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Odd-even differences in moments of inertia
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Blocking effect and the effect of the Coriolis interaction are studied as the causes of the odd-even difference
in the moments of inertia. The cranking formula is used to calculate the moments of inertia and the pairing
Hamiltonian is diagonalized to obtain the state vectors and their energies that are necessary to calculate the
moments of inertia. The moment of inertia is divided into two parts. Onelpgart, comes from a part of the
angular momentum operator that changes the seniority by 2. This part is the contribution from the even core in
the odd-particle system and the blocking effect emerges in this part. The othdr pagtcomes from that
which does not change the seniority. This part corresponds to the contribution of the Coriolis interaction to the
moment of inertia. Calculations are made for systems With95—101. Three typical examples are analyzed.
The first example shows the importance lgf -, the second example shows that the moment of inertia
becomes an increasing function @f the strength of the pairing interaction, because of the predominance of
I ap=0, @nd the third example shows the situation whieye_, is negligibly small. It is also shown that the
blocking of a special level by the last odd particle brings about the smaller valug fop relative to the
moment of inertia for the neighboring even-particle systE80556-2818)01412-5

PACS numbd(s): 21.60.Ev

[. INTRODUCTION odd-even difference in moments of inertia. Along this line,
Zenget al. [7] studied the odd-even differences in moments
The recent discovery of identical bands has received af inertia with their particle number conserviiBNC) treat-
great deal of attentiofil]. The identical bands were first ment of the pairing interaction, have shown that the experi-
found among two superdeformed bari@ and soon after mental large fluctuations in the odd-even differences in mo-
the same phenomenon was found also in the normally dements of inertia could be reproduced satisfactorily by their
formed region3-5]. The appearance of the identical bandsPNC treatment, and pointed out that the proper treatment of
is therefore not the special phenomenon for the superdehe blocking effect is essential in reproducing the odd-even
formed region but the phenomenon observed in a wide rangdifferences in the moment of inertia. In their study, however,
of mass numbers and of excitation. the two origins of the odd-even differences in moments of
This phenomenon was particularly surprising because iinertia mentioned above are mixed together and we cannot
has been believed that the moments of inertia for Addi+-  see if the difference really came from the blocking effect.
clei are systematically larger than those for the neighboring As concerns the latter systematic effect, Hamamoto and
even-even nuclei. As summarized by Bohr and MottelsorlJdagawd 8] studied the Cariolis force effect on the last odd
[6], odd-even differences in moments of inertia are thoughparticle and its contribution on the rotational parameters.
to result for two reasons. The first one arises from the paiiThey calculated the moments of inertia for ofldAuclei
correlations, i.e., the presence of the odd particle leads to based on the cranking model and showed that the Coriolis
reduction of the pairing energy gap and hence increases coupling played an essential role in the reproduction of the
the moments of inertia. This gives the systematic increasesharacteristic orbital dependence of the largeness of the mo-
of moments of inertia in odé: nuclei. The additional in- ments of inertia for oddk nuclei. However, their calculation
crease in moments of inertia arises from the second-ordewas based on the BCS approximation and the blocking effect
effect of the Coriolis coupling between one-quasiparticlewas not taken into account.
states. These two effects that cause the odd-even differences in
The former systematic effect is the blocking effect of themoments of inertia have different origins and characters. The
last odd particle. Their discussion was made based on thiglocking effect emerges as the increase in moments of inertia
BCS theory, where the moment of inertia was thought to bef the even core in odd-particle system and is considered to
a function ofA. Strictly speaking, however, in order to take give a systematic increase in moments of inertia by about
the blocking effect into account, we have to introduce differ-15%. The effect of the Coriolis coupling on the moments of
ent quasiparticle bases for each blocked level and hence difrertia, on the other hand, comes from the coupling of two
ferentA for each blocked level. Consequently, we encountenear-lying bands witMK=1 and is considered to give the
a crucial difficulty in the calculation of the matrix elements large fluctuation in the odd-even differences according to the
between different quasiparticle bases. Therefore, it is desilevel that the last odd particle occupies. The main motive of
able to treat the pairing interaction in such a way that thehe present study is to investigate the interweaving of these
blocking effect can be treated properly in the study of thetwo origins of the odd-even difference in moments of inertia
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separately and to see their contributions in each configurawhere e, denotes Nilsson’s single-particle energy aBds
tion. the strength of the pairing interaction. This Hamiltonian is
rewritten in terms o', S, a', anda as

Il. FORMULATIONS H=Hg+H,, (5a)

A. Cranking formula

In the present analysis we deal with a simple system tha\{\lher
has an axially symmetric deformation. This system is sup- + +
posed to rotate around theaxis, which is perpendicular to Hszz 2€,5,S,~ G SuSy (Sb)
the symmetry axis of the nuclear deformation. The moment g o
of inertia for the ground state of this system is given by thegng
well known formula[9]

2 a= 5¢
i~y Kexblont, a Ha= 2 €858, (50
Eex Egr
As the seniority of the ground state of our systenvis
where =1 and the operatod, changes the seniority up to 2, the
states we have to take into account are those wittl and
v=3. Suppose we are dealing with theN2 1)-particle

:;‘V (JX)MV(C;Z*CV* Cp—Cpu-)- (1b) system. The eigenstate of the Hamiltoni&a) with v=1 is
written as
In Eq. (1a), |gr) and|ex) are the ground and excited states
with energiest,, andE,,, respectively. The symbolj{) ,, lv=1[a];m)=a], 2 V(i) |Ni[a]), (63)

in Eq. (1b) stands for the matrix element of thecomponent
of the angular momentum with respect to the single-particle > h

statesuo andvo. (0= * represents the signature. ere
For the convenience of later discussion, we rewrite the . ot of +
creation operator of a nucleon in terms of the pair operator |N"[a]>_SV18V2' ' 'SVN|O> (6b)
S'=c!,c!_and the unpaired nucleon operat}, =c’ (1 and
~cl-c,) as[10]
i={vq,vy, ... . Wn}- (60

T —a +oSTa - (2)
HereV,(«;i) are the eigenvectors obtained by the diagonal-
The substitution of Eq(2) into Eq. (1b) leads us to the ization of H and the energy eigenvalue of this state is de-

expression noted asEy, 4 - In this expression, the unpaired nucleon is
considered to occupy the levelr. As this level is occupied

J,=35+38, (38 by this unpaired nucleon, we remove this level from the

model space when we diagonalize the pairing Hamiltonian
where (5b). The symbokx in the argument oY/, and[ «] in the ket

vector in Eq.(6a) are used to show this removed level. The
_ . _— symboli stands for the possible combination of the occupied
_;) (Jx)uv; o(a),,2,,+ Sl2},2,,5,)  (3D) single-particle levels by th& nucleon pairs andn is the
' energetic order of the states obtained by the diagonalization
and of Eg. (58 and the lowest state is denoted by=0. The
ground state of our system is written as

_ ; t
,u,;o’ (JX)MV(aM(TaVO.S +S no V(T)- (3C) |U:1[ag];0>:algogzi Vo(ag,|)|N,I[ag]>, (7)

Hereinafter we call the number of unpaired nucleons the se€ihere . is the level that is occupied by the unpaired
niority v. It is obvious from this expression that the operator, ,cjeon in the ground state. In the same way, the eigenstate
J, consists of two parts: onéS that does not change the \ith » =3 is written as
seniority and anothelA that changes the seniority by 2.
lv=3[a,aza3];m)
B. States and energies _af t t
. . . . T “ay01%ay0, g0y
We obtain the ground and excited states and their energies

in Eg. (18 by diagonalizing the Hamiltonian . .
q ( a) y g g XEI Vm(a1a2a3;l)|N—1;|[a1a2a3]), (8)

H= € -G, cl.cl ¢ »—Cot 4 . . .
/;r ut ’“’ me E i - @ and its energy eigenvalue is denotedEaS;a, aa,) -
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C. Contribution of J§ and J%¢

The moment of inertia expressed in Eda) is therefore
written as

I=lsy=0Flap=2, (9a
where
v=1l«a ;mJSv=1 ay]:0)?
oz s o= UakmiBo=1lag]i0)
m,a#:ag Em,[a]_EO,[ag]
(9b)
and
IAU:2
oz S v =3lazazaslimJv=1[agl: O

m{ajasaz} Em,[ala2a3]_ EO,[ag]

(90

The partl 5, - corresponds to the first term of E¢-47) in
Ref.[6], which is proportional to

[(55) a2

Ea™ ag

>

a:#ag

2
(Uallg, F 00007, (10

where thee’s are the quasiparticle energies amdndv are
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presence of an additional particle in the former. Therefore,
the blocking effect of the last odd particle on the moment of
inertia is seen as the difference betwégp_, andlgyen.

IIl. NUMERICAL CALCULATIONS

The purpose of the present study is to see the mechanism
of the odd-even differences in moments of inertia. We stud-
ied the moments of inertia for odd-particle systems whose
neutron numbers range from 95 to 101. Although our aim is
not to reproduce the precise experimental values of moments
of inertia but to discuss qualitatively the odd-even differ-
ences in moments of inertia, we need to use the realistic
single-particle levels and the wave functions because the mo-
ment of inertia is quite sensitive to the distribution of the
single-particle levels and to the values of matrix elements
(Jx) u»- We used the same parameters as those in the previ-
ous papefll] in determining the single-particle statgi<].

The values of the parameters aee=0.245,=0.0637,
u=0.420, ande,= —0.015. The energy levels of the single-
neutron states are shown in Fig. 1.

Let us take the case dfi=95, for example, to see our
model space. As the last odd neutron is supposed to occupy
the level[642 5/ in the ground state, we sef;=9 in Eq.

(7). We took 13 particles as the active particles including this
last odd particle and took levels 3—1fom [530 1/ to
[624 9/9) as the active levels. Therefore, we det 6 from

the usualv factors that appear in the BCS theory. As statedEgs. (6a)—(8). We have studied the isotopes whose numbers
in Ref. [6], this term represents the effect of the Coriolis of neutrons are from 95 to 101. For the caseNef 101, for

coupling between the one-quasiparticle states withl,aq

example, we setry=12 and took levels 618 as the active

andv=1,a. The denominator of this expression is not thelevels.

sum of the quasiparticle energies but their subtraction.

The calculated values of moments of inertia strongly de-

Therefore, this term is supposed to give the large fluctuations

in the odd-even differences in moments of inertia according

to the situation of the single-particle levels.

In Eq. (5-47) in Ref. [6], there is another term propor-

tional to

g L00asf

a#ag 8a+8ag

(Uagva_vagua)zi (11)

which is explained to represent the effect of the odd particle
in preventing some of the excitations that contribute to the

rotational energy(hence to the moment of inerjiaf the

even-particle system. This term comes from the contribution
of the excited state with three quasiparticles such as

ala%galgm)), wherea' is the creation operator of a quasi-

particle and 0)) is the BCS vacuum. As our single-particle
levels are doubly degenerate levels, we cannot create two
guasiparticles in a single-particle level because two particles
in a doubly degenerate level must be a pair. Therefore, this
term should not be taken into account.

In the even-particle systems, we have only the term that
comes fromJ,

(v= 2[0110(2];m|\]§|9r>|2
Em’[ E

lever= 202 2 (12)

mi{ajas} ayas) —Eor

This term corresponds tby,—, in the odd-particle system

54 +
9 1287
53 T+ 8 — 5101/
7 — 6511/
16 ————————— 5037/
52 —+
15 — (6249
g4 —— 51472
S 51 4
§ 1B — 51252
= 12— 521172
> 11 [633 7/2]
2 50 1
[}
o
= 10 (523 5/2)
1 9 [642 5/2)
49 8 (521 3/2)
7 (651 3/2)
48 + 6 (505 11/2)
5 (532 3/2)
4 (660 1/2]
3 1530 1/2]
a7 T 2 [402 3/2]
1 {400 1/2]
46 +

Single—particle levels

and the difference betwedn,-, andl.,,comes from the The parameters used are shown in the text.

FIG. 1. Energy levels used in the present calculations. These
levels are obtained in a similar way to those of Nilsstral. [12].
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FIG. 2. Pairing energy gap (MeV) and the moments of inertia FIG. 3. Pairing energy gap (MeV) and the moments of inertia
| (52 MeV~?) for N=96 (dotted liney, N=97 (solid lineg, and | (A* MeV ™) for N=94 (dotted line$, N=95 (solid lines, and
N =98 (dashed lines Thin dash-dotted lines show the contributions N =96 (dashed lines Thin dash-dotted lines show the contributions

of the two terms in Eq<(9). of the two terms in Eqs(9).

pend on the size of the model space and the valu€.of smaller than that expected by the above scenario. The in-
Therefore, it is important to use appropriate valueSafor-  crease in the moment of inertia is, however, much larger than
responding to the size of the model space we use. As we digkpected. AtG=0.21 MeV, I|(N=95) is 29.5% MeV 1,

in a previous papefll], we studied the behavior of the Wheread ¢,{N=96) is 16.%> MeV ™' andle,{N=98) is
moments of inertia around the value Gfthat gives the ap- 19.5:°> MeV~*. The origin of this increase is also seen from

propriate value of the pairing energy gAp=G(S'S) [13].  this figure. The contributions from two terms in.E(qg) are
shown by thin dash-dotted lines. As stated in Sec. Il C,

lA,=» iS considered to correspond to the contribution from
the even core in the odd-particle system and the blocking
In Fig. 2, the pairing energy gapp and the moment of effect emerges as the difference betwagp_, and | qen.
inertia for the[523 5/4 band of N=97 are compared with Our calculation shows thatl x,-»—l eyed N=96)1/1 gyed N
those for the ground states of neighboring even-particle sys=96) is 0.15. Therefore, one can say that the contribution of
tems withN=96 and 98. As the value df deduced from the the blocking effect of the last odd particle to the increase of
odd-even mass difference in this region is abdut0.9  moment of inertia is around 15%However, this seems to be
MeV, we drew the horizontal line to show the position of an accidental hit and the decreaseAins much smaller in
A=0.9 MeV in the upper part of this figure and the vertical our calculation than expectedThis figure also shows that
line to show the value o for which we make the compari- the main part of the odd-even difference in moments of in-
sons. ertia comes from,,_,. This term is considered to corre-
As expected, the value df for N=97 is smaller than the spond to the second order contribution of the Coriolis cou-
values forN=96 and 98. This shows that the last odd par-pling. [See the first term of Eq5-47) in [6] and Eq.(9b) of
ticle blocked the pairing correlations and brought about thehis paper] Therefore, the main part of the odd-even differ-
decrease im\. The moment of inertia foN=97, which is  ence in moments of inertia in this case comes from this
shown by the solid line in the lower part of this figure, is second-order contribution of the Coriolis coupling.
much larger than those for even-particle systems, which are As pointed out by many authors, the valuelgf _, de-
shown by dotted and dashed lines o+ 96 and 98, respec- pends strongly on the single-particle orbit that the last odd
tively. particle occupies. It is pointed out that the Coriolis effect
It is a widely accepted scenarf6] that the presence of becomes very large when the last odd particle occupies the
the odd particle leads to a reduction of the pair correlatiorsingle-particle level whose total oscillator quantum number
parameterA and hence of the rotational parametdr Nis 6[6,7]. As an example that shows the large effect of the
=#2/21. As a quantitative example, Bohr and Mottelson Coriolis coupling, we compare the moments of inertia for
showed that a reduction &? by a factor of 2 leads to an [642 5/4 band inN=95 and the neighboring even-particle
increase in the moment of inertia of 15%. In our calculation,systems in Fig. 3. Before going into a detailed discussion, we
values of [A(N=97)/A(N=96)]?> and [A(N=97)/A(N examine if our result is reasonable in comparison to the ex-
=98)]? are 0.71 and 0.79, respectively, G=0.21 MeV. perimental value. The experimental value of the moment of
Therefore, the blocking effect of the last odd particle/ois  inertia for [642 5/2 band of 1*Dy deduced from the two

IV. RESULTS AND DISCUSSION
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TABLE |. Contributions from each excited state wigh=1 onl,,_o of Eq. (9b) at G=0.205 MeV. The
sum of only two terms amounts to 95% of the total value. The total value,gfC, n is 23.27.

a m (jx)aag Fam AEqm Cam
[651 3/23 1 3.22 0.954 0.720 13.10
[633 7/3 1 3.08 0.907 0.875 8.91
[633 7/3 2 3.08 0.390 2.004 0.72
[651 3/23 2 3.22 0.271 1.895 0.40
[651 3/2 3 3.22 0.106 2.423 0.05

lowest observed energy levels is 7%70MeV 1. Zeng

et al.[7] calculated the moment of inertia fp842 5/4 band Fa,m:Z Vim(@;i")Vo(ag:i)
of %Dy by applying their PNC treatment to the cranking o
Hamiltonian and showed that they could reproduce this ex- X(N;i'[a]|1+ SZgSa|N;i[ag]). (14

perimental value of moment of inertia. They obtained the

values 58.96° MeV ™! and 14.33% MeV ™! for neutrons _

and protons, respectively, and the total value was/@U€S Of (x)aay Fam and the energy denominatd,
73.2%1? MeV ™. As seen from this figure, we obtained the =Emq)~Eo[y are listed together with the values of
value 57.6° MeV ! at G=0.205 MeV as the contribution ca‘mzkv:1[a];m|J§|v:1[%];0>|2/A|5a’m_ As seen
from neutrons, which is very close to the value of Z&t@l.  from this table, the sum of only two terms amounts to 95%
Therefore, our result seems to reproduce the experimentgk the total value of2 , mCam and these two terms have
value of the moment of inertia to some extent. large values ij(x)mg andF, , and small values oAE, ,.

e e oncnon o e e I Tale I he depefdnce of h lrgest o ternCf

A ; on G is shown. The factoF, ,, depends only weakly o6,
pointed out by Hamamoto and Udagaj They discussed whereasAE,, ,, decreases considerably @sincreases and
hencel ,, - becomes an increasing function®f This may

- . . to the situation in BCS th here the fact
where the effect of the Coriolis force is large. In their study,%?ﬂe;fog ((ajp ef)n d sevicle:;)l/or:) rg arcx:ds qu:(s)irga\xic?éeengrg?ecsor

the BCS approximation is used and the blocking effect is[end to degenerate & increases
neglected in estimating the moment of inertia of the even The next thing we notice in this figure is the fact that the

colre. leere vxe see tge sameffact t";s. af.result of m?{;gaccura(;‘ad-even difference in moments of inertia is very large. As
calcuiation. AS can be seen from this iQuP€l 1, o) IS fseen from the figure, the moments of inertia for neighboring
positive and its absolute value is larger than that Osystems are 1768 MeV-1 whereas that forlN=95 is

(la,=2)/0G. = Therefore, the —sum (ls,-2)/0C 57 G2 Mev-1. It is apparent that this difference comes

+9(l4-0)/9G bec_:om_es positive. _ from 1 ,,-q. The contribution ofl ,, -, is, in this case, very
In Table I contributions from each excited statel@p_o small; in fact, I ,,_, is smaller thanl,,, The fact that

of Eq. (3b) atG=0.205 MeV are listed. Only five terms that | A, =2 is smaller thari oo, S€EMS tO CcONtradict the traditional

have large contributions are listed. The matrix element in th%cenario for the odd-even difference in moments of inertia
numerator of each term in ED) is written as i.e., moments of inertia for odd-particle systems become
larger than those for even-particle systems because of the
(v=1[a];m|Iv=1[agl;0)= (i) wa Ta Os o Fam blocking effect of the last odd particle. In order to see the
9 g« (13) reason why we get smaller value for,—, than |y, the
values of seven terms that have large contributiong,(g,in
Eq. (12) for the ground state band iN=94 are listed in
where Table Ill. Except for the first and third terms marked by an

TABLE II. Dependence of the largest two terms ©f, ,,=|(v =1[ a];m|J5|v =1[ ay];0)|/AE, ,, on G. The factorsF, ; andF,, 1
depend only weakly ofs whereasA Eap 1 andA Ea, 1 decrease considerably @increases and hentg,_, becomes an increasing function
of G. a; stands fof651 3/ and a, stands fo{633 7/2.

G Fu 1 AE, Cupt Fu,i AE, . Cayn S o mCem
0.15 0.969 0.841 11.574 0.926 1.052 7.715 20.385
0.17 0.961 0.804 11.931 0.914 0.992 7.981 21.154
0.19 0.956 0.758 12.503 0.908 0.926 8.449 22.238
0.21 0.953 0.708 13.304 0.907 0.856 9.115 23.669
0.23 0.953 0.657 14.329 0.910 0.784 9.997 25.480

0.25 0.955 0.608 15.553 0.915 0.718 11.035 27.610
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TABLE lll. The largest seven terms in EqL2) for the ground G (MeV)
state band ilN=94. Values marked with an asterisk do not con- ; 0:2 — 0:3
tribute in the[ 642 5/2 band inN= 95 because this level is blocked L e
by the last odd particle. = b // ]

=
a; a; m Value < o8l //
e

[651 3/2 [642 5/2 1 3.16¢ P

[532 3/2 [523 5/2 1 172 30

[642 5/2 [633 7/2 1 1.10¢

[521 3/2 [512 5/2 1 1.02 % O — N=101

[530 1/2 [521 3/2 1 0.53 2 b N | N=100 |

[532 3/7 [521 1/2 1 0.48 f’ \f\\\\ —— N=I2

[530 1/2 [521 1/3 1 0.47 1@ o NN

NN 1 pv=2)

asterisk, we can find the corresponding terms jp-, for 10p ,i;;\\\\\ 7
the [642 5/2 band in N=95 giving large contributions. TRl
However, as the last odd particle occupies the 1§64 5/2 T
and is blocking this level, a neutron of the broken pair is not | el
allowed to jump into this level. Therefore, these two impor- 0—32 — 03
tant terms in the even-particle system cannot contribute in G (MeV)

the odd-particle system and hence we get a smaller value for B o

| »,—2. This situation is not general because we saw in Fig. 2 leG- 4._Pla|r|ng energy gap (MeV) and the moments of inertia
(and W|” see |n F|g %that lAU:2 |S |arger thanl even- It | (h MeV ) for N=100(d0tted ||n6$, N=lOl(SO|Id ||ne9, and
single-particle levels. Suet al. [14] studied the blocking tions of the two terms in Eqg9).

effect by projected shell model and argued that the blocking

of [514 9/7 orbit produced a 30% reduction iy, but the  term strongly depends on the single-particle level that the

moment of inertia decreased inst_ead qf the comm(_)nly SXfast odd particle occupies. When the last odd particle occu-
pected increase. Although further investigation of their resulbying the single-particle level with the total oscillator quan-

has not yet .been published, we th!nk th|s can h‘?‘pp?”- tum number is 6} ,,-o dominates the behavior of the mo-
As the third example, a comparison is made in Fig. 4f0rment of inertia and the moment of inertia becomes an
the[521 1/ band inN=101. In this case, the contribution . . . L i
increasing function of the pairing interactidd. As to the

of 15,-¢ is very small. Two configurations witlk= [510 i .
1/2]Aavﬁ(§)a= [5%/1 3/9 have non—neggligible matrix eléments blocking effe_ct of the last odd partlc.:Ie,. the presence of t_he
of (). in this case. However, as these configurationé‘,"‘St odd particle does not necessarily increase thg contribu-
have Iargge values ok E contributions of these terms are tion of tr_le even core to the to_tal moment of inertia of the
) am: . ) odd-particle system. The blocking effect has been discussed
quite small. Con.sequ_ently_, t_he behaviorlgN=101) with in such a way that the moment of inertia is considered to be
the Ehange ofG is quite similar to that of (N=100) and a function of A and the decrease it brings about the in-
I(N=102). crease of the moment of inertia. As we saw in this study, this
V. CONCLUSION tr_aditional §cenario is not _alwa_ys correct and the_ odd—_eve_:n
difference in moments of inertia should be examined indi-
In summary, we have shown that,_o in Egs. (9) is  vidually according to the situation of the single-particle lev-
decisive in odd-even differences in moments of inertia. Thisels and the configurations.
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