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Collective coordinates, shape transitions, and shape coexistence: A microscopic approach
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We investigate a description of shape mixing and shape transitions using collective coordinates. To that end
we apply a theory of adiabatic large-amplitude motion to a simplified nuclear shell model, where the approxi-
mate results can be contrasted with exact diagonalizations. We find excellent agreement for different regimes,
and contrast the results with those from a more standard calculation using a quadrupole constraint. We show
that the method employed in this work selects diabé&timssing potential energy curves where these are
appropriate, and discuss the implications for a microscopic study of shape coexistence.
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[. INTRODUCTION the spherical-to-deformed transition, and nuclei with shape
coexistence, where more than one equilibrium shape plays a
In order to describe processes in nuclei involving largerole.
excursions from equilibrium, such as shape coexistence or In the case of a singlg-shell the model Hamiltonian is
fission, we cannot use the small-amplitude harmonic exparbuilt from the generators of an o(4) algebra, which makes
sion about a stationary mean-field state provided by thexact diagonalization feasible. The model has been originally
random-phase approximatigRPA). Various methods exist developed to describ&™=0" excitations in deformed nu-
to deal with large-amplitude motion, many of which are re-clei [3], and has also been used as a test-bed for various
viewed in Ref.[1]. This reference also sets out the basicmethods used in the calculation of collective excitations such
formalism on which our work is based. as the boson expansion methfgt, the self-consistent col-
We have recently embarked on a study into the propertiekective coordinate methofb], and a semiclassical method
of collective motion in systems with pairing. In a first appli- [6]. The model can be generalized to multiple shells, where it
cation we have analyzed properties of collective motion in éhas been used to investigate shape-coexistence phenomena
semimicroscopic model of nucleons interacting through d7]. Finally, a similar model has been used to study the col-
pairing force, coupled to a single harmonic variable giving alective mass parameter in finite superconducting syst&ins
macroscopic description of the remaining degrees of freedom Although the low-lying spectra in nuclei are mostly domi-
[2]. We have used the local-harmonic approximation, whichhated by the quadrupole phonod™=2") excitations, the
is equivalent to the generalized valley approximation for aanharmonicity is very important for many nuclei, especially
single collective coordinatel ], to analyze the collective mo- in a shape-transition region, where the nature of the ground-
tion. To our surprise it has turned out that the system autostate changes rapidly with particle number. For instance, the
matically selects either diabatic or adiabatic collective sureven-even Sm isotopes show a typical example of the spheri-
faces according to the strength of the pairing interactioncal to deformed shape transition in which the spectrum
However, since this model is not fully microscopic, we feelshows a strong anharmonicity between the spheridal (
that it would be beneficial to study a fully microscopic <84) and deformed N=90) nuclei, especially for
Hamiltonian. This does not mean that we wish to fully ignore 1481565m. These phenomena are primarily related to the
the success of the unified model by Bohr and Mottelsoncompetition between the monopole and quadrupole interac-
which indicates that the semimacroscopic approach describéi®ns among the valence particles outside a closed core. The
many nuclear phenomena quite well, but rather that we wislpairing-plus-quadrupole model, originally proposed by Bohr
to understand such behavior from a microscopic viewpointand Mottelson, was designed to describe this competition
We thus feel that it is desirable to test the methodology for and is quite well able to reproduce the most important as-
fully microscopic Hamiltonian which is able to describe pects of the experimental dateee Ref[9], and references
nuclear systems from vibrational to deformed. therein. Later the boson expansion method has been applied
To this end we investigate the collective motion in a mi-to the same modelwith an additional quadrupole pairing
croscopic model which describes a system of nucleons inteinteraction for the description of the shape transition in the
acting through a simplified version of the pairing-plus- Sm isotope$10], which shows excellent agreement with the
quadruple forcd3]. Although the Hamiltonian has a very experimental data. Since ti@(4) model is very similar to
simple form, we shall see that the model can reproduce ththe pairing-plus-quadrupole model, it would be of significant
qualitative features of many kinds of interesting situationsinterest to see whether our method of large amplitude collec-
observed in real nuclei. In this work we shall concentrate ortive motion is able to properly describe the shape transition
phenomena in this exactly solvable model.
The importance of shape-coexistence in nuclear physics
*Electronic address: T.Nakatsukasa@umist.ac.uk can be seen from the multitude of theoretical approaches and
Electronic address: Niels.Walet@umist.ac.uk the amount of experimental data as compiled in Rel).
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An important example can be found in even semimagic SAull Hamiltonian (¢, ) to second order,
and Pb isotopes, where the ground states are spherical. How-
ever, deformed excited”=0" states have been observed at 1

low-excitation energies in many of these nuclei. These ex- Had(§,m)= §B PramptV(§), ap=1,...n.

cited states are regarded as states associated with proton two- (2.1
particle-two-hole ($-2h) excitations across the closed

shell. Using the Nilsson picture, which shows down-slopingHere the mass tens&*# depends in general on the coordi-
single-particle levels above the proton closed shell, and upiatesé” and is defined by expansion of the Hamiltonian to
sloping levels below it, it is possible to assign a configurationseécond order in momenta

of two particles lying on down-sloping levels and two holes 2

on up-sloping levels. The configuration-constrained Nilsson- Baﬁzi ) (2.2
Strutinsky calculations as performed by Bengtsson and Im,dTg| __

NazarewicZ 12] have suggested that the diabatic potential-

energy curve obtained by switching off the interaction be-Thus all terms of more than quadratic order in momenta are
tween the p-2h and the ground-state (0h) configuration — neglected. This is only possible when the higher-order terms
gives more accurate picture than the conventional adiabatiére small, which is definitely true in the sméterg velocity
potential energy. This question, whether the nuclear colleclimit. Itis in this sense that the theory may be regarded as an
tive potential is adiabatic or diabatic, is quite old, and wasadiabatic theory. The tensoB,z, which is defined as the
originally raised by Hill and Wheeld13]. We have shown inverse ofB*# (B*"B,z=6}), plays the role of metric ten-

in our previous work[2] that, using a method to self- sor in the Riemannian formulation of the local harmonic ap-
consistently determine collective coordinates, the system itproximation below. _

self selects either an adiabatic or a diabatic collective path Collective coordinateg' and intrinsic(noncollective co-
according to the properties of the interaction. It is our aim toordinatesx® which are decoupled from each other, are as-
investigate in theD(4) model whether the method is able to sumed to be reached by making a point transformation, con-
provide us with useful information about shape mixing, andserving the quadratic nature of EQ.1),

to test whether it makes useful predictions whether the col-

lective potential energy is diabatic or adiabatic. xX=f(& (i=1,...K), 2.3
In Sec. Il, the theory of adiabatic large amplitude collec- a e
tive motion is briefly reviewed. A problem peculiar to the x*=f%(§) (a=K+1,...n). (2.9

model under consideration, related to the special character
the zero modes, is dealt with by a prescription to remove the ™. ; :
yap b original coordinates, &, v, . . .) for the newcoordinates af-

zero-m r f fr m. In Il model AR . .
ero-mode degrees of freedo Sec. lll, ®§1) mode ter the transformation,i(j, . ..) for collective coordinates,

in a singlej shell is described, and we discuss the applica- oA . .
tions of our methodology to the model. In Sec. IV, a gener—and @b, ...) for intrinsic coordinates. The requirement

alization of theO(4) model to multiple shells is introduced. that thg motionais exagtly restricted to a collective subspace
We then investigate the large amplitude collective motion for2 (defined byx®=0), yields three conditions

a set of parameters which describe transitidifi@m vibra-
tional to deformed nuclei. In Sec. V, we use a proton-
neutron form of the Hamiltonian, which can be used to de- =i
scribe shape coexistence. We show how our method selects a Ba=0. (2.6
diabatic or adiabatic potential energy curve. Finally, we giv
some conclusion and present an outlook in Sec. VI.

irq this section, we use symbolg (3, . ..) asindices of the

Eaiz(), V,azoy (25)

eThese three conditions are only satisfied for exactly decou-
pled collective motion, a rare occurrence indeed. It is there-
fore practical to combine these three decoupling conditions
Il. FORMALISM into two sets of conditions, that are satisfied even when no
exact collective subspace exists. The conditions chosen are
those that determine the bottom of a valley in the potential
) . ] ~_landscape, which is, under certain conditions, an approxima-
We briefly review the local harmonic approximation tjon to a decoupled subspace. The quality of this decoupling
(LHA), as a method in adiabatic large amplitude collectivecan pe measured, see below. In this work we prefer to work
motion (ALACM). A full discussion of the method can be jth the LHA. In the default case of a single collective co-
found in Ref.[1]. We use the convention that the repeatedyginate only K=1), the basic equations of this formalism

A. Review of methodology for the local
harmonic approximation

appearance of the same symbal,B, ...;i,j,...) as an ¢an be written as

upper and lower index denotes a sum over the relevant index

over all allowed values. We also use the convention that a V,a:)\f’la, (2.7
comma in a lower index denotes the derivative with respect

to a coordinate, thug ,= JF/ & BAV. ,,f = w?fl,. (2.8

Our approach to large amplitude collective motion is ap-
plicable for classical Hamiltonian systems which have a ki-The second of these equations is the local harm@nitocal
netic energy guadratic in momentum only. Since most sysRPA) equation from which the method derives its name. The
tems, especially the mean-field problems of nuclear physics;ovariant derivative(denoted by a semicolgnin the left-
do not satisfy this requirement, we are forced to truncate théand side of Eq(2.8) is defined by
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V.g=V ap=T2V ,, (2.9  wherec, is a constant. The problem is that this mode leads
' ' ’ to a zero eigenvalue of the mass

with the affine connectiot’ defined in the standard way in

affNG_pa —
terms of the metric tensd®,,; as B/f'’=B*Pcs=0. (2.19

This means that we cannot invert the mass matrix. The only
re = B %(Bsg.,+B By, s). (2.10  sensible way to deal with this is to remove these degrees of
Fr—2 By T EINE Ehnd freedom from our space, by defining a new set of coordi-

nates.é“=T14(¢). These are required to satis
Equations (2.7) and (2.8) must be solved as a self- ¢ (€) g fy

consistent pair, except at stationary points, where the RPA B*¥f~L#0 for Va andu=1,...nh—M, (2.16
(2.8) is independent of the force equati@@7). This allows B

us to bootstrap our way up from such a stationary point. This afin _ _

procedure constructs a path by finding successive points at B ﬁ?'ﬂﬁ_o for Vo andu=n-M+1,... ,n,(z 17
which an elgenvectofr1 of the covariant RPA equatioi2.8)

satisfies the force conditio2.7) at the same time. Itis worth where we assume that there a%eNG modes f@>n—M).
noting that since the equations at every point can be solve®then, we may formulate the LHA in the space of M
independently, no computational error is accumulated Wh"%imension,{zf‘} _1_n_m, in which det@*")+0:
calculating the collective path, which is a problem with, e.g., a

the formalism of Goeke and Reinhalrtu]. ME L =(0)?f (2.18
The quality of decoupling can be measured by comparing
two different collective mass parameters that can be calcu- M =V =B"'V.,. ., (2.19
lated in the theory. If we calculate the derivativies®/dx* in S e
terms of the tangents of the path, we find where indicesu,v, . .., arerunning only from 1 ton— M.
Our aim is to provide a feasible method to calculate this
. dg” déeb LHA, namely to calculate the mass paramééi", potential
U d 2B gy 219 V(%), and their derivatives.

The second equatiof2.17) determines tangent vectors of

The other mass parameter can be obtained by using tHBe NG modes. The rest of coordinatieés for u=1, .
eigenvectors ', obtained from the covariant RPA equation —M are arbitrary as long as their derivatives are Imearly
independent from the others. The full Jacobian matrt;(
Bli= f}aBaﬁf}ﬁ_ (2.12 allows us to define the derivatives of inverse transformation,

g°, as the inverse of,

This is equal to B,y ~! if the decoupling is exact. There- ~ o~ ~
q B11) pling frgh=or, T4g2 (2.20

fore, we define the decoupling measireas

Since all?f‘a are constantindependent of coordinatgesall

g¢, are also constant and the derivativiés, (or g% ,) all
vanish. This implies that within the NG subspace the con-
nection vanishes]’=0, and the geometric character of the
transformation of any tensor is fully determined in the sub-
space that does not contain the NG modes. One can use this

D=(B,)B"-1. (2.13

The size of this measur® indicates the quality of decou-
pling. The smaller its value, the better the decoupling.

B. Removal of spurious modes to calculate the new mass parameter and its derivatives as
In this section we discuss how to treat the spurious ~ ~
modes. A typical example is given by the Nambu-Goldstone Ber =T/ BT, (2.21
(NG) mode associated with the violation of particle-number _ ~ _
conservation. We have presented a method adding a con- BAY =T~ BT 0% (2.22

straint to the original LHA formalism, in order to find a
collective subspace orthogonal to the NG mofi&ls How-
ever, in the model to be discussed here this method does not

and the derivatives of potential as

work because of a divergence problem associated with the Va=9uVa (2.23
fact that the model has an exact zero mass parameter, since & _~a=p
det(B%#)=0. Instead, in this paper, we choose to remove the Vo= 990V ap- (2.24
NG degrees of freedom explicitly.
For the models to be discussed in the following sections, lll. THE O(4) MODEL
the modes associated with a change in average particle num-
ber are given by a linear combination of coordinates: We shall first study the properties of the single-sku#l)
N model. We define fermionic operatc&r-’];1 andc;, that create
TNG(g£)— 2 c.£o, (2.14 or annihilate a particle in thd,=m substate. In terms of

a1 these operators we define four pairing, (PT, P, andP™)
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and two multipole operatorsN( and Q) that close under For a fixed number of particlesl=2n,, we construct
commutation, and generate the algebfd)o from the vacuum statf) all states with a constant number
of generatorsA, andB

t_ t T B o~ AT
P EC]ijm, P mZoUJmCJmCJm' (3.1 (12— k)l (22— g+ k,)! 1/2

m>0 kapnNo—k
Ng.Ka) = A’2B % " 0),
ok {(Q12)1}%ka! (Ng—ky)! #8710
szm: CInCim» Q=§m: TimChmCim (3.2 (3.1)
where O<k,=<ng. Finding the eigenvectors of the Hamil-
+1 for|m|<Q/2, tonian now involves a trivial matrix diagonalization in this

Tim=|_1 for|m|=0/2. (3.3 basis of dimensionr(y+1).
Here we need to require that the pair multiplicity A. The coherent-state representation and the TDHFB
Q1 =j+1/2 is aneveninteger in order for the algebra to equations of motion
close. The sign o, is chosen so as to mimic the behavior
of the matrix elements of the axial quadrupole operato
(jm|r2Y,gjm), and we shall calQ the quadrupole operator
in the remainder of this work, even though it does not carr
the correct multipolarity.

As is well-known, the algebra o(4) is isomorphic to
su(2)ysu(2). This can be made explicit in terms of the
quasispin operators

The mean-field description of the Hamiltoni&8.10 is
'most easily based on the use of a product of su(2) coherent
states, one for tha , subalgebra, and another for tBg one.
YEach of these states is characterized by a complex variable,
Z, and z, [15]. The time-dependent mean-field dynamics in
this parametrization is the classical Hamiltonian problem we
shall apply our methodology to. We can also parametrize the
coherent state with four real anglg& 15|

A,=3(PT+PH=AL, A=1(N+0Q-0), (3.9 |20, 2p) =X zaA. — 2 A_+2,B. —ZEB_]|0),
(3.12

B,=3(P'-PH=Bl, By=:(N-Q-0Q), 35 b0 ;

coicos)zﬁ) ex;{ tani exp —ig)A,

which generate two independent su(2) algebras

[A, ,A_]=2A,, [B;,B_]=2B,, (3.6
i 0 i 0 +tan)2£exp(—i¢)B+ |0), 3.13

[Ag,A-]=*A., [By,BL]=*B., (3.7

where we have used
[A,.B,]=0. (3.9
0
The Hamiltonian of the model is chosen as a simple qua- zazzexq— i), zb=)2—(exp(—i¢). (3.19
dratic form in(some of the generators of(d),

H=—-GP'P—1xQ?, 3.9 The time-dependent Hartree-Fock Bogoliub@DHFB)

equations are in this case the classical equations of motion

and mimics the pairing-plus-quadrupole model that has beefibtained from the stationary condition of the coherent-state
such a successful phenomenological model in heavy nuclgiction 6S5=0, where
[9]. Even though the Hamiltonian looks simple, it does not .
have a closed-form solutidiit does not have(4) dyna_mi— S[z]zf dt(za, 2|1 0 — H| 24, 2p), (3.15
cal symmetry. Nevertheless a numerically exact solution for
the Hamiltonian(3.9) can be obtained by simple diagonal- 0 )
ization. To this end one rewrites the Hamiltonian in terms of [ T o X t )
the quasispin operatoss and B _f dtf( ¢Sln2§+d/5m2§) f dtH(6.x; b.1),
(3.1

H=—G(A,+B,)(A_+B_)—2k(A;—By)>.

(3.10 and

This Hamiltonian commutes with the total particle number H=(24,2p|H|Z4,2p)- (3.17
N=2(Ay+Bj) +, and there are no further constants of the

motion. The pairing force tends to align the two quasispinin order to facilitate our work we introduce real canonical
vectorsA andB, so as to obtain the maximal pairing matrix variables¢* and,,

elements, while the quadrupole force tends to dealign them

[to maximize @y—By)?2]. In this picture, the nonintegrabil- . Q 2l Q .n29 , 2lg = Q 2 X

ity of the model, as well as the physics described, is related g =5sim|zy| = 5sit S, £F=5sin|z| = Ssim,

to the competition between the pairing and the quadrupole (3.18
force. This is identical to a competition between alignment

and dealignment of the quasispins. m=ardz)=—¢, my=argz,)=—¢. (3.19
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Since these variables are canonical, the equations of moticgratorF, which in keeping with the adiabatic approximation

are of Hamiltonian form is expanded in powers of momentum,
qH . IH — - 0
Tmm——, €=, (320 Fx,p)=F&mls=(2F|2)s=2 F(&m)
z?f“ aﬂ-a i=0 s

where the classical Hamiltoniai3.17) is the coherent state o

expectation value of the Hamiltonian rewritten in terms of :2 ﬁi)(xip)_ (3.25
canonical variableghe explicit form can be found from that =0
g;éginr:ncé;esgfg)e_ra?STJE%?ZZS;E:SE;?%&Zt:hle]_fqll-lr?gvmgHere F® is the term ofith order inar. The functionF is
adiabatic Hamiltonian is then found by expanding the fullrequantized, by making the replacement(x,p)
Hamiltonian with respect tar up to second order, and is —F(x,d/dx), at which point one will have to confront the

defined in Egs(4.15—(4.18). problem of operator ordering betweenand p. We shall
avoid this problem by keeping, invoking once again the as-
B. Requantization sumption of slow collective motion, only the zeroth order

term F9. It is an interesting question what the effect of

In this section, we discuss the problem of defining a ™~ h g il b his is clear] ide th
requantisation procedure and the consequences of the adfjgher order terms will be. This is clearly outside the scope
the present work, and requires further investigation. For-

batic truncation with respect to momentum. The classicaf . in th del h biquity for th
limit of the singlej Hamiltonian has two constants of motion tUNately, in the current model, we have no ambiguity for the

H=E and(N)=23,é=N,. Since the phase space is four quadrupole operata® becau.seg(f):'o for i #0. For conve-
dimensional, this implies the complete integrability of the Ni€nce we denote the classical limit of the quadrupole opera-
system, and there is a two dimensional torus on which alf°’ Py d- The transition matrix elements can thus be calcu-
classical orbits lie. Due to this special feature of this model/2t€d by the one-dimensional integral
one can apply the Einstein-Brillouin-KelléEBK) quantiza- _
tion condition. This has been done in R¢6] and good (n’|F|n>=J' dx ¥, ()FOx) W, (x), (3.2
agreement with the exact results has been obtained for both
energy spectra and transition amplitudes. However, it is imwhere ¥, are the eigenfunctions of the collective Hamil-
possible to extend this quantization method to non-integrabléonian (3.24).
systems like the ones we will discuss in the following sec- From the number of coordinates and momenta fo(hd
tions. We wish to use the same quantization procedure foit2) we see that the configuration space of the sijgiaell
the simplest form of the model and the more complicatednodel is two dimensional. Since there is a zero mode
cases discussed later on, and shall turn to our favorite tecfidet(B“?)=0] corresponding to the NG mode associated
nigue first. with the particle number violation, one may obtain a one-
After truncation of the Hamiltonian up to second order in dimensional patt®, by simply applying the prescription in
momentum, we can define a collective Hamiltonian bySec. Il B(without the application of LHA Rather than plot-
evaluating its value for points on the collective spate ting this path we have chosen to represent the results of
which is parametrized by and p! (strictly this is the co- requantization for energies and transition strengths. These
tangent bundle ovel), since we have choser®=p? results are presented in pari&] of Fig. 1, and as the dotted
=0;a=1,...nh—1, lines in Fig. 2. We obtain good agreement with the exact
results over a wide range of parameters except very close to
a pure quadrupole force. Due to the peculiar nature of the
quadrupole operator the mass parameter goes to zero in this
limit (G=0), and there is no kinetic term. Thus an eigen-
— wBt st e B state of Hamiltonian is a coordinate eigenstatg at the
Bll(xl):azﬁ LB PIE"=0"(x"x*=0)], (322  game time, Then, the periodic nature of the n??mentum be-
comes important, which we have ignored in our calculations.
Taking account of the periodicity of momentum, one finds
that coordinate operator should have discrete eigenvalues.
In order to check that it is possible to deal with this problem,
we have expanded the Hamiltonian up to second order with
respect to the coordinates rather than momenta, keeping all

— — 1— —
Hoo=Hads =5BHX)PI+V(X), (3.2

V(xh)=V[£4=g%(x},x2=0)]. (3.23

Since the scale of collective coordinaté is arbitrary, we
choose to normalizé’, so as to mak&'=1. Subsequently,

the Hamiltonian™, is quantized in this flat space g2] order in momenta. We have also imposed periodic boundary
) conditions on the wave functio® (p)=%¥(p+ w/2). The
oo 1 d_ V(%) (3.24) result of this quantization is shown in parig) of Fig. 1, and

col 2 dx2 ' ' as the dashed lines in Fig. 2. The agreement is good in the

no-pairing limitG=0, while it is not as good as the standard
where we have replaced,p;) by (x,p). guantization anywhere else. Since we are not really inter-
In order to evaluate the matrix elements of a one-bodyested in th&integrablg pure quadrupole model, but rather in
operatorF (either diagonal or transition matrix elementse  competition between the pairing and quadrupole forces, we
first obtain the collective classical representation of the opshall ignore theG=0 limit in the rest of this work. We shall
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qdobutc1 | (2) adiabatic—2 |

(3) exact
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FIG. 1. The excitation energies and transition matrix elemgmts 1|Q|n)|, all in arbitrary units, in the singl¢-shell O(4) model as
a function of the ratio between the strength of the pairing and that of the quadrupole force. Th@) dasa weak quadrupole force,
2x/G=0.079,(b) a medium sized one,@G=1.63, and(c) a very strong one, 2/G=12.7. We have constraing@f+ (2y)2= 1. The three
panels give our standard adiabatic quantizatin the results from the “adiabatic in coordinates” meth@), and the exact result8).

thus follow the conventional adiabatic quantization proce-where g; represents the magnitude of quadrupole moment
dure in coordinate space as described above. carried by single-particle states. For each shell we can define
quasispinsu(2)®su(2)] generatordA' andB' in a manner
similar to Egs.(3.4) and (3.5). We choose a slightly more
general Hamiltonian than in the previous chapter by adding a
A. The model and the Hamilton’s form of TDHFB equation term containing spherical single-particle energies

IV. THE MULTI- O(4) MODEL

It is a greater challenge to our approach to study the mul- 1
tishell case. There exists a straightforward extension of the H=E ecl ¢ —gPP- ~kQ2, (4.3
” o L < €jCim&jm 2
model, by addition of the individual pairing generators, and im
summing the quadrupole operators of each shell with

weight factor(we shall thus not have a direct coupling be_%’he exact solution can also be obtained by diagonalization in

tween the different shells The operators are, fof a basis set
=j1,j2, ..., (for each shellj; we take the pair degen- R A _
eracyQ,=j .+ 1/2 to be eveh X i:1|k'a,k'b>=i]:[l (AL )%(B',)*|0), (4.4)
t = T . . -
PT= > CinCim: P'= 2 0imCinCim, (4D where 0=k, Ky=0i/2 andS;(Ky+Ky)=ng=No/2. This is
o o no longer as trivial a calculation as before, since the dimen-
sion of the basis increases rapidly with the number of shells
N=> ¢ ¢ _ ol e (42 A, but can still be done, provided that one choo&esuffi-
%"i jim Gy Q fm 4)mCjim Ciym (42 ciently small. On the other hand, since the dimension of

TDHFB configuration space increases only linearly with
the amount of effort required for the ALACM calculation is

500
still rather small. The time-dependent mean-field state is ob-
__ 400 tained through the use of the coherent-state representation as
%’ before, and is given by the product of stat8sl3
€ 300
P A
& 200 12=1I1 |2). (4.5
w !
100
We choose the canonical variables as
0 1
0 /4 /2 Q. 0
tan™' (26/G) 7‘sin25' fora=i=1,... A,
FIG. 2. The excitation energies in the singlshellO(4) model §4= a (4.6
I

for 40 particles in a shell witlf2=100 as a function of the param- —sinz& fora=A+i=A+1,... 2,
eter essentially the ratio between the strength of the pairing and that 2 2

of the quadrupole force. The left end corresponds to the case of .
pure pairing force and the right end to the pure quadrupole force. |4 fora=i=1,... A,

The solid lines are the exact results, and the dotted lines represent Ta™| _ Ui fora=A+i=A+1,...,2A.
the standard requantization of the adiabatic collective Hamiltonian.

The dashed lines represent the expansion in terms of coordinatdésis convenient to allow the indices & g, and() to range
discussed in the text. from 1 to 2A by copying the original list of parameters, e.g.,

(4.7)
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B (i=a) fora=1,... A,

€Tl (i=a—A)

Using these definitions, the classical Hamiltonian can be ! i

given in the compact form

fora=A+1,...,2A.

COLLECTIVE COORDINATES, SHAPE TRANSITIONS, ...

4.9

H:hsp+Hp+HQ, (49)
he=22 €,E%, (4.10
G . 2
Hp(é,w)=—l—6[ ; 'S, +32§ Q;l(fa)z},
(4.10

2

o

Ho(€)= —2K[ ( Y Tolaba

+§ leqagma—f“)],

(4.12
S,=2V2&4(Q,—2£Y), (4.13

B +1 fora=1,... A,
T Z1 fora=A+1,...,2\. (4.19

The adiabatic limit of this Hamiltonian is
1
HadzzZB B, matV(E), (4.15
B“ﬁzgﬁ s,> S,|-S,S (4.16
8 af o > y a6 | .

V(€)=Vp(§)+Va(d), (4.17)
Ve(§)=Hp(§,m=0), Vo(é)=Hg(§). (4.18

The terms in Eq94.11) and(4.12 proportional toQ;l arise
from the exchange contributions, and will be neglected.

B. Results for transitional nuclei

3403

(@) (b) (©)
-17 T —T T R r
-18 } 4 1 _

19} 4 4 i
V(a)

30 =30 O
q

-30 0 30 -30 O 30
q

FIG. 3. The collective potential enerd¥(q) and the collective
coordinatex (normalized to unit magss a function of the quadru-
pole momenig=(Q). We show both the LHAdashed ling and
the CHB(solid line) results in each figure. These results are, for this
model, essentially indistinguishable. The céaecorresponds to a
weak quadrupole forcex(=0.01), (b) to a slightly stronger force
(k=0.03), and(c) to the strongestx=0.035. The units of all dis-
played quantities are arbitrary.

We show a representation of the collective potential en-
ergy and the collective coordinate in Fig. 3. We represent
these quantities as a function of the expectation value of the
quadrupole operator. As an alternative to the LHA approach,
we have also performed a simple constrained Hartree-
Bogoliubov (CHB) calculation, where one imposes a value
for the expectation value of the quadrupole operator. We
determine the mass for this case by replacing the RPA eigen-
vector by the coordinate derivative of the quadrupole expec-
tation value. We then renormalize the coordinate to obtain a
constant mass.

Using the LHA we identify the collective degree of free- We have investigated a full shape transition scen{;\rio,
dom amongst the & coordinates. As before we first must Where we have changed the strength of the quadrupole inter-
remove the NG mode corresponding to a change in particIQCt'O”_ so that the cpllectlve Hamiltonian changes from
number explicitly, due to the zero mass parameter associatépherical and harmonic for cage) to flat for case(b) to
with this mode. The particle number is simply given by the deformed for caséc). We see that the difference between the
sum of the numbers for the individual shell§=23 ¢ It ~ LHA and CHB calculations is relatively small. This is also
is easy to show that borne out by the spectra and transition strength in Fig. 4. We
can see the similarity between the two approximate calcula-
tions. If anything, the LHA gives slightly better results than
the CHB based calculations. We seem to be unable to repro-
duce the large density of states found in the exact calculation
Thus we apply the prescription discussed in Sec. Il B to thifor “deformed” nuclei, where there are indications from the
model, and use the LHA to determine the collective path intransition strengths that some of the states in the approximate
the remaining (A — 1)-dimensional coordinate space. Sincecalculations are split into several of the exact states. Note,
we shall mainly investigate how the LHA can deal with the however, that at an excitation energy of 6, we are 5 units
transition spherical to deformed, it is sufficient to study onlyabove the barrier, so this may just be due to our choice of
two shells. We take the size of these shells to be edual, parameters. The shape mixing in the low-lying excited states
=(,=10, and put 16 particles in the available space. Weappears to be described sensibly, however. We would have
split the degeneracy by takirgj=0 ande,=1, and we use liked to be able to choose an even large value obut if we
a different value of the “quadrupole moment” for each shell do that the system collapses to the largest possible quadru-
as well,g;=3 andqg,=1. The pairing force is fixed a& pole moment in the model space, which leads to all kinds of
=0.3, and we only vary the quadrupole force strength unphysical complications.

% B“ﬁ/\/,ﬁzzé B*A=0. (4.19
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FIG. 4. The excitation energids, and transition matrix elemenfén’|Q|n)| (numbers next to arrowsn the two-shell case discussed in
the text. The three caséa), (b), and(c) correspond to those discussed in Fig. 3. In each of the three panels the |€f) ebtained from
requantizing the CHB, the middle ori2) is obtained from requantizing the LHA result, and the right one corresponds to exact diagonal-
ization. The dashed line shows the lowest RPA eigenvalue.

V. A MULTISHELL ©O(4) MODEL WITH NEUTRONS AND The collective potential energy for the weaker pairing
PROTONS strength shows a very interesting behavior, with two shoul-
ders appearing in the CHB collective potential energy. This

(much larger than that of protons, which often leads to ais what is normally called the adiabatic potential energy, and

radically different shell structure at the Fermi surface forthe shoulders arise from an avoided crossing. As in our pre-

neutrons and brotons. In order to perform a model study o ious work[2] the adiabatic LHA method chooses a diabatic
P ) b y !crossing set of potential energy curves. These shape-

such phenomena, where we can still perform an exact calc coexistence minima are related t@-2h excitation in the
lation, we adapt the multisheD(4) model introduced in the ®
previous section to one describing systems with both neu

In heavy nuclei, the number of neutrons is normally

proton model space, promoting two particles from the lowest
Nilsson orbitals to the down-sloping ones. This is of course

frggstﬁ:ioﬁ{gégcgé' X\;?nisc?salcl)ftgig ues‘_i;g(si's?;?gzl ;?Jc?gia_ very similar to the phenomena observed in shape coexistence
y y P 8% semimagic nuclei.

observed for instance in semimagic nuclei. At the same time We get another surprise for the strong pairing case. Here

we shall concentrate on the d|ab_at|c/ad|abat|c dichotomy aI'Ehe collective potentials look very similar, and rather struc-
ready mentioned in the Introduction.

The model is a simple extension of the multisheii4) tureless, but the collective coordinates are different. This can

model in the previous section, with the main difference thatbe traced back to the fact that the collective coordinate in the

we do not have pairing between proton and neutron orbitals

H=H,+H,+Hyp, (5.7 -160

Ho= 2 €ClnCim—GaPiPa—3xQ5, (52

ien,m

-180

Hp= 2 el nCim—GpPiPp— 34Q5, (5.3 V()

iep,m -200
an:_KQnva (5.9

whereP,, andQ,, are the pairing and quadrupole opera- ~ -220
tors for neutrongprotons (see the definitions in Sec. )VIin

this model there are two trivial NG modes associated with 1

the change of neutron and of proton number, which can bott x4 [
be removed explicitly in the manner discussed before.

at

We study this model for a single-shell for neutrons, with £ s : . i . s . .
pair degenerac{),,= 50, containing 40 particlesee Fig. 5. -40 -20 0 20 40-40 -20 0 20 40
We take the single-particle quadrupole matrix elemgnt q q

:,1' and qse a pairing strengt,=0.3, and assume zero FIG. 5. The collective potential energ¥(q) and the collective
single-particle energy. For protons we take two shells, both,, qinatex as a function of the quadrupole moment g,+d,.

with Qp;=05=2, qp;=0p>=2, having single-particle en- \ye show both the LHAdashed lingsand the CHB resultésolid
ergiese;; = —e,,=5. We study two different sets of inter- jine) in each figure. The cas@) corresponds to a weak proton
action parameters, both witk=0.1. The first iSGn:Gp pairing force Gp:o,g)‘ (b) to a strong pairing forcer:lO),
=0.3, the second has the same neutron pairing strength, buke rest of the parameters are given in the main text. The units of
Gp=10. all quantities displayed are arbitrary.
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(@ (b) reason we also believe that the “scalar Berry potenti@]
202 will be small, and we have not included this, or any other
3ot i 3 - o a quantum corrections, in our calculations.
© S
~ ] Mo ¥
— o 0 s} — - VI. CONCLUSION
Lo @ 135 1220 +_ 38 =
5 " 5 o In the area of shape coexistence, as studied by the model
{65 [ 2 i I g @ - 4 ] calculations discussed in this paper, it seems that on the
ol 5 T =3 -}10_ JL\Q L whole the LHA is an excellent method to obtain sensible
- results, with reasonable effort. Even though the size of the
s 3 5 ] oo 8 b I space is much smaller than that used in a straightforward
ol - 1 ol i diagonalization, the use of the local RPA, which needs to be
) @ @) o @ @ performed many times at every point along the collective

path, may seem prohibitive for realistic calculations. Fortu-

FIG. 6. The excitation energieB, and transition matrix ele- nately, many problems can be studied with simplified sepa-
ments|(n’|Q|n)| (numbers next to arrowsin arbitrary units, for rable forces, as in the model discussed here. We are at the
the proton-neutron model discussed in the text. The two cages Moment considering the old pairing-plus-quadrupole model,
and (b) correspond to those discussed in Fig. 5. In each of théhat has been applied so successfully in the physics of heavy
panels the left onél) is obtained from requantizing the CHB, the nuclei. Such a model can be dealt with much more straight-
middle one(2) is obtained from requantizing the LHA result, and forwardly than more microscopic Skyrme or Gogny-force
the right one(3) corresponds to the exact diagonalization. Levelsbased approaches. This will allow us to shed light on a good
denoted by thick lines are doubly degenerate. The numbers next theatment of shape coexistence, as well as on the interesting
the arrows denote the size of the transition matrix elements. guestion on the choice of the collectiyeranking operator,

which was already found to be nontrivial in certain limits of

LHA is not q,+q,, but a different combination. At the the O(4) model.
minimum, the lowest RPA mode corresponds approximately One might argue that even that is not enough, and we
to g+ 150, . This is similar to the situation analyzed in great should really adopt a fully microscopic quantum many-body
detail in Ref.[16], and once again shows the importance ofapproach. We believe that we can address this problem, and
self-consistency in the selection of the collective coordinateare actively considering the approaches available to us. As
The real collective coordinate isot the mass-quadrupole must be obvious from the discussion given above, an effi-
operator. cient calculation hinges on efficient solution of the RPA. We

In Fig. 6 we show the consequences of these results fare investigating two approaches to this problem, the use of
the requantization. For the weak pairing case the diabatigerative diagonalization of the RPA using Lanczos proce-
picture obtained through the LHA gives almost perfect re-dures, or the approximation of the RPA by using separable
sults, whereas the CHB potential energy curve fails to proforces [17], which can be diagonalized much more effi-
vide the correct answer. In the case of the strong pairing theiently.
incorrect choice of the collective coordinate leads to too In the present work we have not included any quantum
large a level spacing in the CHB calculations, whereas theorrections, nor the “scalar Berry potential” arising from
LHA and exact calculations agree again. choosing a slow degree of freedom. In our previous waik

For the weak pairing case the exact calculation almostve have shown that these corrections tend to improve the
exhibits the doublet structure found from the diabatic potenspectrum, so that the results presented can even be improved
tial energy curves; the splitting is less than one part inin0  slightly. We are strongly encouraged by the ability of our
the exact calculation. Nevertheless, the exact calculatiomethod to choose the right coordinate and the correct poten-
consists of symmetric and antisymmetric states, which leadéal energy curves for problems that involve pairing and
to the transition matrix element 22.3 between these twd'quadrupole” degrees of freedom, and we expect results for
states. Since in the LHA calculation the states do not mix, weealistic nuclear models in the near future.
have printed thediagonal matrix element instead. For very

weak mixing this is the correct comparison, as is borne out ACKNOWLEDGMENTS
by the results.
The decoupling measur®, Eg. (2.13, is small for all This work was supported by a research grd@R/

these cases. The worst case is the strong pairing case, whér22331) from the Engineering and Physical Sciences Re-
it rises from 0 forq=0 to 3x10 3 for q=40. For this search Counci(EPSRG of Great Britain.

[1] A. Klein, N. R. Walet, and G. Do Dang, Ann. Phy@.Y.) [3] R. Piepenbring, B. Silvestre-Brac, and Z. Szymanski, Nucl.
208, 90 (1991). Phys.A348, 77 (1980.

[2] T. Nakatsukasa and N. R. Walet, Phys. Rev.5€ 1192 [4] K. Matsuyanagi, Prog. Theor. Phy&7, 1441(1982; Proceed-
(1998. ings of the Nuclear Physics Workshdpieste, 1981, edited by



3406 TAKASHI NAKATSUKASA AND NIELS R. WALET PRC 58

C. H. Dasso, R. A. Broglia, and A. WinthéNorth-Holland,  [11] J. L. Wood, K. Heyde, W. Nazarewicz, M. Huyse, and P. van

Amsterdam, 198R p. 29. Duppen, Phys. Re215 101 (1992.

[5] M. Matsuo, Prog. Theor. Phyg6, 372(1986. [12] R. Bengtsson and W. Nazarewicz, Z. Phys334, 269(1989.

[6] T. Suzuki and Y. Mizobuchi, Prog. Theor. Phyg9, 480 [13] D. L. Hill and J. A. Wheeler, Phys. Re®9, 1102(1953.
(1988; Y. Mizobuchi, ibid. 65, 1450(1981). [14] P. G. Reinhard and K. Goeke, Rep. Prog. Pibgs.1 (1987).

[7] T. Fukui, M. Matsuo, and K. Matsuyanagi, Prog. Theor. Phys.[15] A. Perelomov,Generalized Coherent States and Their Appli-
85, 281 (1991). cations(Springer-Verlag, Berlin, 1986

[8] P. O. Arve and G. F. Bertsch, Phys. Lett.2B5 1 (1988. [16] G. Do Dang, N. R. Walet, and A. Klein, Phys. Lett.32 11

[9] D. R. Bes and R. A. Sorensen, Adv. Nucl. Phgs129(1969. (1994).

[10] T. Kishimoto and T. Tamura, Nucl. Phy8192, 246 (1972); [17] V. O. Nesterenko, W. Kleinig, V. V. Gudkov, and J. Kvasil,
A270, 317(1976. Phys. Rev. (63, 1632(1996.



