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Nuclear diffuseness as a degree of freedom
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(Received 7 May 1998

The response of the nuclear energy to changes in neutron and proton surface diffusenesses is investigated
using the Thomas-Fermi model. Algebraic expressions are provided for the energy cost of changing the two
diffusenesses away from their equilibrium values. This will make it possible to generalize the macroscopic-
microscopic calculations of nuclear masses and deformation energies by the inclusion of the neutron and
proton diffusenesses as degrees of freedtmnbe varied along with the shape degrees of freed@ne result,
which is suggested by the relatively low cost in macroscopic energy of increasing the diffuseness of a heavy
nucleus by 10%about 4 MeV, is that superheavy nuclei nedr=126, N=184 may have a fair chance of
becoming stabilized by shell effects. An appendix introduces an improved measure of surface diffuseness, with
certain advantages over the conventionassoann width. [S0556-28138)03612-7

PACS numbd(s): 21.60.Ev, 21.10.Gv

I. INTRODUCTION produced(see[6]). The Extended Thomas-Fermi-Strutinsky

Integral method of 7], comparable to but faster than Hartree-

Estimating the dependence of the nuclear surface enerdyock, should have an especially important role to play in
on surface diffuseness may turn out to be important for loSuch studies.

cating more reliably the magic numbers in the region of su-, !N Order to carry out a macroscopic-microscopic calcula-
9 Y 9 g tion with the diffuseness degree of freedom included, it is

rh nuclei. Th rgument follows. In . . :
perneavy nhucie € argument goes as Tolows necessary to investigate the response to diffusenes of both

macroscopic-microscopic approaches to extrapolations int e macroscopic and microscopic parts of the energy. The
the superheavy regime the nuclear mean ﬁ‘?'d.is parame.triz‘%achinery for calculating the latter is already in place: éim—
as a shape—dependent Woods-Sa_xon_or similar potential, Bly recalculate the Strutinsky shell correction for a series of
which the Strutinsky shell correction is then evaluated. Ingit senesses. As regards the former, a new question arises:
order to find the ground-state energy and shape of a nucleugesijdes the known response of the Coulomb energy to dif-
in particular a superheavy nucleus, the sum of the microfyseness, one needs the response of the macroscopic surface-
scopic shell correction and a macroscof®a., liquid drop  |ayer energy. To answer this question there is now available
energy is varied as a function of the shape degrees of fregy reliable Thomas-Fermi model of nuclei fitted accurately to
dom. In such variations the surface diffuseness is usually wide range of nuclear propertig®]. The model has al-

kept constant, but one may well ask how the result wouldready served as the basis for a variety of macroscopic calcu-
change if, when locating the energy minimum, the diffuse-lations[8,9], and the present paper describes the application
ness were to be treated as an additional degree of freedom, # the model to estimating the response of the macroscopic
be varied simultaneously with the shape degrees of freedonenergy to variations of the surface diffusenéas early at-

This question has, in fact, a long history going back attempt to estimate this response was madgL0j).
least to Refs[1-3]. There have also been indications as long

ago as 1966See Fig. 4 in[4]), that an increased surface Il. THE THOMAS-FERMI MODEL
diffuseness would begin to favor the magic proton number

Z=126 over 114. This possibility has been examined in the Thet mtodel IS f_d(le;cnk?e? |rﬁ8]f. tr|1t provtl;ljes ﬂ}e sellf-
recent comprehensive study ifb], where macroscopic- consistent mean-field sofution ol the problem Of nucleons

microscopic extrapolations were confronted with Self_interapting by an ef_fective Yukawa. poFentiaI, the so_lution

consistent Hartree-Fock calculations, in which the mean ﬁeléqllowmg from a S”"?"ghtf"”.vard _appllcatlon of t_he semiclas-

is not parametrized, but is allowed to seek out its optimu ical Thomas-Fermi approximation of two fer_m_lons péof

form, including whatever changes in the surface diffusenes hase space. After allqwmg for shell and pairing e_ffects and

are called for. or the _Congruence/W|_gner energy, the model, with a suit-
The resulting possibility of a reappearance of the magic,ably adjusted Yukavya !nteractlon, reprod.uc'es accu'rately .the

proton number 126 would affect profoundly forthcoming measured nuclear binding energies and fission barriers, gives

searches for spherical superheavy nuclei, and it is extreme good agcour:jt_ Otf nucI?ar S|zest,t and of thte_z su_rfacet;jn;fustt_e-l
important to throw further light on this question by perform- ess, an tprgthlc_sdneu rgn T?h er ptr_op:ar |e|s IIn t_su S a‘PhIa
ing up-to-date macroscopic-microscopic calculations genelggreemen with “independent theoretical calcuiations. €

alized to include the surface diffuseness degree of freedonIlT]Odel s thus gxpected to be.a.fa|r gl.“"d.e to macroscopic
This should be done in parallel with further refinements ofiuclear properties calculated within the limitations of a semi-

the Hartree-Fock calculations, aimed at eliminating ambigu—dassIcal approach.

ities associated with different choices of the effective inter-
action, as well as making the calculations more nearly com-
parable with macroscopic-microscopic treatments as regards The two leading terms in the part of the energy associated
the accuracy with whiclknownproperties of nuclei are re- with the nuclear surfacé&he “surface-layer energy)’are a

Ill. NUCLEAR SURFACE-LAYER ENERGY
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surface energy proportional to the surface area of the nucleus Due to quantal effects, Eg&3), (6) become inappropriate
and a curvature correction proportional to the integrated surfor small values of\, but should be applicable far close to
face curvature. For a spherical nucleus of mass nulibe 1, where the Thomas-Fermi approximation is known to be

surface energ¥, can be written as useful.
Es=as(W, ,Wp)AZ3 ) IV. COULOMB ENERGY
and the curvature energy as For an arbitrarily shaped nucleus the diffuseness correc-
13 tion to the Coulomb energy was derived to leading order in
E=az(wp, Wp)A™, (20 [12]. For a spherical nucleus with atomic numiand ra-

- dius R the energy may be expanded to higher ordersin
where the surface and curvature energy coefficiaptand  _ .
gy aa =Wp/R as follows:

a; are now considered to be functions of the neutron and
proton surface diffusenesses, as specified by the widths
andw, (defined later, but almost identical with the standard
Stssmann width®,,, by, [11]). According to the Thomas- - o,
Fermi model of(8], the optimum diffusenesses for standard, whereC=3e°Z“/5R, with e=1.44 MeV fm. In the case of
semi-infinite nuclear matter are given Wn:Wp:WO a Fermi-function deQSIty prOflle one flnd§:30216 and
~1.0 fm, with ay(w,,w,)=18.63 MeV andaz(w,,W,) k,=3/2.(see Appendix B In what follows we shall neglect
=12.11 MeV. the last term in Eq(7) and use the above value kf in our
We have determined the quadratic response of thé&stimates.
surface-layer energy to small variations wf, and w, by
performing a series of Thomas-Fermi calculations for finite V. SURFACE DIFFUSENESS OF FINITE NUCLEI
nuclei in whichw,, andw, were constrained to have values
that werek, or A, times their equilibrium values. The scal-
ing factors\,,,\, were varied, in steps, between about 0.8
and 1.2, and cubic expressions were fitted to the series of E=S1+5d1(Ag—1)%— ¢po(Ap—1)(Np— 1)
energy changes induced in this way. The details are de-

S, 3 4
E.=C 1—§w +kzw*+ ko + -, (7)

We may write the sum of surface, curvature and Coulomb
energies in the following form:

scribed in Appendix A. The final result may be summarized +3¢1(\p—1)%]
by the following expression for the deviation of the energy
. 9 € . +K(Ap+Ap)/2
from its equilibrium value for an uncharged spherical
nucleus with mass numbérandN= Z: +C—CoAj+Ca\5, (8)
AE=18.6A 3 ¢p1(\n—1)°— oAy = 1)(Ap—1) where
— 2/3 — 1/3
+%¢1()\p_1)2] MeV S=18.6A“" MeV, K=12.11A"> MeV,
+cubictermsin(A,—1), (Ap,—1), 3) C=3e?Z?/5R=0.757Z?/A'® MeV,

_ 252:p,2 3_ 2
where, forA>40, the coefficientss; and ¢, are given ap- C2=3€°Z°Wo/2R*=1.457Z"/A MeV,

proximately by the following functions oA: Ca=362223ky/5R* = 1.545Z2 A% MeV,

¢1=0.7388+ 1.178 %+ 12.592%, (4 and where we toolR=1.14AY3 fm, w,=1 fm. We have
) disregarded the cubic terms in E@) and the last term in
¢,=0.4836+0.4178v+5.2180", () Eq.(7). This has a negligible effect on the results that follow.

Equating to zero the partial derivatives Bfwith respect

with a=A""3, [The factor 18.687" was included in defin- An and, gives

ing ¢, and ¢, in Eq. (3) so that fora—0 the constants
¢1=0.7388, ¢,=0.4836 would represent the response of S p1(Ay—1)— da(Ap— 1) ]+ K/2=0, 9
the surface energy coefficiea} to diffuseness changés.

The small anharmoni¢cubic) terms in Eq.(3) are dis- S — ¢a(Aq— 1)+ ¢1(\y—1)]+K/2—2C,\ ,+3C3\ ,2=0.
cussed in Appendix A. (10

The diffuseness dependence of the curvature energy itself
turned out to be amazingly simple. Thus, in the casg
=w,, the dependence on the mean diffuseness(w,

Eliminating A\,—1 gives the quadratic equatiornzxp2
+C1Ap—Co=0, with the solution

+Wwp)/2 was found to be indistinguishable from a straight 6,2+ 4cyCy—Cy
line through the origin, viz.: Ap= 5C , (17
2
az(w)=12.1w/w, MeV. (6) where
By symmetry, there is no linear dependenceagfon w, Co=1—K/2Sy=1-0.3250A3y, (12)

—W,, so that Eq.(6) is correct to leadingdlinean order in
w, andw,,. c1=1—2C,/Sy=1—0.156Z?/ A>3y, (13
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13} I ' ] PE
12 . 2 =S¢, . (16)
11} 1729
. A
£10 P
g g: If X, is held fixed we have
S ool PE
& osf 3| TS$172C;+6Ca,
€ oaf Iply
03r
02r ~S¢1_2C2+ 6C3 for )\p~1 (17)
0.1
o 100 200 If N\, is constrained to be equal iq, we have

A

E=91+ Np— 12+ KN p+C—CoAj+Ca\
FIG. 1. The relative proton diffuseness, as predicted by Eq. A1+ (1= ¢2)( )] 2 ah ()18)

(11), is compared with the experimental trend of the relative “RMS
diffuseness,” w,/1.022 fm, as deduced from two-parameter gnd
Fermi-function fits listed if13]. The long-dashed curve shows the
result of disregarding the curvature energy, the short-dashed curve
the result of disregarding the Coulomb energy.

P’E

— =25(¢y— ) —2C,+6C3. (19
p

Np=Xp

C,=3C;3/Sy=0.248F%/ A%y, (14
If for a given\, the value of\,, is chosen so as to mini-
where ¢ stands for ¢2— ¢3)/¢, and y stands for ¢,  Mize the energy we find
— ¢). With \, determined, Eq(9) may be used to calculate
Ay
To leading order in the diffuseness correction to the Cou-
lomb energyli.e., with ¢, disregardeflwe would have

9’E

2
N2

=Sy—2C,+6C;. (20)

optimized ,

As an example takéA=310, Z=126 and\,=Ap,=\.

~ Co_ 1-0.3250A"y (15) Equation(19) gives the energy cost to changg,\, from
P C1 1-0.156Z%A%3y their optimum values as
which illustrates the competition between the curvature and 1 °E 5
Coulomb forces in drivingv, away fromw,, . AE= 2 d\2 A-1)
Equation(11) predicts that the relative proton diffuseness
w, /W, should be a definite function &, resulting from the _ _ _ _ 132
A—pdependent difference between the curvature and Coulomb [(¢1— ¢2)S—Co+3C5](A—1)
forces working against the stiffnesse¢s and ¢,, which =(451.1-74.7+35.)(A—1)2 MeV
themselves increase rapidly with decreasigccording to
Egs. (4) and (5). The net result of these opposing forces =411.5\—1)2 MeV. (21)
turned out to be—somewhat unexpectedly—an almost con-
stant value ofw,/w, as illustrated in Fig. 1, wherg, is Thus a 5% increase in the diffuseness would entail a mac-

plotted vsA along the valley ofg stability. Experimental roscopic energy cost of 1.03 MeV, and a 10% increase would
values ofw, were deduced from the radius and diffusenessost 4.12 MeV.
parameters and z of two-parameter Fermi-function fits to

daFa, as reported ifl3]. (The more recent refereqc{&4], VIl. MAGIC REGION NEAR Z=126, N=184
pointed out to us by a referee, does not change significantly . o .
the appearance of Fig.)IThe average value of, for the According to Eq(11) the equilibrium value of the relative

points displayed is 1.022 fm and the measured valua/s cof proton diffuseness is 1.081, and an additional synchronous
were divided by this average in order to compare the trend dncrease of the proton and neutron diffusenesses by 10%
the relative diffuseness with theory. would cost about 4 MeV according to E@1). It was esti-
Figure 1 shows also what the theory would predict for thismated in[2] that for theZ=126, N=184 magic numbers to
trend if the curvature energy were disregardiesg-dashed show up the diffuseness might have to be increased by some-

curve or if the Coulomb energy were disregardé&hort-  thing like 10%. The total gain in shell-effect energy, esti-
dashed curve mated on the basis of Fig. 2 j&], is of the order of 12 MeV,

similar to the value reported irb], Fig. 5. If the above esti-

mates are taken at face value, the conclusion is suggested

that the macroscopic cost in energy might not prevent the
The stiffnesses of the macroscopic energy against deviatucleus from exploiting the extra binding associated \iith

tions of A, ,\, from 1 are given by the second derivatives of =126, N=184 in agreement witfb]. It might even turn out

Eqg. (8). If A, is held fixed, we find that the neighborhoods of both tde=114, N=184 and the

VI. ENERGY COST OF DIFFUSENESS CHANGES
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FIG. 2. The surface energy coefficieay for semi-infinite, stan-
dard nuclear matter in its dependence on the relative diffuseness FIG. 3. The stiffness and anharmonicity, deduced from Thomas-
The dots refer to the Thomas-Fermi calculations and the curve t0 gaormi calculations on uncharged, finite nuclei wit=Z are dis-
cubic fit, displayed in the figure, with a “stiffness” of 4.534 MeV

e played as functions oA~Y3. In this case the neutron and proton
and an “anharmonicity” of—2.810 MeV.

diffusenesses were made to vary in phase. Fits to the calculated

) o points(stressing the regime of larg® are displayed in terms af,
Z=126, N=184 doubly magic numbers would exhibit extra gefined asp—13.

stability sufficient to ensure reasonable lifetimes against
spontaneous decaySuch an alternative should not yet be

v ) distribution for the nucleus in question, an equilibrium den-
dismissed, even though the 114 proton shell is not favored .b¥ity distribution of a heavier(or lightep “substitute”

the Hartree-Fock calculations with SkP and SLy7 forces in, ~jaus was calculated and then scalalbng the ordinate

[51) A st_raightforwarql general_ization of the _current onq the abscisgan order to have the same central density
macroscopic-microscopic calculations, made possible by ﬂlfnd the same number of particles as the original one. If the

availability of the Thomas-Fermi stiffnesses as caIcuIate_ ubstitute nucleus was heavier/lighter, the scaled density

above, should be able to throw further light on these faSCIK/vould be less/more diffuse. The scaled density was then in-

nating possibilities. serted in the Thomas-Fermi computer program to calculate
In the present paper we have focused on the relevance e energy increasaE of the nucleus in question, E¢f).

the diffuseness degrees of free‘?‘O”f' to the question of SUPS,0 associated relative diffusenessy,, was calculated us-
heavy elements. But other applications, such as shell effec e

ST I . ‘ﬁg Eq. (B1) in Appendix B. By varying the mass of the
near the drip Ilneds_lor surfacte CO.nt(;IbutIOI’]S to giant r‘nonc’poleSubstitute nucleus in the appropriate range, a series of values
resonances, readily come to mind. for AE was obtained and, after division by 1848, a fit of
a cubic inw/w,q gave the stiffness and anharmonicity dis-
ACKNOWLEDGMENTS played in Fig. 3. Figure 4 shows the corresponding quantities
This work was supported by the Director, Office of En- in the case when only one of the diffusenesses was changed,

ergy Research, Division of Nuclear Physics of the Office oftN€ other remaining fixed. As is readily verified from E8),
High Energy and Nuclear Physics of the U.S. Department of€ tWO Sets of calculations determigg — ¢, and ¢, re-

Energy under Contract No. DE-AC03-76SF00098. spectively; the values ab, and ¢, follow [Eqs.(4). (5)]
APPENDIX A: DETERMINATION OF THE STIFFNESSES APPENDIX B: THE RMS WIDTH w
Figure 2 shows how the surface energy coefficenfor A measure of the surface diffusenesssSuan’s widtho,

semi-infinite standard nuclear matter changes when the diis defined in terms of the width of the bump functigfr)
fuseness of both neutrons and protons is forced to imes  resulting from differentiating the density profile function
their equilibrium value. The points represent a series of 2X(r), wheref(r) is assumed to be effectively constant ex-
Thomas-Fermi calculations and the curve is the virtually percept for a thin surface region arounek R [11]. It turns out
fect fit by a cubic in § —1). The “stiffness” 4.534 MeV is  that a slightly different definition of the diffuseness, the
shown aghalf) a square aA~Y3=0 and the “anharmonic- “RMS width w,” has certain advantages overssmann’s.

ity” —2.810 MeV is indicated by &semijcircle in Fig. 3. We define this width in terms of the increase in the root
The other points in Fig. 3 refer to calculations with finite, mean squaréms) radius of a spherical distribution when the
unchargedN=Z nuclei. They were obtained by forcing the density profile of the distribution is changed from a sharp
diffuseness to be different from its equilibrium valwg, by  cutoff atR to the diffuse profile in question. Specifically we
the following prescription. Instead of the equilibrium density shall take
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AL AR where y3,v4,vs are numbers characterizing the skewness,
kurtosis, etc. of the density profile in question, as given on p.
22 of [11]. Substituting in Eq(B2) we find

201 6.8835+10.9820+117.3302

W2=b?[1+ 2 y3(b/R)+ (y,—4)(b/R)?

Stiffness (MeV)

+(575—573) (b/R)%+ - - -] (B5)
s 0/....—-/"* 0 as the relation between the RMS widthand Sssmann’s
i, ‘. width b. Taking as an example the Fermi-function profile, we
g 31471412700 . havey;=v5=0, y,=21/5(p. 31,[11]), which leads to
;«Ea -10 1-10
<

1
w=b|1+ 1—O(b/R)2+terms in(b/R)* and highe}
' (B6)

1 1 1 i 1 l 1
000 005 040 045 020 025 0.30 0.35
A-1/3

The Coulomb energy of a Fermi-function density distribution
is given on p. 32 of11] as
FIG. 4. This is like Fig. 3, but here only one of the two diffuse-

nesses was varied. Ec=EMR1-5B%+3.0218°+8*+---). (BY)
Using Eg. (B5) this becomes the following expansion in
WZE %[<r2>diﬁuse_ <r2>shardi (Bl) powers ofw=w/R:
where the factor 1/3 was chosen to makéend tob in the Ec=EJM1-30?+3.02160°+ 3w*+---). (BY)

limit of large R. Note that the original sharp distribution does

not have to be uniform. It could, in fact, be almost any func-The two formulas differ only in the coefficient of the small
tion of r up tor=R. Then, as the profile gets diffused ac- fourth-order correction. Equatio(B6) shows similarly that
cording to some given profile prescriptioty,?) increases w andb differ by only 0.66% forA=40 and by 0.20% for
andw provides a measure of the profile’s diffuseness. ThusA=240 in the case of a Fermi-function profile. In the case of
unlike Sissmann’s widttb, the RMS widthw can be defined “skew” surface profiles, whery is not zero, the differences
without difficulty also in the case when there is a centralwould be greater.

depression in the nuclear densityaused by the Coulomb There are three reasons for preferringto b: (1) The

repulsion. above-mentioned applicability @ to nonuniform radial dis-
In the case of an originally uniform sharp distribution tributions.(2) The fact thatw is defined in terms of amte-
with radiusR we have gral property of the given distributiori(r). Stssmann’sbh
requires differentiating (r), which can lead to serious loss
w?=1(2Q?-2R?)=%(Q?—R?), (B2)  of accuracy wherf(r) is available only as a numerically

evaluated quantity, as is the case in Thomas-Fe(oni
WhereQ is the “equivalent RMS radius” of the diffuse dis- Hartree_Fockcomputer Ca|cu|ati0n9{3) The quantityw is a
tribution. According to Eq(2.49 in [11], p. 23,Q is related  three-dimensional property of the density distribution,
to b by whereasf (r) andg(r) that are used in defining are one-
dimensional objects. Why use a one-dimensional property

2 .. LT . .
when the problem is intrinsically three dimensional?

5b
Q=R| 1+ = — +higher powers of b/R|. (B3)

2 R2 Note also that for a diffuse distribution obtained from a
sharp distribution by convoluting it with a folding function,
Thus it is identically true thai(see Ref[11], p. 23:
2_p2 2
Q =RE+5b%+ - . <r2>diffuse:<r2>sharp+<r2>f ’ (Bg)

It follows thatw tends tob for large R.
Equation(2.45 in the above reference, taken to higher
orders inB=b/R, reads

where(r?); is the mean-square radius of the folding func-
tion. It follows from Eq.(B1) that in the case of a diffuseness
induced by convolution, the surface widthis simply the
—RI1+582+2 345(, _2lygdy 1o _ 275 5 rms radius of the folding function divided by the square root
Q=RILH A+ Ty 3 (vam DB+ 2(75= 57 73) B of 3. This relation is exact for any value Bf large or small,
+--, (B4) and for any radial functiori(r) of the sharp distribution.
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