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Time-dependent properties of proton decay from crossing single-particle metastable states
in deformed nuclei
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A dynamical study of the decay of a metastable state by quantum tunneling through an anisotropic, non-
separable, two-dimensional potential barrier is performed by the numerical solution of the time-dependent
Schralinger equation. Initial quasistationary proton states are chosen in the framework of a deformed Woods-
Saxon single-particle model. The decay of two sets of states corresponding to true and quasi-level-crossing is
studied and the evolution of their decay properties as a function of nuclear deformation is calculated around the
crossing point. The results show that the investigation of the proton decay from metastable states in deformed
nuclei can unambiguously distinguish between the two types of crossing and determine the structure of the
nuclear states involvedS0556-281&8)00912-]

PACS numbdps): 21.60—n, 23.50+2z, 21.10.Pc

I. INTRODUCTION an anisotropic, nonseparable, potential barrdet]. Applied
to proton emission from excited states in deformed nuclei, it
The problem of the decay of a metastable state is of majohas been shown that the escape directions chosen by the
importance in many different fields like nuclear chemistry, proton state depend mainly on its quantum numbers, i.e., on
diffusion processes, spontaneous radioactivity, @t.a re- its spatial distribution, rather than on the features of the po-
view, seq[1,2]). A metastable state, or quasi-stationary statetential. The important role played by the distribution of the
is defined as a state of local stability which decays with a@ngular momentum and its variation in time for the determi-
rather large but finite lifetime toward a true stable minimum,nation of the proton decay rate have been also pointed out.

When the temperature of the decaying system is low, quarﬁl‘qIong with thglgxperimental olbser\(ation of l”“?'e? bey?nd
tum tunneling is the dominant decay process. the proton dripline[13], several stationary calculations for

The one-dimensional tunneling process has been studietsqate roton emitters have been reported
intensively from the very beginning of quantum mechanics P Tep ' .
o . . It is well known that as a function of nuclear deformation,
and it is now quite thoroughly understood, at least within a

: . some single-particle levels cross each oths]. Two dis-
stationary approack8,4]. On the other hand, little is known tinct types of crossing can occuit) the quantum numbers
about multidimensional tunneling although some progres

?spin projectionA and paritys) of the crossing levels are
has been made through the last two decd8esS]. Most of 5 same but belong to two different oscillator sheleN(

these approaches are restricted to special cases and cannojy. i, this case, the levels repel each other and their wave
c_o_nstitutg a full and general framework for the study of mul-f,nctions strongly mix near this quasicrossing poi@; the
tidimensional tunneling. guantum numbers are different; in this case, the two levels
The recent, huge progress of computer performancego not interact and we deal with a true crossing point
makes possible the direct treatment of this complex quanturm 7,18,
phenomenon through the numerical solution of the time- Therefore one roughly expects the proton decay proper-
dependent Schdinger equation(TDSE) for well prepared ties of the two levels(1) to be similar for quasicrossing, the
initial quasistationary states, and hence the study of the dyonly difference coming from the small “interaction” energy;
namics of their decay. This procedure has been applied su¢) to be very different for true crossing, although the two
cessfully to a-decay [9] and fission [10] in a one- levels have exactly the same energy. This implies that the
dimensional model. A transient period at the very beginningproton decay from excited states in deformed nuclei can rep-
of the decay process has been found that corresponds to d@sent a new tool for studying the level-crossing phenom-
viations from the well-known exponential decay lddl].  enon and defining its type. Using the numerical, time-
The relation between the asymptotic value of the time-dependent approach mentioned above, the present paper
dependent decay rate and the commonly used stationagffers a detailed study of the decay properties of single pro-
value was also pointed out. ton excited states for each of the two cases at and around the
Recently, this method has been generalized to two dimererossing deformations.
sions to study the tunneling of quasistationary states through |In the first part, the numerical formalism used for solving
the TDSE in two dimensions is described as well as the
physical quantities accessible with this approach. The de-

e half-lives of sphericaJ14] and deformed15] ground

*Email address: talou@cenbg.in2p3.fr formed single-particle model used to obtain the proton qua-
TEmail address: carjan@in2p3.fr sistationary states inside the nucleus is described. In the sec-
*Email address: dds@Ilanl.gov ond part, the time and deformation dependences of the
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numerical results are presented and discussed. Finally, .
summary, a conclusion, and possible developments of this
work are given.

Il. FORMALISM
A. Time-dependent approach

We are interested in describing the evolution of an indi-
vidual proton interacting with an axially symmetric average
potential created by the nucleons of the daughter nucleus
The total wave function representing the proton can be writ-

TIME-DEPENDENT PROPERTIES OF PROTON DEGA..

ten in cylindrical coordinates as

W(z,p,p,t)=f(z,p,H)e"?, D
whereA is the projection of the total angular momentum on
the axis of symmetryZ-axis) and it is a good quantum num-
ber. Hence, the TDSE becomes

J
iﬁEf(z,p,t)=H(Z,p)f(2,p,t), 2
where the Hamiltoniar is
H(z.p) h210+(92 72 A2+V( )
zp)=—r|——F+—+——-—— Z,p).
Pl 2ulpap  gp2 o2 p2| PAP
3)

Vpa is the potential representing the interaction between the
individual proton and the remaining nucleons of the core

daughter nucleus.
In order to follow the time evolution of an initial state

#(r,t=0), the TDSE2) has been solved numerically within

a finite spatial grid using a multistep predictor method called
MSD2 [19]. This method presents a good compromise be-

tween stability, accuracy, and efficiency for this type of nu-
merical problen{linear, stationary potentialWithin this ap-
proach, one has access to the wave functJQﬁ,t) at any
time t and then to the following physical quantities.

Total tunneling probabilitygiven by the fraction of the
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FIG. 1. Square modulus of the two crossing states at and around
the crossing deformatios,.=0.25. Dashed lines represent the de-
formed ridge of the potential for each deformation

1 dPy,
)\(t)_l_Ptun T (7
Mean value of angular momentudefined as
(LAO=(OILp(0)=(HOKH(O+1]. (®)

This quantity is important for the determination of the tun-

wave function located beyond the top of the two-dimensionaheling rate as well as of the angular momentum exchange

potential barrierpotential ridge at timet

Ptun(t)zz'n'f |f(Z,p,t)|2pdde_

out

(4)

Tunneling angular distributiorestimated in spherical co-
ordinates £, 0, ) and defined as

Ptun_

d
Ptun(tve): dQ

[f(r,0,t)?r2dr,

Tout(6)

5
wherer,(6) is the radial position of the potential ridge in
the directiond. Note that

~dP

277]
0

Total decay rateelated to the total tunneling probability
by

tun

dQ

singd 6= Py, . (6)

during decay(nonspherical potential

B. Quasistationary states

To accomplish the numerical scheme proposed above,
knowledge of the initial metastable wave function is neces-
sary. A quasistationary state is defined as an infinitesimally
modified eigenstate of the Hamiltonian. In a one-dimensional
model, the two-potential formalisfi20] can be used straight-
forwardly [9]. In our two-dimensional approach, the numeri-
cal difference between the preparation of the initial quasista-
tionary state as an expansion in an orthonormal basis
(diagonalization and the resolution of the TDSE on a dis-
cretized spatial grid has been proven to be sufficient to create
guasistationary states without modifying the poterti].

In the case of an axially and reflexion symmetric poten-
tial, the quantum numbers labeling each single-particle pro-
ton state are A 7r) with A the projection of the total angular
momentum on the axis of symmetry andthe parity. No
spin-orbit term is present in our calculations.
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FIG. 2. Time evolution of ¢, and of| |2 at the deformatior,.=0.25. The time is given in units of 1022 sec. For clarity, contour
lines with values greater than<410~° (3x 107 %) in the upperlowen row are not plotted. The potential ridge is drawn with dashed lines.

C. Single-particle potential sen according to Ref22]. The depthV,, has been modified

The interaction between the emitted proton and thd" Order to obtain states lying below the top of the two-
daughter nucleus is represented by the average potentidimensional barrierVo=—62.66 MeV for the case of true
Vpa. Obviously, this potential depends on the deformation®"0SSINg., and/o=—58.7 MeV for the case of quasicrossing.
of the parent nucleus whose shape has been described by
Cassinian oval$21]. Only one parametes is sufficient to A. True-crossing states

describe shapes from spheres=0) to scission point con- We studied the case of two single-particle states with dif-

figurations €=1).
. ferent antum numbers Am=3-) and A
Hence,Vy, can be written as =3+) 1qu } ! Van(Am ) YA
Ve = \/nuclyyCoul 9) At the deformatione,.= 0.25, the two corresponding en-
pA € € ' i i
ergy levels cross, i.e., undergo an accidental degeneracy,
The nuclear part is a deformed Woods-Saxon potential ~ E2n=Eak. This situation arises because of the multidimen-
sionality of the problem.
el Vo In Fig. 1, the square moduli of the two crossing states are
Vi'(z,p)= Trexdd.(zp)]’ (100 plotted in the half-cylindrical plane for three different values
e of £ at and around crossing.

whered,(z,p) represents an approximation of the distance ' NS figure shows clearly that the two wave functions do
between the pointZ,p) and the deformed nuclear surface, "0t Mix at all during their crossing since they keep their
V, the depth and the diffusivity of the nuclear potential. spatial distribution constant as the potential deformation is

; ; ; hanging.
The Coulomb partv°!' is obtained assuming that the ¢"2N9 —
nuclear volume is filled with a uniform charge distribution . Using th_e procedure deS(_:rl_b_ed in Sec. Il, we followe_d the
with a sharp edge. time evolution of these two initial states for the three differ-

ent deformation values=0.23, 0.25, 0.27. To illustrate the
numerical results obtained, the square wave functiggs
lll. NUMERICAL RESULTS and ¢, (atey) have been plotted in Fig. 2 at five different

As in our earlier wor12], the numerical procedure de- times during the calculation, showing the tunneling of these
scribed above has been applied to the hypothetical protofiuasistationary states through the two-dimensional aniso-
emission from excited states in a nucleus characterized bijopic barrier. ) )

Z=82 andA=208. It is worth noting that, qualitatively, the ~ In Fig. 3 are plotted the time evolution of the decay rate
results presented are independent of the choice of the deca§s Well as the tunneling probability for the two states at the
ing nucleus. While in this previous paper we concentrated on

the general dependence of proton tunneling on time, nuclear

deformation and quantum numbers, here we will analyze theiThe indices “2” and “1k” for the proton states have been
behavior of two selected sets of pair states around the trug&hosen using the usual spectroscopic notation according to the an-
crossing and quasicrossing deformations, respectively. gular momentum value of the corresponding spherical states (

The parameters used for the potentigl, have been cho- andl=8, respectively.
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FIG. 3. Time-dependent decay ratesand tunneling probabili- 0 ‘ ’ . 0
ties Py, for the two crossing stateg,, and ¢, obtained for three e=0.47 ‘ e=0.47 ‘
nuclearodggormations. The asymptotic decay rates) correspond 10 | E=9.65MeV | E =10.02 MeV
to £, =0.25.

three deformations considered. Two different stages can be =3
distinguished in the time evolution of [9]. There exists an 0 ] }
initial transient timecorresponding to the “acclimatization” e=0.48
of the quasistationary state to its new environment and dur-
ing which the decay rata undergoes strong oscillations.
After that,\ is almost constant in timn the following, this
value is denoted (=0)]. This second stage corresponds to an
exponential decay.

From Fig. 3 one can extract two important results. First,
for each state, the decay rate and the tunneling probability z (fm)
evolve very smoothly as the deformation of the potential
increases. As expected, the two states do not influence each FIG. 5. Contour plots of the two mixing wave functions at and
other during crossing. arounde .= 0.458. Dashed lines are the deformed ridges.

Second, at a given deformatian the two asymptotic
decay rates\(«) differ by about one order of magnitude
although the two states are degenerate. In fact, this importa
difference can be explained by the difference in the ‘“re-
sidual” angular momental ) of the two decaying states. Al-
though not plotted herd) }(t) is almost constant in time for
both states but at two quite different valués}=5.26 for

KZh and(l)=7.56 for ¢, . As shown befor¢12], this quan-
Ey plays a major role in the determination of the decay rate.
From the knowledge of the wave functions in the cylin-
drical plane, we have inferred the tunneling angular distribu-
tions Py, q(t, 6) at different times. The results of such calcu-
lations are shown in Fig. 4 for the two crossing states at four
different times and at the deformatiep.=0.25. Obviously,
the two angular distributions are really different from each
other and are strongly correlated to the spatial distributions
of the corresponding initial quasistationary states. Moreover,
1504 it is worth noticing that, more generally, an emissionéat
] =90° is always related to a state symmetric with respect to
the p axis (cf. ¢, statg. Contrarily, if the state is antisym-
metric (cf. i, statg, the emission is hindered &&= 90°.
In conclusion, for a true crossing, one can determine
which of the two metastable single-proton states is popu-
lated.
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B. Quasicrossing states

Now we study the influence of the mixing of two orbitals
FIG. 4. Time-dependent tunneling angular distributions for thehaving the same\ and 7 but AN=2 in the single-proton
two crossing stateg,, and iy, . The timet is in units of 10%?sec.  wave function on the tunneling behavior.



3284 P. TALOU, N. CARJAN, AND D. STROTTMAN PRC 58
Deformation € O (deg)

04 042 044 046 048 05 052 o 20 4 6 50

R 777 7 12 L e B B L

<> E _ ] I E,=10.14 MeV ]
% 11 ;F’i A Ach_ 290 keV /TZ 11 ,:,8>= 0.445 Jo2
S e . !

> 10 - e sl - 10 d

5 9 L e D 9

= F T

B T [E, £,.=0.458 ]

Qb v vl v v v dg G [ E_=9.70 MeV I E =999 MeV b
N S B B R R, 02 [£=0458 ;;£=0.458/\ o2 5
e S U e E] [ 1 ST ] £
£ T e 3 =9 H 1t YA I

> TIE) Ny’ 17 S oal I o N o1 B
:: 6 - /%‘%\ 16 0 ¥ \\\» 0

~ C1(E) §N ) . F == ‘ = e —

e . A ——e— 5 E E_=9.65MeV I E_=10.02 MeV E

= T ] 004 e o L e2047 104

by 0.03 A I

A L B B R B 002 £
o Y] S e 1, ] / N s
43| [ - ] 0.01
= [ && Al(eqc):0.0I ] obd N e
~ 0 e 1o 0 20 40 60 8 0 20
SN & ] O (deg)
— L N ]
% 2 R S FIG. 8. Time evolution of the tunneling angular distributions
04‘ ‘ 01‘2 ‘01‘4‘ ' 0‘46 ' 0‘48 ‘0‘5‘ ‘ ‘052 dP,,,/dQ for the two quasicrossing states at three deformations.

Deformation €

FIG. 6. Average energy and “residual” angular momentum of

the two quasicrossing states as a function of deformation.

(Am)=3+ whose levels cross at deformatier.=0.458.

The distributions have been computed at four times 5, 10, 15,

and 20< 10?2 sec.

Following the wave function corresponding to the lower
(highep energyE_ (E-) vs the deformatiorz, one notices
that its spatial distribution evolves very rapidly but continu-
Without loss of generality, we chose two states withously. Asymptotically, i.e., foe>g, they have indeed in-

terchanged their spatial distributions.

Figure 5 represents the square moduli of the corresponding The time-dependent decay properties of these states are
single-particle wave functions at and around the criticalpresented in Figs. 7 and 8 for three different deformations
value g4, while the evolution of their energy and angular The shapes of the angular distributioifsg. 8) for different
deformations seem to be again related to the spatial distribu-
plotted in Fig. 6. Ate . the difference in energy is the small- tion of the corresponding quasistationary states. At the point
est (AE4.=290 keV) and the two “residual” angular mo- &qc, the tunneling angular distributions for the states tend to
menta are equal numericalA(l)q.=0.01).

momentum as a function of the deformation parametés

. 22
Time (10™"s)
0 10 200 10 200 10 20
[ e=0.445 ][ £=0.458 1 [ e=0.47 ]
i H /\ \Ju \/\/\r =
- HIV - 11 ~
4 A | —
& i AN 2
N e e o e T E 8
N e i @,
— E-touaMev | [ — Es00omev | f—— Eciommev 0 =
- E=958MeV | | ----E=070MeV | | - E=0.65MeV |
-1 ] e | ] -1
[ 1(E)=712 1T LE)=626 1 1(E)=526
015 -1(E)=526 1 [lEY=627  [1EY=717~ 0I5
o I 1r At 1 29
So1 1F /— - Jo018
A [ e ) 1r ]
005 1 AL/ 1 005
P 1L 1
N ST | OUUIIE § SRS N
0 10 200 10 200 10 20
. -22
Time (10™"s)

FIG. 7. Time-dependent tunneling probabilitieg,, and decay

coincide.

The variation of the decay rate from one deformation to
another(Fig. 7) is clearly not correlated with the correspond-
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FIG. 9. Asymptotic decay rates(«) for the two initial (3+)

states vs the deformatian
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ing variation of the energy. However, the ratio true crossing and quasicrossing have been studied within this
Ne_(©)/Ng_() (of about 3 ate,) can be explained by the approach. Time dependence of quantities like tunneling

difference in energy E- —E_=290 ke\} using stationary Pprobability, decay rate, and tunneling angular distributions

one-dimensional WKB estimates. have been calculated.

To study in more detail the dependencexobn nuclear It has been shown that tw@ccidentally degenerate pro-
deformation, time-dependent calculations have been peton states decay very differently due to their different spatial
formed for the same quasistationary states at several defodistribution and “residual” angular momentum. Hence, one-
mations on both sides af,.. The asymptotic values of the dimensional semiclassical approximations of their decay rate
decay rated. (=) have been plotted in Fig. 9 as a function of are not expected to be reliable.
the deformatiore. It is clearly shown that at the quasicross-  The mixing of two orbitals having the same main quan-
ing point (e=¢&4c), the two asymptotic decay rates are well tum numbers in the single-proton wave function strongly in-
separated. Contrarily, at=0.4, the two\ () are almost fluences the decay behavior. At the quasicrossing deforma-
equal. This effect can be understood in terms of the compeion, the difference between the proton decay rates from the
tition between the energy of the decaying state and its “retyo states involved can be entirely explained by the differ-
sidual” angular momentum valugl). For e<eqc, the  gnce in their energy. A nearby deformation, where these two
higher energy state has the high¢y value. On the other r¢e5 are the same, can always be found due to the combined
hand, fore>eqc, the higher energy state corresponds 10 theyfrects of the residual angular momentum and of the energy
smaller (l) valuc_e. Both effects act in the same direction, ¢ ya decaying states.
strongly enhancmg the decgy rat(_a. . Proton decay in strongly deformed nuclei has been re-
enle?g(;’/ogglliltjtsigz;nézg xrgeiﬁzlf{gzsrl)?gio%nﬁacsajzgi)tee(;nil:t]g :I?ée,ently observed23]. Extensions of this type of work would

allow a detailed study of the level-crossing phenomenon, in-
upper level or nofLandau-Zener effegt : .
cluding the structure of the nuclear states involved.

Further developments of the present work should include
generalization to proton decay through a time-dependent po-

The two-dimensional time-dependent Salinger equa- tential barrier since only a dynamical approach could tackle
tion has been solved numerically for prepared initial single-such a problem. There are indeed cases in which the parent
particle quasistationary states decaying through an anis@nd daughter nuclei have very different deformations, e.g.,
tropic, nonseparable, potential barrier. The special cases @folate-oblate transitions or emission during nuclear fission.

IV. SUMMARY
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