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Double-L hypernuclei in the Skyrme-Hartree-Fock approach and nuclear core polarization

D. E. Lanskoy
Institute of Nuclear Physics, Moscow State University, 119899 Moscow, Russia

~Received 26 May 1998!

Extension of the Skyrme-Hartree-Fock approach to double-L hypernuclei is presented. Several Skyrme-like
LL potentials are fitted to the binding energy ofLL

13 B. So-calledLL bond energyDBLL appears generally
from a complicated interplay between theLL potential, the nuclear core polarization, andL spatial distribu-
tions. The core polarization gives a positive contribution to the bond energy even in the absence ofLL
interaction. This contribution can be substantial even in heavy double-L hypernuclei. The greatest uncertain-
ties in extraction of theLL potential from empirical data arise if hyperons contract the core, aLL potential
is of a short range, and the nuclear incompressibility is small.@S0556-2813~98!02912-4#

PACS number~s!: 21.80.1a, 21.60.Jz, 21.30.Fe
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I. INTRODUCTION

After first observations ofLL hypernuclei in the 1960s
@1#, great attention has been attracted to this subject u
now. The most striking feature of these systems is the uni
possibility to study hyperon-hyperon interaction.

Only 3 species (LL
6 He, LL

10 Be, andLL
13 B) have been iden-

tified @1,2#. Nevertheless, numerous theoretical studies h
been made. The majority of them were addressed to the
cies measured experimentally. Three-bodya1L1L varia-
tional schemes were applied most usually toLL

6 He ~e.g.,
@3–5#! since the polarization~i.e., distortion by the hyperons!
of the nuclear core4He is probably small@6#. Otherwise, the
polarization of the loose core inLL

10 Be is evidently signifi-
cant @7#, and this hypernucleus can be treated in four-bo
a1a1L1L models, while thea particles preserve thei
entities@7,5,8#. In some sense, these species exemplify t
extreme cases: small (LL

6 He) and large (LL
10 Be) core polar-

izations. The third species (LL
13 B!, discovered much more re

cently @2#, was treated in a three-body11B1L1L model
@9#.

It was understood that extraction of theLL potential
from the experimental binding energies is generally a rat
complicated problem. Particularly,LL dynamics in a
double-L hypernucleus is dictated strongly byL-core poten-
tial properties@10#. EvenL-core potentials fitted equally to
the binding energy of aL

A11Z hypernucleus can lead t
clearly different results for theLL

A12Z hypernucleus. It is
driven mainly by radii ofL orbits, and, therefore, by shape
of L-core potentials. For instance, aL-core potential with a
central repulsion generates spatially expandedL distribu-
tions and leads to a lessLL attraction energy than that for
purely attractiveL-core potential@10,11#. This ambiguity is
retained also for heavy double-L hypernuclei@12#.

In this paper, we present an extension of the well-kno
Skyrme-Hartree-Fock approach to double-L hypernuclei.
Being a common tool in nuclear physics, this approach
widely used also for single-L hypernuclei. It is rather simple
but feasible enough to incorporate a complicated structur
NN, LN, and LL effective interactions in hypernucle
Whereas few-body models are obviously more appropr
for the lightest systems, the Skyrme-Hartree-Fock appro
PRC 580556-2813/98/58~6!/3351~8!/$15.00
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is suitable for studying of average properties of arbitrary~not
too light! hypernuclei.

In the earlier stage, Hartree-Fock techniques were u
only once for LL

6 He @13#. Recently, Hartree-Fock calcula
tions for LL

13 B with finite-range density-dependentLL po-
tentials were made@14#. The present approach has been a
plied to the study of binding energies of heavyLL
hypernuclei@12#.

Various phenomenological as well as meson-excha
motivated forms were employed for theLL interaction in
earlier studies. Based on the data available, some sele
between Nijmegen potential models was made@15,16#. It
was shown also that coupling of theLL andJN channels is
significant. Therefore,LL interaction in hypernuclei can dif
fer from the free interaction and be generally densi
dependent@15,16,14#. Moreover, hypernuclearLL interac-
tion may be different in principle in different hypernucle
~e.g., an anomalously weakLL2JN coupling occurs in

LL
6 He, so theLL interaction is damped! @17#. Otherwise, an
especially strongLL2JN coupling is anticipated inLL

5 H
@18#.

However, we adopt here a purely phenomenological st
egy. Since data on double-L hypernuclei are still scarce, it is
questionable now to considerLL potential in detail. Instead
we examine several simplified Skyrme-likeLL potentials,
which are derived without any microscopic base, and co
bine them with various empiricalLN and NN potentials.
Our aim is not to deduce the trueLL potential, but rather to
study the interplay between average potential properties
hypernuclear properties. We try also to understand uncert
ties in theLL potential extraction from data, which aris
from LN andNN potential ambiguities. Particularly, we em
phasize possible implications of the nuclear core polariza
by the hyperons.

In Sec. II, we present the extension of the Skyrm
Hartree-Fock formalism to double-L ~and also to multi-L)
hypernuclei. A simplified treatment of implications of co
polarization to binding energies of double-L hypernuclei is
the subject of Sec. III. Parameters for theLL potential are
derived in Sec. IV. In Sec. V, some illustrative calculatio
for LL

13 B as well as for heavier hypernuclei are discussed
3351 ©1998 The American Physical Society
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brief conclusion is presented in Sec. VI. Preliminary, par
results of the presented study were reported in@19#.

II. FORMALISM

We employ theLL potential in the usual Skyrme-typ
form:

VLL5l0d~r12r2!1 1
2 l1@k82d~r12r2!1d~r12r2!k2#

1l2k8d~r12r2!k1l3d~r12r2!rN
a S r11r2

2 D , ~1!

whererN is the nucleon density; other notations are stand
@20,21#.

The formal extension of the Skyrme-Hartree-Fock a
proach@20,21# to multi-L systems is more or less straigh
forward. We present it in reference to the related formali
for single-L hypernuclei of Rayet@21#, describing only ad-
ditional terms, which appear due toLL interaction.

The Hamiltonian density for a triple-evennL
A1nZ system is

H5HSL1HLL , ~2!

whereHSL is formally the same as the Hamiltonian dens
of the L

A11Z hypernucleus@21#, and

HLL5
1

4
l0rL

2 1
1

8
~l113l2!rLtL

1
3

32
~l22l1!rL¹2rL1

1

4
l3rL

2 rN
a . ~3!

HererL is the hyperon density andtL is the corresponding
kinetic energy density. Following Ref.@20# and the latter
common practice, we omit a term incorporating theL spin
density in Eq.~3!.

The Hartree-Fock equations for baryon single-particle
dial wave functionsRg(r ) in a spherical system are

\2

2mB*
F2Rg91

l ~ l 11!

r 2
RgG2S \2

2mB*
D 8

Rg81UBRg5egRg ,

~4!

where primes mean differentiation with respect to the rad
coordinate. State labelg denotes thenl j numbers and also
the type of baryonB. Single-particle potentialsUB and L
effective massmL* acquire additional terms as follows:

UL5~UL!SL1
1

2
l0rL1

1

8
~l113l2!S rL8

r
1tLD

1
3

16
~l22l1!S rL9 1

2rL8

r D 1
1

2
l3rLrN

a , ~5!

Up,n5~Up,n!SL1
a

4
l3rL

2 rN
a21 , ~6!

\2

2mL*
5S \2

2mL*
D

SL

1
1

8
~l113l2!rL , ~7!
l

d

-

-

l

where the subscriptSL again refers to the same expressio
as for a single-L hypernucleus. The nucleon effective mass
remain formally unchanged.

Equations~4!–~7! are valid, strictly speaking, for triply
closed shell hypernuclei. However, such an approach is c
monly applied also for unclosed shells by means of the
called spherical~or filling! approximation. In this approxi-
mation, an unclosed shell (nl j ) with N baryons is replaced
by a closed shell with the states (nl jm) occupied with occu-
pation numberN/(2 j 11) for eachm. In the calculations, we
restrict ourselves to the ground states of double-L hypernu-
clei, so theL shell is actually closed. However, the spheric
approximation will be used for nucleonic shells.

For the ground states of double-L hypernuclei, the con-
tribution of the p-wave interaction amplitudel2 vanishes
exactly. However, the related terms are retained above
generality.

One can also introduce a three-bodyLLN force:

VLLN5l3d~r12rN!d~r22rN! ~8!

instead of the last~density-dependent! term in Eq.~1!. The
force ~8! is equivalent to the density-dependent force fro
Eq. ~1! at a51, i.e., it gives the same energy density a
Hartree-Fock equations.

Density-dependent terms ata<1 are usual in nuclea
Skyrme-Hartree-Fock calculations. The possible phys
meaning of the density dependence in theLL case may
originate from theLL2JN coupling @15,16#. However, it
should be noted that some pathological features may aris
general ata,1, in contrast to similarNN andLN density-
dependent interactions. It is seen from Eq.~6! that the addi-
tional term in the single-nucleon potential, proportional
rN

a21 , may diverge outside a nucleus ata,1 if rL
2 falls too

slowly, so a confining nucleon potential may appear. Ho
ever, physically it is clear that at low nucleon densities,
LL potential must be linear in the density. Forms witha
,1 may be applied to the ground states as well as to ma
ity of the excited states sincerL

2 falls more rapidly than
rN

a21 grows. The pathology can be actual for states with b
L ’s on near-threshold levels. This case requires a spe
treatment of the density-dependentLL force.

The c.m. energy is eliminated in the standard approxim
way @20,21#. The diagonal part of the c.m. kinetic energy

Tcm5 (
i 51

A1n pi
2

2~AmN1nmL!
~9!

is subtracted from the total energy, whereas the nondiag
part, including scalar products of single-particle mome
pi , is neglected. Notice that the additional nondiagonal c
tributions of L ’s vanish exactly in the ground states
double-L hypernuclei.

The main quantity inLL hypernuclei is theLL bond
energy

DBLL5BLL22BL , ~10!

whereBLL is the separation energy of the hyperon pair fro
a LL

A12Z hypernucleus andBL is the hyperon separation en
ergy from theL

A11Z one. Since the bond energy is express
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in terms of total binding energiesB as DBLL5B(LL
A12Z)

1B(AZ)22B(L
A11Z), possible uncertainties in the c.m

treatment are mainly canceled in the bond energy. A spe
attention to the c.m. correction is needed, however, when
core polarization energies are considered~Sec. III!.

III. CORE POLARIZATION AND THE LL BOND ENERGY

Let us first consider the interplay between theLL bond
energy and the nuclear core polarization in the framework
an oversimplified model similar to those considered by ma
authors~e.g.,@22–25# for single-L hypernuclei and@26# for
double-L ones!.

We start from a single-L L
A11Z hypernucleus with the

total energyE15EN1EL , whereEN is determined by the
Hamiltonian of the nucleonic fraction only, andEL includes
L kinetic energy andL-nucleon interaction. We suppos
that both EN and EL depend on the single parameterR,
which can be attributed to the core radius. Then the condi
dEN /dR(R0)50 gives the radiusR0 of the AZ nucleus.
Treating the core distortion byL perturbatively, we have

dE1

dR
~R1!.

d2EN

dR2
~R0!•~R12R0!1

dEL

dR
~R0!50. ~11!

Equation~11! gives the core radiusR1 and then a measure o
the core distorsiondR1:

dR1[
R12R0

R0
52

KL

kA
, ~12!

KL5R0

dEL

dR
~R0!, ~13!

kA5R0
2 d2EN

dR2
~R0!. ~14!

The hypernuclear energy now is

E1~R1!5EN~R0!1
1

2
kAdR1

21EL~R0!1KLdR1

5EN~R0!1
1

2

KL
2

kA
1EL~R0!2

KL
2

kA

5E1~R0!2
1

2

KL
2

kA
. ~15!

Evidently, the core polarization energyE1* 5KL
2 /2kA ,while

BL5BL
0 1E1* , whereBL

0 52EL(R0) is the L binding en-
ergy with respect to the rigid core.

Moving to the energyE2 of the LL
A12Z hypernucleus in the

ground state, one hasE2(R)5EN(R)12EL(R)1ELL(R),
where the last term represents the contribution ofLL inter-
action. Assuming the dependence ofELL on R as too weak
to changeR significantly and deriving the core radiusR2, we
obtain
ial
e

f
y

n

dR2[
R22R0

R0
52

2KL

kA
52dR1 , ~16!

E2~R2!5EN~R0!12EL~R0!2
2KL

2

kA
1ELL~R2!, ~17!

E2* 54E1* , ~18!

whereR2 is the core radius andE2* is the core polarization
energy in the double-L hypernucleus.

From Eq.~17!,

BLL522EL~R0!2ELL~R2!1
2KL

2

kA
, ~19!

and

DBLL52ELL~R2!1
KL

2

kA

52ELL~R2!1
E2*

2

52ELL~R2!12E1* . ~20!

HereELL(R2)5ELL(R0)1dELL includes the rigid-core
contributionELL(R0) and a correctiondELL vanishing ei-
ther in a rigid-core approximation or whenLL interaction is
zero. A similar decomposition of the bond energy has be
suggested by Bodmer and Ali@7#. We relate here the polar
ization energies in the single-L and double-L hypernuclei
and emphasize that the second terms in Eqs.~20! give a
positive contribution toDBLL independently of theLL in-
teraction. Even in the absence ofLL interaction, DBLL

.0. However, this contribution may be small, if the pola
ization is weak.

Note that Eq. ~18! contradicts to a naive guessE2*
52E1* suggested in Ref.@27#. This suggestion implies in a
nearly zero core polarization contribution toDBLL , contrary
to Eq. ~20!.

Considering the bond energy in the rigid-core approxim
tion, it is possible to introduce two quantities alternative
First, it is

DBLL
0 5BLL

0 22BL , ~21!

whereBLL
0 522EL(R0)2ELL(R0). Secondly,

DBLL
00 5BLL

0 22BL
0 . ~22!

The latter quantity corresponds to the bond energy calcula
consistently in the rigid-core model. The former one sim
lates the value extracted fromBLL with the use of actual
~e.g., empirical! BL . Obviously, DBLL

0 5DBLL1dELL

24E1* and BLL
00 5DBLL1dELL22E1* . Assuming dELL

5ELL(R2)2ELL(R0) to be small since implicitELL de-
pendence on the core radius is weak, we have

DBLL
0 5DBLL2E2* , ~23!

DBLL
00 5DBLL2

E2*

2
. ~24!
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Evidently,kA is the usual finite nucleus incompressibili
times A, while KL measures theL ability to polarize the
core. Relations between this ability and features of theLN
interaction have been studied by many authors~see refer-
ences collected in@24#!. Some estimations forKL in a
nuclear matter model were performed in@24#. It is worth-
while that the core polarization is not necessarily contracti
Whereas a simple local purely attractive two-bodyLN force
leads to the core contraction, density-dependent forces
nonlocality act competitively and can result in core dila
tion. In this case,KL,0. On the other hand, the polarizatio
contribution toDBLL is always positive.

Recently, Bodmeret al. @25# suggested that short-rang
LN correlations can influence significantly the polarizati
picture. ConsideringL

5 He with a local density-independen
LN interaction with a short-range repulsion, they argued t
the core polarization without the correlations is contracti
and the correlations have a dilutive effect. As we addres
heavier systems and use more comprehensive phenom
logical LN interactions, incorporating effectively som
short-range repulsion due to density-dependent forces,
believe that neglect of dynamical two-body correlations
not crucial. However, this point deserves further study.

Defining the core polarization energy from Hartree-Fo
calculations, one should take into account an ambiguity a
ing from the c.m. treatment@28#. Namely, the main differ-
ences between calculated core energies inAZ, L

A11Z, and

LL
A12Z come from differences in masses of these species,
not from dynamical rearrangement of the core. The ene
differences~about 1 MeV for single-L hypernuclei and 2
MeV for double-L hypernuclei with respect to correspon
ing nuclei inp-shell systems! survive even if action ofL on
the core is directly switched off. In this view, Rayet@28#
evaluated a related correction and subtracted it from the
polarization energy. We employ another way. To elimin
the c.m. contribution, we define the dynamical core polari
tion energy asE1* 5EN(L

A11Z)2EN8 (L
A11Z), whereEN is the

total core energy from the full calculation, andEN8 is the core
energy obtained with switched-offL action on the core. Fo
double-L systems, the definition E2* 5EN(LL

A12Z)
2EN8 (LL

A12Z) is the same. It is seen below that just this d
namical core polarization energy is relevant for the bo
energy and consistent with the simplified treatment abov

IV. FIT OF PARAMETERS

Available data onLL hypernuclei are too scarce to give
sufficient footing for theLL potential determination. Here
we try to use the above approach with a simplified version
the potential~1!, examining several sets of parameters.

We drop the density-dependent term in Eq.~1! and con-
strain the other parameters by the bond energyDBLL54.8
60.7 MeV @2,9,29# of the LL

13 B ground state only, since th
Skyrme-Hartree-Fock approach is clearly unsuitable

LL
6 He and LL

10 Be. We recall thatp-wave interaction ampli-
tude l2 is irrelevant for the ground states. So we consid
several pairs of thel0 andl1 values.

It is known that the Skyrme potential simulates effects
finite-range interaction via the momentum-dependent ter
Namely, while thel0 value represents the volume integra
.
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the l1 /l0 ratio is quadratic in the potential range. Altern
tively, a positivel1 value may be treated as a repulsion
high relative momenta~short distances!.

For the main fit, we employ parameter set SkM* @30# for
theNN potential and the 5th set from@31#, denoted hereafte
as YBZ5, for theLN potential. The former is used exten
sively in nuclear Hartree-Fock calculations. The latter w
fitted @31# to the spectra of single-L hypernuclei measured a
BNL @32#, and it is also consistent@14# with the more recent
KEK data @33#.

To have some initial idea for the parameters, we take
L1 from @34#, which is a simple Skyrme-like approximatio
to a single-GaussianLL potential with the two-pion-
exchange range. This approximation is not very accur
and setL1 underestimates theLL

13 B bond energy. Then we
vary thel1 value, responsible to the potential range, to o
tain DBLL54.8 MeV ~fit of the potential range! and derive
set SLL1. Alternatively, we vary simultaneously thel0 and
l1 values, keeping constant thel1 /l0 ratio ~fit of the poten-
tial depth at the fixed range! and find set SLL2. The second
fit is repeated also with setL3 @34# of a greater range, and
set SLL3 is obtained. Sets SLL1, SLL2, and SLL3 are
presented in Table I. Rangesm of the ‘‘equivalent’’ single-
Gaussian potentials, which reflect qualitatively the cor
sponding property of the Skyrme potentials, are also sho

It should be noted that set YBZ5 underestimates theL
binding energy inL

12B (BL510.5 MeV versus the experi
mental valueB L

exp511.3760.06 MeV!. The majority of the
LN potentials are fitted toL

12C (B L
exp510.7660.19 MeV!

and/or L
13C (B L

exp511.6960.12 MeV! binding energies.
Since Hartree-Fock calculations with charge-symmetri
LN potentials give forBL’s in L

12C andL
12B just close values,

this drawback is inherent for such potentials. However,
bond energy is rather stable to such uncertainty, since
LN interaction gives nearly equal contributions toBLL and
2BL , and they mostly cancel. We checked this poi
strengthening artificially theLN potential to provide trueBL

in L
12B. The bond energy increases by only several h

dredths of MeV for set SLL3 and by 0.25 MeV for set
SLL1, which is evidently within the error bar. The stronge
sensitivity in the last case results from the smallest range
the SLL1 potential. As a consequence, the energy of
LL interaction grows significantly when hyperons becom
more bound and, therefore, more closely-spaced.

It is worthwhile also that, strictly speaking, the definitio
~10! of the bond energy inLL

13 B with a nonzero-spin core
incorporates notBL in L

12B in the ground state, but rather
less value averaged over the spin-doublet states. The s
doublet splitting in L

12B is possibly small@16,35#, but the
related uncertainty cannot be excluded now.

TABLE I. Parameters ofLL potential ~1!: l0 and l1, and
rangesm of the ‘‘equivalent’’ single-Gaussian potentials.

Set l0 l1 m
~MeV fm3) ~MeV fm5) ~fm!

SLL1 2312.6 57.5 0.61
SLL2 2437.7 240.7 1.05
SLL3 2831.8 922.9 1.49
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Though our approach is not suitable for the lightest h
pernuclei, we calculated theLL bond energies inLL

10 Be and

LL
6 He and obtained for sets SLL1, SLL2, and SLL3, re-
spectively, 5.4, 5.1, and 4.8 MeV (LL

10 Be, DB LL
exp54.360.4

MeV! and 6.1, 5.3, and 4.3 MeV (LL
6 He, DB LL

exp54.760.5
MeV!. This comparison is not instructive quantitatively, b
cause the approach is adequate neither for4He and8Be nor
for L

5 He and L
9 Be. Nevertheless, it shows that the potenti

obtained are of reasonable magnitudes.

V. RESULTS AND DISCUSSION

We perform calculations of theLL
13 B binding energy with

the LL potential parameter sets from Table I and vario
LN sets. In addition to set YBZ5, we use also the sixth
from @31# ~hereafter YBZ6! and set I from@14#. All these

TABLE II. Calculated properties of theL
12B ground state:L

binding energyBL , core polarization energyE1* , rms radius of the
L orbit r L , anddR1 @defined in Eq.~12!#.

Potentials BL r L E 1* dR1

NN LN ~MeV! ~fm! ~MeV! ~%!

YBZ5 10.5 2.06 0.1 20.6
SkM* SKSH1 12.1 1.75 1.3 23.5

I 10.8 2.11 0.2 20.8
YBZ6 10.0 2.24 0.0 20.1

YBZ5 10.6 2.06 0.0 20.5
Sk3 SKSH1 11.5 1.83 0.7 22.1

I 10.9 2.11 0.1 20.6
YBZ6 10.2 2.23 0.0 20.1
-

s

s
t

sets incorporate three-bodyLNN or density dependentLN
forces of moderate strengths and, therefore, polarize c
slightly. They fit spectra of single-L hypernuclei well. Put-
ting emphasis to implications of the nuclear core polari
tion, we examine also set SKSH1 from@36#. It is almost
local and does not incorporate three-body or dens
dependent forces at all, so it provides an extreme case
strong core contraction. It should be noted that set SKSH
inadequate for heavy hypernuclei and also overestim
somewhat the level spacing in light ones. Overall fit of t
spectra is poorer than those with the other interactions
ployed @14#. So set SKSH1 is considered rather as an
treme example. To study a role of nuclear incompressibil
we use set Sk3@37# with a high nuclear matter incompres
ibility ~355 MeV! besides set SkM* with a low one ~217
MeV! for the NN potential.

The L binding energies and other quantities forL
12B

ground state are listed in Table II for variousLN and NN
interactions. It is seen that set SKSH1 induces an extrem
strong contraction and also represents an extreme case o
smallest rms radii of hyperonic orbitsr L . Such a connection
between the polarizing properties and theL rms radii is in-
herent for this type of the potentials. A repulsiveLNN force
pushes hyperon~s! as well as nucleons out of the dense ce
tral region. Otherwise, a purely attractiveLN interaction,
contracting the core, puts hyperon~s! closer to the center
Differences inr L between the slightly polarizing sets orig
nate from their different nonlocalities. Potential YBZ5 is lo
cal and gives, therefore, relatively small radii. Otherwise,
YBZ6 provides the greatest radii due to its greatest nonlo
ity. Realistic r L’s lie probably within the range confined t
the YBZ5 and YBZ6 cases@14#.

In Table III, results forLL
13 B with various combinations of
TABLE III. Calculated properties of theLL
13 B ground state for various potentials. QuantitiesDBLL ,

DB LL
0 , DB LL

00 , anddR2 are defined in Eqs.~10!, ~21!, ~22!, and~16!, respectively.̂ VLL& and^VLL&0 are
the expectation values of theLL interaction energy from the full and rigid-core calculations,r L is the rms
radius of theL orbit, andE 2* is the core polarization energy. For the meaning ofb, see the text.

Potentials b DBLL u^VLL&u r L DB LL
0 DB LL

00 u^VLL&0u E 2* dR2

LL NN LN ~MeV! ~MeV! ~fm! ~MeV! ~MeV! ~MeV! ~MeV! ~%!

YBZ5 1 4.8 5.5 1.83 4.6 4.7 5.5 0.2 21.3
SKSH1 0.24 4.8 2.2 1.54 21.3 1.2 1.4 7.4 27.4

SLL1 SkM* I 1.08 4.8 5.5 1.88 4.4 4.6 5.3 0.4 21.9
YBZ6 1.34 4.8 5.4 2.02 4.7 4.7 5.3 0.1 20.2

YBZ5 1.00 4.8 5.6 1.83 4.6 4.7 5.5 0.2 21.1
SKSH1 0.49 4.8 3.8 1.63 1.2 2.6 2.9 3.9 24.4

SLL1 Sk3 I 1.08 4.8 5.4 1.89 4.5 4.6 5.3 0.3 21.3
YBZ6 1.32 4.8 5.3 2.02 4.7 4.7 5.3 0.1 20.2

YBZ5 1 4.8 5.0 1.90 4.6 4.7 5.0 0.2 21.3
SKSH1 0.33 4.8 2.1 1.59 20.8 1.6 1.8 6.5 27.2

SLL2 SkM* I 1.04 4.8 5.0 1.94 4.4 4.6 4.9 0.3 21.8
YBZ6 1.22 4.8 5.0 2.07 4.7 4.7 5.0 0.1 20.3

YBZ5 1 4.8 4.7 2.02 4.6 4.7 4.7 0.2 21.2
SKSH1 0.83 4.8 3.2 1.79 0.9 3.3 3.7 4.0 26.2

SLL3 SkM* I 0.99 4.8 4.7 2.05 4.5 4.6 4.7 0.3 21.7
YBZ6 1.02 4.8 4.7 2.15 4.7 4.7 4.7 0.1 20.3
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the NN, LN, andLL potentials are shown. For each com
bination, we readjust theLL potential to reproduceDBLL

54.8 MeV by multiplying bothl0 andl1 by the same factor
b ~i.e., fixing the potential range!. Deviations ofb from
unity provide a measure of ambiguity of theLL potential
extracted from data with the use of differentNN and LN
potentials.

Deviations ofb ’s from unity are induced by two main
effects: the core polarization and differences inr L’s gener-
ated by variousLN potentials. The polarization, contributin
positively toDBLL , tends to reduce aLL potential fitted to
a fixed bond energy. On the other hand, the greater isr L the
farther are the hyperons from each other, and, therefore
tual attraction between hyperons at the sameLL potential
decreases. Thus,LN potentials giving greaterr L’s require
generally strongerLL potentials. The last effect is most im
portant for such short-rangeLL potentials as SLL1, for
which spacing ofL ’s apart reduces their attraction cruciall
Short-rangeLL potentials, pulling the hyperons close t
gether, also perturb significantly theL orbit with respect to
the single-L hypernucleus, so thatL-core attraction de-
creases.

For a strong core polarization and smallr L’s ~set
SKSH1!, we have very smallb ’s with sets SLL1 and
SLL2 for the above-mentioned reasons. For sets SkM* and
SLL1, only a fourth of the potential, fitted with set YBZ5,
sufficient for the same bond energy. Obviously, a grea
incompressibility~set Sk3! implies in a less polarization and
thus, a less deviation ofb. On the other hand,b is much
closer to unity with set SLL3 of a long range. We recall tha
calculations with set SKSH1 provide upper limits for th
corresponding effects rather than their quantitative esti
tions.

The core polarization for sets I and YBZ6 is small as w
as for incident set YBZ5. Due to greaterr L’s, strongerLL
potentials (b.1) are needed, if their ranges are short, ind
pendently from the incompressibility. For set I,b is rather
close to unity, but the effect of the greater radii becom
meaningful for the YBZ6 set.

Some illustrative calculations@19# with a core-diluting
potential, incorporating a hugeLNN force and providing
extremely highr L’s, gaveb ’s typically not higher than those
for set YBZ6. The reason is that the core polarization te
to diminish b and, therefore, acts competitively with th
large radii.

It is seen also that the bond energiesDBLL differ from
the expectation valuesu^VLL&u of LL potential energy. It
means that routine assignment ofDBLL directly to 1S0 LL
matrix element can lead to errors in evaluation ofLL inter-
action.

According to Sec. III, calculations with the frozen co
(DB LL

0 , DB LL
00 , and ^VLL&0 in Table III! always underes-

timate the bond energy, though this underestimation is
nificant only for strongly polarizingLN potentials. It is
worthwhile thatDB LL

00 and u^VLL&0u are usually closer to
each other than the corresponding quantities from the
calculation. Relations~16! and ~18! between single-L and
double-L hypernuclear core polarizations and Eqs.~23! and
~24! betweenDBLL from calculations with and without cor
polarization, obtained in Sec. III in a simple picture, rema
c-

r

a-

l

-

s

s

g-

ll

valid qualitatively. Note that strong contraction~set SKSH1!
can lead even to a negativeDB LL

0 . It is due to inconsistency
of BLL calculated in the rigid core model withBL from the
full calculation.

Summing up, uncertainties in theLN potential can lead to
significant ambiguities in theLL potential extraction for
short and medium ranges of theLL potentials. At the same
time, these ambiguities are not high for the long-range
tentials.

The A dependence of the bond energies was studied
various models in Ref.@12#. Here we discuss only implica
tions of the core polarization.

It seems natural that core polarization effects become
significant in heavier double-L systems. However, our cal
culations show that it is not necessarily the case. In Table
the bond energies for severalLL hypernuclei from the full
Hartree-Fock calculation as well as from the rigid core a
proximation are shown for the strongly polarizing SKSH
LN potential. As theLL potential, set SLL2 ~renormalized
as described above! is used. It is seen thatDBLL is more
than twiceDB LL

00 up to LL
210Pb. Of course, core polarizatio

energyE 2* is very small with respect to the total bindin
energy, but not with respect to the bond energy. The rela
~24! is fulfilled well again. At the same time, the bond ene
gies ~not presented here!, calculated with nonpolarizingLN
potentials, agree well with the rigid-core results at allA’s.

The spatial distribution of the hyperons is described ab
in terms of the rms radius of theL orbit r L . In few-body
calculations, Jacobi variablesr LL and r LLA are often em-
ployed. Herer LL is the rms distance between the hypero
andr LLA is the rms distance between theLL pair c.m. and
the core c.m. Obviously,r LL relates toLL interaction dy-
namics more directly thanr L .

In the Hartree-Fock approximation, these quantities
interrelated in a simple way. Namely, for the ground states
LL hypernuclei

r LL5A2 r L , r LLA5
A12j

A2A
r L , ~25!

wherej5ML /MN . It is seen that their ratios do not depen
on any dynamical factors.

We calculated the ratior LL /r LLA from Eq. ~25! for vari-
ous A and compared them with results of a three-bodyAZ
1L1L calculation by Yamamotoet al. @9# with a finite-
range LL potential with a repulsive core. The ratios a
shown in Table V.

TABLE IV. Bond energies:DBLL from the full calculation and
DB LL

00 from the rigid core calculation, and core polarization ener
E 2* . All quantities are in MeV. Parameter sets SkM*, SKSH1, a
SLL2 ~the last is renormalized according to Table III! are used for
the NN, LN, andLL potentials, respectively.

Hypernucleus DBLL DB LL
00 E 2*

LL
42 Ca 2.3 1.0 2.5

LL
92 Zr 1.2 0.5 1.2

LL
140La 0.9 0.4 0.8

LL
210Pb 0.5 0.2 0.3
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It is seen that the Hartree-Fock relations~25! are inad-
equate for the lightest hypernuclei, while the agreement
proves rapidly, whenA increases, and becomes excellent
the end of thep shell. It is some indication thatLL correla-
tions become of little importance atA*10, andLL dynam-
ics is described essentially by independentL orbitals. It is
seen also thatLL

13 B (A511) is just near the limit of applica
bility of the approach. So we may hope that the fit of theLL
interaction to the bond energy inLL

13 B is reasonable at leas
qualitatively.

The applicability of the Hartree-Fock description d
pends, however, on properties of potentials used. Rece
Marcoset al. @27# have analyzed the role of theLL corre-
lations in a relativistic mean-field inspired model. Th
showed the contribution of theLL correlations to the bond
energy to depend strongly on the height of the repulsive c
of theLL potential. This contribution appears to be subst
tial at strongLLv couplings~2/3 of theNNv coupling! in
terms of the relativistic mean-field theory. Obvious
Hartree-Fock approaches are inadequate for potentials w
very strong central repulsion. However, theLL potentials
used routinely in nonrelativistic calculations are usually le
repulsive than those insv models, so such repulsive core
~and their Skyrme-type simulations! are probably within the
limits of applicability.

VI. CONCLUSION

We present an extension of the well-known Skyrm
Hartree-Fock approach to double-L hypernuclei. This
method is quite simple and, on the other hand, flexi
enough to incorporate a rather complicated structure of
evant baryonic effective interactions. It enables one to

TABLE V. Ratios of the rms distancesr LL /r LLA from the
three-body calculation@9# and from Eq.~25!.

Hypernucleus Ref.@9# Eq. ~25!

LL
6 He 1.53 1.26

LL
8 Li 1.65 1.43

LL
10 Be 1.67 1.54

LL
12 B 1.70 1.62

LL
13 B 1.71 1.65

LL
14 C 1.71 1.69

LL
16 N 1.72 1.71
.
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great experience achieved in studies of nuclear and singlL
hypernuclear systems.

As empirical knowledge ofLL hypernuclei is quite
scarce, it is impossible to establish realisticLL potentials
now. Instead, we try to simulate extraction of this potent
from data considering possible uncertainties encountere
this problem.

The bond energy of theLL pair in a double-L hyper-
nucleus is determined by not only the strength ofLL poten-
tial. It is driven by a complicated interplay of several facto
among which are also the spatial distribution of hypero
and the core polarization. Formally, a very detailed know
edge of not onlyLL, but alsoLN and NN interactions, is
needed. However, various factors are of different sign
cance in different cases, so it is important to deduce w
conditions are really unfavorable for extracting ofLL po-
tential from data. It is shown that the most ‘‘dangerou
combination is aLN interaction, contracting the core an
generating small rms radii ofL orbits, together with a short
rangeLL potential and a low nuclear incompressibility.

Possibly, the simpleLL potentials used here are to
schematic. However, calculations@14#, made with more re-
alistic LL potentials along similar lines, do not contradi
our conclusions. Nevertheless, it is interesting to study
plications of realisticLL potential shapes in their interpla
with LN andNN potential properties more systematically

We use different effectiveLN potentials, providing dif-
ferentL orbit radii and core polarizations. There is no dire
knowledge of radii ofL orbits as well as core polarizatio
even in single-L hypernuclei up to now. Some attempts
deduce the radii indirectly from consistency of model calc
lations with experimental spectra of single-L hypernuclei
@38,39,14# brought different results. Very strong sensitivi
of the radii to model parameters were found@40# in the rela-
tivistic mean-field theory. Skyrme-Hartree-Fock calculatio
@21,31,41,14# indicate that the core polarization is probably
slight contraction. Another conclusion was drawn, howev
from more comprehensive variational calculations@25,42#,
where a core dilatation was predicted. Recently, a str
core polarization of a more complex type~contraction of the
neutron fraction and dilatation of the proton one! was in-
ferred @43# from the quark-meson coupling model. Ther
fore, less model dependent ways to determine radii of theL
orbits and core polarization properties are needed. We a
here that this problem is of importance particularly for stud
ing LL dynamics.
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