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Nuclear diffuseness as a degree of freedom

W. D. Myers and W. J. S´wia̧tecki
Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720

~Received 7 May 1998!

The response of the nuclear energy to changes in neutron and proton surface diffusenesses is investigated
using the Thomas-Fermi model. Algebraic expressions are provided for the energy cost of changing the two
diffusenesses away from their equilibrium values. This will make it possible to generalize the macroscopic-
microscopic calculations of nuclear masses and deformation energies by the inclusion of the neutron and
proton diffusenesses as degrees of freedom~to be varied along with the shape degrees of freedom!. One result,
which is suggested by the relatively low cost in macroscopic energy of increasing the diffuseness of a heavy
nucleus by 10%~about 4 MeV!, is that superheavy nuclei nearZ5126, N5184 may have a fair chance of
becoming stabilized by shell effects. An appendix introduces an improved measure of surface diffuseness, with
certain advantages over the conventional Su¨ssmann widthb. @S0556-2813~98!03612-7#

PACS number~s!: 21.60.Ev, 21.10.Gv
er
lo

su
I

in
iz
l,
I

le
ro

re
al
ul
e

m
o
a

ng
e
be
th
-
lf
e
um
e

gi
g
e
-
e
o
o

gu
er
m

ar
-

y
e-
in

la-
is

both
The
m-
of

ises:
dif-
rface-
ble
to

lcu-
tion
pic

ns
on
s-

nd
uit-
the
ives
se-
ntial
he
pic
i-

ted
I. INTRODUCTION

Estimating the dependence of the nuclear surface en
on surface diffuseness may turn out to be important for
cating more reliably the magic numbers in the region of
perheavy nuclei. The argument goes as follows.
macroscopic-microscopic approaches to extrapolations
the superheavy regime the nuclear mean field is parametr
as a shape-dependent Woods-Saxon or similar potentia
which the Strutinsky shell correction is then evaluated.
order to find the ground-state energy and shape of a nuc
in particular a superheavy nucleus, the sum of the mic
scopic shell correction and a macroscopic~e.g., liquid drop!
energy is varied as a function of the shape degrees of f
dom. In such variations the surface diffuseness is usu
kept constant, but one may well ask how the result wo
change if, when locating the energy minimum, the diffus
ness were to be treated as an additional degree of freedo
be varied simultaneously with the shape degrees of freed

This question has, in fact, a long history going back
least to Refs.@1–3#. There have also been indications as lo
ago as 1966~See Fig. 4 in@4#!, that an increased surfac
diffuseness would begin to favor the magic proton num
Z5126 over 114. This possibility has been examined in
recent comprehensive study in@5#, where macroscopic
microscopic extrapolations were confronted with se
consistent Hartree-Fock calculations, in which the mean fi
is not parametrized, but is allowed to seek out its optim
form, including whatever changes in the surface diffusen
are called for.

The resulting possibility of a reappearance of the ma
proton number 126 would affect profoundly forthcomin
searches for spherical superheavy nuclei, and it is extrem
important to throw further light on this question by perform
ing up-to-date macroscopic-microscopic calculations gen
alized to include the surface diffuseness degree of freed
This should be done in parallel with further refinements
the Hartree-Fock calculations, aimed at eliminating ambi
ities associated with different choices of the effective int
action, as well as making the calculations more nearly co
parable with macroscopic-microscopic treatments as reg
the accuracy with whichknownproperties of nuclei are re
PRC 580556-2813/98/58~6!/3368~6!/$15.00
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produced~see@6#!. The Extended Thomas-Fermi-Strutinsk
Integral method of@7#, comparable to but faster than Hartre
Fock, should have an especially important role to play
such studies.

In order to carry out a macroscopic-microscopic calcu
tion with the diffuseness degree of freedom included, it
necessary to investigate the response to diffusenes of
the macroscopic and microscopic parts of the energy.
machinery for calculating the latter is already in place: si
ply recalculate the Strutinsky shell correction for a series
diffusenesses. As regards the former, a new question ar
besides the known response of the Coulomb energy to
fuseness, one needs the response of the macroscopic su
layer energy. To answer this question there is now availa
a reliable Thomas-Fermi model of nuclei fitted accurately
a wide range of nuclear properties,@8#. The model has al-
ready served as the basis for a variety of macroscopic ca
lations @8,9#, and the present paper describes the applica
of the model to estimating the response of the macrosco
energy to variations of the surface diffuseness~an early at-
tempt to estimate this response was made in@10#!.

II. THE THOMAS-FERMI MODEL

The model is described in@8#. It provides the self-
consistent mean-field solution of the problem of nucleo
interacting by an effective Yukawa potential, the soluti
following from a straightforward application of the semicla
sical Thomas-Fermi approximation of two fermions perh3 of
phase space. After allowing for shell and pairing effects a
for the Congruence/Wigner energy, the model, with a s
ably adjusted Yukawa interaction, reproduces accurately
measured nuclear binding energies and fission barriers, g
a good account of nuclear sizes and of the surface diffu
ness, and predicts neutron matter properties in substa
agreement with independent theoretical calculations. T
model is thus expected to be a fair guide to macrosco
nuclear properties calculated within the limitations of a sem
classical approach.

III. NUCLEAR SURFACE-LAYER ENERGY

The two leading terms in the part of the energy associa
with the nuclear surface~the ‘‘surface-layer energy’’! are a
3368 ©1998 The American Physical Society
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surface energy proportional to the surface area of the nuc
and a curvature correction proportional to the integrated
face curvature. For a spherical nucleus of mass numberA the
surface energyEs can be written as

Es5a2~wn ,wp!A2/3 ~1!

and the curvature energy as

Ek5a3~wn ,wp!A1/3, ~2!

where the surface and curvature energy coefficientsa2 and
a3 are now considered to be functions of the neutron a
proton surface diffusenesses, as specified by the widthswn
andwp ~defined later, but almost identical with the standa
Süssmann widthsbn , bp , @11#!. According to the Thomas
Fermi model of@8#, the optimum diffusenesses for standa
semi-infinite nuclear matter are given bywn5wp5wo
'1.0 fm, with a2(wo ,wo)518.63 MeV anda3(wo ,wo)
512.11 MeV.

We have determined the quadratic response of
surface-layer energy to small variations ofwn and wp by
performing a series of Thomas-Fermi calculations for fin
nuclei in whichwn andwp were constrained to have value
that wereln or lp times their equilibrium values. The sca
ing factorsln ,lp were varied, in steps, between about 0
and 1.2, and cubic expressions were fitted to the serie
energy changes induced in this way. The details are
scribed in Appendix A. The final result may be summariz
by the following expression for the deviation of the ener
from its equilibrium value for an uncharged spheric
nucleus with mass numberA andN5Z:

DE518.63A2/3@ 1
2 f1~ln21!22f2~ln21!~lp21!

1 1
2 f1~lp21!2# MeV

1cubic terms in ~ln21!, ~lp21!, ~3!

where, forA.40, the coefficientsf1 andf2 are given ap-
proximately by the following functions ofA:

f150.738811.1787a112.5929a2 , ~4!

f250.483610.4178a15.2180a2, ~5!

with a5A21/3. @The factor 18.63A2/3 was included in defin-
ing f1 and f2 in Eq. ~3! so that fora→0 the constants
f150.7388, f250.4836 would represent the response
the surface energy coefficienta2 to diffuseness changes.#

The small anharmonic~cubic! terms in Eq.~3! are dis-
cussed in Appendix A.

The diffuseness dependence of the curvature energy i
turned out to be amazingly simple. Thus, in the casewn
5wp , the dependence on the mean diffusenessw5(wn
1wp)/2 was found to be indistinguishable from a straig
line through the origin, viz.:

a3~w!512.11w/wo MeV. ~6!

By symmetry, there is no linear dependence ofa3 on wn
2wp , so that Eq.~6! is correct to leading~linear! order in
wn andwp .
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Due to quantal effects, Eqs.~3!, ~6! become inappropriate
for small values ofl, but should be applicable forl close to
1, where the Thomas-Fermi approximation is known to
useful.

IV. COULOMB ENERGY

For an arbitrarily shaped nucleus the diffuseness cor
tion to the Coulomb energy was derived to leading order
@12#. For a spherical nucleus with atomic numberZ and ra-
dius R the energy may be expanded to higher orders inv
[wp /R as follows:

Ec5CS 12
5

2
v21k3v31k4v41••• D , ~7!

whereC53e2Z2/5R, with e251.44 MeV fm. In the case of
a Fermi-function density profile one findsk353.0216 and
k453/2. ~see Appendix B!. In what follows we shall neglec
the last term in Eq.~7! and use the above value ofk3 in our
estimates.

V. SURFACE DIFFUSENESS OF FINITE NUCLEI

We may write the sum of surface, curvature and Coulo
energies in the following form:

E5S@11 1
2 f1~ln21!22f2~ln21!~lp21!

1 1
2 f1~lp21!2#

1K~ln1lp!/2

1C2C2lp
21C3lp

3 , ~8!

where

S518.63A2/3 MeV, K512.11A1/3 MeV,

C53e2Z2/5R50.7579Z2/A1/3 MeV,

C253e2Z2wo
2/2R351.4579Z2/A MeV,

C353e2Z2wo
3k3/5R451.5457Z2/A4/3 MeV,

and where we tookR51.14A1/3 fm, wo51 fm. We have
disregarded the cubic terms in Eq.~3! and the last term in
Eq. ~7!. This has a negligible effect on the results that follo

Equating to zero the partial derivatives ofE with respect
to ln andlp gives

S@f1~ln21!2f2~lp21!#1K/250 , ~9!

S@2f2~ln21!1f1~lp21!#1K/222C2lp13C3lp
250.

~10!

Eliminating ln21 gives the quadratic equationc2lp
2

1c1lp2c050, with the solution

lp5
Ac1

214c0c22c1

2c2
, ~11!

where

c0512K/2Sx5120.3250/A1/3x, ~12!

c15122C2 /Sc5120.1565Z2/A5/3c, ~13!
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c253C3 /Sc50.2489Z2/A2c, ~14!

where c stands for (f1
22f2

2)/f1 and x stands for (f1

2f2). With lp determined, Eq.~9! may be used to calculat
ln .

To leading order in the diffuseness correction to the C
lomb energy~i.e., with c2 disregarded! we would have

lp'
c0

c1
5

120.3250/A1/3x

120.1565Z2/A5/3c
, ~15!

which illustrates the competition between the curvature
Coulomb forces in drivingwp away fromwo .

Equation~11! predicts that the relative proton diffusene
wp /wo should be a definite function ofA, resulting from the
A-dependent difference between the curvature and Coul
forces working against the stiffnessesf1 and f2 , which
themselves increase rapidly with decreasingA according to
Eqs. ~4! and ~5!. The net result of these opposing forc
turned out to be—somewhat unexpectedly—an almost c
stant value ofwp /wo as illustrated in Fig. 1, wherelp is
plotted vsA along the valley ofb stability. Experimental
values ofwp were deduced from the radius and diffusene
parametersc and z of two-parameter Fermi-function fits t
data, as reported in@13#. ~The more recent reference@14#,
pointed out to us by a referee, does not change significa
the appearance of Fig. 1.! The average value ofwp for the
points displayed is 1.022 fm and the measured values ofwp
were divided by this average in order to compare the tren
the relative diffuseness with theory.

Figure 1 shows also what the theory would predict for t
trend if the curvature energy were disregarded~long-dashed
curve! or if the Coulomb energy were disregarded~short-
dashed curve!.

VI. ENERGY COST OF DIFFUSENESS CHANGES

The stiffnesses of the macroscopic energy against de
tions ofln ,lp from 1 are given by the second derivatives
Eq. ~8!. If lp is held fixed, we find

FIG. 1. The relative proton diffusenesslp , as predicted by Eq
~11!, is compared with the experimental trend of the relative ‘‘RM
diffuseness,’’ wp/1.022 fm, as deduced from two-paramet
Fermi-function fits listed in@13#. The long-dashed curve shows th
result of disregarding the curvature energy, the short-dashed c
the result of disregarding the Coulomb energy.
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U]2E

]ln
2 U

lp

5Sf1 . ~16!

If ln is held fixed we have

U]2E

]lp
2 U

ln

5Sf122C216C3lp

'Sf122C216C3 for lp'1. ~17!

If ln is constrained to be equal tolp we have

E5S@11~f12f2!~lp21!2#1Klp1C2C2lp
21C3lp

3 ,
~18!

and

U]2E

]lp
2 U

ln5lp

52S~f12f2!22C216C3 . ~19!

If for a given lp the value ofln is chosen so as to mini
mize the energy we find

U]2E

]lp
2 U

optimizedln

5Sc22C216C3 . ~20!

As an example takeA5310, Z5126 andln5lp5l.
Equation~19! gives the energy cost to changeln ,lp from
their optimum values as

DE5
1

2

d2E

dl2
~l21!2

5@~f12f2!S2C213C3#~l21!2

5~451.1274.7135.1!~l21!2 MeV

5411.5~l21!2 MeV. ~21!

Thus a 5% increase in the diffuseness would entail a m
roscopic energy cost of 1.03 MeV, and a 10% increase wo
cost 4.12 MeV.

VII. MAGIC REGION NEAR Z5126, N5184

According to Eq.~11! the equilibrium value of the relative
proton diffuseness is 1.081, and an additional synchron
increase of the proton and neutron diffusenesses by 1
would cost about 4 MeV according to Eq.~21!. It was esti-
mated in@2# that for theZ5126, N5184 magic numbers to
show up the diffuseness might have to be increased by so
thing like 10%. The total gain in shell-effect energy, es
mated on the basis of Fig. 2 in@2#, is of the order of 12 MeV,
similar to the value reported in@5#, Fig. 5. If the above esti-
mates are taken at face value, the conclusion is sugge
that the macroscopic cost in energy might not prevent
nucleus from exploiting the extra binding associated withZ
5126, N5184 in agreement with@5#. It might even turn out
that the neighborhoods of both theZ5114, N5184 and the

ve
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PRC 58 3371NUCLEAR DIFFUSENESS AS A DEGREE OF FREEDOM
Z5126, N5184 doubly magic numbers would exhibit ext
stability sufficient to ensure reasonable lifetimes aga
spontaneous decay.~Such an alternative should not yet b
dismissed, even though the 114 proton shell is not favored
the Hartree-Fock calculations with SkP and SLy7 forces
@5#.! A straightforward generalization of the curre
macroscopic-microscopic calculations, made possible by
availability of the Thomas-Fermi stiffnesses as calcula
above, should be able to throw further light on these fas
nating possibilities.

In the present paper we have focused on the relevanc
the diffuseness degrees of freedom to the question of su
heavy elements. But other applications, such as shell eff
near the drip lines or surface contributions to giant monop
resonances, readily come to mind.
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APPENDIX A: DETERMINATION OF THE STIFFNESSES

Figure 2 shows how the surface energy coefficienta2 for
semi-infinite standard nuclear matter changes when the
fuseness of both neutrons and protons is forced to bel times
their equilibrium value. The points represent a series of
Thomas-Fermi calculations and the curve is the virtually p
fect fit by a cubic in (l21). The ‘‘stiffness’’ 4.534 MeV is
shown as~half! a square atA21/350 and the ‘‘anharmonic-
ity’’ 22.810 MeV is indicated by a~semi!circle in Fig. 3.
The other points in Fig. 3 refer to calculations with finit
uncharged,N5Z nuclei. They were obtained by forcing th
diffuseness to be different from its equilibrium valueweq by
the following prescription. Instead of the equilibrium dens

FIG. 2. The surface energy coefficienta2 for semi-infinite, stan-
dard nuclear matter in its dependence on the relative diffusenesl.
The dots refer to the Thomas-Fermi calculations and the curve
cubic fit, displayed in the figure, with a ‘‘stiffness’’ of 4.534 MeV
and an ‘‘anharmonicity’’ of22.810 MeV.
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distribution for the nucleus in question, an equilibrium de
sity distribution of a heavier~or lighter! ‘‘substitute’’
nucleus was calculated and then scaled~along the ordinate
and the abscissa! in order to have the same central dens
and the same number of particles as the original one. If
substitute nucleus was heavier/lighter, the scaled den
would be less/more diffuse. The scaled density was then
serted in the Thomas-Fermi computer program to calcu
the energy increaseDE of the nucleus in question, Eq.~6!.
The associated relative diffusenessw/weq was calculated us-
ing Eq. ~B1! in Appendix B. By varying the mass of th
substitute nucleus in the appropriate range, a series of va
for DE was obtained and, after division by 18.63A2/3, a fit of
a cubic inw/weq gave the stiffness and anharmonicity di
played in Fig. 3. Figure 4 shows the corresponding quanti
in the case when only one of the diffusenesses was chan
the other remaining fixed. As is readily verified from Eq.~3!,
the two sets of calculations determinef12f2 and f1 , re-
spectively; the values off1 andf2 follow @Eqs.~4!, ~5!#.

APPENDIX B: THE RMS WIDTH w

A measure of the surface diffuseness, Su¨ssman’s widthb,
is defined in terms of the width of the bump functiong(r )
resulting from differentiating the density profile functio
f (r ), where f (r ) is assumed to be effectively constant e
cept for a thin surface region aroundr 5R @11#. It turns out
that a slightly different definition of the diffuseness, th
‘‘RMS width w,’’ has certain advantages over Su¨ssmann’sb.
We define this width in terms of the increase in the ro
mean square~rms! radius of a spherical distribution when th
density profile of the distribution is changed from a sha
cutoff at R to the diffuse profile in question. Specifically w
shall take

a
FIG. 3. The stiffness and anharmonicity, deduced from Thom

Fermi calculations on uncharged, finite nuclei withN5Z are dis-
played as functions ofA21/3. In this case the neutron and proto
diffusenesses were made to vary in phase. Fits to the calcul
points~stressing the regime of largeA) are displayed in terms ofa,
defined asA21/3.
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w2[ 1
3 @^r 2&diffuse2^r 2&sharp#, ~B1!

where the factor 1/3 was chosen to makew tend tob in the
limit of large R. Note that the original sharp distribution doe
not have to be uniform. It could, in fact, be almost any fun
tion of r up to r 5R. Then, as the profile gets diffused a
cording to some given profile prescription,^r 2& increases
andw provides a measure of the profile’s diffuseness. Th
unlike Süssmann’s widthb, the RMS widthw can be defined
without difficulty also in the case when there is a cent
depression in the nuclear density~caused by the Coulomb
repulsion!.

In the case of an originally uniform sharp distributio
with radiusR we have

w25 1
3 ~ 3

5 Q22 3
5 R2!5 1

5 ~Q22R2!, ~B2!

whereQ is the ‘‘equivalent RMS radius’’ of the diffuse dis
tribution. According to Eq.~2.45! in @11#, p. 23,Q is related
to b by

Q5RS 11
5

2

b2

R2
1higher powers of b/RD . ~B3!

Thus

Q25R215b21•••.

It follows that w tends tob for largeR.
Equation ~2.45! in the above reference, taken to high

orders inb[b/R, reads

Q5R@11 5
2 b21 25

6 g3b31 5
2 ~g42 21

4 !b41 1
2 ~g52 275

6 g3!b5

1•••#, ~B4!

FIG. 4. This is like Fig. 3, but here only one of the two diffus
nesses was varied.
-

s,

l

where g3 ,g4 ,g5 are numbers characterizing the skewne
kurtosis, etc. of the density profile in question, as given on
22 of @11#. Substituting in Eq.~B2! we find

w25b2@11 5
3 g3~b/R!1~g424!~b/R!2

1~ 1
5 g525g3!~b/R!31•••# ~B5!

as the relation between the RMS widthw and Su¨ssmann’s
width b. Taking as an example the Fermi-function profile, w
haveg35g550, g4521/5 ~p. 31, @11#!, which leads to

w5bF11
1

10
~b/R!21terms in~b/R!4 and higherG .

~B6!

The Coulomb energy of a Fermi-function density distributi
is given on p. 32 of@11# as

EC5EC
sharp~12 5

2 b213.0216b31b41••• !. ~B7!

Using Eq. ~B5! this becomes the following expansion
powers ofv[w/R:

EC5EC
sharp~12 5

2 v213.0216v31 3
2 v41••• !. ~B8!

The two formulas differ only in the coefficient of the sma
fourth-order correction. Equation~B6! shows similarly that
w and b differ by only 0.66% forA540 and by 0.20% for
A5240 in the case of a Fermi-function profile. In the case
‘‘skew’’ surface profiles, wheng3 is not zero, the differences
would be greater.

There are three reasons for preferringw to b: ~1! The
above-mentioned applicability ofw to nonuniform radial dis-
tributions.~2! The fact thatw is defined in terms of aninte-
gral property of the given distributionf (r ). Süssmann’sb
requires differentiatingf (r ), which can lead to serious los
of accuracy whenf (r ) is available only as a numericall
evaluated quantity, as is the case in Thomas-Fermi~or
Hartree-Fock! computer calculations.~3! The quantityw is a
three-dimensional property of the density distributio
whereasf (r ) and g(r ) that are used in definingb are one-
dimensional objects. Why use a one-dimensional prope
when the problem is intrinsically three dimensional?

Note also that for a diffuse distribution obtained from
sharp distribution by convoluting it with a folding function
it is identically true that~see Ref.@11#, p. 23!:

^r 2&diffuse5^r 2&sharp1^r 2& f , ~B9!

where ^r 2& f is the mean-square radius of the folding fun
tion. It follows from Eq.~B1! that in the case of a diffusenes
induced by convolution, the surface widthw is simply the
rms radius of the folding function divided by the square ro
of 3. This relation is exact for any value ofR, large or small,
and for any radial functionf (r ) of the sharp distribution.
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