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Time-dependent properties of proton decay from crossing single-particle metastable states
in deformed nuclei

P. Talou,1,* N. Carjan,1,† and D. Strottman2,‡
1CEN Bordeaux-Gradignan, 33175 Gradignan Cedex, France

2LANSCE and Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
~Received 22 July 1998!

A dynamical study of the decay of a metastable state by quantum tunneling through an anisotropic, non-
separable, two-dimensional potential barrier is performed by the numerical solution of the time-dependent
Schrödinger equation. Initial quasistationary proton states are chosen in the framework of a deformed Woods-
Saxon single-particle model. The decay of two sets of states corresponding to true and quasi-level-crossing is
studied and the evolution of their decay properties as a function of nuclear deformation is calculated around the
crossing point. The results show that the investigation of the proton decay from metastable states in deformed
nuclei can unambiguously distinguish between the two types of crossing and determine the structure of the
nuclear states involved.@S0556-2813~98!00912-1#

PACS number~s!: 21.60.2n, 23.50.1z, 21.10.Pc
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I. INTRODUCTION

The problem of the decay of a metastable state is of m
importance in many different fields like nuclear chemist
diffusion processes, spontaneous radioactivity, etc.~for a re-
view, see@1,2#!. A metastable state, or quasi-stationary sta
is defined as a state of local stability which decays with
rather large but finite lifetime toward a true stable minimu
When the temperature of the decaying system is low, qu
tum tunneling is the dominant decay process.

The one-dimensional tunneling process has been stu
intensively from the very beginning of quantum mechan
and it is now quite thoroughly understood, at least within
stationary approach@3,4#. On the other hand, little is known
about multidimensional tunneling although some progr
has been made through the last two decades@5–8#. Most of
these approaches are restricted to special cases and c
constitute a full and general framework for the study of m
tidimensional tunneling.

The recent, huge progress of computer performan
makes possible the direct treatment of this complex quan
phenomenon through the numerical solution of the tim
dependent Schro¨dinger equation~TDSE! for well prepared
initial quasistationary states, and hence the study of the
namics of their decay. This procedure has been applied
cessfully to a-decay @9# and fission @10# in a one-
dimensional model. A transient period at the very beginn
of the decay process has been found that corresponds t
viations from the well-known exponential decay law@11#.
The relation between the asymptotic value of the tim
dependent decay rate and the commonly used statio
value was also pointed out.

Recently, this method has been generalized to two dim
sions to study the tunneling of quasistationary states thro
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an anisotropic, nonseparable, potential barrier@12#. Applied
to proton emission from excited states in deformed nucle
has been shown that the escape directions chosen by
proton state depend mainly on its quantum numbers, i.e.
its spatial distribution, rather than on the features of the
tential. The important role played by the distribution of th
angular momentum and its variation in time for the determ
nation of the proton decay rate have been also pointed
Along with the experimental observation of nuclei beyo
the proton dripline@13#, several stationary calculations fo
the half-lives of spherical@14# and deformed@15# ground
state proton emitters have been reported.

It is well known that as a function of nuclear deformatio
some single-particle levels cross each other@16#. Two dis-
tinct types of crossing can occur:~1! the quantum numbers
~spin projectionL and parityp) of the crossing levels are
the same but belong to two different oscillator shells (DN
52); in this case, the levels repel each other and their w
functions strongly mix near this quasicrossing point;~2! the
quantum numbers are different; in this case, the two lev
do not interact and we deal with a true crossing po
@17,18#.

Therefore one roughly expects the proton decay prop
ties of the two levels:~1! to be similar for quasicrossing, th
only difference coming from the small ‘‘interaction’’ energy
~2! to be very different for true crossing, although the tw
levels have exactly the same energy. This implies that
proton decay from excited states in deformed nuclei can r
resent a new tool for studying the level-crossing pheno
enon and defining its type. Using the numerical, tim
dependent approach mentioned above, the present p
offers a detailed study of the decay properties of single p
ton excited states for each of the two cases at and around
crossing deformations.

In the first part, the numerical formalism used for solvin
the TDSE in two dimensions is described as well as
physical quantities accessible with this approach. The
formed single-particle model used to obtain the proton q
sistationary states inside the nucleus is described. In the
ond part, the time and deformation dependences of
3280 ©1998 The American Physical Society



y,
th

di
ge
eu
ri

on
-

th
r

e
n
le
be
u

na

-

n

y

n-
nge

ve,
es-
ally
nal
-
ri-
ta-
sis

s-
ate

n-
ro-
r

und
e-

PRC 58 3281TIME-DEPENDENT PROPERTIES OF PROTON DECAY . . .
numerical results are presented and discussed. Finall
summary, a conclusion, and possible developments of
work are given.

II. FORMALISM

A. Time-dependent approach

We are interested in describing the evolution of an in
vidual proton interacting with an axially symmetric avera
potential created by the nucleons of the daughter nucl
The total wave function representing the proton can be w
ten in cylindrical coordinates as

c~z,r,f,t !5 f ~z,r,t !eiLf, ~1!

whereL is the projection of the total angular momentum
the axis of symmetry (z-axis! and it is a good quantum num
ber. Hence, the TDSE becomes

i\
]

]t
f ~z,r,t !5H~z,r! f ~z,r,t !, ~2!

where the HamiltonianH is

H~z,r!52
\2

2mF1

r

]

]r
1

]2

]r2
1

]2

]z2
2

L2

r2 G1VpA~z,r!.

~3!

VpA is the potential representing the interaction between
individual proton and the remaining nucleons of the co
daughter nucleus.

In order to follow the time evolution of an initial stat
c(rW,t50), the TDSE~2! has been solved numerically withi
a finite spatial grid using a multistep predictor method cal
MSD2 @19#. This method presents a good compromise
tween stability, accuracy, and efficiency for this type of n
merical problem~linear, stationary potential!. Within this ap-
proach, one has access to the wave functionc(rW,t) at any
time t and then to the following physical quantities.

Total tunneling probabilitygiven by the fraction of the
wave function located beyond the top of the two-dimensio
potential barrier~potential ridge! at time t

Ptun~ t !52pE
Vout

u f ~z,r,t !u2rdrdz. ~4!

Tunneling angular distributionestimated in spherical co
ordinates (r ,u,f) and defined as

Ptun~ t,u!5
dPtun

dV
5E

r out~u!

`

u f ~r ,u,t !u2r 2dr, ~5!

wherer out(u) is the radial position of the potential ridge i
the directionu. Note that

2pE
0

pdPtun

dV
sinudu5Ptun . ~6!

Total decay raterelated to the total tunneling probabilit
by
a
is

-

s.
t-

e
e

d
-

-

l

l~ t !5
1

12Ptun

dPtun

dt
. ~7!

Mean value of angular momentumdefined as

^L2&~ t !5^c~ t !uL2uc~ t !&.^ l &~ t !@^ l &~ t !11#. ~8!

This quantity is important for the determination of the tu
neling rate as well as of the angular momentum excha
during decay~nonspherical potential!.

B. Quasistationary states

To accomplish the numerical scheme proposed abo
knowledge of the initial metastable wave function is nec
sary. A quasistationary state is defined as an infinitesim
modified eigenstate of the Hamiltonian. In a one-dimensio
model, the two-potential formalism@20# can be used straight
forwardly @9#. In our two-dimensional approach, the nume
cal difference between the preparation of the initial quasis
tionary state as an expansion in an orthonormal ba
~diagonalization! and the resolution of the TDSE on a di
cretized spatial grid has been proven to be sufficient to cre
quasistationary states without modifying the potential@12#.

In the case of an axially and reflexion symmetric pote
tial, the quantum numbers labeling each single-particle p
ton state are (Lp) with L the projection of the total angula
momentum on the axis of symmetry andp the parity. No
spin-orbit term is present in our calculations.

FIG. 1. Square modulus of the two crossing states at and aro
the crossing deformation« tc50.25. Dashed lines represent the d
formed ridge of the potential for each deformation«.
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FIG. 2. Time evolution ofuc2hu2 and ofuc1ku2 at the deformation« tc50.25. The timet is given in units of 10222 sec. For clarity, contour
lines with values greater than 431025 (331026) in the upper~lower! row are not plotted. The potential ridge is drawn with dashed lin
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C. Single-particle potential

The interaction between the emitted proton and
daughter nucleus is represented by the average pote
VpA . Obviously, this potential depends on the deformat
of the parent nucleus whose shape has been describe
Cassinian ovals@21#. Only one parameter« is sufficient to
describe shapes from spheres («50) to scission point con
figurations («51).

Hence,VpA
« can be written as

VpA
« 5V«

nucl1V«
Coul . ~9!

The nuclear part is a deformed Woods-Saxon potential

V«
nucl~z,r!5

V0

11exp@d«~z,r!#
, ~10!

whered«(z,r) represents an approximation of the distan
between the point (z,r) and the deformed nuclear surfac
V0 the depth anda the diffusivity of the nuclear potential.

The Coulomb partV«
Coul is obtained assuming that th

nuclear volume is filled with a uniform charge distributio
with a sharp edge.

III. NUMERICAL RESULTS

As in our earlier work@12#, the numerical procedure de
scribed above has been applied to the hypothetical pr
emission from excited states in a nucleus characterized
Z582 andA5208. It is worth noting that, qualitatively, th
results presented are independent of the choice of the de
ing nucleus. While in this previous paper we concentrated
the general dependence of proton tunneling on time, nuc
deformation and quantum numbers, here we will analyze
behavior of two selected sets of pair states around the
crossing and quasicrossing deformations, respectively.

The parameters used for the potentialVpA have been cho
e
tial
n
by

e

on
by

ay-
n
ar
e
e-

sen according to Ref.@22#. The depthV0 has been modified
in order to obtain states lying below the top of the tw
dimensional barrier:V05262.66 MeV for the case of true
crossing, andV05258.7 MeV for the case of quasicrossin

A. True-crossing states

We studied the case of two single-particle states with d
ferent quantum numbers,c2h(Lp532) and c1k(Lp
531).1

At the deformation« tc50.25, the two corresponding en
ergy levels cross, i.e., undergo an accidental degener
E2h5E1k . This situation arises because of the multidime
sionality of the problem.

In Fig. 1, the square moduli of the two crossing states
plotted in the half-cylindrical plane for three different valu
of « at and around crossing.

This figure shows clearly that the two wave functions
not mix at all during their crossing since they keep th
spatial distribution constant as the potential deformation
changing.

Using the procedure described in Sec. II, we followed
time evolution of these two initial states for the three diffe
ent deformation values«50.23, 0.25, 0.27. To illustrate th
numerical results obtained, the square wave functionsc2h
andc1k ~at « tc) have been plotted in Fig. 2 at five differen
times during the calculation, showing the tunneling of the
quasistationary states through the two-dimensional an
tropic barrier.

In Fig. 3 are plotted the time evolution of the decay ra
as well as the tunneling probability for the two states at

1The indices ‘‘2h’’ and ‘‘1 k’’ for the proton states have bee
chosen using the usual spectroscopic notation according to the
gular momentum value of the corresponding spherical states (l 55
and l 58, respectively!.



’
u
.

an

s
ili
tia
ea

e
rta
re
-
r

te.
n-
u-

u-
our

ch
ons
er,

t to
-

ine
pu-

ls
th

nd

PRC 58 3283TIME-DEPENDENT PROPERTIES OF PROTON DECAY . . .
three deformations considered. Two different stages can
distinguished in the time evolution ofl @9#. There exists an
initial transient timecorresponding to the ‘‘acclimatization’
of the quasistationary state to its new environment and d
ing which the decay ratel undergoes strong oscillations
After that,l is almost constant in time@in the following, this
value is denotedl(`)]. This second stage corresponds to
exponential decay.

From Fig. 3 one can extract two important results. Fir
for each state, the decay rate and the tunneling probab
evolve very smoothly as the deformation of the poten
increases. As expected, the two states do not influence
other during crossing.

Second, at a given deformation«, the two asymptotic
decay ratesl(`) differ by about one order of magnitud
although the two states are degenerate. In fact, this impo
difference can be explained by the difference in the ‘‘
sidual’’ angular momentâl & of the two decaying states. Al
though not plotted here,^ l &(t) is almost constant in time fo
both states but at two quite different values:^ l &.5.26 for

FIG. 3. Time-dependent decay ratesl and tunneling probabili-
ties Ptun for the two crossing statesc2h andc1k obtained for three
nuclear deformations. The asymptotic decay ratesl(`) correspond
to « tc50.25.

FIG. 4. Time-dependent tunneling angular distributions for
two crossing statesc2h andc1k . The timet is in units of 10222 sec.
be

r-

t,
ty
l
ch

nt
-

c2h and^ l &.7.56 forc1k . As shown before@12#, this quan-
tity plays a major role in the determination of the decay ra

From the knowledge of the wave functions in the cyli
drical plane, we have inferred the tunneling angular distrib
tions Ptun(t,u) at different times. The results of such calc
lations are shown in Fig. 4 for the two crossing states at f
different times and at the deformation« tc50.25. Obviously,
the two angular distributions are really different from ea
other and are strongly correlated to the spatial distributi
of the corresponding initial quasistationary states. Moreov
it is worth noticing that, more generally, an emission atu
590° is always related to a state symmetric with respec
the r axis ~cf. c2h state!. Contrarily, if the state is antisym
metric ~cf. c1k state!, the emission is hindered atu590°.

In conclusion, for a true crossing, one can determ
which of the two metastable single-proton states is po
lated.

B. Quasicrossing states

Now we study the influence of the mixing of two orbita
having the sameL and p but DN52 in the single-proton
wave function on the tunneling behavior.

e

FIG. 5. Contour plots of the two mixing wave functions at a
around«qc50.458. Dashed lines are the deformed ridges.
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Without loss of generality, we chose two states w
(Lp)531 whose levels cross at deformation«qc.0.458.
Figure 5 represents the square moduli of the correspon
single-particle wave functions at and around the criti
value «qc , while the evolution of their energy and angul
momentum as a function of the deformation parameter« is
plotted in Fig. 6. At«qc the difference in energy is the smal
est (DEqc.290 keV! and the two ‘‘residual’’ angular mo-
menta are equal numerically (D^ l &qc50.01).

FIG. 7. Time-dependent tunneling probabilitiesPtun and decay
ratesl for the two quasicrossing states at three deformations.
values of the corresponding ‘‘residual’’ angular momenta are in
cated in the lower part.

FIG. 6. Average energy and ‘‘residual’’ angular momentum
the two quasicrossing states as a function of deformation.
ng
l

Following the wave function corresponding to the low
~higher! energyE, (E.) vs the deformation«, one notices
that its spatial distribution evolves very rapidly but contin
ously. Asymptotically, i.e., for«@«qc , they have indeed in-
terchanged their spatial distributions.

The time-dependent decay properties of these states
presented in Figs. 7 and 8 for three different deformations«.
The shapes of the angular distributions~Fig. 8! for different
deformations seem to be again related to the spatial distr
tion of the corresponding quasistationary states. At the p
«qc , the tunneling angular distributions for the states tend
coincide.

The variation of the decay rate from one deformation
another~Fig. 7! is clearly not correlated with the correspon

e
i-

FIG. 8. Time evolution of the tunneling angular distribution
dPtun /dV for the two quasicrossing states at three deformatio
The distributions have been computed at four times :t55, 10, 15,
and 20310222 sec.

FIG. 9. Asymptotic decay ratesl(`) for the two initial (31)
states vs the deformation«.

f
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ing variation of the energy. However, the rat
lE.

(`)/lE,
(`) ~of about 3 at«qc) can be explained by the

difference in energy (E.2E,5290 keV! using stationary
one-dimensional WKB estimates.

To study in more detail the dependence ofl on nuclear
deformation, time-dependent calculations have been
formed for the same quasistationary states at several d
mations on both sides of«qc . The asymptotic values of th
decay ratesl(`) have been plotted in Fig. 9 as a function
the deformation«. It is clearly shown that at the quasicros
ing point («5«qc), the two asymptotic decay rates are w
separated. Contrarily, at«50.4, the twol(`) are almost
equal. This effect can be understood in terms of the com
tition between the energy of the decaying state and its ‘
sidual’’ angular momentum valuêl &. For «,«qc , the
higher energy state has the higher^ l & value. On the other
hand, for«.«qc , the higher energy state corresponds to
smaller ^ l & value. Both effects act in the same directio
strongly enhancing the decay rate.

In conclusion, for a quasicrossing, one can determine
energy splitting and whether the proton has jumped into
upper level or not~Landau-Zener effect!.

IV. SUMMARY

The two-dimensional time-dependent Schro¨dinger equa-
tion has been solved numerically for prepared initial sing
particle quasistationary states decaying through an an
tropic, nonseparable, potential barrier. The special case
us
d

r-
or-

l

e-
-

e
,

e
e

-
o-
of

true crossing and quasicrossing have been studied within
approach. Time dependence of quantities like tunnel
probability, decay rate, and tunneling angular distributio
have been calculated.

It has been shown that two~accidentally! degenerate pro-
ton states decay very differently due to their different spa
distribution and ‘‘residual’’ angular momentum. Hence, on
dimensional semiclassical approximations of their decay
are not expected to be reliable.

The mixing of two orbitals having the same main qua
tum numbers in the single-proton wave function strongly
fluences the decay behavior. At the quasicrossing defor
tion, the difference between the proton decay rates from
two states involved can be entirely explained by the diff
ence in their energy. A nearby deformation, where these
rates are the same, can always be found due to the comb
effects of the residual angular momentum and of the ene
of the decaying states.

Proton decay in strongly deformed nuclei has been
cently observed@23#. Extensions of this type of work would
allow a detailed study of the level-crossing phenomenon,
cluding the structure of the nuclear states involved.

Further developments of the present work should inclu
generalization to proton decay through a time-dependent
tential barrier since only a dynamical approach could tac
such a problem. There are indeed cases in which the pa
and daughter nuclei have very different deformations, e
prolate-oblate transitions or emission during nuclear fissi
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