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Thermodynamical properties of a mean-field plus pairing model
and applications for the Fe nuclei

S. Rombouts,* K. Heyde,† and N. Jachowicz
Vakgroep Subatomaire en Stralingsfysica, Universiteit Gent, Proeftuinstraat 86, B-9000 Gent, Belgium

~Received 28 April 1998!

A mean-field plus pairing model for atomic nuclei in the Fe region was studied using a finite-temperature
quantum Monte Carlo method. We present results for thermodynamical quantities such as the internal energy
and the specific heat. These results give indications of a phase transition related to the pairing among nucleons,
around temperatures of 0.7 MeV. The influence of the residual interaction and of the size of the model space
on the nuclear level densities is discussed too.
@S0556-2813~98!01712-9#

PACS number~s!: 21.60.Ka, 21.10.Ma, 21.60.Cs, 27.40.1z
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I. INTRODUCTION

Quantum Monte Carlo methods offer an interesting w
to study fermionic many-body problems. Accurate calcu
tions of ground-state properties have been performed
light nuclei, using variational and diffusion quantum Mon
Carlo methods@1#. Also, for the nuclear shell model, Mont
Carlo methods are very useful@2#. They allow one to do
calculations in much larger model spaces than conventio
techniques based on diagonalization. Furthermore, they
very useful for the study of finite-temperature properties
atomic nuclei@3,4#. The same method can also be used a
starting point to calculate nuclear level densities@5,6#. We
have used a variant of this method to study thermodynam
properties of nuclei in the Fe region with a model based o
mean-field plus pairing Hamiltonian. At present, we are li
ited to this too simple model because our quantum Mo
Carlo method is still in a developing phase and because
are limited by our present computer facilities~a Dec Alpha-
station 255/300 MHz Workstation and a 200 MHz Pentiu
personal computer!. Even though, at present, our results
not conform to realistic Hamiltonians, they do say a lot ab
the general physical properties. It is a first step to go bey
the mean-field approximation. The present approach g
results about the possibility of a phase transition related
pairing correlations, the influence of the residual interact
on the level densities, and a number of general features o
nuclear many-body structure at finite temperature.

The combination of a mean-field potential and the pair

Hamiltonian leads to a HamiltonianĤ5Ĥmf1ĤP . Though
this Hamiltonian looks simple, it already leads to a comp
cated many-body problem. An often used technique to tac
this problem is the Bardeen-Cooper-Schrieffer~BCS! theory
@7#. It leads to equations that can be handled easily i
numerical way and it has a clear interpretation in terms
quasiparticles. The disadvantage is that it gives only an
proximate solution and leads to many-body states in wh
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the number of particles is not fixed. For some systems, e
solutions can be found@8#. A general, accurate solution fo
this many-body problem is even at present a topic of int
sive research@9,10#. We have found that our quantum Mon
Carlo method is a very useful method to study the grou
state and finite-temperature properties of the nuclear pai
Hamiltonian.

In Sec. II we introduce the mean-field plus pairing mod
that we used for our calculations. In Sec. III aspects of
quantum Monte Carlo method are given, with an empha
on the differences with related methods. In Sec. IV
present a number of results. The role of the pairin
interaction strength, the size of the model space, and
number of particles is discussed. An estimate is given for
level densities. The lines that connect the data points on
figures in this paper are meant to guide the eye. They do
correspond to analytical results or fitted curves, except
the pure mean-field results (G50). Error limits represent
95% confidence intervals. If no error limits are shown,
means that they are smaller than the markers of the
points, unless it is stated that no error limits were det
mined.

II. A MEAN-FIELD PLUS PAIRING MODEL
FOR THE Fe NUCLEI

For the mean-field potential, a Woods-Saxon poten
U(r ) is used@11#:

U~r !5Vc2V f~x!1S \

mpcD 2

Vs.o.~s• l!
1

r

d

dr
f ~xs.o.!, ~1!

where

Vc5H Ze2/r , r>Rc

@Ze2/2Rc#~32r 2/Rc
2!, r<Rc ,

~2!

Rc5r cA
1/3,

f ~x!5~11ex!21 with x5~r 2r 0A1/3!/a, ~3!

S \

mpcD 2

52.000 fm2. ~4!EI-
3295 ©1998 The American Physical Society
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3296 PRC 58S. ROMBOUTS, K. HEYDE, AND N. JACHOWICZ
HereA is the number of nucleons andZ the number of pro-
tons. The other parameters are taken as in@12#:

r 051.25 fm,

a50.65 fm,

V553.3127~A22Z!/A20.4Z/A1/3 MeV,

r so51.25 fm,

aso50.47 fm,

Vso57.5 MeV.

To calculate the mean field and its eigenfunctions, we use
parameters for the nucleus26

56
Fe30 . This mean field is used fo

all nuclei in this particular mass region. For every set
quantum numbersl and j , the Woods-Saxon potential is d
agonalized in a basis of the lowest 60 harmonic-oscilla
eigenfunctions with the appropriate symmetry. In this w
the single-particle eigenstates and their energies listed
Table I are obtained. Also, a number of unbound states~with
energyE.0) are obtained. In fact, the Woods-Saxon pote
tial exhibits a continuum of unbound eigenstates. Due to
expansion in a finite number of basis functions, discrete
bound energy levels are obtained. These can be seen
discrete approximation to the continuum of unbound sta
The 1s1/2 , 1p3/2 , 1p1/2 , 1d5/2 , 1d3/2 , and 2s1/2 orbitals
are considered to be completely filled. They form an in
core for the many-body problem. The 1f 7/2 , 2p3/2 , 2p1/2 ,
and 1f 5/2 orbitals constitute the valence shell.

A simple Hamiltonian that accounts for the short-ran
correlations induced by the residual interaction is the nuc
pairing HamiltonianĤP @7#, which takes the form

TABLE I. Single-particle eigenstates of the Woods-Saxon p
tential with the parameters as described in Sec. II.

Single-particle energies~MeV!

Orbital Protons Neutrons

1s1/2 234.7106 242.0333
1p3/2 225.3351 232.2120
1p1/2 224.0715 231.1979
1d5/2 215.0034 221.5607
1d3/2 212.7911 219.6359
2s1/2 212.3511 219.1840
1 f 7/2 24.1205 210.4576
2p3/2 22.0360 28.4804
2p1/2 21.2334 27.6512
1 f 5/2 21.2159 27.7025
3s1/2 4.7316 20.3861
2d5/2 5.6562 0.2225
2d3/2 6.1324 0.9907
1g9/2 6.6572 0.5631
3p3/2 6.6663 2.5931
3p1/2 6.7469 2.6915
4s1/2 8.9016 4.4706
1g7/2 9.1386 3.5488
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t5p,n

Gt (
k,k8.0

âk8t
† â

k8 t̄

†
âkt̄âkt , ~5!

where the operatorsâkt
† create a particle in the correspondin

single-particle eigenstates of the mean-field Hamiltonian
the valence shell. The indext indicates proton or neutron
states andk̄ is the time-reversed state of the statek. The
notation k,k8.0 denotes that the summation fork and k8
should run over states with angular momentum project
j z.0 only. The interaction strengthGt depends on the
model space and the system under study. For the streng
the pairing interaction we takeG520 MeV/56, following
the suggestion of Bes and Sorensen@13# to take G
520 MeV/nucleon. The same strength is used for proto
neutrons, and all nuclei in the Fe mass region.

III. THE QUANTUM MONTE CARLO METHOD

The method we used to study the model is based on
shell-model quantum Monte Carlo method. The basic idea
this method is well explained in Ref.@2#. It amounts to a
decomposition of the Boltzmann operatore2bĤ in a sum of
exponentials of one-body operators

e2bĤ5(
s

e2ĥb,s. ~6!

Because of their one-body nature, the termse2ĥb,s can be
handled easily using small matrices, with a dimension eq
to the number of single-particle states considered in
model space. The canonical or grand canonical trace
e2ĥb,s can be calculated with simple algebraic operations
these matrices. The sum over theauxiliary field s is then
evaluated using Monte Carlo techniques~in casu the
Metropolis algorithm@14#!.

In our approach, a number of technical aspects are im
mented differently from Ref.@2#. The main differences are
the following.

~i! In order to arrive at a decomposition of the form~6!,
we use the Suzuki-Trotter formula@15# to separate the one
and two-body parts of the Hamiltonian in the exponen
This reduces the leading systematic error term to or
b3/Nt

2 , with Nt the number of inverse-temperature slice
Following the prescriptions from Ref.@2#, the leading sys-
tematic error term would be of orderb2/Nt .

~ii ! In order to decompose the exponential of the tw
body part of the Hamiltonian, we use the discrete Hubba
Stratonovich transform, described in@16#. Compared to the
Hubbard-Stratonovich transform described in@2,17,18#, it
has the advantage that it leads to faster matrix operations
to smaller systematic errors. Because of these fast ma
operations, we could use a large number of inver
temperature slices in order to reduce the systematic er
~typically Nt520b for the f p model space andNt540b for
the extended model spaces!.

~iii ! In order to evaluate the canonical trace ofe2ĥb,s, we
use the fast and efficient algorithm described in Ref.@19#
instead of the number projection technique described
@2,20#.

-
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PRC 58 3297THERMODYNAMICAL PROPERTIES OF A MEAN-FIELD . . .
~iv! The trial steps for the Metropolis algorithm for th
sampling of the discrete auxiliary fieldss are generated in
the following way. A series ofM consecutive inverse
2temperature intervals are chosen randomly to be upda
Because of the permutation properties of the canonical tr
we can always shift these inverse-temperature intervals to
end of the decomposition. The matrix representationUs of
the operatore2bĥs is calculated up to the (Nt2M )th
inverse-temperature slice and stored in computer memor
numberm between 1 and a maximum number is drawn. Th
in the lastM slicesm auxiliary fields are drawn. These ar
then changed randomly. The matrixUs8 for the altered con-
figurations8 is constructed out of the stored part ofUs . The
canonical trace ofUs8 is evaluated. Then the configurations
is accepted or rejected according to the Metropolis algorit
@14#. This procedure is repeated a number of times~typically
seven times! before a new series ofM slices is selected. So
complete Markov step consists of seven local updates. T
cal values areM580 ~or M5Nt for Nt,80) and 1,m
,160. This scheme allows one to update a large numbe
auxiliary fields simultaneously while requiring onlyM ma-
trix multiplications per update~counting the contribution of
one inverse-temperature slice as one matrix!. Only after a
complete Markov step do all theNt matrices in the decom
position have to be multiplied.

~v! Observables are evaluated after every five comp
Markov steps. The values are not yet fully decorrelated
this rate~e.g., autocorrelations between 30% and 60%
tween consecutive values for the energy!, leaving a larger
interval would not improve the performance because alre
at this rate the most time-consuming part is the construc
of the trial configurations for the Markov chain. The value
an observableÂ at inverse temperatureb51/kT is calcu-
lated as

^Â&b5
TrN~Âe2bĤ!

TrN~e2bĤ!
~7!

5

d

de
TrN~e2bĤ1eÂ!ue50

TrN~e2bĤ!
~8!

5Ew~A!, ~9!

with

Ew~A!5

(
s

Asws

(
s8

ws8

, ~10!

As5
d

de
ln@TrN~eĥb,s,e!#ue50 , ~11!

ws5TrN~eĥb,s!. ~12!

Here TrN denotes the canonical trace, i.e., the trace over
N-particle states. The mathematical properties of the tr
operator are crucial in going from expression~7! to expres-
d.
e,
he
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sion ~8!. The one-body operator resulting from the decomp
sition ~6!, with 2bĤ replaced by2bĤ1eÂ, is denoted by
ĥb,s,e . For the energy (Â5Ĥ), this can easily be imple-
mented asĥb,s,e5ĥb2e,s . The derivatives are evaluated a

d

de
f ~e!ue50.

f ~e0!2 f ~2e0!

2e0
, ~13!

with e0 a small but finite number~typically e051/2048).
This way of evaluating observables requires many ma
manipulations because the complete matrixUs has to be
recalculated from scratch forĥb,s,e0

andĥb,s,2e0
. However,

because most of the computing time goes to the construc
of the trial moves, this has little impact on the overall pe
formance. Furthermore, this way of evaluating the obse
ables leads to small statistical errors because it amounts t
insertion of the operatorÂ at each inverse-temperature inte
val, whereas the procedure described in@2# is based on the
insertion of Â only at the first interval. A special remar
concerns the evaluation of the specific heatC. This quantity
cannot be calculated as the expectation value of an obs
able. We evaluateC after the Monte Carlo run as

C5b2@Ew~E2!2Ew~E!2#, ~14!

with

Es52
d

db
ln@TrN~eĥb,s!#,

E2s5
d2

~db!2
ln@TrN~eĥb,s!#1Es

2 .

The observableE2 corresponds to the square of the Ham
tonian

Ew~E2!5TrN~Ĥ2e2bĤ!/TrN~e2bĤ!. ~15!

~vi! Just like any other quantum Monte Carlo method
fermions@21,22#, this method suffers from a sign problem
low temperatures. The value of the weightsws can become
negative. This poses a problem for the Metropolis algorit
because it requires thatws can be interpreted as a probabili
density. The Metropolis algorithm can still be used by app
ing it to the absolute valueuwsu. Then we have to treat the
sign ss of ws as an observable. Expression~9! becomes:

^Â&b5

(
s

Asssuwsu

(
s8

ssuws8u
5
Euwu~As!

Euwu~s!
. ~16!

The problem is that the statistical error on this express
scales as 1/Euwu(s) ~see below!. Now, for an even number o
protons and an even number of neutrons, one can explo
symmetry between states withj z.0 and states withj z,0.
This symmetry guarantees thatEuwu(s) is close to 1 even a
low temperature@16#. In Ref. @2# it was claimed that the
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3298 PRC 58S. ROMBOUTS, K. HEYDE, AND N. JACHOWICZ
canonical trace should be exactly equal to one for even
ticle numbers with interactions that lead to matrix repres
tations of the form

Us5S P Q

2Q* P* D , ~17!

as is the case with a pure pairing force or a pairing-pl
quadrupole force. This is not exactly true, however, as can
seen from the following counterexample. LetUs be a 434
matrix andP andQ 232 matrices, withQ50 and

P5S e 0

0 2e D , ~18!

wheree is a real number. Then the grand canonical trace
given by

Trm~Ûs!5~12e2e2bm!25122e2e2bm1e4e4bm, ~19!

which is positive definite for any value of the chemical p
tential m. The canonical two-particle trace is given by th
coefficient ofe2bm:

Tr2~Ûs!522e2, ~20!

which is negative. The average sign for some of the syst
we studied is shown in Fig. 1 as a function of the inve
temperatureb. The sign for the even particle numbers sho
a dip aroundb52 MeV21. This is caused by the fact tha
for a fraction of theUs the canonical trace becomes neg
tive, like in the above example. However, the symmetry
tween j z.0 states andj z,0 states guarantees that the co
tribution to the trace of the ‘‘fully accompanied’’ states,
the sense defined in Ref.@9#, will always be positive. These
states dominate the low temperature trace for even-even
clei. Therefore, the sign tends to one again at low temp
tures. For odd particle numbers,Euwu(s) tends to zero at low
temperatures. So there the statistical errors explode. We
that even for odd nuclei we can do calculations atb
54 MeV21, which is enough to cool the system almo

FIG. 1. Average signs̄ as a function of inverse temperatureb
for 8, 9, 10, and 11 neutrons in the 1f 7/22p3/22p1/21 f 5/2 shell. G
520 MeV/56.
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completely to its ground state. For the model studied he
the average sign posed no problems. However, for m
complicated Hamiltonians, one probably will have to fa
back on extrapolation techniques such as the ones desc
in Refs.@2# and@23# in order to overcome the sign problem

~vii ! Because the Metropolis algorithm leads to corre
tions among successive values for the observables, care
to be taken to establish accurate error limits. In order to
rid of the correlations, 50 independent Markov chains are
for each calculation. These Markov chains typically cons
of some 600 thermalization steps and 3000 sampling st
with an evaluation of observables every fifth step. So
chains are rather short, but long enough to make sure tha
computing time is not dominated by the thermalization ste
This leads to 50 independent estimatesA1 , . . . ,A50 for the
quantity ^Â&b . To obtain the final estimate, we take th
weighted average of these values, with the average s
s1 , . . . ,s50 as weights. So we obtain an estimateĀ for

^Â&b :

Ā5
( iAisi

( j sj
. ~21!

If the Ai and si are obtained with enough precision, then
good estimate for the statistical error on 21 can be obtai
from the expression@24#

var~x/y!5$var~x!22E~x/y!cov~x,y!

1E2~x/y!var~y!%/E2~y! ~22!

(var and cov denote the variance and covariance!. Taking x

5As andy5s leads to an estimate for the variance onĀ

var~Ā!.
( i~Ai2Ā!2si

2

~ ( j sj!2
. ~23!

Under the assumption thatĀ is almost normally distributed
which is a good approximation becauseĀ is a weighted av-
erage of 50 independent values, this expression allows u

determine a 95% confidence interval@Ā22Avar(Ā),Ā

12Avar(Ā)] for ^Â&b . Expression~23! also demonstrates
that the statistical error is inversely proportional to the av
age signEuwu(s).

IV. RESULTS

A. Proton and neutron contributions

Some thermodynamical properties of the pairing mo
for 26

56
Fe30were studied using the quantum Monte Ca

method presented in Sec. III. Because the proton and neu
systems are not coupled to one another, separate result
both particle types are obtained. The internal energy of
total system and the contributions of the proton and neut
subsystems are shown as a function of temperature in Fi
The same is done for the specific heat in Fig. 3. The neutr
contribute more to the internal energy than the protons
because there are more valence neutrons than valence
tons. This also leads to a slightly stronger peak in
specific-heat curve for neutrons than for protons. Qual
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tively, there is no big difference between the thermodyna
cal properties of both subsystems. This is not the cas
lower values of the interaction strengthG.

B. Dependence on the pairing interaction strength G

We have studied the pairing model for26
56

Fe30 for several
values of the pairing interaction strength. Calculations w
performed for 10 neutrons in a shell with 20 valence sta
(1 f 7/2 , 2p3/2 , 2p1/2 and 1f 5/2 orbitals! and for 6 protons in
the same shell.

The neutron energy as a function of temperature is sho
in Fig. 4. The energy scale is chosen such that the inert
has zero energy. The fact that the energy does not g
much higher values as the temperature increases is due t
limited size of the model space: Not enough high-lying sta
are included. As we shall discuss later on, the results foT
>1.5 MeV are not physical any longer. For larger values
G, the system is more strongly bound. Furthermore, wh

FIG. 2. Internal energyE as a function of temperatureT for 6
protons and 10 neutrons in the 1f 7/12p3/22p1/21 f 5/2 shell. G
520 MeV/56. The energy scale is adapted such that the total,
ton, and neutron internal energies all tend to 0 at low temperat

FIG. 3. Specific heatC as a function of temperatureT for 6
protons and 10 neutrons in the 1f 7/22p3/22p1/21 f 5/2 shell. G
520 MeV/56.
i-
at

e
s

n
re
to
the
s

f
n

raising the temperature, the system stays in its ground s
longer than for smaller values ofG. This indicates that there
is an energy gap between the ground state and the first
cited state proportional toG, as is expected from BCS theor
@7#. The neutron specific heat, as a function of temperatu
is shown in Fig. 5. With increasing strengthG, the peak in
the specific-heat curve shifts to a slightly higher temperat
and becomes more pronounced. In general, peaks in the
cific heat can be interpreted as signs of a phase transi
We see here that the pairing correlations, forG
>20 MeV/56, seem to induce a phase transition in the s
tem.

Analogous calculations were done for protons. The pro
energy as a function of temperature is shown in Fig. 6. T
proton specific heat is shown as a function of temperatur
Fig. 7. The same discussion as for the neutron results ap
here. There is, however, a striking difference in the speci
heat curve for low values ofG: A second peak develop
aroundT50.2 MeV for G510 MeV/56. At this value of

o-
e.

FIG. 4. Neutron energyEn as a function of temperatureT for 10
neutrons in the 1f 7/22p3/22p1/21 f 5/2 shell for various values of the
pairing strengthG.

FIG. 5. Neutron specific heatCn as a function of temperatureT
for 10 neutrons in the 1f 7/22p3/22p1/21 f 5/2 shell for various values
of the pairing strengthG.



e
e
te

es

lop

-

r
e
ll

ch

tw

ense
-
ns

its

3.
or-

h to
.

of

an
ar-

tor

re
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the pairing strength, the broad peak in the specific-h
curve, aroundT50.8 MeV, coincides with the peak in th
specific-heat curve for a pure mean field. This peak is rela
to the condensation of the valence particles in the low
energy levels of the valence shell~the 1f 7/2 orbital!. The
smaller is entirely due to pair correlations that deve
among the six particles in the 1f 7/2 orbital. In Fig. 8 the
expectation value of the pairing interaction operatorĤP is
shown as a function of the temperatureT. While the system
with G520 MeV/56 reaches full pairing strength at tem
peraturesT<0.4 MeV, the system withG510 MeV/56
comes to this regime only at values ofT<0.2 MeV. In Fig.
9 the number of particles in the 1f 7/2 orbital and the numbe
of particles in the other orbitals are shown. For the syst
with G510 MeV/56, it is observed that approximately a
six particles occupy states in the 1f 7/2 orbital for values of
T<0.45 MeV. The fact that the pairing correlations rea
their maximum for this system only at values ofT
<0.2 MeV means that the system passes through

FIG. 6. Proton energyEp as a function of temperatureT for 6
protons in the 1f 7/22p3/22p1/21 f 5/2 shell for various values of the
pairing strengthG.

FIG. 7. Proton specific heatCp as a function of temperatureT
for 6 protons in the 1f 7/22p3/22p1/21 f 5/2 shell for various values of
the pairing strengthG.
at

d
t-

m

o

phases as it is cooled: First, the six valence protons cond
into the 1f 7/2 orbital. At T.0.45 MeV, this stage is com
pleted. If the temperature is lowered further, pair correlatio
among these particles can develop. At values ofT
<0.2 MeV the system is almost completely cooled to
ground state. For the system withG520 MeV/56, the occu-
pation of the 1f 7/2 orbital reaches a maximum of about 5.
The particles always remain spread over all the valence
bitals because now the pairing interaction is strong enoug
scatter them out of the 1f 7/2 orbital, even in the ground state

C. Dependence on the size of the model space

For the description of the high-temperature properties
the system, the model space given by thef p shell is too
small. At temperatures of a few MeV, valence particles c
be excited to higher-lying single-particle states or core p

FIG. 8. Expectation value of the pairing-interaction opera

^Ĥ2& as a function of temperatureT for pairing strengthG
510 MeV/56 and G520 MeV/56 and 6 protons in the
1 f 7/22p3/22p1/21 f 5/2 shell. No error limits were determined.

FIG. 9. Number particles in the 1f 7
2

orbital ~full line! and in the
other orbitals~dotted line! as a function of the inverse temperatu
b for 6 protons in the 1f 7/22p3/22p1/21 f 5/2 shell. No error limits
were determined.
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PRC 58 3301THERMODYNAMICAL PROPERTIES OF A MEAN-FIELD . . .
ticles can be excited into the valence orbitals or high
energy states. In order to know up to what temperatures
results that we obtained in thef p shell are valid, we per-
formed a number of calculations in larger model spac
First, the 3s1/2 , 2d5/2 , 2d3/2, and 1g9/2 orbitals are added
to the single-particle space. This leads to a many-body p
lem of 6 and 10 particles in 42 single-particle states. In
second extended model the core states are considered a
lence states too. Therefore the 1s1/2 , 1p3/2 , 1p1/2 , 1d5/2 ,
1d3/2 , and 2s1/2 orbitals are added. Furthermore, also t
3p3/2 , 3p1/2 , 4s1/2, and 1g7/2 orbitals are taken into ac
count. This leads to a many-body problem of 26 and
particles in 78 single-particle states.

Because multiple shells are used, the model space o
extended systems contains spurious excitations relate
center-of-mass motion. Therefore, care has to be taken w
relating high-temperature results to internal excitations of
system. For the largest model space~without core!, these
center-of-mass motions can be interpreted as thermal ex
tions of the collective degrees of freedom. This pictu
would be physically meaningful in the absence of a me
field potential. The fact that the mean-field potential is loc
ized in space breaks the translational invariance of
model. Therefore, one cannot separate the center-of-m
motion from the intrinsic excitations in a clean way@25#. A
consistent treatment of spurious states is a topic for fur
research.

The results for the energy and the specific heat obtai
using these model spaces are shown in Figs. 10–13. If
value for the pairing interaction strengthG is not changed,
then a system with a larger model space will have a low
ground-state energy because the larger model space a
stronger pair correlations. In order to obtain a compara
pairing energy, a reduced pairing interaction strength oG
516 MeV/56 is used for the extended model spaces. For
no-core system, the energy is shifted such that the grou

FIG. 10. Neutron energyEn as a function of temperatureT for
10 neutrons in the 1f 7/22p3/22p1/21 f 5/2 shell ~curve a!, for 10 neu-
trons in the first extended model space~curve b! and for 30 neutrons
in the second extended model space~curve c!. The dashed line
gives the result for the second extended model space without
ing (G50). The results for the largest model space are shifted s
that curvesb andc coincide at low temperature.
-
he

s.

b-
a
va-

0

he
to
en
e

ta-

-
-
e
ss

er

d
he

r
ws
le

e
d-

state energy coincides with the ground-state energy of thef p
shell system.

In the largest model space, at high temperaturesT
>2 MeV), the specific-heat curve coincides with th
specific-heat curve forG50. In this temperature region, th
proton and neutron energy are some 5 MeV lower than in
G50 case. Apart from this shift, the energy curves are si
lar to theG50 case. This indicates that, at high tempe
tures, the pairing Hamiltonian enhances the binding ene
but has no effect on the internal structure.

At lower temperatures, the specific-heat curve devia
from the curve forG50 because pairing correlations d

ir-
ch

FIG. 11. Neutron specific heatCn as a function of temperatureT
for 10 neutrons in the 1f 7/22p3/22p1/21 f 5/2 shell ~curve a!, for 10
neutrons in the first extended model space~curve b!, and for 30
neutrons in the second extended model space~curve c!. The dashed
line gives the result for the second extended model without pai
(G50).

FIG. 12. Proton energyEp as a function of temperatureT for 6
protons in the 1f 7/22p3/22p1/21 f 5/2 shell ~curve a!, for 6 protons in
the first extended model space~curve b!, and for 26 protons in the
second extended model space~curve c!. The dashed line gives the
result for the second extended model without pairing (G50). The
results for the largest model space are shifted such that curvesb and
c coincide at low temperature.
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velop. By comparing the results for thef p shell and the first
extended model space, we see that even thef p shell is too
small to describe the system at temperaturesT>1.3 MeV.
In order to compare with the results for the second exten
model space around temperatures of 1 MeV, the pairing
teraction strengthG ought to be reduced somewhat more f
the latter model space. The vanishing of pair correlatio
with increasing temperature, starting fromT.1 MeV, was
also observed in shell-model quantum Monte Carlo calcu
tions for 26

54Fe28 based on more realistic interactions@3,4#.
The interesting topic of proton-neutron pairing inN5Z nu-
clei @26# could not be addressed of course in our too sc
matic model used at present.

The schematic form of the interaction has a caveat: In
larger model spaces, the pairing interaction scatters part
into Woods-Saxon orbitals that extend into regions where
mean field vanishes~the orbitals beyond the core and thefp
shell!. Because the pairing interaction introduces correlati
in the angular coordinates but not in the radial coordina
one might expect the ground-state wave function to ext
too far into space. A more realistic interaction would locali
the wave function more closely to the core. Our calculatio
show that these extended orbitals contribute only about
of the ground-state density. Therefore, we think that this
only a minor effect on the energylike observables we
interested in here.

D. Dependence on the number of particles

We studied systems with various numbers of neutron
the f p shell: 26

54Fe28, 26
55Fe29, 26

56Fe30, and 26
57Fe31 are modeled

by considering eight, nine, ten, and eleven neutrons in thef p
valence shell, respectively. For the systems with 9 and
neutrons, the sign problem limits accurate calculations
values ofT>0.25 MeV. Fortunately, this temperature is lo
enough to get a good approximation of the ground state.
neutron energyEn for the various systems is shown as

FIG. 13. Proton specific heatCp as a function of temperatureT
for 6 protons in the 1f 7/22p3/22p1/21 f 5/2 shell ~curve a!, for 6
protons in the first extended model space~curve b!, and for 26
protons in the second extended model space~curve c!. The dashed
line gives the result for the second extended model without pai
(G50).
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function of temperature in Fig. 14. The proton internal e
ergy is not shown because it is equal for all four systems
it is already given in Fig. 6. While at high temperature t
energy curves are equidistantly spaced, with an interva
about 9 MeV, there is a relative shift to lower energies
the systems with eight and ten neutrons at low energy. T
is because the pairing correlations are stronger for the e
systems than for the odd systems at temperatures belo
MeV. The shift in the energy for the system with ten ne
trons can be quantified as

DE105
En91En11

2
2En10, ~24!

with En9, En10, and En11 the neutron energies for the sy
tems with nine, ten, and eleven valence neutrons, res
tively. The quantityDE10 is shown as a function of tempera
ture in Fig. 15. The ground-state energy shift was calcula
analogously to expression~24!, with the energies replaced b
the mass excesses given in Ref.@27#. A value of 1.776 MeV

g

FIG. 14. Neutron energyEn as a function of temperatureT for
systems with 8, 9, 10, and 11 neutrons in the 1f 7/22p3/22p1/21 f 5/2

shell (G520 MeV/56).

FIG. 15. Neutron energy shiftDE10 as a function of temperature
T for systems with 10 neutrons in the 1f 7/22p3/22p1/21 f 5/2 shell
(G520 MeV/56). The dashed line indicates the experimen
value of the ground-state energy shift for26

56Fe30.
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is obtained. Our quantum Monte Carlo results approach
value remarkably well at temperatures below 0.5 MeV.

E. Level densities

Because the internal energy is related to the derivative
the logarithm of the partition functionZb and becauseZb is
the Laplace transform of the level densityg(E) of excited
states, the results presented above also give informa
about the level density. The partition function can be o
tained by numerical integration of the internal energy. Th
one should apply an inverse Laplace transform onZb . Be-
cause of the statistical errors on the internal energies
hence onZb , this is, however, an ill-posed problem. A goo
approximation~at high enough energies! is given by the
saddle-point approximation

g~E!5
ebEZb

A2p~b22C!
. ~25!

Our quantum Monte Carlo method gives accurate results
E and b22C. So the level density in the saddle-point a
proximation is easily obtained. Figure 16 shows the le
densities derived from the results shown in Figs. 10–13.
results for the smallest model space only go up to excita
energies of 25 MeV. They are in good agreement with
results for the first extended model space, up to energie
20 MeV. However, the results for the largest model sp
deviate from these, even at energies below 20 MeV. T
indicates that it is important to consider also core excitati
when calculating level densities. Figure 16 also shows
level-density curve from a backshifted Bethe formula cit
in reference@6#, with parametersa55.80 MeV21 and D
51.38 MeV. This parametrization was fitted to experime
tal data@28# in order to reflect finite-temperature properti
at temperatures between 107 and 1010 K. Clearly, the level
densities are shifted too much to lower energies by the
sidual interaction we considered. Shell-model Monte Ca
calculations with a more realistic interaction, but in a limit
model space~the 1f 7/22p3/22p1/21 f 5/21g9/2 shell!, result in

FIG. 16. Level densities for several model spaces. The grou
state energy in each model space was shifted to 0 MeV. The b
shifted Bethe formula was fitted to experimental data for56Fe ~for
temperatures up to 1010 K!.
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a better agreement with the backshifted Bethe formula
energies between 5 and 20 MeV@6#.

Figure 17 compares the level density for the largest mo
space with the level density for the mean-field Hamiltonia
For the mean-field case, the level density can be calcula
exactly using a Monte Carlo method devised by Cerf@29#.
We performed such a calculation for the largest model sp
in order to compare it with the saddle-point approximatio
For this largest model space, the saddle-point results fol
closely the exact level density at high energies. At low
energies, the exact level density shows a structure with m
peaks because of the discrete structure of the spectrum
the saddle-point approximations these peaks are absen
these peaks are smeared out with a width of 0.5 MeV,
curve coincides with the saddle-point approximation even
excitation energies as low as 1 MeV. Thus the saddle-p
approximation gives a good ‘‘smoothed’’ estimate. In t
smaller model spaces the agreement is less good. Figur
shows that the residual interaction shifts level densities
lower energies. This shift is largest at low energies beca
there the pairing correlations are strongest.

V. CONCLUSION

We conclude by stating that our quantum Monte Ca
method offers a powerful tool for the study of the nucle
pairing model. We have put emphasis on the thermodyna
cal properties. Occupation numbers and the pairing gap
be calculated too using this method. Main advantages o
other methods are that many-body correlations are taken
account exactly, particle numbers are constant, and fi
temperature results can be obtained. The major disadvan
of the method is that spectroscopic information can be
tained only indirectly. Finally, we remark that our calcul
tions indicate that pairing correlations are important only
low temperature~below 1 MeV! and at low excitation ener
gies, though they do enhance the binding energy. A signa

d-
k-

FIG. 17. Level densities for the largest model space, with a
without the pairing interaction. The energy scale reflects the sum
the single-particle energies as listed in Table I and the additio
binding energy stemming from the pairing interaction.
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a phase transition related to pairing is found at temperat
around 0.7 MeV. The pairing interaction also shifts the le
density towards lower energies. Furthermore, our res
show that it is necessary to work in very large model spac
which also include core excitations, if one wants to calcul
accurate level densities. The work presented here consti
a part of@30#.
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