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a-planar states in 28Si
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a-planar states in28Si are studied by employing the isomorphic shell model which uses no adjustable
parameters. In the model, possiblea particles and their spatial distribution are derived, instead of being
assumed as usual ina-cluster models. Oblate triaxial structure for the ground state and a sevena-particle
planar structure for states with hexadecapole deformation have been found. Predictions of ground state and
excited rotational bands and of other observables have been made and results are successfully compared with
experimental data and those of other models where available. The novelty of the present study is focused on the
fact that the axis of rotation changes within the ground state band and that the mentioneda-planar structure
originates four rotational bands two of which exhibit an almost rigid body rotation supporting a superdefor-
mation for 28Si. The resonances of12C116O at 32.20 MeV,I p5161, and at 46.2 MeV and 43.6 MeV,I p

5141, decaying to known planar states of light 4n nuclei, have been verified as members of three of the above
four excited bands, thus supporting the proposed planar structure of28Si. @S0556-2813~98!02312-7#

PACS number~s!: 21.60.Gx, 21.10.Re, 27.30.1t
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I. INTRODUCTION

The existence of superdeformed configurations in li
nuclei is of great current interest. Such configurations h
particularly been studied inA54n-nuclei and have mostly
been associated with highly deformeda-cluster structures
specifically witha-chain anda-planar states in these nucle
The a-cluster models have a long history in nuclear phys
@1–16#, however, for a review of thea-chain nuclei one
could refer to Ref.@17#, while for a review of thea-planar
nuclei to Ref. @18#. Most of these studies have been pe
formed by using the Bloch-Brinka-cluster model@9#. How-
ever, all previous studies are rather model dependent
only that of Ref.@19# ~based on reduced widths fora decay
of 20Ne to the ground state of16O) constitutes the most thor
ough and instructive one concerning the structure ofa-
cluster nuclei and stands as a basic reference for any ob
tive study of all A54n ~where n51 – 10) nuclei. In very
recent publications@20,21# an alternative approach along th
lines of the isomorphic shell model has been applied
studyinga-chain states in12C anda-planar states in20Ne. In
the present work the same approach is applied in stud
a-planar states in28Si, which is one of the most interestin
and most studied nuclei in thesd-shell region@22#.

The common point between the isomorphic shell mo
and thea-cluster model is that both models consider t
geometry of the average positions of the constituent parti
as the starting point for describing the total wave function
the nucleus. The basic difference between these two mo
is that the constituent particles for the first are nucleons

*Permanent address: Institute of Nuclear Physics, National C
ter for Scientific Research Demokritos, Aghia Paraske
Attiki, 15310 Greece. FAX:11~301!6511215. Electronic address
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shell model orbitals@23#, while the constituent particles fo
the second model area-particles usually taken ins-state. Of
course, even in the Bloch-Brink model thea-particles may
be thought of as dissolving into nucleons since, for clus
separations reaching zero, the antisymmetrization forces
cluster wave function into some shell model limit.

The geometries in thea-cluster models arise through th
long-range effects of antisymmetrization and the mean fie
combined with a preference for simple underlying structu
@24#. In these models several geometries are chosen for
a-particles involved in a particular nucleus and the final
lection is made with reference to the maximum binding e
ergy. In the isomorphic shell model, instead, a common
ometry for all nuclei is derived by packing the nuclear she
whose average forms result from the independent part
assumption@25#. The specific part of this geometry utilize
by the average positions of the nucleons constituting a p
ticular nucleus results from the search for the maxim
binding energy and other observables@20–21#. a-like par-
ticles thus appear by themselves each time the average
tions of two protons and of two neutrons~possessing the
same principal quantum numbern and, in addition, all four
nucleons involved have the same angular momentum wh
implies that each pair of nucleons have zero relative ang
momentum, i.e., each pair of nucleons is in relatives-state!
are found close together. Of course, for later moments t
that depicted by the nucleon average positions each nuc
of an a-like particle follows an independent particle motio
in a well-defined shell-model orbital leading to dissolution
this a-particle.

In the present stage of development of thea-cluster mod-
els predictions ona-planar states in 4n nuclei are limited to
the density distribution of such nuclei, to the specification
some experimental levels which are candidates for rotatio
spectra, and to their related ground state binding ener
@18#. In the present work, by employing the isomorphic sh

n-
i,
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3306 PRC 58G. S. ANAGNOSTATOS, P. GINIS, AND J. GIAPITZAKIS
model, binding energies, radii, electric moments, mean l
times, B(E2) values, and rotational spectra are studied
the nucleus28Si. That is, here more observables are exa
ined and, in addition as will become apparent, our pred
tions for the observables investigated by other models
much closer to the experimental data. Moreover, new ro
tional bands are introduced, and known resonances
nuclear reactions at specific spins and energies are verifie
members of these bands offering additional support for p
nar structures of specific states in28Si.

II. THE ISOMORPHIC SHELL MODEL

The isomorphic shell model is a microscopic nucle
structure model that incorporates into a hybrid model
prominent features of single-particle and collective a
proaches in conjunction with the nucleon finite size@23,25#.
The model consists of a quantum mechanical part@23# and a
semiclassical part@25# and the relationship between the
two parts is obtained in the spirit of the Ehrenfest’s theore

The model has been reported in several previous pub
tions ~see, for example, cited references of the model in
review article@26#!. The very recent ones@20,21# contain,
perhaps, the most concise representation of the model. T
here it seems sufficient to include only the main features
the model together with the technical part~formulas! of its
semiclassical part~that includes also features of the mode!,
which is here applied for28Si since this part is closer to th
a-cluster model and thus a comparison between them
easier and more comprehensive. Of course, the isomor
shell model is not limited to applications to 4n-nuclei but it
is a general model for all nuclei@23,25,27–30#.

A. Main features of the model

The single-particle component of the model is along
lines of the conventional shell model with the only differen
that in the model the nucleons creating the central poten
are the nucleons of each particular nuclear shell alone,
stead of all nucleons in the nucleus as assumed in the
ventional shell model@23#. In other words, we consider~for
the case where a harmonic oscillator is taken as the ce
potential! a multiharmonic potential description of th
nucleus~as many potentials as shells!, as follows:

HC5EC, H5T1V, ~1!

H5H1s1H1p1H1d2s1¯ , ~2!

where

Hi5Vi1Ti52V̄1
1

2
m~v i !

2r i
21Ti . ~3!

That is, we consider a state-dependent Hamilton
where each partial harmonic oscillator potential has its o
state-dependent frequencyv i . All thesev i ’s are determined
from the harmonic oscillator relation@31#

\v i5
\2

m^r i
2&

S ni1
3

2D , ~4!
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where ni is the harmonic oscillator quantum number a
^r i

2&1/2 is the average radius of the relevant high fluxim
shell determined by the semiclassical part of the mo
specified below. For details onV̄ one should consult Ref
@23#.

The solution of the Schro¨dinger equation with Hamil-
tonian ~3!, in spherical coordinates, for each partial sing
particle HamiltonianHi is

Cni l imi
~r i ,u i ,f i !5Rni l i

~r i !Yl i

mi~u i ,f i !, ~5!

where the coordinatesr i ,u i ,f i refer to a single particle,
Yl i

mi(u,f) are the familiar spherical harmonics, and the e

pressions for theRni l i
(r ) are given in several books of quan

tum mechanics and nuclear physics; for example, see Ta
4-1 of Ref.@31#.

The only difference between our wave functions a
those in these books is the differentv i ’s as stated in Eqs.~3!
and~4! above. Those of our wave functions, however, whi
have equall value, because of the different\v i , are not
orthogonal, since in these cases the orthogonality of L
endre polynomials does not suffice. Orthogonality, of cour
can be obtained by applying established procedures, e.g.
Gram-Schmidt process@32#.

By employing the partial Hamiltonian shown in Eqs.~2!
and~3! all eigenvalues involved in a specific nucleus can
calculated. Finally, the binding energy of this nucleus can
estimated by using the simple relationship

EB51/2~V̄•N!23/4F(
i 51

A

\v i~n13/2!G , ~6!

whereV̄ is the average potential depth. That is, the bind
energy is not taken equal to the sum of single-particle en
gies@33#. This is suggested by variation of the energy in t
framework of the Hartree-Fock method. Specifically, Eq.~6!
is in the lines of Koopman’s theorem@31# which helps us to
understand the origin of the coefficients 1/2 and 3/4.

In the framework of the quantum mechanical part of t
isomorphic shell model@23#, by using the harmonic oscilla
tor wave functions with differentv i , we can exactly deter-
mine the matrix elements in a completely microscopic w
Thus, we can obtain the expectation values of different
servables without any approximation. This is already done
previous publications@23,27–30#. Here, however, the semi
classical part~i.e., an approximate model! instead of the
quantum mechanical part~i.e., an exact model! is employed
since the former involves a pictorial approach which is sim
lar to thea-cluster model, a fact which facilitates the com
parison of their results. This use of the semiclassical par
the place of the quantum mechanical part is accepted in
spirit of the Ehrenfest’s theorem@20,21,34,35#. This theorem
for the special case of a harmonic oscillator potential, as h
employed in Eq.~3!, is particularly well described in Ref
@35#. From the discussion made there for such a poten
one could extract that~in a semiclassical treatment! the
nuclear structure problem could be reduced into that
studying the dynamics of the average positions of the c
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FIG. 1. The isomorphic shell model for the nuclei up toN520 andZ520. The high-symmetry polyhedra in row 1~i.e., the zerohedron
the octahedron, and the icosahedron! stand for the average forms of~a! the 1s, ~c! the 1p, and~e! the 1d2s shells for neutrons, while the
high-symmetry polyhedra in row 2@i.e., the zerohedron, the hexahedron~cube!, and the dodecahedron# stand for the average forms of~b! the
1s, ~d! the 1p, and~f! the 1s2s shells for protons. The vertices of polyhedra stand for the average positions of nucleons in definite q
states (t,n,l ,m,s). The lettersh stand for the empty vertices~holes!. Thez axis is common for all polyhedra when these are superimpo
with a common center and with relative orientations as shown. At the bottom of each block the radiusR of the sphere circumscribed to th
relevant polyhedron and the radiusr of the relevant classical orbit@equal to the maximum distance of the vertex state~r,n,l.m,s! from the axis

nu l
m precisely representing the orbital angular-momentum axis with definiten, l, andm values# are given. The curved arrows shown help t

reader visualize around which axis each nucleon rotates, while solid~open! arrows show rotations directed up~down! the plane of the paper
All polyhedra vertices are numbered as shown. The backside~hidden! vertices of the polyhedra and the related numbers are not shown i
figure.
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stituent nucleus. For this study the following two assum
tions are employed by the semiclassical part of the isom
phic shell model.

~i! The neutrons~protons! of a closed neutron~proton!
shell, considered at theiraveragepositions, are indynamic
equilibriumon the sphere presenting the average size of
shell.

~ii ! The average sizes of the shells are determined by
close-packingof the shells themselves, provided that a ne
tron and a proton are represented byhard spheresof definite
sizes~i.e., r n50.974 fm andr p50.860 fm).

It is apparent that assumption~i! is along the lines of the
conventional shell model, while assumption~ii ! is along the
lines of the liquid-drop model.

The model employs a specific equilibrium of nucleon
considered at their average positions on concentric sphe
cells, which is valid whatever the law of nuclear force m
be: assumption~i!. This equilibrium leads uniquely to
Leech @25,36# ~equilibrium! polyhedra as average forms o
nuclear shells. All such nested polyhedra are closed-pac
thus taking their minimum size: assumption~ii !. The cu-
mulative number of vertices of these polyhedra, counted s
cessively from the innermost to the outermost, reproduce
magic numbers each time a polyhedral shell is comple
@25# ~see the numbers in the brackets in Fig. 1 there!.

For one to conceptualize the isomorphic shell model,
should first relate this model to the conventional shell mod
Specifically, the main assumption of the simple shell mod
i.e., that each nucleon in a nucleus moves~in an average
potential due to all nucleons! independently of the motion o
-
r-

at

e
-
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al

d,

c-
e
d

e
l.
l,

the other nucleons, may be understood here in terms
dynamic equilibrium in the following sense@25#. Each
nucleon in a nucleus ison averagein a dynamic equilibrium
with the other nucleons, and, as a consequence, its no
may be described independently of the motions of the ot
nucleons. From this one realizes that dynamic equilibri
and independent particle motion are consistent concept
the framework of the isomorphic shell model.

In other words, the model implies thatat some instant in
time ~reachedperiodically! all nucleons could be thought o
as residing at their individual average positions, which co
cide with the vertices of an equilibrium polyhedron for ea
shell. This system of particles evolves in time according
each particle independent motion. This is possible, si
axes standing for the angular-momenta quantization of di
tions areidentically described by the rotational symmetrie
of the polyhedra employed@36–39#. For example, see Ref
@38#, where one can find a complete interpretation of t
independent particle model in relation to the symmetries
these polyhedra. Such vectors are shown in Fig. 1 for
orbital angular-momentum quantization of directions
volved for nuclei up toN520 andZ520.

Since the radial and angular parts of the polyhedral sh
in Fig. 1 are well defined, the coordinates of the polyhed
vertices~nucleon average positions! can be easily computed
These coordinates up toN5Z520 are already published in
footnote 14 of Ref.@40#, and in Refs.@41# and @42#. These
coordinates correspond to theR values of the exscribed poly
hedral spheres given in Fig. 1~see bottom line at each
block!.
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3308 PRC 58G. S. ANAGNOSTATOS, P. GINIS, AND J. GIAPITZAKIS
According to the semiclassical part of the isomorph
shell model, the nucleon average positions of a nucleus
distributed at the vertices of the polyhedral shells as sho
for example, in Fig. 1. The specific vertices occupied, fo
given ~closed- or open-shell! nucleus at the ground state
form a vertex configuration~corresponding to a state con
figuration! that possesses the maximum binding energy (EB)
in relation to any other possible vertex configuration, wh
thus stands for an excited state. Each vertex configura
defines the average form and structure of a relevant sta
this nucleus. All bulk~static! properties of this state~e.g.,
EB , rms radii, etc.! are derived as properties of this structu
as has been fully explained in Ref.@25# and references cited
therein.

B. Technical features of the semiclassical part of the model

The model employs a two-body potential in the form
two Yukawa functions@40#:

Vi j 51.7~1017!
e2~31.8538!r i j

r i j
2187

e2~1.3538!r i j

r i j
~ in MeV!,

~7!

where the average internucleon distancesr i j are estimated by
using the relevant coordinates.

The Coulomb potential between two proton average p
tions apparently is

~EC! i j 5
e2

r i j
, ~8!

where r i j stand for the average interproton distances e
mated by using the relevant coordinates.

The average kinetic energy for each nucleon is taken
the sum of the kinetic energy due to the uncertainty princi
and of the kinetic energy due to the orbiting of the nucle
@42#:

^T&nlm5
\2

2m F 1

Rmax
2 1

l ~ l 11!

rnlm
2 G , ~9!

whereRmax is the outermost polyhedral radius~R! plus the
relevant average nucleon radius~i.e., r n50.974 fm or r p
50.860 fm), i.e., the radius of the nuclear volume in whi
the nucleons are confined,m is the nucleon mass,rnlm is the
distance of the vertex~n,l,m! from the axisnq l

m ~see Fig. 1
and Refs.@36–39#, @42#!.

The spin-orbit interaction in the model is given belo
@31#:

~ESO! i5~2065!A2/3lW iXsW i . ~10!

The energy coefficient (2065515– 25 MeV) starts at its
lower values for the lower orbital angular momenta a
tends more or less smoothly to the larger values for
higher orbital angular momenta. As also known, forj 5 l
11/2, l •s51 l /2, while for j 5 l 21/2, l •s52( l 11)/2.

The collective rotational energy is given by Eq.~11!:

Erot5
\2I ~ I 11!

2I , ~11!
re
n,
a

n
of

,

i-

i-

s
e
n

e

whereI is the moment of inertia of the rotating part of th
nucleus given by Eq.~12!:

I5(
i

Nrot

mr i
25mNrot̂ r 2& rot , ~12!

where Nrot is the number of nucleons participating in th
collective rotation and̂ r 2& rot is the rms radius of these
nucleons. This value ofI is increased by the quantity~0.165!
Nrot , where the coefficient 0.165 stands for the contribut
to the moment of inertia coming from the finite size of ea
nucleon participating in the rotation@20,21#.

The binding energy in the model, now, is

EB52 (
all nucleon
pairs

Vi j 2 (
all proton
pairs

e2

r i j

2 (
all nucleons

^T&nlm1 (
all valence
pairs

E~SO! i
, ~13!

where the termsEd ~odd-even! andErot ~collective rotation!
appearing in Eq.~15! of Ref. @20# for the binding energy are
here omitted as irrelevant to the case of interest, i.e.,28Si.

The rms charge radius is given by Eq.~14!:

^r 2&ch
1/25F( i 51

Z Ri
2

Z
1~0.8!22~0.116!

N

ZG1/2

, ~14!

whereRi is the radius of thei th proton average position from
Fig. 1, Z and N are the proton and the neutron numbers
the nucleus, and (0.8)2 and ~0.116! are the rms charge rad
of a proton and of a neutron, respectively@43#.

The intrinsic electric quadrupole moment is given by E
~15!:

eQ208 5(
i

eQ~20!i8 5(
i 51

Z

eRi
2~3 cos2 u i21!, ~15!

whereRi is the radius of thei th proton average position an
u i is the corresponding azimuthal angle with respect to
symmetry axis@44#.

The intrinsic electric hexadecapole moment is given
Eq. ~16!:

eQ408 5(
i

eQ~40!i8 5(
i 51

Z

eRi
4~35 cos4 u i230 cos2 u i13!,

~16!

whereRi andu i as forQ208 above.
The reduced electric-quadrupole transition probability b

tween the 01-ground state and the first 21-state in even-even
nuclei which exhibit a rotational@44# spectrum is given by
Eq. ~17!:

B~E2!ex~cm4!

54.08310261@Eg~MeV!#25@t~sec!#21@11aT#21

5Q08
25/~16p!5b2

2@3ZR0
2/4p#2, ~17!



tions of

same

a

PRC 58 3309a-PLANAR STATES IN 28Si
FIG. 2. Average forms of28Si, according to the semiclassical part of the isomorphic shell model, composed of the average posi
the constituent nucleons.~a! stands for the ground state and~b! for the 04

1 excited state at 10.27 MeV@called in the next Fig. 2~b!-relaxed#
or for the proposed 01 state at 24.2 MeV@called in the text Fig. 2~b!#. Average nucleon positions are numbered as shown by using the
number as in Fig. 1 for the same position, except for the average positions named 3r and 4r in ~b!-relaxed~see text for their coordinates!,
where these positions are ‘‘relaxed,’’ i.e., they are in contact with those numbered 5, 8 and 6, 7, respectively. Otherwise, parts~a! and ~b!
differ only in that positions 9-10, 15-16 appear only in~a! and positions 19-20, 31-32 appear only in~b!. ~c! comes from~b! or ~b!-relaxed
when each of the seven sets of four close-by nucleons~two neutrons and two protons! in relatives-state numbered~5,7,11,13!, ~6,8,12,14!,
~17-18, 29-30!, ~19-20, 31-32!, ~25-26, 37-38!, ~27-28, 39-40!, and~1-2, 3-4! for ~b! or ~1-2, 3r-4r) for ~b!-relaxed are assumed to form
sort of ana-particle. Axes labeledx, y, z stand for the axes of coordinates andC2 symmetry axes, while those labeledR2

1
1, RI

1
1 ,I>4 , and

RI
4
1 ,I>2 for rotational axes.
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whereEg andt are the excitation energy and the mean life
the first 21-state,aT is the internal conversion coefficien
and b2 is the deformation parameter which for a sphero
nucleus with semimajor and semiminor axesa and b takes
the expression@44#

b251.06~a2b!/R0 , ~18!

whereR05r 0A1/3 is the nuclear average radius.
Equations~7!–~17! stand for all formulas here necessa

for the implementation of the semiclassical part of t
model.

III. CALCULATIONS AND DISCUSSION

The average structure of28Si, in the framework of the
semiclassical part of the isomorphic shell model, comes fr
Fig. 1 by considering the states (1s, 1p, and 1d) involved in
this nucleus. From all possibilities offered by Fig. 1 to a
commodate 14 neutron average positions on the neu
polyhedra@see Figs. 1~a!, 1~c!, and 1~e!# and 14 proton av-
erage positions on the proton polyhedra@see Figs. 1~b!, 1~d!,
and 1~f!#, the one shown in Fig. 2~a!, as has been calculate
possesses the maximum binding energy and thus stand
the ground state of28Si.

Figure 2~b! comes also from Fig. 1 and differs from Fig
2~a! only in four nucleon average positions, that is, instead
the positions numbered 9-10 and 15-16 utilized in Fig. 2~a!,
the positions numbered 19-20 and 31-32 are employed
Fig. 2~b!. This leads to a12C core in Fig. 2~b! for 28Si,
instead of16O core in Fig. 2~a!. That is, in Fig. 2~b! the states
2s1/2 appear instead of the states 1p1/2 appearing in Fig. 2~a!.
This difference in the core, as will be understood shor
makes Fig. 2~a! three-dimensional and Fig. 2~b! two-
dimensional in ana-cluster-wise representation.

Specifically, in Fig. 2~b! each set of the following four
f

m

-
on

for

f

in

,

nucleon average positions numbered~1-4!, ~5,7,11,13!,
~6,8,12,14!, ~17-18,29-30!, ~19-20,31-32!, ~25-26,37-38!,
~27-28,39-40! accommodates two protons and two neutro
which are close together for the instant depicted by this
ure and possess the samen and j quantum numbers. That is
each pair of these nucleons have zero relative angular
mentum, i.e., it is in a relatives-state. Thus, in the mode
each of these seven sets of four nucleons can be consid
as a sort ofa-particle@20,21#. Considering now the center o
gravity for each of these ‘‘a-particles,’’ Fig. 2~c! results,
where the centers of the above sevena-like particlespre-
cisely lie on the same plane~i.e., these centers are coplana!.
Of course, for later moments than that depicted by Fig. 2~b!,
each of the four nucleons composing any one of the ab
sevena-particle-like structures evolves by following its in
dependent particle motion in a well-specified shell mo
orbital @36–39#. That is, each nucleon will move in a she
model orbital rotating around its own axis of orbital angu
momentum vector as schematically shown by arrows in F
1 and labeled by the propernu l

m angle with respect to the
quantization axisz common for all parts of Fig. 1.

It is worth noticing that Fig. 2~c! is geometrically well
specified. It consists of a square~with four a-like particles at
its corners! with the length of its half diagonal equal to 3.36
fm and an interior straight segment~of half length equal to
1.925 fm! bisecting the right angle formed by the crossing
the two diagonals of the square~with two a-like particles at
the ends of the segment and one at its center!. This straight
segmentpreciselystands for thea-particle representation o
12C according to the semiclassical part of the isomorp
shell model@20,21#.

It is interesting for one to compare the present Fig. 2~c!
with Fig. 1 of Ref.@18#, where ana-cluster study of28Si is
also performed. The relevant part of that figure is reprodu
here as Fig. 3 to make the comparison easier for the rea
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3310 PRC 58G. S. ANAGNOSTATOS, P. GINIS, AND J. GIAPITZAKIS
Both figures@Fig. 2~c! and Fig. 3# include an orthogona
parallelogram of foura-like particles and a bisecting straigh
segment of threea-like particles. However, in Fig. 3 the
straight segment extends outside the parallelogram, whil
Fig. 2~c! it is surrounded by the parallelogram. The sizes
the parallelograms and of the line segments are also diffe
in these two figures.

As in the study of12C in Figs. 2~a! and 2~b! of Ref. @20#,
from the present Fig. 2~b! another figure can result which i
almost identical to it and only slightly differs with respect
the average positions of the two 1s protons~numbered 3 and
4!. Specifically, due to the absence of 1p1/2 neutrons from
the 12C core of Fig. 2~b! ~numbered 9 and 10 in Fig. 1!
whose average positions together with those of 1p3/2 neu-
trons~numbered 5-8! determine the symmetry of the avera
positions for the 1s protons, these two latter positions ca
relax ~by rotation around their center of gravity on the pla
which is perpendicular on the direction 1-2 and pas
through the nuclear center! by getting closer to the averag
positions for the 1p3/2 neutrons~numbered 5,8 and 6,7, re
spectively! in such a way that their corresponding nucle
bags come in contact. The corresponding new coordinate
3 and 4 are 3r : x521.006 fm, y51.006 fm, z
50.3737 fm and 4r : x51.006 fm, y521.006 fm, z

FIG. 3. Cluster density contours for the two-dimensional co
figuration ~c! in Fig. 1 of Ref.@18# for 28Si.
in
f
nt

s

of

520.3737 fm, where the subscriptr stands for the word
relaxed. This relaxation of the two proton average positio
leads to larger binding energy for28Si. Since the correspond
ing figure could not be distinguished from Fig. 2~b!, it is
omitted and we let Fig. 2~b! stand for both cases, but in th
text the distinction is made as Fig. 2~b! and Fig. 2~b!-relaxed.
This increase of binding energy effectively comes from
increase of the potential energy alone, the only quan
which significantly varies from Fig. 2~b! to Fig. 2~b!-relaxed.
Coulomb energy,Q208 , and Q408 do not have a noticeable
variation. It is interesting for one to remark that both F
2~b! and Fig. 2~b!-relaxed identically contain the same so
of a-particles and thus both figures identically lead to F
2~c!.

By applying Eqs.~7!–~10! one obtains the numerical va
ues for each of the four first terms in Eq.~13!, and for each
of the three vertex~and state! configurations of column 1
~and 2!, which are listed in columns 3-6 of Table I. Th
summation of the above four terms gives the net ene
which for each configuration of column 1 is listed in colum
7 of the same table. From the values of this column, it
apparent that the second and third configurations of Tab
which come from the two-dimensional~2D; a-cluster-wise!
Fig. 2~b!-relaxed and Fig. 2~b!, respectively, correspond t
excited states, while the first configuration, which com
from the three-dimensional~3D! Fig. 2~a!, corresponds to the
ground state. The latter is so due to the fact that~as already
mentioned! this configuration has the maximum net ener
for any other possible 3D configuration for28Si involving
1s, 1p, and 1d states and coming from Figs. 1~a!–1~f!. It
should also be noticed that Fig. 2~b! and Fig. 2~b!-relaxed
are the only 2D configurations~a-particle-wise! which can
be obtained for28Si. The excitation energy~with respect to
the ground state! of the second configuration, i.e.,Eex

510.4 MeV, is almost identical to that of the 04
1 , i.e., Eex

510.27 MeV, while the model ground-state energy, i.
245.2 MeV, is 8.66 MeV larger than the experimental on

-

TABLE I. Vertex configuration, state configuration, potential~PE!, Coulomb~CE!, kinetic ~KE!, spin orbit~SOE!, and net~NE! energy,
geometrical sketch, anda-cluster-wise dimensionality for three configurations of28Si.

Vertex configuration State configuration
PE

~MeV!
CE

~MeV!
KE

~MeV!
SOE

~MeV!
NE

~MeV!
Geom.
sketch

a-cluster
dimensionality

~Core: 1-16!
~17-18,29-30!,~25-26,37-38!,
~27-28,39-40!
exp.a

(1s)n,p
2 (1p)n,p

6 (1d5/2)n,p
6 492.2 33.9 237.1 24.0 245.2 a

u
a- 16O

u
a

3D
236.54a

@Core:(1-2,3r-4r),(5,7,11,13),
~6,8,12,14!#, ~17-18,29-30!,
~19-20,31-32!,~25-26,37-38!,
~27-28,39-40!
exp.a

(1s)n,p
2 (1p)n,p

4 (1d5/2)n,p
6 (2s)n,p

2 479.0 31.7 242.9 30.4 234.8
a
u

a- 12C(r )-a
u
a

2D
226.27b

@Core:~1-2,3-4!,~5,7,11,13!,
~6,8,12,14!#, ~17-18,29-30!
~19-20,31-32!, ~25-26,37-38!,
~27-28,39-40!

(1s)n,p
2 (1p)n,p

4 (1d5/2)n,p
6 (2s)n,p

2 465.2 31.7 242.9 30.4 221.0
a
u

a- 12C-a
u
a

2D

aSee Ref.@64#.
bSee Ref.@45#.



PRC 58 3311a-PLANAR STATES IN 28Si
TABLE II. Root mean square charge radius (^r 2&)ch
1/2), intrinsic electric quadrupole moment (Q208 ), intrinsic electric hexadecapole

moment (Q408 ), reduced electric-quadrupole transition probability@B(E2)#, mean lifetime~t!, and deformation parameter (b2) for three
configurations of28Si.

Vertex configuration
^r 2&ch

1/2

~fm!
Q208

~fm2!
Q408

~fm4!
B(E2)
~fm4!

t
~ps! b2

~Core: 1-16!, 3.21 269.6 395.5 482 0.77 20.49
~17-18,29-30!,~25-26,37-38!,~27-28,39-40!
exp. 3.15~5!a 263618b 3956226b 0.5860.33b 2.4560.11b

@Core:(1-2,3r-4r)(5,7,11,13),(6,8,12,14)#, 3.41 2104.8 2152.6 1093 0.74
~17-18,29-30!~19-20,31-32!,
~25-26,37-38!,~27-28,39-40!
exp. ,0.06 psc

@Core:~1-2,3-4!,~5,7,11,13!,~6,8,12,14!#,
~17-18,29-30!,~19-20,31-32!, 3.41 2100.8 2109.7 1011 0.72
~25-26,37-38!,~27-28,39-40!

aSee Ref.@43#.
bSee Refs.@60,65#.
cSee Ref.@45#.
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i.e., 236.54 MeV. The third configuration of Table I leads
even higher excitation, i.e., 24.2 MeV, where there are
any experimental data for comparison.

As seen from Figs. 2~a! and 2~b!, the existence of defor
mation of the average shapes for the ground state@Fig. 2~a!#
and for the excited states@Fig. 2~b! and Fig. 2~b!-relaxed# of
28Si is apparent. However, there is a difference betw
these two deformations. Specifically,a-particle-wise, Fig.
2~a! possesses a triaxial oblate deformation, while Fig. 2~b!
and Fig. 2~b!-relaxed possess a plane structure which,
course, also has an oblate deformation@see Fig. 2~c! andQ208
sign and values in Table II#. In Figs. 2~a! and 2~b! the axes of
symmetry and the corresponding axes of rotation are
shown. Specifically, in Fig. 2~a! the axis of coordinatesy is
shown as axis of symmetry as well since the nucleon ave
positions numbered 17-18, 29-30 shown in the figure have
equivalent effect on all observables as the positions n
bered 19-20, 31-32 not shown in this figure. Thus, the c
responding 4 nucleons~2 protons and 2 neutrons! could be
thought of as 50% occupying the average positions 17
29-30 and 50% occupying the positions 19-20, 31-32, he
the origin of the symmetry axisy and the oblate shape of Fig
2~a!. The same reasoning holds true for the axis of symme
labeledz in Fig. 2~a!. For the axis of symmetry labeledx in
Fig. 2~a! or the axes of symmetry labeledx,y,z in Fig. 2~b!
and Fig. 2~b!-relaxed, the situation is more transparent. P
cisely speaking, the symmetry axesx,y,z in both Figs. 2~a!
and 2~b! areC2 axes concerning the nucleon average po
tions of the 2s1d shell and simultaneouslyC4 axes concern-
ing the nucleon average positions of the 1p shell. This is due
to the fact that the 1s nucleons can have either the avera
positions shown numbered 1-2, 3-4~or 3r-4r) in Figs. 1~a!
and 1~b!, and in Figs. 2~a!, 2~b!, and 2~b!-relaxed or their
symmetric counterparts with respect to the axisx or y or z.

As apparent from Fig. 2~a!, the axis of rotation labeled
R2

1
1 is perpendicular to the axes of symmetry labeledx andz,

but simultaneously is an axis of symmetry itself~labeledy!.
Also, the axis of rotation labeledRI

1
1 ,I>4 is perpendicular to
t

n

f

o

ge
n
-

r-

8,
ce

ry

-

i-

the axes of symmetry labeledy andz, but simultaneously is
an axis of symmetry itself~labeledx!. Similarly, the axis of
rotation labeledRI

4
1 ,I>2 in Fig. 2~b! is perpendicular to the

axes of symmetryx and y, but simultaneously is an axis o
symmetry itself~labeledz!. Thus, a clarification is needed t
explain why here an axis of symmetry can be an axis
rotation as well.

As already mentioned, the reported axes of rotationR are
C2 axes of symmetry of the whole average form of28Si as
presented either in Figs. 2~a! or 2~b! @that is, each of these
rotational axes is aC2 symmetry axis simultaneously for th
average forms of all (1s, 1p, and 2s1d) nuclear shells#.
This means that none of these axes has theC` symmetry
appearing, e.g., in an axially symmetric ellipsoidal. Thu
rotation around each of theseC2 symmetry axes is quantum
mechanically permissible@20,21# and each such rotation
could lead to an observable.

By applying Eqs.~14!–~17! and~11! and~12! the quanti-
ties ^r 2&ch

1/2, Q208 , Q408 , B(E2), t, b2 , I, and EI 1 ~for
I 50 – 16) are computed and listed in Table II, columns 2
and in Table III, columns 2–12, for each of the configur
tions presented by Figs. 2~a!, 2~b! and 2~b!-relaxed~see col-
umn 1 of the same tables! together with the experimenta
data where available. The modelQ208 values have been cal
culated with respect to the symmetry axis labeledz in all
parts of Fig. 2, and the rotational excitations have been e
mated by assuming no variation of the corresponding m
ment of inertia with angular momentum. The good agre
ments, apparent from Tables I, II, and III, between t
experimental data and the predictions of the present mo
lend support to our approach. Explanation of the way
moments of inertia in Table III have been obtained follow

All cases of moment of inertia with valueI,224.9 fm2

~see Table III! correspond to rotation of valence nucleo
only. That is, in these cases there is not a rigid body rota
of 28Si, i.e., the core~either 16O or 12C) remains a spectato
and thus it does not rotate and does not contribute to
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moment of inertia. In the case ofI>224.9 fm2, however,
besides the valence nucleons, part of the core participate
the rotation. Specifically, in the case ofI5224.9 fm2, the
four 1p3/2 protons participate in the rotation, while in th
case ofI5250.8 fm2, both the four 1p3/2 protons and the
four 1p3/2 neutrons participate in the rotation.

Of special interest is the case of the ground-state b
@Fig. 2~a!# for which a different axis of rotation is considere
for the 21

1 state and a different axis for the members of t
band withI p541, 61, 81. This is a result of the fact tha
the g.s. deformation of28Si has a triaxial shape and thu
rotation of the nucleus is more difficult at low spin value
hence the rotation takes place around the axis of minim
moment of inertia. As the spinning of the nucleus increa
at higher values of the angular momentum (I p541, 61,
81), the rotation shifts towards the axis of medium mome
of inertia and it is further expected that for some even hig
value of the angular momentum (I p.81) the nucleus will
rotate around the axis of maximum moment of inertia. T
deviations between the model predictions and the experim
tal values could, at least partially, be attributed to a mixing
the possible rotations around two or even three axes of r
tion of the triaxial ground state shape of28Si. The values
given here are just the main components of this mixing. T
number of nucleons participating in the rotation at each
the above three cases could vary. Specifically, for the m
ment of inertiaI2

1
1 all twelve valence nucleons outside th

16O core rotate around theR2
1
1 axis, while for theII

1
1 ,I>4

eight valence nucleons rotate@namely the nucleons whos
average positions are numbered~25-26, 37-38! and ~27-28,
39-40!# around theRI

1
1 ,I>4 axis. Perhaps, at some value

I p.81 all twelve valence nucleons could rotate around
same axis.

Of great interest are the excited bands of Table III co
nected with thea-planar configuration of Fig. 2~b!-relaxed
~second configuration in the table!. The association of thes
rotational bands with the 04

1 state starts from the near coin
cidence of the excitation of their bandhead~i.e., 10.40 MeV!
with the excitation of this level~i.e., 10.27 MeV@45#!. With
the same main criterion the experimental state candid
have been chosen as member states of these rotational b
i.e., for both cases of moment of inertia~see column 2 of
Table III!. For the first case it is assumed that only the v
lence nucleons of the 1d5/22s1/2 shells participate in the ro
tation, while for the second case it is assumed that, in a
tion, nucleons of the core, i.e., the nucleons of the 1p3/2
shell, participate in the rotation, hence the larger value of
moment of inertia~see column 2 of Table III!.

Other experimental observations supporting the ab
choices up toI p541 are less clear than desired due to t
fact that the experimental information concerning dec
schemes is not sufficiently complete. For example,g-ray
transitions between members of the proposed bands are
available and the level decay to unknown levels in the tab
of gamma-ray branching ratios for28Si has a great percent
age for many levels@45#. Specifically, the experimental can
didate for the 21 state at 10.88 MeV has 20% decay rate
other levels which are not specified@45#. The decay of this
level to the 21

1 level with a rate@45# of 76%, however,
lends some support to our proposition that it is a membe
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our a-wise rotational band, since the 21
1 level is a member

of the g.s. band whosea-cluster structure is established. Th
same support exists for the nature of the 04

1 level at 10.27
MeV as bandhead of the rotational band since the decay
of this level to 21

1 is 58% @45#. Finally, the experimenta
candidacy of the level 41 at 12.24 MeV as a member of th
proposed rotational band is supported by the fact that
level appears as resonance of the reaction.24Mg1a @45#. In
conclusion, all three listed members of the rotational ba
with the small value of moment of inertia have some expe
mental support for theira-cluster structure. Similar suppo
for the listed low members of the other superdeformed b
with the large value of moment of inertia is not availab
and, of course, band members must have common chara
istics besides displaying aI (I 11) energy difference. After
the present work, perhaps, it is going to be easier for on
detect the necessary cascade ofg-rays between the membe
of the proposed superdeformed band.

What is very interesting for the verification of the pr
posed superdeformed band based on the second~larger! mo-
ment of inertia of the second configuration in Table III is th
the model prediction of 32.76 MeV forI p5161 is very close
to 32.20 MeV measured in Refs.@46,47# for the same spin
value. This measurement is based on the excitation func
of the 02

1-state at 6.049 MeV of16O and comes as a reso
nance of the reaction12C116O. The knowledge that the 02

1

state of16O is a planar state@48,49# supports our predictions
that the observed 32.20 MeV state comes from a pla
structure@Fig. 2~c!#. Thus, the present work concerning th
state supports the relevant speculations already cited in
literature @46,47#. This success may encourage the resea
for the low lying members of this rotational band.

Also of interest are the last excited rotational bands
Table III ~third configuration! which are also connected wit
the a-planar structure of Fig. 2~c!, but correspond to Fig
2~b! with no relaxation of the numbered 3 and 4 proton a
erage positions. Association of these bands with low exp
mental candidate levels is not possible at present since
detailed spectrum of28Si @45# is known only up to about 15
MeV, that is, it is known up to an energy lower than t
bandhead of this proposed band at 24.2 MeV. What is v
interesting is that the model predictions of 43.6 MeV a
45.2 MeV for I p5141 at each band are very close to 43
MeV and 46.2 MeV measured in Refs.@50,51#. This close-
ness is even more impressive if one considers the experim
tal level widthsG50.6 MeV and 0.9 MeV, respectively@50#.
These resonances decay preferentially to 03

1 ~7.20 MeV!
state of20Ne, which from our study of20Ne @21# corresponds
to 8p4h structure possessing12C core as the third configu
ration here, a fact which is also supported by Ref.@52#.

Table IV includes the predictions of the present wo
from Tables I, II, and III concerning binding energy, rm
charge radius, intrinsic quadrupole moment and momen
inertia for the ground state of28Si together with the experi
mental data and the results@53,54# of Hartree-Fock~HF!,
those @55# of unrestricted 16-parameter variation alph
cluster model~ACM! for the same~as in HF! nucleon-
nucleon interaction, and those of Skyrme interaction@56#.
This specific ACM approach consulted here leads to the
results and is the one which gives similar results with the
model@55#. From Table IV it is apparent that all four mode
te
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~ACM, HF, Skyrme, and isomorphic shell model! give more
or less similar results, except those for binding energy, wh
ACM and HF give substantially different~smaller! values
than the present one, which is close to the experime
value.

The ability of the present approach to predict good res
simultaneously for many observables, including binding e
ergies~better even than those coming from large scale s
model calculations@56#! ~see Tables I–IV!, without using
adjustable parameters, constitutes a unique character o
model employed. Moreover, the present approach has
advantage of presenting the physical structure of the sta
Indeed, in other models, with the exception of the calcu
tions performed with an SU~3!-classified basis@57#, the re-
sulting eigenvectors consist of a very large number of sm
components. Therefore, it is highly impractical to extract
formation from these models on such structural propertie
intrinsic deformation, orbital symmetry,a-clustering, etc.,
which are quite important for thesd-shell nuclei@58#.

Furthermore, it is interesting for one to notice that certa
symmetries of Figs. 2~a!, 2~b!, and 2~b!-relaxed can follow
from two simple and well-known properties of all effectiv
shell-model interactions, namely, the exchange nature
the finite range@59#. In addition, the deformed intrinsic state
presented by Figs. 2~a!, 2~b!, and 2~b!-relaxed could be used
in any HF treatment of the relevant rotational bands, a f
which obviously relaxes the requirement of rotational inva
ance for the HF density@59#.

An additional interesting feature of the average structu
provided by Figs. 2~a!, 2~b!, and 2~b!-relaxed, particularly
apparent from Fig. 2~c!, is the hexadecapole deformation
these structures for28Si ~seeQ408 values in Table II!, a fact
which is experimentally verified by scattering ofa-particles
on this nucleus@60#.

IV. CONCLUSIONS

The isomorphic shell model~whose main feature is tha
the nucleon finite size is taken into account! has been em-

TABLE IV. Binding energy (EB), rms charge radius (^r 2&ch
1/2),

intrinsic electric quadrupole moment (Q208 ), symmetry, and average
moment of inertia (aav) of the ground state for28Si according to
each method listed in column 1.

Method
EB

a

~MeV!
^r 2&ch

1/2

~fm!
Q208

~fm2! Symmetry aav

ACMb 154.1 3.27 268 D5h

HFc 156.2 3.34 275
HFd 156.2 3.26 271
Skyrmee 0.230e

Present work 245.3 3.21 269.6 0.214
Expt. 236.5f 3.15~5!g 263618h

aFor large scale shell model calculations see Ref.@54#.
bSee Ref.@55#.
cSee Ref.@53#.
dSee Ref.@54#.
eaav5( Ia I(2I 11)/( I(2I 11); see Ref.@70#.
fSee Ref.@64#.
gSee Ref.@43#.
hSee Refs.@60,65#.
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ployed for the study of superdeformed states in28Si and the
results are successfully compared with the experimental
and those of thea-cluster model and of other theories. O
late triaxial structure for the ground state and ana-particle-
wise planar structure for the 04

1 state at 10.24 MeV, and
possibly for another planar structure at 24.2 MeV, have b
found.

Here, a-like particles ~which apparently are not pre
formed! are considered to be clusters of four closeby nuc
ons ~two protons and two neutrons! which are in relative
s-state. In order to facilitate the comparison of the pres
results with those of thea-cluster models, the semiclassic
part instead of the quantum mechanical part of the isom
phic shell model is here employed.

While for the ground state band only valence nucleo
participate in the rotation, in the excited bands part of the12C
core ~i.e., the 1p3/2 nucleons! can participate in the rotation
as well.

An interesting result is the prediction that the 21
1 rota-

tional level has a different axis of rotation than the 41
1, 61

1,
and 81

1 levels and that, perhaps, at some higher ang
momentum values, a third axis of rotation is involved in t
ground state rotational band. This result emphasizes the
ference between rotational bands in light nuclei and th
bands in the nuclei of the well deformed region of rare ear
where only one axis of rotation characterizes a rotatio
band. This difference in the rotational bands of these t
regions can also be noticed from the fact that the deviati
between the present predictions and the experimental da
the ground-state band are larger than the usual deviation
the well deformed region. These larger deviations could
attributed to the fact that adiabaticity between intrinsic m
tion and rotational motion is not necessarily ensured for li
nuclei, to the fact that it is not known to what extent t
assumption of fixed intrinsic state is correct@61# for these
nuclei, to the fact that there may be mixing of simultaneo
rotations around different axes, and to the fact that no va
tion of the moment of inertia with angular momentum h
been considered. The latter cannot be treated in the fra
work of the variable-moment-of-inertia model@62#, since the
number of rotational levels known in rotational bands
light nuclei is very limited~usually two to four!.

Furthermore, concerning rotational levels one can fin
interesting to note that the present way of moment-of-ine
calculation is equivalent to a rotation ofa-like nucleon clus-
ters as in Ref.@63#.

The 32.20 MeV,I p5161 level predicted@46,47# as cor-
responding to planar structure of28Si has here been found t
be a member of an excited rotational band with almost ri
rotation~see Table III!. Since this level is a resonance of th
reaction12C116O ~6.049 MeV!, and the 02

1 at 6.049 MeV of
ta

n

-

t

r-

s

r

if-
e
s

al
o
s
in
in
e
-
t

s
a-

e-

f

it
a

d

16O has been reported as planar state@48,49#, the inclusion of
this level to the present excited rotational band constitute
signature of the planar structure for all member states of
band. Also, the16O112C resonances in8Be anda channels
@50,51# at 43.7 MeV and 46.2 MeV have here been identifi
as 141 members of two other proposed rotational bands. T
knowledge that both of these resonances decay preferen
to 03

1 state of20Ne known for its 8p4h structure@62# sup-
ports the present study that the related bands have a p
structure.

A very interesting point to be investigated later, wh
additional experimental information becomes available, is
examine if both bands either of the second and/or of the th
configuration in Table III really have low energy members
if the band with larger moment of inertia terminates at so
value of angular momentum decaying into the other band
smaller moment of inertia, a phenomenon known from
superdeformed rotational spectra of nuclei in the we
deformed region. If the second case is proved true, the
responding band will have all the characteristics of a sup
deformed rotational band, given that its moment of iner
approaches the rigid body limit~see Table III!. Also of in-
terest is the fact that two of the rotational bands in Table
have the same moment of inertia~equal to 207.0 fm2!, some-
thing which has also been observed in nuclei of the w
deformed region.

Hexadecapole deformation has been found for both
ground state~relatively small! and the 04

1 excited state~rela-
tively large!. This finding agrees with the predictions of Re
@60# that in 20Ne and28Si such a deformation exists.

The advantage of the present approach is apparent f
three facts. First, it predicts better binding energy and ot
observables, second, uses no adjustable parameters,
third, provides information about the intrinsic structure of t
states. This approach is, indeed, superior to the different s
consistent approaches due to the fact that the former
successful hybrid between the independent particle mo
and the liquid drop model, while the latter are based on
independent particle model alone.
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