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Contribution of higher-order processes to the damping of hot giant dipole resonance

Nguyen Dinh Dang,1,* Kosai Tanabe,1 and Akito Arima2

1Department of Physics, Saitama University, 255 Shimo-Okubo, Urawa, Saitama 338-8570, Japan
2RIKEN, Wako, Saitama 351-01, Japan
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A systematic study is presented for three characteristics of the giant dipole resonance~GDR!: ~i! its width,
~ii ! its shape, and~iii ! the integrated yield of emittedg rays in 120Sn and208Pb as a function of temperatureT.
The double-time Green’s function method has been used to derive a complete set of equations, which allow
one to calculate explicitly the GDR width due to coupling to all forward-going processes up to two-phonon
ones at most in the second order of the interaction strength. The numerical calculations have been performed
using the single-particle energies defined from the Woods-Saxon potentials. An overall agreement between
theory and experiment is found for all three characteristics. The results show that the total width of the GDR
due to coupling of the GDR phonon to allph, pp, andhh configurations increases sharply at low temperatures
up to T; 3 MeV and saturates atT;4 –6 MeV. The quantal widthGQ due to coupling toph configurations
decreases slowly with increasingT. It becomes almost independent ofT only when the contribution of two-
phonon processes atTÞ0 is omitted. The observed saturation of the integrated yield aboveE* ;300 MeV is
reproduced in both the GDR region and the region above it.@S0556-2813~98!03812-6#

PACS number~s!: 21.10.Pc, 24.10.Pa, 24.30.Cz
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I. INTRODUCTION

The giant dipole resonance~GDR! is one of the most
spectacular and best known results of nuclear physics.
generated by the collective motion of protons against n
trons in a nucleus. Apart from the GDR built on the grou
state~g.s. GDR!, the GDR built on compound nuclear stat
~hot GDR! has been the subject of a considerable numbe
experimental and theoretical studies during the past 15 y
~see Refs.@1# and @2# for reviews!.

The width of the g.s. GDR consists mainly of the Land
damping width~Landau splitting! s, the escape widthG↑,
and the spreading widthG↓. The Landau splittings repre-
sents the distribution of the GDR over a number of harmo
oscillators, whose frequencies are scattered around the G
energy. It can be well described within the random-ph
approximation~RPA!, in which the GDR is composed o
collective particle-hole (ph) vibrational states~phonons!.
The escape widthG↑ arises from the particle emission an
can be studied via coupling to the continuum. The value
the escape widthG↑ is small~a few hundred keV!. The main
part of the total width of GDR comes from the spreadi
width G↓, which the GDR acquires via coupling to comp
cated configurations such as 2p2h and even more comple
ones. In such microscopic descriptions as the quasipart
phonon model@3# or the nuclear-field theory~NFT! @4# the
coupling to 2p2h configurations is expressed in terms
coupling to two-phonon states@3# or to 1p1h
^ phonon states@4#. The most direct 2p2h-configuration
mixing has been performed within the second RPA@5# and
its extended version@6#. A simple extension of these micro
scopic descriptions of the width of the g.s. GDR to nonz
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temperature (TÞ0) has shown that all three components
the GDR width depend weakly on temperature@7–10#. This
is contradictory to the experimental systematic of the wid
of hot GDR, which increases rapidly at low excitation ene
gies E* ~or temperatureT) @11–18#. At higher excitation
energies the observed width increases slowly and even s
rates atE* >130 MeV in tin isotopes@19,20#.

Within the framework of macroscopic approaches inclu
ing the deformation parameterb the increase of the width a
nonzero temperature has been described by taking into
count thermal fluctuations of nuclear shapes@21–23#. They
were also taken into account in the recent theoretical ev
ation in the adiabatic coupling model in Ref.@24#. The adia-
batic coupling model interpreted the GDR broadening
adiabatic coupling of the collective vibration to nucle
quadrupole shape fluctuations. It described well the rec
data from the inelastica-scattering experiments in Refs
@17,18# for the GDR width in 120Sn and 208Pb at tempera-
tures 1 MeV,T<3 MeV ~30 MeV <E* <130 MeV!. The
increase of the evaporation widthGev due to a finite lifetime
of the compound nuclear states@25# has also been include
to improve the results atT;3 MeV. The width of the GDR
may depend noticeably on the angular momentumJ if the
latter reaches a rather high valueJ>35\ at T.1.5–1.8 MeV
in a lighter nucleus106Sn @26#. Existing calculations within
the framework of the cranked Hartree-Fock-Bogolyub
plus thermal RPA theory for the GDR excited on the therm
high-spin states in162,168Er @27# have shown that the strengt
function of the hot GDR depends weakly on the angu
momentum up toJ544\ within the temperature interval 0
<T<3 MeV. The recent experimental evidence in Ref.@18#
has also shown that the GDR widths measured in inela
a-scattering experiments and in fusion reactions do not
fer much in their evolution withT while the angular momen
tum is about 10–20\ lower in the case of the inelastic sca
tering data. This is a clear indication that the effect of spin
the hot GDR in tin isotopes is not significant. In the col
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PRC 58 3375CONTRIBUTION OF HIGHER-ORDER PROCESSES TO . . .
sional damping model@28–30# the interplay between one
body Landau damping and two-body collisional damping
nucleons within the linearized Landau-Vlasov theory h
been elaborated to study the damping of the hot GDR. T
approach described satisfactorily the width increase in208Pb
but underestimated the width in120Sn by;20– 30 % within
the same temperature region@18#.

In the regionT.3 MeV where the observed width satu
rates existing models gave different trends for the G
width. The model proposed by the Milan group in Ref.@31#
interpreted the width saturation as a consequence of the
tation of the maximum spin that a compound nucleus co
reach. The collisional damping gave a continuously incre
ing width, which became larger than 20 MeV atT.3 –4
MeV. With such a large width the existence of the GD
itself becomes questionable. This result is in favor of
disappearance of the GDR at highT. As a matter of fact, in
order to fit their data on the saturation of theg-ray yield in
the GDR region in tin isotopes the authors of Ref.@32# also
introduced a width in the multistepCASCADE calculations,
which increased sharply with increasingT. From this param-
etrization it was concluded in Ref.@32# that the GDR gradu-
ally disappeared at high temperature. However, recent m
surements by the MEDEA collaboration@15# have shown
that such a large width overestimated strongly the interga
yield of the g rays in the region above the GDR~20
MeV <Eg<35 MeV! within the same multistep
CASCADE calculations. The GDR cross sections estimated
ing the width parametrizations by the collisional dampi
model and by Ref.@32# were also strongly enhanced in com
parison to the data@16#. Meanwhile, it has also been show
in Ref. @15# that theg spectra in tin isotopes can be we
described using a saturated value of 12 MeV for the G
width and a cutoff ofg emission from the GDR aboveE*
;250 MeV.

The energy and the full width at the half maximu
~FHWM! are only two parameters that reflect the evoluti
of the hot GDR. The authors of the quite recent Ref.@33#
have pointed out that not only the comparison of the cal
lated FWHM and the experimental GDR width, but also t
complete shape of the GDR strength function should be c
sidered to achieve a meaningful comparison between th
and experiment. The detailed analysis in Ref.@33#, which
included the entire shape of the strength function, has sh
that neither the adiabatic coupling model@24# nor the colli-
sional damping model@28–30# could reproduce the observe
GDR shape.

Recently, we have proposed an approach to the width
the hot GDR, which has shown that the coupling of the c
lective dipole vibration~GDR phonon! to the incoherent
particle-particle (pp) and hole-hole (hh) configurations ap-
pearing at nonzero temperature~the thermal damping! is de-
cisively important for an adequate description of the wid
increase and its saturation@34–38#. It has been also pointe
out that coupling topp and hh configurations isde facto
taking shape fluctuations into account@34–36#. At the same
time it has been concluded that the quantal damping du
coupling to onlyph configurations decreases slowly as t
temperature increases. The application of this approach
systematic study of the quantal and thermal dampings of
hot GDR in 90Zr, 120Sn, and 208Pb has shown reasonab
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agreement with the experimental data@34,35#.
The coupling of the GDR phonon to the single-partic

field in Refs.@34,35# has been carried out up to the 2p1h
level in the mass operator for the single-particle damping
natural question arises on the contribution of higher-or
processes such as 1p1h^ phonon, 1p1p^ phonon, 1h1h
^ phonon, or/and two-phonon ones to the GDR width a
function of temperature. These effects are known to le
explicitly to the major part of the spreading widthG↓ of the
g.s. GDR. The purpose of the present paper is to answer
question. In order to achieve this goal a complete set
approximate equations will be derived including all th
forward-going processes up to two-phonon ones at nonz
temperature. The model is tested in numerical calculation
the hot GDR width, its shape, and the integrated yield of
g rays in 120Sn and208Pb. The results will be compared wit
the experimental systematics from Refs.@11,13–20,32,33#.
The results will demonstrate that this more refined sche
can serve as a further justification for the conclusions
tained within the simpler scheme in Refs.@34,35#. On the
other hand, the present higher-order approximate schem
lows us to shed light on the contribution of different grap
in the hot GDR width as a function of temperature and
tablish a connection to existing microscopic theories for
damping of the hot GDR such as the extension of NFT
nonzero temperature@9,39#. As the present paper is a furthe
development of the approach in Refs.@34,35#, the latter will
be frequently referred to for comparison.

The present paper is organized as follows. The comp
set of approximate equations of the approach is derived
Sec. II. Section III is devoted to the analysis and discuss
of numerical results. The paper is summarized in Sec.
where conclusions are provided.

II. FORMALISM

We consider the same model Hamiltonian as in@35# for
the description of the coupling of collective oscillation
~phonons! to the field ofph, pp, andhh pairs. This Hamil-
tonian is composed of three terms

H5Ha1Hb1Hc . ~2.1!

The first termHa is the field of independent single particle

Ha5(
s

Esas
†as , ~2.2!

whereas
† andas are creation and destruction operators o

particle or hole state with energyEs5es2eF , with es being
the single-particle energy andeF the Fermi energy. From
now on we will call the energyEs the single-particle energy
whenever there is no confusion withes . The second termHb
in Eq. ~2.1! stands for the phonon field as the field of ha
monic oscillators

Hb5(
q

vqQq
†Qq , ~2.3!

whereQq
† andQq are the creation and destruction operato

of a phonon with energyvq . The last termHc in Eq. ~2.1!
describes the coupling between the first two terms
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Hc5 (
s,s8,q

Fss8
~q!as

†as8~Qq
†1Qq!. ~2.4!

The indicess ands8 denote the particle (p, Ep.0) or hole
(h, Eh,0), while the indexq is reserved for the phono
stateq5$l,i % with multipolarity l ~the projectionm of l in
the phonon index is omitted for simplicity!. The sums in Eqs
~2.3! and ~2.4! are carried overl> 1 in general.

We make use of the method of the temperature-depen
double-time Green’s functions@40–42# to derive a closed se
of coupled equations, which describes the damping of
GDR. In @35# the damping of the phonon excitation, whic
generates the GDR, has been studied using the follow
double-time Green’s functions:~i! the propagation of a free
phonon

Gq8;q~ t2t8!5^^Qq8~ t !;Qq
†~ t8!&& ~2.5!

and~ii ! the transition between a nucleon pair and a phon

Gss8;q~ t2t8!5^^as
†~ t !as8~ t !;Qq

†~ t8!&&. ~2.6!

The effect of single-particle damping on the GDR width h
been found in@35# to be rather small up to high excitatio
energies. Therefore, we will not consider it here again.
order to study the contribution of the higher-order graphs,
us introduce in addition to Eqs.~2.5! and ~2.6! also the
double-time Green’s functions, which describe the followi
processes

~iii ! the transition between a1p1h^ phonon (1p1p
^ phononor 1h1h^ phonon) configuration and a phonon

Gss8q8;q
2,1

~ t2t8!5^^as
†~ t !as8~ t !Qq8~ t !;Qq

†~ t8!&& ~2.7!

and ~iv! the transition between two- and one-phonon co
figurations:

Gq1q2

22,1~ t2t8!5^^Qq1
~ t !Qq2

~ t !;Qq
†~ t8!&&. ~2.8!

In Eqs.~2.5!–~2.8! the standard notation for the double-tim
retarded Green’s function is used@41#. In principle, the
backward-going processes, described by the Green’s f
tions Gq8;q

1,1(t2t8)5^^Qq8
† (t);Qq

†(t8)&&, Gss8q8;q
1,1 (t2t8)

5^^as
†(t)as8(t)Qq8

† (t);Qq
†(t8),&&, and Gq1q2

11,1(t2t8)

5^^Qq1

† (t)Qq2

† (t);Qq
†(t8)&&, also take place. However, if th

poles of the forward-going processes in Eqs.~2.5!–~2.8! are
located in the region of the GDR, the poles of the
backward-going processes will be located at negative e
gies far away from the GDR region. Hence, just like theY
amplitudes in the RPA, they are not expected to affect
ticeably the damping properties of the GDR. Therefore,
will neglect all backward-going processes hereafter to ma
tain the simplicity.

Applying now the standard method of the equation
motion for the double-time Green’s function@41#, we obtain
a set of coupled equations for a hierarchy of double-ti
Green’s functions. Employing the decoupling approximat
discussed previously in@35#, we can close the set to th
functions in Eqs.~2.5!–~2.8!. Making then the Fourier trans
formation to the energy planeE, we obtain a set of four
equations for the Fourier transforms of the Green’s functi
nt

e

g

s

n
t

-

c-

e
r-

-
e
-

f

e
n

s

in Eqs.~2.5!–~2.8!, from which three following equations ar
exact~up to neglecting backward-going processes!:

~E2vq!Gq;q~E!2 (
s1 ,s18

Fs1s
18

~q! Gs1s
18 ;q~E!5

1

2p
, ~2.9!

~E2Es81Es!Gss8;q~E!2 (
s1 ,q8

@Fs8s1

~q8!Gss1q8;q
2,1

~E!

2Fs1s
~q8!Gs1s8q8;q

2,1
~E!#50, ~2.10!

~E2vq1
2vq2

!Gq1q2 ;q
22,1 ~E!2(

s,s8
@F

ss8

~q1!
Gss8q2 ;q

2,1
~E!

1F
ss8

~q2!
Gss8q1 ;q

2,1
~E!#50. ~2.11!

The fourth equation is approximated due to the decoup
scheme mentioned above and has the form

~E2Es81Es2vq8!Gss8q8;q
2,1

~E!

2~12ns81nq8!(
s1

Fs8s1

~q8!Gss1 ;q~E!

1~ns1nq8!(
s1

Fs1s
~q8!Gs1s8;q~E!

2~ns2ns8!(
q1

F
s8s

~q1!
Gq1q8;q

22,1
~E!50, ~2.12!

In Eq. ~2.12! the single-particle occupation numberns and
phonon occupation numbernq occur after applying the de
coupling scheme. The explicit equations for these occupa
numbers are given in@35#, which show that they are Fermi
Dirac and Bose-Einstein distributions, which are smeared
by a half-width of the single-particle and phonon dampin
respectively. EliminatingGss8;q(E) from Eqs. ~2.9! and
~2.10!, we obtain one exact equation, which relatesGq;q(E)
to Gss8,q

2,1 (E), in the form

~E2vq!Gq;q~E!

2 (
s,s8,s1 ,q8

Fss8
~q!

@Fs8s1

~q8!Gs8s1q8;q
2,1

~E!2Fs1s
~q8!Gs1s8q8;q

2,1
~E!#

E2Es81Es

5
1

2p
. ~2.13!

Since the evolution of the collective phonon is defined by
propagatorGq;q8(E), we have to derive an equation, th
contains only one-phonon propagatorGq;q8(E) as the un-
known. This means that we must find the way to estimate
Green’s function G2,1(E) in Eq. ~2.13! in terms of
Gq8;q(E). This goal can be achieved making use of the t
Eqs. ~2.11! and ~2.12!. Eliminating Gq1q2 ;q

22,1 (E) by express-

ing it in terms ofG2,1(E) using Eq.~2.11! and inserting the
result into Eq.~2.12!, we arrive at the following approximate
equation, which relates the functionsG2,1(E) to Gss8,q(E):
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~E2Es81Es2vq8!Gss8q8;q
2,1

~E!

5~12ns81nq8!(
s1

Fs8s1

~q8!Gss1 ;q~E!2~ns1nq8!

3(
s1

Fs1s
~q8!Gs1s8;q~E!1~ns2ns8!

3 (
s1,s18,q1

F
s8s

~q1!
@F

s1s
18

~q1!
Gs1s

18q8;q
2,1

~E!1Fs1s
18

~q8!
Gs1s

18q1 ;q
2,1

~E!#

E2vq1
2vq8

.

~2.14!

Making again the decoupling for all the Green’s functio
under the sums on the right-hand side~rhs! of Eq. ~2.14!,

which truncates the chain atO„(Fss8
(q8))2

… of the interaction

strength Fss8
(q8) , we can expressGss8q8;q

2,1 (E) in terms of
Gq8,q(E) as

~E2Es81Es2vq8!Gss8q8;q
2,1

~E!5(
q1

M
ss8

q1q8
~E!Gq1 ;q~E!.

~2.15!

InsertingGss8q8;q
2,1 (E) from the approximate equation~2.15!

into the exact equation~2.13!, we end up with the final equa
tion for the propagation of a single phonon (q15q) in the
form

Gq,q~E!5
1

2p

1

E2vq2Pq~E!
. ~2.16!

The explicit expressions of the polarization operatorPq(E)

and the shorthand vertex functionM
ss8

q1q8(E) in Eqs. ~2.15!
and ~2.16! are

Pq~E!5 (
s,s8,s1 ,q8

Fss8
~q!

E2Es81Es
F Fs8s1

~q8!Mss1
qq8~E!

E2Es1
1Es2vq8

2
Fs1s

~q8!Ms1s8
qq8 ~E!

E2Es81Es1
2vq8

G , ~2.17!

Mss8
qq8~E!5(

s2
H ~12ns81nq8!~ns2ns2

!

E2Es2
1Es

Fs8s2

~q8!Fs2s
~q!

2
~ns1nq8!~ns2

2ns8!

E2Es81Es2

Fs2s
~q8!Fs8s2

~q!
1ns2

~ns2ns8!

3F Fs8s
~q!Fs2s2

~q8!

E2vq2vq8

1dqq8(
q1

F
s8s

~q1!
Fs2s2

~q1!

E2vq1
2vq8

G J .

~2.18!

The merit of this approximation scheme is twofold. It allow
one to take explicitly into account all the forward-going pr
cesses with 1p1h^ phonon, 1p1p^ phonon, and 1h1h
^phonon as well as two-phonon configurations rather th
including them effectively in the parameters of the model
@35#. At the same time it is simple enough for a straightfo
ward evaluation of the damping of the hot GDR to beco
feasible. Indeed, as has been discussed in@35#, the damping
width GGDR of the hot GDR located at energyv5vGDR is
defined via the imaginary part of the analytical continuati
of the polarization operatorPq(E) into complex energy
planeE5v6 i« as

GGDR52gq~v!uv5vGDR
52uImPq~v6 i«!uv5vGDR

.

~2.19!

The energyvGDR of the hot GDR is defined as the solutio
v̄ of the following equation for the pole of the Green’s fun
tion in Eq. ~2.16!:

v2vq2Pq~v!50, ~2.20!

wherePq(v) (v is real! is the real part ofPq(E).
It has been shown in@35# that the coupling topp andhh

configurations appearing atTÞ0 leads to the increase of th
width at low T and its saturation at highT. The reason is in
the factor np2np8 ~and nh2nh8), which appeared in the
polarization operatorPq(E) as a result of averaging over th
grand canonical ensemble@see Eqs.~2.17! and ~2.18! above
and also Eqs.~3! and~5! of Ref. @34##. This factor increases
first with increasingT, but decreases asO(T21) at largeT.
Therefore, it must reach some plateau within a certain reg
of temperature. This plateau corresponds to the region of
width saturation. It has also been shown that this mechan
of coupling to pp and hh configurations is a microscopi
way to take into account shape fluctuations. This essen
difference from the summation of over onlynh2np is due to
the fact that app or anhh pair can be expanded into a su
of tensor products of twoph pairs. If the total multipolarity
and parity of the tensor product is 12 as of the GDR, the two
ph pairs can take the multipolarities and parities
(21,12), (32,21), etc. This means that not only the qua
rupole vibrations, but also higher multipolarities are effe
tively taken into account in the coupling topp andhh con-
figurations. Since this matter has been discussed previou
we will not repeat here again, referring to@35# for more
details. This mechanism remains unchanged in the pre
more refined approximation, which replaces an effective
count for doorways via selecting the parameters atT5 0
with an explicit specification of doorways as all forwar
going configurations up to two-phonon ones.

The graphs, included in the present approximat
scheme, are depicted in Figs. 1~a!–1~e!. The graphs in Fig.
1~a!–1~d! are summed up in Eq.~2.17!, where only the first
two terms on the rhs of Eq.~2.18! are taken into account
The graph in Fig. 1~e! is due to the last two terms on the rh
of Eq. ~2.18!. Therefore, the polarization operatorPq(E)
contains not only 1p1h and 1p1h^ phonon graphs as in th
NFT @4,9# @Figs. 1~f!–1~i!#, but also 1p1p, 1h1h, 1p1p
^ phonon, and 1h1h^ phonon graphs@Fig. 1~a!–1~d!#.
Moreover, it includes also the graph in Fig. 1~e! due to the
two-phonon process in Eq.~2.8! at the same second order



is

e
t
s
e
n

n
ty

ing

at
ons
gth

f
rd
o-
idth
ibu-

h
th
the

the

e
a-

the
or-

he

i-
ers

e is
s in

th,
nical
the

ical

ine

3378 PRC 58NGUYEN DINH DANG, KOSAI TANABE, AND AKITO ARIMA
the interaction strength. In the limit of high temperature it

easy to see that the vertex functionMss8
qq8(E) in Eqs.~2.17!

and ~2.18! tends to

M
ss8

q1q8
~E!uT→`→

1

4(s2
H 1

vq8
F Es2

2Es

E2Es2
1Es

Fs8s2

~q8!Fs2s
~q!

1
Es2

2Es8

E2Es81Es2

Fs2s
~q8!Fs8s2

~q! G
1

1

2T
~Es82Es!F Fs8s

~q!Fs2s2

~q8!

E2vq2vq8

1dqq8(
q1

F
s8s

~q1!
Fs2s2

~q1!

E2vq1
2vq8

G J , ~2.21!

which means that it decreases asO(T21) with increasingT
because of the factorT21 in front of two-phonon terms on
the rhs of Eq.~2.21!. Neglecting these two-phonon process
@the graph in Fig. 1~e!# would lead to a constant width a
high temperature because the first two terms on the rh
Eq. ~2.21! are independent ofT under the assumption that th
temperature dependence of the interaction, of the pho
energy, and of the differenceEs82Es is negligible. The de-
crease of the quantal width of the GDR asO(T21) at highT
has been also estimated analytically in the second RPA
Ref. @43#.

The shape of the GDR is described by the strength fu
tion Sq

GDR(v), which is is related to the spectral intensi

FIG. 1. ~a!–~e!: Graphs included in the present formalism.~f!–
~i! NFT graphs. A wavy line denotes a phone line, while a solid l
stands for a single-particle line~particle or hole!. An open circle
denotes the interaction vertexFss8

(q) . In ~f!–~i! a pair of solid lines
with arrows going in and out of an interaction vertex~closed circle!
describes aph pair interacting with a phonon.
s

of

on

in

c-

Jq(v). The latter has been derived in the standard way us
the analytic continuation of the Green’s functionGq(v
6 i«) @40# as

Jq~v!5
1

p

gq~v!@e~v/T!21#21

~v2vq2Pq~v!!21@gq~v!#2
. ~2.22!

As has been shown in Ref.@36#, the total divided strength
distribution Jq(v)@exp(v/T)21# calculated from Eq.~2.22!
is similar to the experimentally extracted GDR shape only
very low temperatures. The increase of thermal fluctuati
leads to a gradual enhancement of the wings of this stren
distribution with increasingT. Within the concept of many-
body quantum chaos@44# this corresponds to a transition o
the strength function from the regime of the ‘‘standa
model’’ with weakly fluctuating matrix elements to the st
chastic regime. In this case the usual estimation of the w
via the energy variance based on this total strength distr
tion is no longer reliable@36#. In our approach the GDR
width is defined as in Eq.~2.19!, which is the FWHM of the
GDR peak located atvGDR . Consequently, the strengt
function of the GDR suitable for a direct comparison wi
the experimental data must be defined as the one of
damped GDR phonon with energyv̄, which is shifted from
vq as the solution of Eq.~2.20!. The simplest approximation
for this strength function can be obtained, noticing that
spectral intensityJq(v) in Eq. ~2.22! has a steep maximum
at this polev̄. Expanding the polarization operatorPq(v) in
a power series inv near this pole and keeping only th
lowest order of this expansion, we arrive at the approxim
tion Sq

GDR(v) for the hot GDR strength function

Sq
GDR~v!5

1

p

gq~v!

~v2v̄ !21@gq~v!#2
. ~2.23!

As the dampinggq(v) depends on the energy variablev,
which runs over theg-ray energyEg , the shape of the
strength functionSq

GDR(v), strictly speaking, is not given by
a single Breit-Wigner curve. This strength functionSq

GDR(v)
can be directly compared with the divided spectra in
linear scale normalized by a strength constant, while the c
responding spectral intensity

Jq
GDR~v!5

Sq
GDR~v!

ev/T21
~2.24!

is proportional to the exponential shape of theg-ray spectra
observed in experiments. It is also worth noticing that t
Fourier transform of the spectral intensityJq

GDR(v) defines
the time correlation function, which allows one to study d
rectly the relaxation process and the coexistence of ord
and chaos in the phenomenon of the hot GDR. This issu
now being studied by us and we plan to report the result
a forthcoming paper.

The present formalism considers the hot GDR, its wid
and shape as a result of averaging over the grand cano
ensemble at a given temperature. Therefore, the yield of
g ray can be calculated here following the standard statist
model using simplifying assumptions. They included aT2
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dependence for the neutron-decay width and the first orde
the logarithmic expansion of the level density@45#. This al-
lows us to calculate the integrated yieldYg within the inter-
val E1<v<E2 as

Yg}
1

T2EE1

E2
v3Jq

GDR~v!e~Bn /T!dv, ~2.25!

where Bn represents the neutron binding energy a
Jq

GDR(v) is the spectral intensity defined in Eq.~2.24!. This
quantity should be compared with the empirically extrac
yield, where a Lorentzian strength functionf GDR(v) multi-
plied by exp(2v/T) was used instead ofJq

GDR(v) @1#. We
have checked that in the region of the GDR peak a Lore
zian distribution centered atvGDR with a FWHM GGDR has
almost the same shape as the Breit-Wigner one divided
vGDR with the same width.

III. NUMERICAL RESULTS

A. Selection of parameters of the model

In this section we present the results of the calculation
the GDR widthGGDR according to Eq.~2.19!, its strength
function Sq

GDR(v) defined in Eq.~2.23!, and the integrated
yield Yg of g rays from Eq.~2.25! for 120Sn and208Pb as a
function of temperature within the interval 0<T<6 MeV.
For this purpose we employ the same model, which has b
used previously in@35#. According to this model, the g.s
GDR is generated by a single collective and structure
phonon width energyvq closed to the energyvGDR of the
g.s. GDR. We employ realistic single-particle energies, c
culated in the Woods-Saxon potentials atT50 for 120Sn and
208Pb. The parameters of these potentials have been de
in Ref. @46#. The levels near the Fermi surface for208Pb are
replaced with the empirical ones. The calculations in R
@24# have shown that the major contribution of the sha
fluctuations in the increase of the GDR width atTÞ0 comes
from the quadrupole shape fluctuations. In the present
merical test we retain only dipole and quadrupole phonon
the two-phonon configuration mixing for simplicity, a
though this is not the restriction of our formalism in gener
Consequently, from the sums on the rhs of Eqs.~2.17! and
~2.18! there remain only one dipole phonon withq5q8,
which corresponds to the GDR (l51) and one quadrupole
phonon withq1 , which corresponds to the energy of 21

1 state
(l52). Let us now discuss the selection of parameters u
in numerical calculations in more detail. In the simpler a
proximation scheme of@35# reasonable agreement betwe
theory and data has been achieved via coupling of GDR p
non to allph, pp, andhh configurations, using the phono
energyvq and the matrix elements of the coupling toph and
pp or hh Fph

(q)5F1 for (s,s8)5(p,h) and Fpp
(q)5Fhh

(q)5F2

for (s,s8)5(p,p8) or (h,h8) as parameters. Even though th
higher-order graphs were not included in the equations
rather averaged out by the decoupling scheme in@35#, this
procedure implies that their effects are incorporated eff
tively in the parametersF1 and F2 . Since the nucleon-pai
^ phonon and two-phonon graphs are included explicitly
the present paper, the values of the multipole matrix e
mentsFph

(q)5F1
(l) and Fpp

(q)5Fhh
(q)5F2

(l) are not the same a
of

d

d

t-

y

f

en

s

l-

ed

f.
e

u-
in

.

ed
-

o-

ut

-

-

in @35# and must be defined for each multipolarityl51 and
2. In order to test the stability of the conclusions the calc
lations in the present paper have been carried out using
following procedures of selecting parameters, which will
referred to as procedures 1 and 2, respectively. In proce
1 the empirical valuesvGDR of the GDR energy andv2

1
1 of

the 21
1 state are used forvq andvq1

, respectively. The val-

ues ofF1
(l) andF2

(l) (l51 and 2! are selected to restore th
results of theoretical prediction for the total widthGGDR ob-
tained in@35#. The widthGGDR is calculated atv5vq . The
principle of procedure 2 has been discussed in detail in I
order to apply this, we first set the ratior 5Fi

(2)/Fi
(1)( i

51,2) and choosevq1
in Eq. ~2.18! to be close tov2

1
1. The

values ofvq in Eq. ~2.18! and of F1
(1) are then selected in

such a way that the solutionv̄ of the equation for the pole o
the Green’s function in Eq.~2.16! is equal to the GDR en-
ergy v̄5vGDR , while the total widthGGDR(v̄) from Eq.
~2.19! reproduces the empirical width of the GDR atT50.
The value ofF2

(1) is chosen so thatv̄ is stable while the
temperature is varied. The best sets of selected param
are displayed in Table I, parts~a! and ~b!, for procedures 1
and 2, respectively. Their values do not depend on temp
ture. This ensures that all thermal effects come from
microscopic configuration mixings, but not from varying p
rameters. Using these parameters in120Sn gives the fluctua-
tions in v̄ within the range ofDv̄5v̄2vGDR.60.3 MeV,
while in 208Pb, Dv̄.60.1 MeV. The values of these param
eters differ noticeably from those in@35#, because the effect
of higher-order graphs are now explicitly included in th
equations of the formalism. The calculations have use
value equal to 0.5 MeV for the smearing parameter« in Eq.
~2.19!. The results have been checked to be stable aga
varying « within the interval 0.2 MeV<«<1.0 MeV.

B. GDR width

The total widthsGGDR for the hot GDR in 120Sn and
208Pb, calculated from Eq.~2.19! as a function of tempera
ture, are shown by the solid curves in Figs. 2 and 3, us
parameters selected from procedures 1 and 2, respecti
The most recent data from the inelastica-scattering experi-
ments@17# as well as the heavy-ion fusion data in the regi
of width saturation in tin isotopes@11,13,19,20# are also
shown for comparison. The excitation energyE* from the
fusion data has been translated to temperature using the
density parameter;A/8 as has been adopted in these expe

TABLE I. Parameters of the model used in the calculations. T
values selected following procedure 1~see the text! are displayed in
~a!. Those obtained following procedure 2 are shown in~b!.

vq ~MeV! F1
(1) ~MeV! F2

(1) ~MeV! r

~a!
120Sn 15.40 4.23231023 1.84031021 1.031021

208Pb 13.65 2.731023 1.031021 8.831021

~b!
120Sn 17.0 6.26131023 1.84531021 8.60331022

208Pb 13.8 2.731023 9.9531022 8.831021
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mental works. The nice agreement with the data in Fig. 2
explained by the principle of procedure 1, although in Fig
overall agreement between theory and experiment is
found. In both nuclei the region of width’s saturation is
aroundT;4 –6 MeV. In 208Pb the saturated value of th
width is around 10.5–11 MeV. In120Sn the uncertainty in
the saturated value of the width is somewhat larger beca
of larger fluctuations in the position of the GDR defin
from Eq. ~2.20!. Nonetheless, this value is about 12–
MeV, i.e., within the error bars of the data from the heav
ion fusion experiments@11–16#. A slightly smaller value of
the saturated width in120Sn, which has been obtained usin
the parameters in Table I~b!, as compared to the one obtaine
in @35#, is explained by the fact that only coupling to th
quadrupole vibration is considered here. Within the tempe
ture interval 3<T<5 MeV this difference is at most aroun

FIG. 2. Width of GDR as a function of temperature for~a! 120Sn
and~b! 208Pb. Results have been obtained in the calculations u
the parameters in Table I~a!. The solid curve denotes the total widt
GGDR . The dashed curve denotes the quantal widthGQ . The dash-
dotted curve stands for the quantal widthGQ when the contribution
of the two-phonon processes atTÞ0 is omitted. Diamonds denot
the data from Ref.@17#; squares data from Ref.@19#; triangles data
from Ref. @20#, the cross data from Ref.@11#, and the asterisk data
from Ref. @13#.
is

so
t

se

-

a-

2 MeV for 120Sn and around 0.8 MeV for208Pb. More de-
tails in confronting the theoretical prediction within this fo
malism and the data including the region of width saturat
can be found in Refs.@34,35#. In these references it has als
been discussed thoroughly on the uncertainty in the exp
mentally extracted temperature from the excitation ener
which makes the comparison between theory and experim
sometime difficult.

As has been demonstrated in@35#, the total widthGGDR is
composed of the quantal widthGQ due to coupling of the
GDR phonon toph configurations and the thermal widthGT
due to coupling topp and hh configurations atTÞ0. The
main conclusion of@35# is that the behavior of the total width
at high temperatures is mostly driven by the thermal wid
GT since the quantal widthGQ decreases as temperature i
creases. In order to see whether this conclusion still ho
within the present more refined approximation, which
cludes higher-order processes up to two-phonon ones,
have also switched off the coupling topp and hh configu-
rations in the sums on the rhs of Eqs.~2.17! and~2.18!. The
results obtained are shown by the dashed curves in Fig
and 3. They restore perfectly the results for quantal widthGQ

g
FIG. 3. Results for the same quantities as in Fig. 2, but obtai

using the parameters in Table I~b!. The notation is the same as i
Fig. 2.
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FIG. 4. GDR strength functionSq
GDR(Eg) in 120Sn at several temperatures. The solid curve denotes the results of calculations

present work and diamonds the normalized data from Ref.@18#. In ~e!–~h! the results of calculations usinggq(v)1Dg instead ofgq(v) are
shown with the corresponding values ofDg.
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in @35#, which show a clear decrease as the temperature
creases. AtT;5 MeV the actual value of the quantal widt
GQ amounts to about 65% of its value atT50.

In order to make the answer to the question on the te
perature dependence of the quantal widthGQ more definitive
it is worthwhile to clarify the relationship between the tem
perature dependence of the quantal widthGQ within the
present approach and the one from the NFT at nonzero
perature@9,39#. As has been mentioned in Sec. II, in calc
lating the quantal widthGQ alone, our approach includes als
two-phonon processes in parallel with theph^ phonon ones,
while only the latter were taken into account within the NF
As a matter of fact, switching off the two-phonon terms
TÞ0 from Eq.~2.18! in the calculation of the widthGQ has
resulted in a quantal width, that is practically independen
temperature as shown by the dash-dotted curves in Fig
and 3, in agreement with the conclusion within the NFT
n-

-

m-

.
t

f
. 2
t

TÞ0 @9,39#. These results show that the NFT indeed
cludes the graphs, which are most important for an adeq
description of the quantal widthGQ at zero temperature
namely, the 1p1h^ phonon ones. These graphs are a par
the graphs in Figs. 1~a!-1~d! when the summation is carrie
only over intermediate 1p1h and phonon lines@Figs. 1~g!–
1~i!#. However, in its extension to nonzero temperature,
NFT neglects entirely the coupling to two-phonon config
rations in the vertex functionM in Eq. ~2.18! at TÞ0, which
enter in the same second order of the interaction stren
Fss8

(q) and lead to the graph in Fig. 1~e!. The importance of
these two-phonon processes atTÞ0 is demonstrated here i
favor of the conclusion in@35#, which states that the quanta
width decreases, although slowly, with increasing tempe
ture. Finally, it is important to stress that the NFT at nonze
temperature does not take into account the coupling ofpp
and hh configurations to phonon ones@the graphs in Figs.
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FIG. 5. GDR strength functionSq
GDR(Eg) in 208Pb at several temperatures. The notation is the same as in Fig. 4.
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1~a!–1~d! with the summation carried over intermedia
1p1p, 1h1h, and phonon lines#, which is essential for re-
producing the width’s increase and saturation of the
GDR. As a matter of fact, the RPA equation atTÞ0 was
solved within the NFT@Eq. ~24! in Ref. @9## with the sum
carried only overnh2np .

An alternative inclusion of shape fluctuations to descr
the width’s increase in the adiabatic limit has been cons
ered recently in Ref.@24#, which may correspond to th
lowest-order expansion of the coupling topp and hh con-
figurations in the present paper in terms of sums of ten
products of twoph pairs, one of which is coupled to the tot
angular momentum 21 and the other one to 12, as has been
mentioned previously. The applicability of the model in R
@24# is restricted by the adiabatic-coupling limit. This ma
serve as the reason why it can describe the data reason
well at low temperatures (T<3 MeV!, but still gives a con-
tinuously increasing width with increasingT even in the re-
gion where the width’s saturation has been experiment
observed and where the adiabatic limit should be repla
t

e
-

or

.

bly

ly
d

with the sudden-time limit@36#. The inclusion of only quad-
rupole shape fluctuations may also lead to a different sh
of the strength distribution of the hot GDR in comparis
with the experimentally extracted one, as has been discu
recently in Ref.@33#. The formalism of the present paper
free from both of these restrictions.

C. GDR shape

The two sets of selected parameters in the procedur
and 2 discussed above did not lead to a significant differe
in the evolution of the hot GDR shape as a function ofT.
Therefore, we will discuss hereinafter the results obtain
using the parameters from procedure 2@Table I~b!#.

The results of calculations of the GDR strength functi
Sq

GDR(v) are compared with its experimental normaliz
values f E1(Eg) @18# in the left columns@~a!–~d!# of Fig. 4
for 120Sn and Fig. 5 for208Pb. The experimentally extracte
values ofEg have been shifted up by 1.5 MeV in120Sn and
by 1 MeV in 208Pb in order to achieve the best agreeme
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This is due to the fact that our model assumes a tempera
independent GDR energyvGDR equal to the energy of the

g.s. GDR. The solutionv̄ of Eq. ~2.20! has been found to be
stable around 15.4 MeV for120Sn and 13.5 MeV for208Pb at
all temperatures. Meanwhile the experimental resonance
ergy was found in Ref.@18# to be lower than the g.s. GDR
energy by an amount roughly equal to this shift. In oth
measurements the g.s. GDR energy (T50) has been used fo
the best fit of the data atTÞ0 @11,13–16,26,32#. At present,
no systematic dependence of the GDR energy on the ex
tion energyE* ~or temperatureT) has been confirmed an
more studies are called for to resolve this issue. Theref
we do not consider it reasonable at this stage to vary
parameters of our model with temperature to achieve
decrease of the GDR energy in Ref.@18#. Including this en-
ergy shift in the comparison, reasonable agreement betw
the calculations and the available data is seen for the ev
tion of the GDR shape in120Sn ~Fig. 4!. For 208Pb the data
do not strictly follow a Breit-Wigner or Lorentzian shape. A
T51.85 MeV the experimental shape of the GDR has eve
pronounced structure between 20 and 25 MeV, while
resonance peak seems to be too low. Such particular be
ior is not seen in120Sn or in the gradual change of the ca
culated shape with increasingT. Additional measurements a
this value ofT are desirable to clarify this behavior. Non
theless, the overall agreement between the results of ca
lations and the data for208Pb is also satisfactory~Fig. 5!.

In order to see a possible improvement of the agreem
with the data we notice that since the present test calc
tions restricts the coupling toph, pp, andhh configurations
via the doorways, which included only dipole and quad
pole phonons, the calculated shape is found to be slig
narrower with a somewhat higher peak. This restriction a
caused an enhancement of some structure between 15 a
MeV at energies aroundvq1vq1

. Taking into account more
collective quadrupole phonons and/or phonons of hig
multipolarities can improve the agreement. However,
would certainly make the calculations more complicate.
least it would increase the number of the parameters of
model unless the structure of phonon operators is defi
microscopically in terms ofph pairs as in the RPA. Incor
porating this into the present formalism is another form
dable task that we would like to leave for our future studi
In the meantime, a simple way to include effectively t
contribution of the missing doorway configurations in t
present calculations is adding a parameterDg to gq(v) to
minimize the discrepancy between the values ofGGDR ob-
tained in the present approximation scheme and those
tained in @35#. The strength functions calculated with in
creasinggq(v) by Dg are shown in the right columns@~e!–
~h!# of Figs. 4 and 5. By doing so, the overall agreeme
between theory and experiment is clearly improved. A
prediction of our model we show in Fig. 6 the strength fun
tions of the GDR calculated at several values ofT.4 MeV
in 120Sn andT>2.8 MeV in 208Pb usingDg50 @Figs. 6~a!
and 6~b!# as well asDg52 MeV for 120Sn @Fig. 6~c!# and
0.8 MeV for 208Pb @Fig. 6~d!#. The saturation of the GDR
shape is clearly seen atT>4 MeV in both nuclei.

As a visual example of how different models describ
the experimental data for the GDR shape in120Sn, we plot-
re-
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ted in Fig. 7 the results of our model@~a! and~d!# and those
obtained within the adiabatic coupling model@24# @~b! and
~e!# and the collisional damping model@30# @~c! and~f!#. The
areas of experimental divided spectra as well as the res
from the adiabatic coupling and collisional damping mod
have been taken from Fig. 3 of Ref.@33#. The experimental
spectra at low~30–40! MeV and high~110–120 MeV! ex-
citation energies have been rescaled so that they coin
with the data of Ref.@18# at T51.24 MeV @Fig. 4~a! and/or
4~e!# andT53.12 MeV @Fig. 4~d! and/or 4~h!#, respectively.
It is seen from Fig. 7 that, as compared to the adiab
coupling and collisional damping models, our approach

FIG. 6. GDR strength functionsSq
GDR(Eg) for ~a! and~c! 120Sn

and~b! and~d! 208Pb at higher temperatures. In~a! and~c! the solid,
dashed, and dash-dotted curves denote the results obtainedT
54.1, 5.1, and 5.8 MeV, respectively. In~b! and ~d! the solid,
dashed, dotted, and dash-dotted curves stand for the results obt
at T52.8, 4, 4.9, and 6 MeV, respectively. The results in~c! and~d!
have been obtained usinggq(v)1Dg instead ofgq(v).
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FIG. 7. GDR shapes in120Sn at~a!–~c! low 30–40 MeV and~d!–~f! high 110–120 MeV excitation energy within different models.
each panel the vertical bars denote the area of experimentally divided spectra. The results of the present work are plotted in~a! and ~d!,
where the solid curves show the shapes calculated without the additional parameterDg, while the dash-dotted curves correspond to tho
obtained usingDgÞ0 ~see the text!. The results of the adiabatic coupling model using a strength parameterS51 ~dash-dotted! and 0.8
~solid! are plotted in~b! and~e!. Those obtained within the collisional damping model using an in-medium~dash-dotted! and a free~solid!
nucleon-nucleon scattering cross section are shown in~c! and ~f!.
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fers a better description for the observed GDR shape in
gions both of low and high excitation energies. In particul
our model gave a rather symmetric shape, which can be
approximated by a Breit-Wigner or Lorentzian curve even
high excitation energies exhausting 100% of the GD
energy-weighted sum rule~EWSR!. At E* ;110–120 MeV,
which corresponds toT;3.12 MeV@Figs. 4~d! and 4~h!#, the
results obtained usingDg52 MeV @Fig. 4~h!# offer better
agreement with the experimental areas. The calcula
strength function in the adiabatic coupling model does
follow a Lorentzian-like shape at high temperatures. Red
ing the EWSR of the GDR by 20% helped the adiaba
coupling model improve the agreement with data at h
excitation energies, but worsened it at low excitation en
gies. A similar situation takes place in the collisional dam
ing model. Here the use of a free-space nucleon-nucl
cross section instead of an in-medium one did improve
agreement with the data at high excitation energies, but m
it worse at low excitation energies.

D. Intergated yield of g rays

The integrated yieldsYg of g rays in 120Sn are plotted as
a function of excitation energyE* in Figs. 8~a! and 8~b!. The
results have been obtained upon performing the integra
e-
,
ell
t

d
t

c-
c
h
r-
-
n
e
de

n

in Eq. ~2.25! within two intervals 12 MeV<Eg<20 MeV
and 20 MeV<Eg<35 MeV. They are compared with th
data within 12–20 MeV@15,32# @Fig. 8~a!# and within ~20–
35! MeV @15# @Fig. 8~b!#, respectively. The results reproduc
reasonably well the observed saturation of the yield in b
regions. A behavior similar to the case of120Sn has also been
obtained in our calculations of the integrated yield ofg rays
in 208Pb. In this case the saturated values around 831023

and (10–12)31024 are found in the intervals 10 MeV
<Eg<18 MeV and 18 MeV<Eg<33 MeV, respectively.

The saturation of the yield atE* >300 MeV can be inter-
preted here as a natural consequence of the saturation o
GDR shape and its width atT.4 MeV, not as a result of an
exceedingly large value of the width as has been propo
previously in Refs.@28–30,32#. It is worth noticing that the
value of the integrated yield in the region above the GD
~within 20–35 MeV! is more sensitive to the change of th
integration limits than within the GDR region~12–20 MeV!.
The reason is that the integration in Eq.~2.25! involved
larger energies in the region above the GDR and also tha
distribution of the GDR is rather flat in the tail above 2
MeV. This may explain why sometimes the interplay b
tween a cutoff of strength aboveE* ;250 MeV and a brems-
strahlung subtraction in the experiments could describe s
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cessfully the observedg spectra.
We would like to emphasize that the microscopic stru

ture of the strength functionSq
GDR(v) with an v depedence

of the dampinggq
GDR(v) is decisively important for an ad

equate description for both the shape and the integr
yield. As shown in Figs. 8~c! and 8~d!, a Breit-Wigner dis-
tribution with a width equal toGGDR independently ofv and
centered atvGDR can describe the integrated yield on

FIG. 8. Integrated yieldsYg of the g rays as a function of
excitation energyE* in 120Sn. Squares and diamonds denote
data from Refs.@15# and@32#, respectively. In~a! and~b! the solid
curves denote the results of calculations in the present approac
~c! and ~d! the results of the calculations using a Breit-Wign
strength function of anv-independent width centered atvGDR from
different models are shown. Here the solid curve denotes the re
obtained using the widthGGDR , the dotted curve results obtaine
using the width from Ref.@31#, and the dash-dotted and dash
curves results obtained using the parametrizations of the Ca
model in Refs.@28# and @29#, respectively.
-

ed

within the GDR region@Fig. 8~c!# but strongly overestimate
it in the region above 20 MeV@Fig. 8~d!#. Using the FWHM
from Ref. @31# leads to a similar behavior as shown by t
dotted curves in Figs. 8~c! and 8~d!. Meanwhile, both the
parametrizations for the continuously increasing width p
posed in the collisional damping model@28,29# cannot ac-
count for the data of the yields in the GDR region as well
in the region above it as shown by the dashed and da
dotted curves.

As has been mentioned in the Introduction, the multis
CASCADE calculations using a continuously increasing wid
of the GDR withT yielded a saturation of theg multiplicity
in the GDR region between 12 and 20 MeV in tin isotope
but at the expense of a strong increase of the yield above
MeV. In our opinion, if the observed FWHM and shape
the GDR are averaged quantities, the continuously increa
values of the width used in theCASCADE calculations of Ref.
@32# may have to undergo a further appropriate averag
procedure.

IV. CONCLUSIONS

In this paper we have developed further the approach
@35# to a systematic theoretical study of the width of t
GDR, its shape and the integrated yield ofg rays as a func-
tion of temperature in hot nuclei. Making use of the doub
time Green’s function methods, we have derived a comp
set of approximated equations for Green’s functions, wh
allow one to calculate explicitly the width of the GDR due
coupling to all the forward-going processes up to tw
phonon ones in the second order of the interaction stren
The formalism has been applied to a model case, in wh
the GDR phonon is coupled toph, pp, and hh through a
hierarchy of higher-order graphs. The results of numeri
calculations in120Sn and 208Pb for temperatures increasin
up to T56 MeV have confirmed the prediction previous
made within the simpler approximation of this formalism
@35#. The conclusions of the present paper can be sum
rized as follows.

~i! The total widthGGDR of the hot GDR arises mainly
from the coupling of the GDR vibration to allph, pp, and
hh configurations. It increases sharply as temperature
creases up toT;3 MeV. At higher temperatures the widt
increase is slowed down to reach a saturated value of aro
12–14 MeV in 120Sn and around 10.5–11 MeV in208Pb at
T;4 –6 MeV. The width increase and saturation are due
coupling topp andhh configurations atTÞ0.

~ii ! The quantal widthGQ of the GDR due to coupling of
GDR vibration to onlyph configurations decreases as t
temperature increases. Neglecting the two-phonon proce
in the expansion to higher-order propagators results i
quantal width, which is almost independent of temperatu

~ii ! The present approach describes reasonably well
experimentally extracted shape of the GDR in the recent
elastic a-scattering experiments@18# including even some
details of its fine structure. As a consequence, the obse
saturation of the yield ofg rays in both the GDR region an
the region above it is reproduced. The fact that the pres
calculations show a well-defined GDR shape up toT;6
MeV indicates the existence of the hot GDR at rather h
temperatures. Hence our model has demonstrated that th

In

lts

ia



p

12

on
e
s-
b
le
D
n

e
he
th
so

io
s

oc

il

le
ed
m-
n-
and
t on
the

, the
res
um
ere
t be
ion

ha

l-
the

3386 PRC 58NGUYEN DINH DANG, KOSAI TANABE, AND AKITO ARIMA
GDR persists as long as a nucleus exists, i.e., at least u
T;6 MeV, in agreement with its real observation in120Sn at
rather high excitation energies with a width of around
MeV @13–16#.

Despite of the simplicity of the model under considerati
it is unlikely that the main features of the results obtain
within this test will be altered significantly by more sophi
ticated microscopic calculations except that the structure
tween 17 and 20 MeV will be smeared out by many comp
overlaping configurations. The reason is that the hot G
occurs in the stochastic region of high level densities a
high excitation energies@44#. Even though the single-particl
and collective motions, which display the regularity of t
mean-field dynamics, persist in this stochastic region, all
wave functions are completely mixed to ‘‘look the same’’
that only exact integrals of motion are kept intact@47#. As
has been demonstrated in Ref.@44#, equilibrium statistical
averaging in this region discards all possible phase relat
ships between different components of wave functions
that one deals entirely with probabilities~diagonal elements
of the density matrix in the energy representation or the
cupation numbers considered in the present paper!. There-
fore, one may not need recourse to the whole set of sim
d

d.
to

d

e-
x
R
d

e

n-
o

-

ar

individual microscopic states to obtain statistically reliab
information. Surely this does not play down the more refin
microscopic studies in this direction since the actual co
plexity of the wave functions can reveal the detail relatio
ship between the eigenstates of the model Hamiltonian
the representation basis and therefore can shed more ligh
the physics of the problem. Other ingredients such as
temperature dependence of the single-particle energies
contribution of the evaporation width at high temperatu
@25#, and the effects of high values of the angular moment
@26# have been also left out in the present study. While th
have been some indications that these effects may no
crucial within the temperature region under considerat
and/or in nuclei with mass numberA>120 @26,33,48#, they
certainly deserve thorough studies in the future.
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