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Thermodynamical properties of a mean-field plus pairing model
and applications for the Fe nuclei

S. Romboutg, K. Heyde! and N. Jachowicz
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A mean-field plus pairing model for atomic nuclei in the Fe region was studied using a finite-temperature
guantum Monte Carlo method. We present results for thermodynamical quantities such as the internal energy
and the specific heat. These results give indications of a phase transition related to the pairing among nucleons,
around temperatures of 0.7 MeV. The influence of the residual interaction and of the size of the model space
on the nuclear level densities is discussed too.
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I. INTRODUCTION the number of particles is not fixed. For some systems, exact
. . solutions can be founfB]. A general, accurate solution for
Quantum Monte Carlo methods offer an interesting Wa¥is many-body problem is even at present a topic of inten-

to study fermionic many-body problems. Accurate CaICUIa'sive research9,10]. We have found that our quantum Monte

tions of ground-state properties have been performed f0g 415 method is a very useful method to study the ground-

light nuclei, using variational and diffusion quantum Monte giate and finite-temperature properties of the nuclear pairing
Carlo methodg1]. Also, for the nuclear shell model, Monte Hamiltonian.

Carlo methods are very usef{®]. They allow one to do In Sec. Il we introduce the mean-field plus pairing model
calculations in much larger model spaces than conventionahat we used for our calculations. In Sec. Ill aspects of our
techniques based on diagonalization. Furthermore, they aguantum Monte Carlo method are given, with an emphasis
very useful for the study of finite-temperature properties ofon the differences with related methods. In Sec. IV we
atomic nuclei[3,4]. The same method can also be used as @resent a number of results. The role of the pairing-
starting point to calculate nuclear level densitiéss]. We interaction strength, the size of the model space, and the
have used a variant of this method to study thermodynamicaiumber of particles is discussed. An estimate is given for the
properties of nuclei in the Fe region with a model based on devel densities. The lines that connect the data points on the
mean-field plus pairing Hamiltonian. At present, we are lim-figures in this paper are meant to guide the eye. They do not
ited to this too simple model because our quantum Mont&orrespond to analytical results or fitted curves, except for
Carlo method is still in a developing phase and because wie pure mean-field resultsG0). Error limits represent
are limited by our present computer facilitiés Dec Alpha- 95% confidence intervals. If no error limits are shown, it
station 255/300 MHz Workstation and a 200 MHz PentiumMeans that they are smaller than the markers of the data
personal computgr Even though, at present, our results dopc_nnts, unless it is stated that no error limits were deter-
not conform to realistic Hamiltonians, they do say a lot aboufMn€d:
the general physical properties. It is a first step to go beyond
the mean-field approximation. The present approach gives IIl. A MEAN-FIELD PLUS PAIRING MODEL
results about the possibility of a phase transition related to FOR THE Fe NUCLEI
pairing correlations, the influence of the residual interaction For the mean-field potential, a Woods-Saxon potential
on the level densities, and a number of general features of thg(r) is used[11]:
nuclear many-body structure at finite temperature.

The combination of a mean-field potential and the pairing
Hamiltonian leads to a Hamiltoniald =H,;+Hp. Though

this Hamiltonian looks simple, it already leads to a compli-
cated many-body problem. An often used technique to tacki¥/nere

U(r)=V.—VI(x)+ G

ks

ho\2 1d
) Vs.o(‘r'l)?mf(xs.o)v 1

this problem is the Bardeen-Cooper-Schriefl8€CS) theory 7e2lr r=R
[7]. It leads to equations that can be handled easily in a V.= ' ¢ A 2)
numerical way and it has a clear interpretation in terms of [Z€?/2R:](3-T%/Rg), r=R,
guasiparticles. The disadvantage is that it gives only an ap- s
proximate solution and leads to many-body states in which Re=rA™,
f(x)=(1+e) "1 with x=(r—r,A¥/a, ©)
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TABLE I. Single-particle eigenstates of the Woods-Saxon po-

) ) . . ~ 2t 2t a2 o
tential with the parameters as described in Sec. Il. Hp=— 2 G; E al,tamaﬁakt, (5)
t=p,n  kk'>0

Single-particle energiedvieV) .
Orbital Protons Neutrons where the operatoranit create a particle in the corresponding
single-particle eigenstates of the mean-field Hamiltonian in

181/ —34.7106 —42.0333 the valence shell. The indeixindicates proton or neutron
ipw :;iziié :giiégg states andk is the time-reversed state of the st&teThe
Par2 ‘ ' notationk,k’>0 denotes that the summation flrand k’
1ds)2 —15.0034 —21.5607 should run over states with angular momentum projection
1dg —12.7911 —19.6359 iz>0 only. The interaction strengtls; depends on the
2511 —12.3511 —19.1840 model space and the system under study. For the strength of
1f71 —4.1205 —10.4576 the pairing interaction we tak&=20 MeV/56, following
232 —2.0360 —8.4804 the suggestion of Bes and Sorensgh3] to take G
2p1/2 —1.2334 —17.6512 =20 MeV/nucleon. The same strength is used for protons,
1fs, —-1.2159 —7.7025 neutrons, and all nuclei in the Fe mass region.
3sy), 4.7316 —0.3861
2ds/ 5.6562 0.2225 lll. THE QUANTUM MONTE CARLO METHOD
2d3), 6.1324 0.9907
1992 6.6572 0.5631 The method we used to study the model is based on the
3pas2 6.6663 2.5931 shell-model qguantum Monte Carlo method. The basic idea of
3Py 6.7469 2.6915 this method is well explained in Ref2]. It amounts to a
4sy, 8.9016 4.4706 decomposition of the Boltzmann opera®r?™ in a sum of
1972 9.1386 3.5488 exponentials of one-body operators
HereA is the number of nucleons arttithe number of pro- e =3 e Mso. (6)
tons. The other parameters are taken aslij: 7
ro=1.25 fm, Because of their one-body nature, the teren$s. can be
handled easily using small matrices, with a dimension equal
a=0.65 fm, to the number of single-particle states considered in the
model space. The canonical or grand canonical trace of
V=53.3+27(A—2Z)/A—0.4Z/ A MeV, e "s.o can be calculated with simple algebraic operations on
these matrices. The sum over thaxiliary field o is then
rso=21.25 fm, evaluated using Monte Carlo techniqués casu the
Metropolis algorithm[14]).
as0,=0.47 fm, In our approach, a number of technical aspects are imple-
mented differently from Ref{2]. The main differences are
Vso=7.5 MeV. the following.

(i) In order to arrive at a decomposition of the fof6),

To calculate the mean field and its eigenfunctions, we use theve use the Suzuki-Trotter formu[d5] to separate the one-
parameters for the nucleg$e,,. This mean field is used for and two-body parts of the Hamiltonian in the exponents.
all nuclei in this particular mass region. For every set ofThis reduces the leading systematic error term to order
quantum numberkandj, the Woods-Saxon potential is di- B%NZ, with N, the number of inverse-temperature slices.
agonalized in a basis of the lowest 60 harmonic-oscillatofollowing the prescriptions from Ref2], the leading sys-
eigenfunctions with the appropriate symmetry. In this way,tematic error term would be of ordgd?/N, .
the single-particle eigenstates and their energies listed in (ii) In order to decompose the exponential of the two-
Table | are obtained. Also, a number of unbound stétéh  body part of the Hamiltonian, we use the discrete Hubbard-
energyE>0) are obtained. In fact, the Woods-Saxon poten-Stratonovich transform, described [ih6]. Compared to the
tial exhibits a continuum of unbound eigenstates. Due to thélubbard-Stratonovich transform described [R17,18, it
expansion in a finite number of basis functions, discrete unhas the advantage that it leads to faster matrix operations and
bound energy levels are obtained. These can be seen agasmaller systematic errors. Because of these fast matrix
discrete approximation to the continuum of unbound statesoperations, we could use a large number of inverse-
The 1sy/5, 1p3/2, 1p1s2, 1ds,», 1dz.,, and X4, orbitals  temperature slices in order to reduce the systematic errors
are considered to be completely filled. They form an inert(typically N;=208 for the fp model space anil,=408 for
core for the many-body problem. Thd 7, 2ps;2, 2p1/2, the extended model spages X
and 1f5, orbitals constitute the valence shell. (iii) In order to evaluate the canonical traceeof's.c, we

A simple Hamiltonian that accounts for the short-rangeyse the fast and efficient algorithm described in R&8]
correlations induced by the residual interaction is the nucleajhstead of the number projection technique described in
pairing HamiltonianA [7], which takes the form [2,20].
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(iv) The trial steps for the Metropolis algorithm for the sion(8). The one-body operator resulting from the decompo-
sampling of the discrete auxiliary fields are generated in sition (6), with — BH replaced by— BH + €A, is denoted by
the following way. A series ofM consecutive inverse S'B-M' For the energy A=H), this can easily be imple-

—temperature intervals are chosen randomly to be update d adh _f The derivati | d
Because of the permutation properties of the canonical tracé‘?ente 31,6~ Np—e,s- The derivatives are evaluated as
d f(eo) —f(—€o)

we can always shift these inverse-temperature intervals to the
end of the decomposition. The matrix representatignof d_f(€)|ezoz
€

the operatore #"s is calculated up to the N;—M)th
inverse-temperature slice and stored in computer memory. A . - : _
numbem between 1 and a maximum number is drawn. Then\{_vgh € 4 s;nall ?Ut _flnltebnumbitltyplcally_ €o=1/2048). .
in the lastM slicesm auxiliary fields are drawn. These are IS way of eva uating observables requires many matrix
then changed randomly. The mattik,, for the altered con- manipulations because theA completeA matdy has to be
figurations’ is constructed out of the stored partdf . The  recalculated from scratch févg , . andhg, .. However,
canonical trace of ., is evaluated. Then the configuration = because most of the computing time goes to the construction
is accepted or rejected according to the Metropolis algorithnof the trial moves, this has little impact on the overall per-
[14]. This procedure is repeated a number of tirttgpically ~ formance. Furthermore, this way of evaluating the observ-
seven timesbefore a new series of slices is selected. So a ables leads to small statistical errors because it amounts to an
complete Markov step consists of seven local updates. Typinsertion of the operatok at each inverse-temperature inter-
cal values areM =80 (or M=N, for N;<80) and Xm  val, whereas the procedure described2his based on the
<160. This scheme allows one to update a large number Qfsertion of A only at the first interval. A special remark
auxiliary fields simultaneously while requiring onM ma-  ncerns the evaluation of the specific h€afThis quantity
trix multiplications per updatécounting the contribution of = cannot be calculated as the expectation value of an observ-
one inverse-temperature slice as one mati@nly after a  gpje. We evaluat€ after the Monte Carlo run as
complete Markov step do all thd; matrices in the decom-
position have to be multiplied. C=BY&,(E,) —EW(E)?], (14)

(v) Observables are evaluated after every five complete
Markov steps. The values are not yet fully decorrelated ayith
this rate(e.g., autocorrelations between 30% and 60% be-
tween consecutive values for the energgaving a larger d .
interval would not improve the performance because already E,=— @'n[TTN(ehﬁ’”)],
at this rate the most time-consuming part is the construction
of the trial configurations for the Markov chain. The value of

260 ’ (13)

~ 2 ~
an observabléA at inverse temperatur8=1/kT is calcu- E,,= d 2|n[TrN(ehﬁ,a)]+Ei_
lated as (dp)
N TrN(Ae‘BF‘) The observabld, corresponds to the square of the Hamil-
(A p=— (1) tonian
Try(e™ ")
d o Eu(Ep)=Try(FH2e AR Try(e #M). (15)
—Try(e PR o , ,
:df ) (vi) Just like any other quantum Monte Carlo method for
Try(e~A™) fermions[21,22, this method suffers from a sign problem at
low temperatures. The value of the weights can become
=& (A), 9) negative. This poses a problem for the Metropolis algorithm
because it requires that, can be interpreted as a probability
with density. The Metropolis algorithm can still be used by apply-
ing it to the absolute valupv,|. Then we have to treat the
E A w signs, of w, as an observable. Expressi(@) becomes:
EulA) = ——, (10
" w E AU'SG'|W0'|
-+ Do’ A o g‘w|(AS)
" (A)p= = : (16)
D Ew|(8)
d R - S0'|WU’|
Ao:£ln[TrN(ehﬂ'U’e)]|e=0! (11) 7

The problem is that the statistical error on this expression
Wo_:TrN(eﬁB,a)_ (12)  scales as & (s) (see below. Now, for an even number of
protons and an even number of neutrons, one can exploit a
Here Tg denotes the canonical trace, i.e., the trace over allymmetry between states wifh>0 and states with),<O0.
N-particle states. The mathematical properties of the trac&his symmetry guarantees th&,(s) is close to 1 even at
operator are crucial in going from expressigh to expres- low temperaturd 16]. In Ref. [2] it was claimed that the
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" " " " ' ' ' completely to its ground state. For the model studied here,
L R RO = " the average sign posed no problems. However, for more
N oo 8 neutrons —— complicated Hamiltonians, one probably will have to fall
os | \§ 18 :gb':;ggg e back on extrapolation techniques such as the ones described
’ 3 11 neutrons +x— in Refs.[2] and[23] in order to overcome the sign problem.

L (vii) Because the Metropolis algorithm leads to correla-
0.6 1 tions among successive values for the observables, care has
L to be taken to establish accurate error limits. In order to get
¥ rid of the correlations, 50 independent Markov chains are run

X for each calculation. These Markov chains typically consist

N of some 600 thermalization steps and 3000 sampling steps,
02 1 with an evaluation of observables every fifth step. So the
chains are rather short, but long enough to make sure that the
‘ . . : geE , computing time is not dominated by the thermalization steps.
0 1 2 3 4 5 6 7 8 This leads to 50 independent estimakes . . . Asg for the

B [MeV) quantity(A)B. To obtain the final estimate, we take the
weighted average of these values, with the average signs

FIG. 1. Average sigrs as a.function of inverse temperatyge S1,....Ss as weights. So we obtain an estimate for
for 8, 9, 10, and 11 neutrons in thd 7,2p3,,2p4/51f5), shell. G

—20 MeV/56. (A)g:

Ejwi(s)
s

ZiAS

canonical trace should be exactly equal to one for even par- A= .
ticle numbers with interactions that lead to matrix represen- 2iS;
tations of the form

(21)

If the A; ands; are obtained with enough precision, then a
p Q good estimate for the statistical error on 21 can be obtained
UU=< _o* p* ) (170  from the expressiofi24]

. ) . . van x/y) ={var(x)— 2&(x/y)cov x,y)
as is the case with a pure pairing force or a pairing-plus-
guadrupole force. This is not exactly true, however, as can be +E(xly)var(y)} E2(y) (22

seen from the following counterexample. Ud{ be a 4<4 ) ] .
matrix andP andQ 2x 2 matrices, withQ=0 and (var and cov denote the variance and covarianteking x

0 =As andy=s leads to an estimate for the variance An

€

P=< ) (18) _ S(A-A)?
0 —e€ Var(A)Z 1 i i

. . . >s )2
wheree is a real number. Then the grand canonical trace is ( ! ')
given by

(23

Under the assumption that is almost normally distributed,
TrM(LAJ(,)z(l— €2e?Pr)2=1—2¢22Pr 1 e (19) which is a good approximation becausds a weighted av-
erage of 50 independent values, this expression allows us to
which is positive definite for any value of the chemical po- yetermine a 95% confidence interv@K—Z var(K) A

tential x. The canonical two-particle trace is given by the = ~ .
coeffici/ént of e2Br- P 9 y +2yvar(A)] for (A);. Expression(23) also demonstrates
' that the statistical error is inversely proportional to the aver-

Try(U,)=— 26 (200 g€ Signtjy(s).

which is negative. The average sign for some of the systems IV. RESULTS
we studied is shown in Fig. 1 as a function of the inverse
temperaturgs. The sign for the even particle numbers shows
a dip around8=2 MeV 1. This is caused by the fact that Some thermodynamical properties of the pairing model
for a fraction of theU,, the canonical trace becomes nega-for >gre,were studied using the quantum Monte Carlo
tive, like in the above example. However, the symmetry be-method presented in Sec. Ill. Because the proton and neutron
tweenj,>0 states and,<0 states guarantees that the con-systems are not coupled to one another, separate results for
tribution to the trace of the “fully accompanied” states, in both particle types are obtained. The internal energy of the
the sense defined in R4B], will always be positive. These total system and the contributions of the proton and neutron
states dominate the low temperature trace for even-even ngubsystems are shown as a function of temperature in Fig. 2.
clei. Therefore, the sign tends to one again at low temperaFhe same is done for the specific heat in Fig. 3. The neutrons
tures. For odd particle numbei&,,(s) tends to zero at low contribute more to the internal energy than the protons do
temperatures. So there the statistical errors explode. We finoecause there are more valence neutrons than valence pro-
that even for odd nuclei we can do calculations @t tons. This also leads to a slightly stronger peak in the
=4 MeV !, which is enough to cool the system almostspecific-heat curve for neutrons than for protons. Qualita-

A. Proton and neutron contributions
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FIG. 2. Internal energfg as a function of temperature for 6 FIG. 4. Neutron energf, as a function of temperaturiefor 10

protons and 10 neutrons in thef/,2ps,2p1,,1fs, shell. G neutrons in the 1;,,2p3,,2p1/21f5/» shell for various values of the
=20 MeV/56. The energy scale is adapted such that the total, prgeairing strengthG.
ton, and neutron internal energies all tend to O at low temperature.

raising the temperature, the system stays in its ground state
tively, there is no big difference between the thermodynamilonger than for smaller values @. This indicates that there
cal properties of both subsystems. This is not the case a8 an energy gap between the ground state and the first ex-

lower values of the interaction streng cited state proportional t8, as is expected from BCS theory
[7]. The neutron specific heat, as a function of temperature,
B. Dependence on the pairing interaction strength G is shown in Fig. 5. With increasing streng®, the peak in

) . the specific-heat curve shifts to a slightly higher temperature
We have studied the pairing model feffe,, for several  and becomes more pronounced. In general, peaks in the spe-
values of the pairing interaction strength. Calculations wergsific heat can be interpreted as signs of a phase transition.
performed for 10 neutrons in a shell with 20 valence stategye see here that the pairing correlations, f@

(1f7/2, 2p3j2, 2py1/2 and 1f 5, orbitalg and for 6 protonsin =20 MeV/56, seem to induce a phase transition in the sys-
the same shell. tem.

The neutron energy as a function of temperature is shown Analogous calculations were done for protons. The proton
in Flg 4. The energy scale is chosen such that the inert COanergy as a function of temperature is shown in F|g 6. The
has zero energy. The fact that the energy does not go tgroton specific heat is shown as a function of temperature in
much higher values as the temperature increases is due to thgy. 7. The same discussion as for the neutron results applies
limited size of the model space: Not enough high-lying statesere. There is, however, a striking difference in the specific-
are included. As we shall discuss later on, the resultslfor heat curve for low values ofs: A second peak deve|0ps

=1.5 MeV are not physical any longer. For larger values ofaroundT=0.2 MeV for G=10 MeV/56. At this value of
G, the system is more strongly bound. Furthermore, when

14 T T T T T T T T T
T T T T T T T T T G=0 MeV -~
@.--i\__ protons o+ 12 L G=10/56 MeV +o— |
) T, neutrons —— G=15/56 MeV ——
protons+neutrons +e-— X G=20/56 MeV +a—
15 - : : 10 \

™, G=25/56 MeV r»—

)
0 02 04 06 08 1 12 14 16 18 2 0 02 04 06 08 1 12 14 16 18 2
T [MeV) T MeV]
FIG. 3. Specific heaC as a function of temperatur€ for 6 FIG. 5. Neutron specific he&,, as a function of temperatuie

protons and 10 neutrons in thef;},2p3/02p1/21fs, shell. G for 10 neutrons in the fl;,,2p3/,,2p1/,1f5,, shell for various values
=20 MeV/56. of the pairing strengti®.
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25 , 87 /
26} o P G=0 MeV - - 4 7 .
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o7 b N G=15/56 MeV —— | K
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29 . : . " . L L L " 6 X . . . : . X : .
0 02 04 06 08 1 12 14 16 18 2 0 02 04 06 08 1 12 14 16 18 2
T [MeV] T MeV]
FIG. 6. Proton energ¥, as a function of temperaturE for 6 FIG. 8. Expectation value of the pairing-interaction operator

protons in the £;,,2p3,52p4/21f5;, shell for various values of the (A,) as a function of temperaturd for pairing strengthG

pairing strengttG. =10 MeV/56 and G=20 MeV/56 and 6 protons in the

the pairing strength, the broad peak in the specific-hea%f7/22p3’22|01’21f5’2 shell. No error limits were determined.

curve, aroundr=0.8 MeV, coincides with the peak in the

specific-heat curve for a pure mean field. This peak is relate
to the condensation of the valence particles in the IowestbI
energy levels of the valence shéthe 1f,, orbital). The

hases as it is cooled: First, the six valence protons condense
to the 1f,,, orbital. At T=0.45 MeV, this stage is com-
eted. If the temperature is lowered further, pair correlations

) ) . ! among these particles can develop. At values f
smaller is er_mrely _due j[o pair correl_at|ons that developgo_z MeV the system is almost completely cooled to its
among the six particles in 'fh.efgb? orbltgl. In F'g'AS the ground state. For the system wih=20 MeV/56, the occu-
expectation value of the pairing interaction operatty is  pation of the %,,, orbital reaches a maximum of about 5.3.
shown as a function of the temperatdreWhile the system  The particles always remain spread over all the valence or-
with G=20 MeV/56 reaches full pairing strength at tem- pjita|s pecause now the pairing interaction is strong enough to

peraturesT<0.4 MeV, the system withG=10 MeV/56  scatter them out of thef},, orbital, even in the ground state.
comes to this regime only at values 0.2 MeV. In Fig.

9 the number of particles in thef1,, orbital and the number

of particles in the other orbitals are shown. For the system o ] )
with G=10 MeV/56, it is observed that approximately all  For the description of the high-temperature properties of
six particles occupy states in the7}, orbital for values of ~the system, the model space given by e shell is too
T<0.45 MeV. The fact that the pairing correlations reachSmall. At temperatures of a few MeV, valence particles can
their maximum for this system only at values df be excited to higher-lying single-particle states or core par-
<0.2 MeV means that the system passes through two

C. Dependence on the size of the model space

8 — . — : . ; ; . G=20/56 MeV ——
m ﬂ G=0 MeV -~ G=10/56 MeV —
71 G=10/56 MeV ro— | 5r
P “a G=15/56 MeV ++—
G=20/56 MeV +a—
6 i
4 L
5 5
s
at o 7
a c
(&) v
2| g
1t e 4
1+ 000000 o2
D ; g ~°<>o~o--o-'-._*,,.~
0 ! @ 0 i n -r«*'*'*'..* ! , . . . )
ﬁ 0 02 04 06 08 1 12 14 16 18 2
0 02 04 06 08 1 12 14 16 18 2 T [MeV]

T [MeV]
FIG. 9. Number particles in thef% orbital (full line) and in the
FIG. 7. Proton specific he&, as a function of temperatuie  other orbitals(dotted ling as a function of the inverse temperature
for 6 protons in the 1;,,2p5/,2p4,,1f5,5 shell for various values of B for 6 protons in the 1;,,2p3,,2p4,,1f5/, shell. No error limits
the pairing strengtl@. were determined.
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FIG. 10. Neutron energ, as a function of temperaturk for
10 neutrons in the f;,,2p3/,2p41,21f5,5 shell(curve g, for 10 neu-
trons in the first extended model spdcarve b and for 30 neutrons

in the second extended model spacerve 9. The dashed line neutrons in the second extended model spauere 9. The dashed

Qi"es the result for the second extended model space witlhout pai ine gives the result for the second extended model without pairing
ing (G=0). The results for the largest model space are shifted suc G=0)

that curvesh andc coincide at low temperature.

FIG. 11. Neutron specific he@t, as a function of temperatuiie
for 10 neutrons in the fl;,2p3,,2p1/21f5;, shell (curve g, for 10
neutrons in the first extended model spdcerve b, and for 30

state energy coincides with the ground-state energy ofghe

ticles can be excited into the valence orbitals or highershell system.
energy states. In order to know up to what temperatures the |n the largest model space, at high temperaturés (
results that we obtained in thigp shell are valid, we per- =2 MeV), the specific-heat curve coincides with the
formed a number of calculations in larger model spacesspecific-heat curve fo&=0. In this temperature region, the
First, the 3,,,, 2ds/», 2d3/,, and 1gg,, orbitals are added proton and neutron energy are some 5 MeV lower than in the
to the single-particle space. This leads to a many-body probs=0 case. Apart from this shift, the energy curves are simi-
lem of 6 and 10 particles in 42 single-particle states. In dar to theG=0 case. This indicates that, at high tempera-
second extended model the core states are considered as wares, the pairing Hamiltonian enhances the binding energy
lence states too. Therefore the; b, 1pgss, 1pijs, 1dss, but has no effect on the internal structure.
1ds,,, and %;,, orbitals are added. Furthermore, also the At lower temperatures, the specific-heat curve deviates
3p3/2, 3pP1/2. 4512, and 1g;,, orbitals are taken into ac- from the curve forG=0 because pairing correlations de-
count. This leads to a many-body problem of 26 and 30
particles in 78 single-particle states. 20 " : ; : . ;

Because multiple shells are used, the model space of the
extended systems contains spurious excitations related tc
center-of-mass motion. Therefore, care has to be taken whel
relating high-temperature results to internal excitations of the
system. For the largest model spageéthout core, these
center-of-mass motions can be interpreted as thermal excitas
tions of the collective degrees of freedom. This picture 2
would be physically meaningful in the absence of a mean-.f
field potential. The fact that the mean-field potential is local-
ized in space breaks the translational invariance of the
model. Therefore, one cannot separate the center-of-mas
motion from the intrinsic excitations in a clean wggs]. A
consistent treatment of spurious states is a topic for further
research.

The results for the energy and the specific heat obtainec
using these model spaces are shown in Figs. 10-13. If the T [MeV]
value for the pairing interaction streng@ is n_ot changed, FIG. 12. Proton energ§, as a function of temperaturefor 6
then a system with a larger model space will have a |°Webrotons in the 1,,2Ps/,2P121f 5, shell (curve a, for 6 protons in
ground-state energy because the larger model space allows first extended model spateurve b, and for 26 protons in the
stronger pair correlations. In order to obtain a comparabl@econd extended model spacerve 9. The dashed line gives the
pairing energy, a reduced pairing interaction strengtlGof result for the second extended model without pairi@g=0). The
=16 MeV/56 is used for the extended model spaces. For thesults for the largest model space are shifted such that chraes
no-core system, the energy is shifted such that the ground:coincide at low temperature.

51 b ——
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FIG. 14. Neutron energf,, as a function of temperatufe for
systems with 8, 9, 10, and 11 neutrons in tHe,32ps,,2p4,51f5),
shell (G=20 MeV/56).

FIG. 13. Proton specific he&t, as a function of temperature
for 6 protons in the 1;,,2p3,,2p1/21fs5;, shell (curve g, for 6
protons in the first extended model spacerve b, and for 26

protons in the second extended model spaeeve 0. The dashed  fynction of temperature in Fig. 14. The proton internal en-

line gives the result for the second extended model without pairng gy is not shown because it is equal for all four systems and

(G=0). it is already given in Fig. 6. While at high temperature the
energy curves are equidistantly spaced, with an interval of

velop. By comparing the results for thi@ shell and the first about 9 MeV, there is a relative shift to lower energies for

extended model space, we see that evenfthehell is too the systems with eight and ten neutrons at low energy. This

small to describe the system at temperatuFesl.3 MeV. IS because the pairing correlations are stronger for the even

In order to compare with the results for the second extende8@ystems than for the odd systems at temperatures below 1

model space around temperatures of 1 MeV, the pairing inMeV. The shift in the energy for the system with ten neu-

teraction strengti® ought to be reduced somewhat more for trons can be quantified as

the latter model space. The vanishing of pair correlations E +E

with increasing temperature, starting froha=1 MeV, was AElO:”g—“ll_ 10» (24)

also observed in shell-model quantum Monte Carlo calcula- 2

. 54 . . . .

tlonsl for 26F'928 baged on more realistic |r'1t'era(':t|of&4]. with E, o, E, 10, andE,y; the neutron energies for the sys-
The interesting topic of proton-neutron pairinghh=Z nu-  tomg with nine, ten, and eleven valence neutrons, respec-
clei _[26] could not be addressed of course in our too scheﬁve|y_ The quantityAE;, is shown as a function of tempera-
matic model used at present. ture in Fig. 15. The ground-state energy shift was calculated

The schematic form of the interaction has a caveat: In th%nalogously to expressid@4), with the energies replaced by

larger model spaces, the pairing interaction scatters particlca\ds,e mass excesses given in R&f7]. A value of 1.776 MeV
into Woods-Saxon orbitals that extend into regions where the ' '

mean field vanisheghe orbitals beyond the core and tfpe 2 T - - - - - ' - '
shel). Because the pairing interaction introduces correlations 18 L Tl 1.776 MeV - j
in the angular coordinates but not in the radial coordinates, I}}
one might expect the ground-state wave function to extend er i 1
too far into space. A more realistic interaction would localize 14 i ! ]
the wave function more closely to the core. Our calculations _, 4, { i
show that these extended orbitals contribute only about 1%§
of the ground-state density. Therefore, we think that this has? 1T H
only a minor effect on the energylike observables we are'd os} .
interested in here. t
06 I _
D. Dependence on the number of particles 04 3 .
We studied systems with various numbers of neutrons in 02t t i , 1
the fp shell: 3iFexs, oFes, 2aF6s0 and 5gFes; are modeled R EETEET I

by considering eight, nine, ten, and eleven neutrons irf phe
valence shell, respectively. For the systems with 9 and 11
neutrons, the sign problem limits accurate calculations to F|G. 15. Neutron energy shilt E;, as a function of temperature
values ofT=0.25 MeV. Fortunately, this temperature is low T for systems with 10 neutrons in thef 4,2p3/,2p1/21fs/» shell
enough to get a good approximation of the ground state. ThgG=20 MeV/56). The dashed line indicates the experimental
neutron energyE, for the various systems is shown as avalue of the ground-state energy shift fFey,.

T [MeV]
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FIG. 16. Level densities for several model spaces. The ground- ¢y 17 | evel densities for the largest model space, with and

l§\7ithout the pairing interaction. The energy scale reflects the sum of
the single-particle energies as listed in Table | and the additional
binding energy stemming from the pairing interaction.

shifted Bethe formula was fitted to experimental data%&te (for
temperatures up to 19K).

is obtained. Our quantum Monte Carlo results approach this

value remarkab|y well at temperatures below 0.5 MeV. a better agreement with the backshifted Bethe formula at
energies between 5 and 20 M¢¥/.
E. Level densities Figure 17 compares the level density for the largest model

) ) o space with the level density for the mean-field Hamiltonian.
Because the internal energy is related to the derivative Of; the mean-field case, the level density can be calculated
the logarithm of the partition functiod; and becausé is exactly using a Monte Carlo method devised by qeS].

g::té_saplti%e rtézﬂﬁgorpr::ezfemg dle;/gl)\(/jgn:g%E)gisfe eiﬁ?gfrgatiowe performed such a calculation for the largest model space
about the level density. The partition function can be ob" order to compare it with the saddle-point approximation.

tained by numerical integration of the internal energy. ThenFor this largest model space, the saddle-point results follow

one should apply an inverse Laplace transformzZan Be- closely the exact level densiFy at high energies. A_t lower
cause of the statistical errors on the internal energies angn€r9ies: the exact level density shows a structure with many

hence PTZB; this is,.however, an iII—po_seq prt_)blem. A good peaks becaus_e of the d_iscrgte structure of the spectrum. In
approximation(at high enough energigss given by the the saddle-point approximations these peaks are absent. If

saddle-point approximation these peaks are smeared out with a width of 0.5 MeV, the
curve coincides with the saddle-point approximation even at
eBEZB excitation energies as low as 1 MeV. Thus the saddle-point

Q(E)ZW- (25  approximation gives a good “smoothed” estimate. In the

smaller model spaces the agreement is less good. Figure 17

Our quantum Monte Carlo method gives accurate results fop"©Ws that the residual interaction shifts level densities to
E and 872C. So the level density in the saddle-point ap- lower energies. This sh|f'_[ is largest at low energies because
proximation is easily obtained. Figure 16 shows the levethere the pairing correlations are strongest.

densities derived from the results shown in Figs. 10-13. The

results for the smallest model space only go up to excitation

energies of 25 MeV. They are in good agreement with the V. CONCLUSION

results for the first extended model space, up to energies of .
20 MeV. However, the results for the largest model space W€ conclude by stating that our quantum Monte Carlo
deviate from these, even at energies below 20 Mev. Thignethod offers a powerful tool for the study of the nuclear
indicates that it is important to consider also core excitationg@ifing model. We have put emphasis on the thermodynami-
when calculating level densities. Figure 16 also shows th&al properties. Occupation numbers and the pairing gap can
level-density curve from a backshifted Bethe formula citedP€ calculated too using this method. Main advantages over
in reference[6], with parametera=5.80 MeV ! and A other methods are that many-body correlations are taken into
=1.38 MeV. This parametrization was fitted to experimen-account exactly, particle numbers are constant, and finite
tal data[28] in order to reflect finite-temperature properties temperature results can be obtained. The major disadvantage
at temperatures between’18nd 13° K. Clearly, the level of the method is that spectroscopic information can be ob-
densities are shifted too much to lower energies by the retained only indirectly. Finally, we remark that our calcula-
sidual interaction we considered. Shell-model Monte Carldions indicate that pairing correlations are important only at
calculations with a more realistic interaction, but in a limited low temperaturgbelow 1 MeV) and at low excitation ener-
model spacéthe 1f;,,2p3/22p1/21F5/2109,2 Shel), result in  gies, though they do enhance the binding energy. A signal of
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