S ḟ sin2
u

2
1ċ sin2

x

2D2E t

dtH~u,x;f,c!,

~3.16!

and

H5^za ,zbuHuza ,zb&. ~3.17!

In order to facilitate our work we introduce real canonic
variablesja andpa ,

j15
V

2
sin2uzau5

V

2
sin2

u

2
, j25

V

2
sin2uzbu5

V

2
sin2

x

2
,

~3.18!

p15arg~za!52f, p25arg~zb!52c. ~3.19!
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Since these variables are canonical, the equations of mo
are of Hamiltonian form

ṗa52
]H
]ja

, j̇a5
]H
]pa

, ~3.20!

where the classical Hamiltonian~3.17! is the coherent state
expectation value of the Hamiltonian rewritten in terms
canonical variables@the explicit form can be found from tha
of the more general Hamiltonian discussed in the follow
section, Eqs.~4.9!–~4.14!, upon substitution ofqa51#. The
adiabatic Hamiltonian is then found by expanding the f
Hamiltonian with respect top up to second order, and i
defined in Eqs.~4.15!–~4.18!.

B. Requantization

In this section, we discuss the problem of defining
requantisation procedure and the consequences of the
batic truncation with respect to momentum. The class
limit of the single-j Hamiltonian has two constants of motio
H5E and^N&52(aja5N0 . Since the phase space is fo
dimensional, this implies the complete integrability of t
system, and there is a two dimensional torus on which
classical orbits lie. Due to this special feature of this mod
one can apply the Einstein-Brillouin-Keller~EBK! quantiza-
tion condition. This has been done in Ref.@6# and good
agreement with the exact results has been obtained for
energy spectra and transition amplitudes. However, it is
possible to extend this quantization method to non-integra
systems like the ones we will discuss in the following se
tions. We wish to use the same quantization procedure
the simplest form of the model and the more complica
cases discussed later on, and shall turn to our favorite t
nique first.

After truncation of the Hamiltonian up to second order
momentum, we can define a collective Hamiltonian
evaluating its value for points on the collective spaceS
which is parametrized byx1 and p1 ~strictly this is the co-
tangent bundle overS), since we have chosenxa5pa

50;a51, . . . ,n21,

H̄col5H̄aduS5
1

2
B̄11~x1!p1

21V̄~x1!, ~3.21!

B̄11~x1!5(
ab

f ,a
1 f ,b

1 Bab@ja5ga~x1,xa50!#, ~3.22!

V̄~x1!5V@ja5ga~x1,xa50!#. ~3.23!

Since the scale of collective coordinatex1 is arbitrary, we
choose to normalizef ,a

1 so as to makeB̄1151. Subsequently

the HamiltonianH̄col is quantized in this flat space as@2#

Ĥcol52
1

2

d2

dx2
1V̄~x!, ~3.24!

where we have replaced (x1,p1) by (x,p).
In order to evaluate the matrix elements of a one-bo

operatorF ~either diagonal or transition matrix elements!, we
first obtain the collective classical representation of the
on

f

l

ia-
l

ll
l,

th
-
le
-
or
d
h-

y

-

eratorF, which in keeping with the adiabatic approximatio
is expanded in powers of momentum,

F̄~x,p!5F~j,p!uS5^zuFuz&uS5(
i 50

`

F ~ i !~j,p!U
S

5(
i 50

`

F̄~ i !~x,p!. ~3.25!

HereF ( i ) is the term ofi th order inp. The functionF̄ is
requantized, by making the replacementF̄(x,p)
→F̄(x,d/dx), at which point one will have to confront th
problem of operator ordering betweenx and p. We shall
avoid this problem by keeping, invoking once again the
sumption of slow collective motion, only the zeroth ord
term F̄(0). It is an interesting question what the effect
higher order terms will be. This is clearly outside the sco
of the present work, and requires further investigation. F
tunately, in the current model, we have no ambiguity for t
quadrupole operatorQ becauseQ ( i )50 for iÞ0. For conve-
nience we denote the classical limit of the quadrupole ope
tor by q. The transition matrix elements can thus be calc
lated by the one-dimensional integral

^n8uFun&5E dx Cn8
* ~x!F̄ ~0!~x!Cn~x!, ~3.26!

where Cn are the eigenfunctions of the collective Ham
tonian ~3.24!.

From the number of coordinates and momenta found~2
12! we see that the configuration space of the single-j shell
model is two dimensional. Since there is a zero mo
@det(Bab)50# corresponding to the NG mode associat
with the particle number violation, one may obtain a on
dimensional pathS by simply applying the prescription in
Sec. II B~without the application of LHA!. Rather than plot-
ting this path we have chosen to represent the results
requantization for energies and transition strengths. Th
results are presented in panel~1! of Fig. 1, and as the dotted
lines in Fig. 2. We obtain good agreement with the ex
results over a wide range of parameters except very clos
a pure quadrupole force. Due to the peculiar nature of
quadrupole operator the mass parameter goes to zero in
limit ( G50), and there is no kinetic term. Thus an eige
state of Hamiltonian is a coordinate eigenstateux& at the
same time. Then, the periodic nature of the momentum
comes important, which we have ignored in our calculatio
Taking account of the periodicity of momentum, one fin
that coordinate operatorx should have discrete eigenvalue
In order to check that it is possible to deal with this proble
we have expanded the Hamiltonian up to second order w
respect to the coordinates rather than momenta, keepin
order in momenta. We have also imposed periodic bound
conditions on the wave functionC(p)5C(p1p/2). The
result of this quantization is shown in panel~2! of Fig. 1, and
as the dashed lines in Fig. 2. The agreement is good in
no-pairing limitG50, while it is not as good as the standa
quantization anywhere else. Since we are not really in
ested in the~integrable! pure quadrupole model, but rather
competition between the pairing and quadrupole forces,
shall ignore theG50 limit in the rest of this work. We shal
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FIG. 1. The excitation energies and transition matrix elementsu^n21uQun&u, all in arbitrary units, in the single-j shell O(4) model as
a function of the ratio between the strength of the pairing and that of the quadrupole force. The case~a! is a weak quadrupole force
2k/G50.079,~b! a medium sized one, 2k/G51.63, and~c! a very strong one, 2k/G512.7. We have constrainedG21(2x)251. The three
panels give our standard adiabatic quantization~1!, the results from the ‘‘adiabatic in coordinates’’ method~2!, and the exact results~3!.
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thus follow the conventional adiabatic quantization pro
dure in coordinate space as described above.

IV. THE MULTI- O„4… MODEL

A. The model and the Hamilton’s form of TDHFB equation

It is a greater challenge to our approach to study the m
tishell case. There exists a straightforward extension of
model, by addition of the individual pairing generators, a
summing the quadrupole operators of each shell with
weight factor~we shall thus not have a direct coupling b
tween the different shells!. The operators are, forj
5 j 1 , j 2 , . . . ,j L ~for each shellj i we take the pair degen
eracyV i5 j i11/2 to be even!

P†5 (
i ,mi.0

cj im
† cj i m̄i

† , P̃†5 (
i ,mi.0

s j imi
cj imi

† cj i m̄i

† , ~4.1!

N5(
imi

cj imi

† cj imi
, Q5(

imi

qis j imi
cj imi

† cj imi
, ~4.2!

FIG. 2. The excitation energies in the single-j shellO(4) model
for 40 particles in a shell withV5100 as a function of the param
eter essentially the ratio between the strength of the pairing and
of the quadrupole force. The left end corresponds to the cas
pure pairing force and the right end to the pure quadrupole fo
The solid lines are the exact results, and the dotted lines repre
the standard requantization of the adiabatic collective Hamilton
The dashed lines represent the expansion in terms of coordin
discussed in the text.
-

l-
e

a

where qi represents the magnitude of quadrupole mom
carried by single-particle states. For each shell we can de
quasispin@su(2)% su(2)# generatorsA i andBi in a manner
similar to Eqs.~3.4! and ~3.5!. We choose a slightly more
general Hamiltonian than in the previous chapter by addin
term containing spherical single-particle energies

H5(
jm

e j cjm
† cjm2GP†P2

1

2
kQ2. ~4.3!

The exact solution can also be obtained by diagonalizatio
a basis set

^ i 51
L

uka
i ,kb

i &5)
i 51

L

~A1
i !ka

i
~B1

i !kb
i
u0&, ~4.4!

where 0<ka
i ,kb

i <V i /2 and ( i(ka
i 1kb

i )5n05N0/2. This is
no longer as trivial a calculation as before, since the dim
sion of the basis increases rapidly with the number of sh
L, but can still be done, provided that one choosesL suffi-
ciently small. On the other hand, since the dimension
TDHFB configuration space increases only linearly withL,
the amount of effort required for the ALACM calculation
still rather small. The time-dependent mean-field state is
tained through the use of the coherent-state representatio
before, and is given by the product of states~3.13!

uz&5)
i

L

uzi&. ~4.5!

We choose the canonical variables as

ja5H V i

2
sin2

u i

2
for a5 i 51, . . . ,L,

V i

2
sin2

x i

2
for a5L1 i 5L11, . . . ,2L,

~4.6!

pa5H 2f i for a5 i 51, . . . ,L,

2c i for a5L1 i 5L11, . . . ,2L.
~4.7!

It is convenient to allow the indices ofe, q, andV to range
from 1 to 2L by copying the original list of parameters, e.g

at
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ea5H ei ~ i 5a! for a51, . . . ,L,

ei ~ i 5a2L! for a5L11, . . . ,2L.
~4.8!

Using these definitions, the classical Hamiltonian can
given in the compact form

H5hsp1HP1HQ , ~4.9!

hsp52(
a

eaja, ~4.10!

HP~j,p!52
G

16H U(a eipaSaU2

132(
a

Va
21~ja!2J ,

~4.11!

HQ~j!522kH S (
a

saqajaD 2

1(
a

Va
21qaja~Va2ja!J ,

~4.12!

Sa52A2ja~Va22ja!, ~4.13!

sa5H 11 for a51, . . . ,L,

21 for a5L11, . . . ,2L.
~4.14!

The adiabatic limit of this Hamiltonian is

Had5
1

2(ab
Babpapb1V~j!, ~4.15!

Bab5
G

8 FdabS Sa(
g

SgD 2SaSbG , ~4.16!

V~j!5VP~j!1VQ~j!, ~4.17!

VP~j!5HP~j,p50!, VQ~j!5HQ~j!. ~4.18!

The terms in Eqs.~4.11! and~4.12! proportional toVa
21 arise

from the exchange contributions, and will be neglected.

B. Results for transitional nuclei

Using the LHA we identify the collective degree of fre
dom amongst the 2L coordinates. As before we first mu
remove the NG mode corresponding to a change in par
number explicitly, due to the zero mass parameter associ
with this mode. The particle number is simply given by t
sum of the numbers for the individual shells,N52(aja. It
is easy to show that

(
b

BabN,b52(
b

Bab50. ~4.19!

Thus we apply the prescription discussed in Sec. II B to t
model, and use the LHA to determine the collective path
the remaining (2L21)-dimensional coordinate space. Sin
we shall mainly investigate how the LHA can deal with t
transition spherical to deformed, it is sufficient to study on
two shells. We take the size of these shells to be equal,V1
5V2510, and put 16 particles in the available space.
split the degeneracy by takinge150 ande251, and we use
a different value of the ‘‘quadrupole moment’’ for each sh
as well, q153 andq251. The pairing force is fixed atG
50.3, and we only vary the quadrupole force strengthk.
e
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ed
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We show a representation of the collective potential
ergy and the collective coordinate in Fig. 3. We repres
these quantities as a function of the expectation value of
quadrupole operator. As an alternative to the LHA approa
we have also performed a simple constrained Hartr
Bogoliubov ~CHB! calculation, where one imposes a valu
for the expectation value of the quadrupole operator.
determine the mass for this case by replacing the RPA eig
vector by the coordinate derivative of the quadrupole exp
tation value. We then renormalize the coordinate to obta
constant mass.

We have investigated a full shape transition scena
where we have changed the strength of the quadrupole in
action so that the collective Hamiltonian changes fro
spherical and harmonic for case~a! to flat for case~b! to
deformed for case~c!. We see that the difference between t
LHA and CHB calculations is relatively small. This is als
borne out by the spectra and transition strength in Fig. 4.
can see the similarity between the two approximate calc
tions. If anything, the LHA gives slightly better results tha
the CHB based calculations. We seem to be unable to re
duce the large density of states found in the exact calcula
for ‘‘deformed’’ nuclei, where there are indications from th
transition strengths that some of the states in the approxim
calculations are split into several of the exact states. N
however, that at an excitation energy of 6, we are 5 un
above the barrier, so this may just be due to our choice
parameters. The shape mixing in the low-lying excited sta
appears to be described sensibly, however. We would h
liked to be able to choose an even large value ofk, but if we
do that the system collapses to the largest possible qua
pole moment in the model space, which leads to all kinds
unphysical complications.

FIG. 3. The collective potential energyV(q) and the collective
coordinatex ~normalized to unit mass! as a function of the quadru

pole momentq5^Q̂&. We show both the LHA~dashed line! and
the CHB~solid line! results in each figure. These results are, for t
model, essentially indistinguishable. The case~a! corresponds to a
weak quadrupole force (k50.01), ~b! to a slightly stronger force
(k50.03), and~c! to the strongest,k50.035. The units of all dis-
played quantities are arbitrary.
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FIG. 4. The excitation energiesEx and transition matrix elementsu^n8uQun&u ~numbers next to arrows! in the two-shell case discussed
the text. The three cases~a!, ~b!, and~c! correspond to those discussed in Fig. 3. In each of the three panels the left one~1! is obtained from
requantizing the CHB, the middle one~2! is obtained from requantizing the LHA result, and the right one corresponds to exact diag
ization. The dashed line shows the lowest RPA eigenvalue.
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V. A MULTISHELL O„4… MODEL WITH NEUTRONS AND
PROTONS

In heavy nuclei, the number of neutrons is norma
~much! larger than that of protons, which often leads to
radically different shell structure at the Fermi surface
neutrons and protons. In order to perform a model study
such phenomena, where we can still perform an exact ca
lation, we adapt the multishellO(4) model introduced in the
previous section to one describing systems with both n
trons and protons@7#. We shall then use this model to an
lyze the collective dynamics of shape-coexistence nuclei
observed for instance in semimagic nuclei. At the same t
we shall concentrate on the diabatic/adiabatic dichotomy
ready mentioned in the Introduction.

The model is a simple extension of the multishellO(4)
model in the previous section, with the main difference t
we do not have pairing between proton and neutron orbi

H5Hn1Hp1Hnp , ~5.1!

Hn5 (
i Pn,mi

e icj imi

† cj imi
2GnPn

†Pn2 1
2 kQn

2 , ~5.2!

Hp5 (
i Pp,mi

e icj imi

† cj imi
2GpPp

†Pp2 1
2 kQp

2 , ~5.3!

Hnp52kQnQp , ~5.4!

wherePn(p) andQn(p) are the pairing and quadrupole oper
tors for neutrons~protons! ~see the definitions in Sec. IV!. In
this model there are two trivial NG modes associated w
the change of neutron and of proton number, which can b
be removed explicitly in the manner discussed before.

We study this model for a single-shell for neutrons, w
pair degeneracyVn550, containing 40 particles~see Fig. 5!.
We take the single-particle quadrupole matrix elementqn
51, and use a pairing strengthGn50.3, and assume zer
single-particle energy. For protons we take two shells, b
with Vp15Vp252, qp15qp252, having single-particle en
ergiesep152ep255. We study two different sets of inter
action parameters, both withk50.1. The first isGn5Gp
50.3, the second has the same neutron pairing strength
Gp510.
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The collective potential energy for the weaker pairi
strength shows a very interesting behavior, with two sho
ders appearing in the CHB collective potential energy. T
is what is normally called the adiabatic potential energy, a
the shoulders arise from an avoided crossing. As in our p
vious work@2# the adiabatic LHA method chooses a diaba
~crossing! set of potential energy curves. These sha
coexistence minima are related to 2p-2h excitation in the
proton model space, promoting two particles from the low
Nilsson orbitals to the down-sloping ones. This is of cou
very similar to the phenomena observed in shape coexiste
in semimagic nuclei.

We get another surprise for the strong pairing case. H
the collective potentials look very similar, and rather stru
tureless, but the collective coordinates are different. This
be traced back to the fact that the collective coordinate in

FIG. 5. The collective potential energyV(q) and the collective
coordinatex as a function of the quadrupole momentq5qp1qn .
We show both the LHA~dashed lines! and the CHB results~solid
line! in each figure. The case~a! corresponds to a weak proto
pairing force (Gp50.3), ~b! to a strong pairing force (Gp510).
The rest of the parameters are given in the main text. The unit
all quantities displayed are arbitrary.
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LHA is not qp1qn , but a different combination. At the
minimum, the lowest RPA mode corresponds approxima
to qn1 1

10 qp . This is similar to the situation analyzed in gre
detail in Ref.@16#, and once again shows the importance
self-consistency in the selection of the collective coordina
The real collective coordinate isnot the mass-quadrupol
operator.

In Fig. 6 we show the consequences of these results
the requantization. For the weak pairing case the diab
picture obtained through the LHA gives almost perfect
sults, whereas the CHB potential energy curve fails to p
vide the correct answer. In the case of the strong pairing
incorrect choice of the collective coordinate leads to
large a level spacing in the CHB calculations, whereas
LHA and exact calculations agree again.

For the weak pairing case the exact calculation alm
exhibits the doublet structure found from the diabatic pot
tial energy curves; the splitting is less than one part in 105 in
the exact calculation. Nevertheless, the exact calcula
consists of symmetric and antisymmetric states, which le
to the transition matrix element 22.3 between these
states. Since in the LHA calculation the states do not mix,
have printed thediagonal matrix element instead. For ver
weak mixing this is the correct comparison, as is borne
by the results.

The decoupling measureD, Eq. ~2.13!, is small for all
these cases. The worst case is the strong pairing case, w
it rises from 0 for q50 to 331023 for q540. For this

FIG. 6. The excitation energiesEx and transition matrix ele-
mentsu^n8uQun&u ~numbers next to arrows!, in arbitrary units, for
the proton-neutron model discussed in the text. The two case~a!
and ~b! correspond to those discussed in Fig. 5. In each of
panels the left one~1! is obtained from requantizing the CHB, th
middle one~2! is obtained from requantizing the LHA result, an
the right one~3! corresponds to the exact diagonalization. Lev
denoted by thick lines are doubly degenerate. The numbers ne
the arrows denote the size of the transition matrix elements.
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reason we also believe that the ‘‘scalar Berry potential’’@2#
will be small, and we have not included this, or any oth
quantum corrections, in our calculations.

VI. CONCLUSION

In the area of shape coexistence, as studied by the m
calculations discussed in this paper, it seems that on
whole the LHA is an excellent method to obtain sensib
results, with reasonable effort. Even though the size of
space is much smaller than that used in a straightforw
diagonalization, the use of the local RPA, which needs to
performed many times at every point along the collect
path, may seem prohibitive for realistic calculations. For
nately, many problems can be studied with simplified se
rable forces, as in the model discussed here. We are a
moment considering the old pairing-plus-quadrupole mod
that has been applied so successfully in the physics of he
nuclei. Such a model can be dealt with much more straig
forwardly than more microscopic Skyrme or Gogny-for
based approaches. This will allow us to shed light on a go
treatment of shape coexistence, as well as on the interes
question on the choice of the collective~cranking! operator,
which was already found to be nontrivial in certain limits
the O(4) model.

One might argue that even that is not enough, and
should really adopt a fully microscopic quantum many-bo
approach. We believe that we can address this problem,
are actively considering the approaches available to us.
must be obvious from the discussion given above, an e
cient calculation hinges on efficient solution of the RPA. W
are investigating two approaches to this problem, the us
iterative diagonalization of the RPA using Lanczos proc
dures, or the approximation of the RPA by using separa
forces @17#, which can be diagonalized much more ef
ciently.

In the present work we have not included any quant
corrections, nor the ‘‘scalar Berry potential’’ arising from
choosing a slow degree of freedom. In our previous work@2#
we have shown that these corrections tend to improve
spectrum, so that the results presented can even be impr
slightly. We are strongly encouraged by the ability of o
method to choose the right coordinate and the correct po
tial energy curves for problems that involve pairing a
‘‘quadrupole’’ degrees of freedom, and we expect results
realistic nuclear models in the near future.
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