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Pion-three-nucleon problem with two-cluster connected-kernel equations
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A new set of integral equations for the coupletiNN-NNN problem is obtained starting from the obser-
vation that this system breaks into fragments in a nontrivial way. Assuming the particles as distinguishable,
there are indeed four modes of fragmentation into two clusters, while in the standard three-body problem there
are three possible two-cluster partitions and conversely the four-body problem has seven different possibilities.
The pion-three-nucleon collision problem is formulated through the integral-equation approach by taking into
account the proper fragmentation of the system. The final result does not depend on the assumption of
separability of the two-bodymatrices. Then, the quasiparticle mett@ld Grassberger and Sandhas is applied
and effective two-cluster connected-kernel equations are obtained. The corresponding bound-state problem is
also formulated, and the resulting homogeneous equation provides an approach which generalizes the com-
monly used approaches via 3N Hamiltonidndiere the meson degrees of freedom are usually suppjessed
describe the three-nucleon bound-state prob[&0556-28188)03712-1

PACS numbegps): 21.45+v, 25.10+s, 25.80.Hp, 21.30.Fe

I. INTRODUCTION malisma la Yakubovsk [8] and extends this formalism to
the wNNN situation where the pion can disappear through

In the past, there have been various attempts to generalizhe NN vertex interaction. In this case, by repeated use of
the integral-equation approach to the quantum few-bodyhe quasiparticle metho@h close analogy with the standard
problem, and specifically the-body formulation of Sandhas four-body formulation2]) effective two-body equations for
and collaborator$l1,2], to obtain a formulation of the pion- the collision problem between composite fragments of the
three-nucleon problem with the aim to handle this differentwhole system have been found, but it has been shown in a
problem(where the number of particles is not fixegith the  subsequent analys[®] that (i) the leading equation has a
same nonperturbative computational techniques which havgisconnected kernel an() the amplitudes referring to the
been developed and widely tested in standard few-body aRsarious rearrangement processes have intrinsic ambiguities
plications. . and cannot be univocally identified with the physical colli-

In the standard\-body approaf:h, as is well known, re- gjon hrocesses. Both problems cannot be solved in that for-
peated applications of Faddeev's three-body treatri8ht . \5jism unless one disregards certain diagrams referring to

and, in every step of the quasiparticle metHdd, lead to the 2+2 partiti th i imati hich
effective two-body equations for the collision processes be- © partitions, thereby making an approximation whic

. ) at the least breaks unitarity.
tween composite particles. A few authd&6] some years . . .
Since all the above-mentioned approaches achieved only
ago proposed a treatment of the&NN problem where qua-

siparticle equations were assumed from the very beginnin@ Ilmged suSccedsr? mt the.t. attempt tto f generalliﬁ the
as a starting ansatz. The treatment of RBf.started from rassherger-Sandhas transition operator formalismthe

the coupled pion-three-nucleonmKINN-NNN) dynamics equivalent Faddeev-Yakubowsicreen function fqrmalism
and successfully arrived at a connected-kernel integral forl® the pion-three-nucleon problem, one may raise the ques-
mulation of the problem, however, two-body equations delion whether these multlpartlclt_a ap_proaches are well suited to
scribing binary collisions between composite particles of théréat the multinucleon dynamics in the presence of an ab-
completesystem have not been obtained, since the amplisorbable pion. This paper is mainly focused on this important
tudes were represented in terms of cluster partitions of th@uestion and arrives at an affirmatitdthough not general
four- and three-body spaces as if these were two CompleteK}OﬂdUSiOﬂZ It is indeed possible to generalize the Faddeev-
disjoint sectors. In Ref[6] the underlying three- and four- YakubovsK-Alt-Grassberger-Sandhas formalism, developed
body dynamics has been approximated by phenomenologicédr the quantum-mechanical treatment of a fixed number of
multicluster two- and three-body relativistic equations, in-bodies, to the case of the pion-multinucleon dynamics, at
cluding a 24-channel effective two-body equation which thereast under the assumption that the proper Fock space with
was solved numerically and compared with pion productionits infinite number of particlegunavoidable whenever pro-
data; however in this case it was not possible to show thaduction and/or absorption occurs truncated and the sole
the approach is linked to or can be directly obtained from thestates with at most one dynamical pion are retained. The
underlying three- and four-body dynamics. formalism illustrated in the next section is indeed an approxi-
More recently, there has been another attempt to find anate, effective description of the three-nucleon collision
better formulation of the coupledNNN-NNN problem[7]. problem below the production threshold of the second pion,
The approach is more general than the previous ones sinceand within the limits set by the truncation of the Hilbert
does not assume from the beginning the quasipartsgdpa- space to three and four particles it is shown that it is possible
rable ansatz but relies on the four-body chain-labeled for-to obtain the formal solution of the coupledNNN-NNN
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collision problem in terms of effective two-cluster diagrams are included, others which are topologically
connected-kernel equations. equivalent but differ only for the choice of the time ordering
The approach begins with a set of equations, originallyremain excluded. A significant example, besides the equal-
developed for the coupledNN-NN problem by Thomas time two-nucleon self-energy diagram, is the Jennings
and Rinaf 10], and later extended by Afnan and Blankleider mechanisn{20] in 7rd scattering, which has to be included
[11], and following a somewhat different method by Avishai in order to correctly reproduce the deuteron tensor polariza-
and Mizutani[12]. Their final equations merge the three- tion T,9. This mechanism is not included in standard
body dynamics in therNN sector together with the two- @NN-NN equations, while other diagrams differing merely
body dynamics of the NN sector and provide the additionafor the time order are included. An approximate but effective
couplings between the two sectors. The introduction of thesolution to these problems consists in generalizing the
guasiparticle(separablpansatz for the two-body matrices ~ wNN-NN formulation by including contributions from the
allows one to derive two-body effective equations couplingtwo-pion Hilbert space, so that the important diagrams with
together the two-cluster partitions of the whole system, intwo pions at the same time are not missing. The model de-
close similarity with the Alt-Grassberger-SandiiA&S) [1]  veloped and discussed in R¢R1] represents an approach
quasiparticle formalism for the pure three-body problem. Anformulated along these lines. It does not solve, however, the
important aspect of this formalism is that it satisfies unitaritygeneral problem of arbitrarily excluding certain diagrams on
by construction at both two- and three-body ley&l,12  the ground of the sole difference in the time order, but sim-
provided that for the input two-bodymatrices the off-shell ply refers the problem to the truncation at a higher-order
unitarity relation is assumed, that the Green functions in thdevel. The difficulty can be circumvented if one starts with a
no-pion sector include the pion-loop self-energy diagramsfour-dimensional covariant approach rather than from the
that thewNN vertex is properly dressed with the contribution “old-fashioned” time-ordered perturbation theory. In this
coming from the nonpola#rN interaction, and that at least way diagrams differing merely by the time order are system-
the one-pion exchang@PE contribution of the NN inter- atically collected together in one single covariant diagram.
action is treated nonstatically. All these features have bee@ovariant four-dimensional equations which are free from
carefully maintained 13] in the equations herein used as double countings have been obtained only very recently for
input for the pion-three-nucleon problem. Another aspecthe mNN-NN system[22], and their extension to the three-
worth mentioning here is that the relativistic dynamics of thenucleon case is not within the scope of this work.
system can be incorporated in these sets of equations by With these limitations, we arrive in this paper at the iden-
modification of the Green functions, along the lines of thetification of a new set of coupled integral equations for the
relativistic three-particle isobar approach in the Aaron-wNNN-NNN dynamics, whose kernel is connected after it-
Amado-Young model, or by using the Blankenbecker-Sugaeration. The structure of the new coupled equation is chain
reduction method to eliminate the time component from thdabeled, as in the standard four-bodyakubowsk) ap-
integration variables in the four-dimensional covariant equaproach. However, the chain labeling of the equation is richer
tions. We refer to the bookil4,15 and to the references in structure than the standard four-body formulation, because
contained therein for these possible relativistic reformula-of the coupling with the three-nucleon space. We identify
tions of the problem. this structure starting from the study of the fragmentation of
It must be acknowledged, on the other hand, that in spitéhe 7NNN-NNN system into two clusters. We then adapt to
of all these attractive features the input equations we stathis context the quasiparticle method, and obtain the refor-
with are not free from conceptual problems. The difficultiesmulation of therNNN-NNN dynamics in terms of a multi-
unavoidably arise when a truncation of the Hilbert space ugparticle two-cluster equation, where the effective two-cluster
to a limited number of particles is introduced in the contextpotential is given by particle-exchange diagrams. We also
of a time-ordered perturbation theory. Such problems maniformulate the bound-state problem, and show that it can be
fest themselves directly, e.g., in the dressing of the multi-obtained as a solution of the homogeneous problem associ-
nucleon propagator which turns out to be incomplete since imted to the new dynamical equation obtained in this paper.
the one-pion truncation approximation two nuclednst to  We finally provide also the rules to calculate the physically
speak of threecannot be dressed at the same time. Thidnteresting scattering amplitudes starting from the solutions
problem is known as the nucleon renormalization problenof these new dynamical equations.
[16,17], and has important practical consequences in that the The paper is organized as follows: In Section Il the four
effective NN coupling constant in the multinucleon media partitions of the whole system into two clusters are intro-
becomes systematically smaller than the one used as input ttuced. This partition mode has no counterparts either in the
describe the pion-nucleon subsystem dynamics, thereby prdeur-body sector(where there are seven two-cluster parti-
ducing an underestimation of the predictions for figrd ~ tions) or in the three-body sectdithree two-cluster parti-
cross section. Also, it has been shoy8] that the inclusion  tions) but allows the two sectors to dialogue. Then, to obtain
of equal-time dressing contributions introduces significanthe new integral-equation formulation, the following steps
modifications in the two-nucleon Green’s function, at leastare taken. First, the input equations are reformulated in a
for energies above the pion threshold while at lower energiegatrix Lippmann-Schwinger-typéS) form where the role
the differences are smaller. Full dressing of the multinucleorof thet matrix (denotedT ) in matrix notation is played by
propagator entering in therNN-NN dynamical equations the multiparticle transition amplitudes referring to all pos-
can be obtained by means of the representation in terms sible three-cluster partitions of the system. Secondly, the dy-
convolution integrald19]. Another associated difficulty is namical equationgagain in LS form for the subsystems
that in this dynamical approach, while certain time-ordereddentified by two-cluster partitions are introduced. Then a
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new sum rule is introduced with respect to the two-clusterguidance to develop a consistent formulation which divides
partition index, for the “generalized” potentidl® (thatis,  the interaction of the three-nucleon system between a two-
the operator that plays the role of the potential in the inputand a three-body force. In fact, the need of three-body forces
LS equation. Subsequently, from the set of three-cluster am-naturally arises in theories where the meson degrees of free-
plitudes T® the two-cluster disconnected contributions aredom are suppressed and the three nucleons are depicted as
extracted. Finally, by means of the previous results, a nevpointlike quantum particles interacting via local two-body
equation for the remaining connected partTéf) has been potentials. The common procedure relies on symmetry prin-
derived. The result by no means relies on the assumptiongples to evaluate certain three-nucleon irreducible diagrams,
that the subsyterh matrices or amplitudes have a rank-oneselected on physical grounds to give the dominant contribu-
structure. It is to be noted that in the stand&kbody prob-  ion to the three-body force fN s-wave interaction at
lem it is possible to recover the whole Grassberger—Sandhqﬁresh0|c[23,24], or p-waveA excitation at intermediate en-

(G rrlul(;ipl)(articlle forrrtl_ulatiog, and r_ederivel_ thf:‘" ﬁr;atlhergies[zs,ZGl). The approach here discussed performs the
connected-kernet equations Dy Tecursive application o omplete resummation of the whole multiple scattering se-

procedure made by the steps just mentioned above, since th . . T ; .
recursive procedure allows us to extract from fhebody IRs including all one-pion intermediate states, provides the

collision amplitude the whole set of disconnected contribuSource of all reducible and irreducible three-nucleon contri-

tions ranging from the highest levétorresponding to parti- butions of the one-pion type, and furthermore sets the proper

tions of the system iMN—1 clusters, down to the lowest ramework for their nonperturbative handling.

level of disconnectedness where the system is partitioned In.Sec. V attention is returned to the .COH'S'On proble_m

into two clusterg7]. This fact emphasizes the close analo-2nd In particular to the rules for calculating the scattering

gies between the GS formulation and the approach he mplltudes' for_ all pos_S|bIe corn_b!nauor_]s of _mulnpartlcle

adopted to solve therNNN problem. ra}gmentatlon involved in the chI|S|on. Flnally, in Sec. Vl a
In Sec. Il the quasiparticle formalism is introduced. The brief summary and the conclusions are given.

guasiparticle method is applied once in the four-body sector

and a second time simultaneously in both three- and four- Il. CLUSTER DECOMPOSITION

body sectors, to exhibit diagrammatically the connected- OF THE PION-THREE-NUCLEON SYSTEM

kernel structure of the theory, and to recast the result in terms . . . . :

of coupled multiparticle equations for the two-cluster dy- We consider as starting point the res_ult obtained n .REf'

namics, since this is physically more transparent and easié?‘:s]' Here the dynamlgal equations coupling all the partltllons

to communicate. The equations are discussed in terms ’j}f the 7NNN system into three clusters have been derived

coalescence diagrams and particular attention is paid to tHg!lowing the diagrammatic approach and applying non-

nonstandard role of the pion. All the driving terms of thetnwal properties of the four-body transition operators de-

final two-cluster coupled equations are exchange-type diaf_ined within the standard AGS theory. In this manner, it was

grams and are shown to connect the entire set of equation0SSiPleé to obtain an equation for new amplitudes where

In Sec. IV the bound-state equation for the Coup|edscattering processes, pion production, and absorption are
~NNN-NNN system is derived. As is well known, in the C0UPIed in a unitary treatment,

; The final coupled equations were formally identical
two-nucleon system the bound-state wave function can be ) . Lo .
y 0 the Thomas-Rinat-Afnan-Blankleider-Avishai-Mizutani

expressed as the negative-energy solution of the homoge: _ - ;
neous equation whose kernel is transposed with respect I\T@Eﬁgﬁgm‘?q“aﬂons’ originally designed for the coupled
a .

that of the two-body LS equation, and similarly the three-
nucleon bound-state wave function can be expressed in terms

of the negative-energy solution of the homogeneous equation Y = t

whose kernel is transposed with respect to that of the AGS Yan=Co 5ab+§ Oact:Golep™ FaGolp, (213
equation. The homogeneous solution of the coupled

7NN-NN equations provides the natural way to include the

pion dynamics in the two-nucleon bound-state wave func- U;=F;+ VgoU;+2 FZGothoUca, (2.1b
tion, and from this fact it is shown that it is possible to derive ¢
a three-nucleon bound-state wave functierplicitly includ-

ing the pion dynamigswhich can be given as a solution of a
new homogeneous equation whose kernel is similarly related
to that of the equation we have derived in Sec. Il for the
multiparticle collision problem. If we switch off the cou-
plings due to therNN vertices the homogeneous equation U=V+VgoU+ >, FIGot.GoU,. (2.10
splits into two independent ondwith of course two inde- ¢

pendent spectja one whose kernel is referable to the

Faddeev-AGS one for the pure three-nucleon sector, and aivVe briefly recall the meaning of the symbols, referring to
other homogeneous YakubowsBS-type equation for the Ref.[13] and to the references therein contained for more
pure four-particle bound state. With the complete equation ifletailed explanations. The transition matritkg, andU rep-

is possible to merge the three- and four-particle aspects desent the scattering amplitudes for the three-fragment colli-
the problem, thus providing, for the three-nucleon system, &ion processes in the four-particle and three-nucleon sectors,
bound-state equation of new structure which generalizes theespectively, WhiIeUgl andU, are the corresponding absorp-
ones investigated so far. The approach may also serve &isn and production amplitudes.

U= Fa"'; EacthOUc'l'FagOUa (2.19
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The two-bodyt matrices acting between all the possible  The analogy with the standard LS equation can be best
pairs(labeled “a” ) of the four-particle sector are denoted by exploited by formally rewriting the TRABAM equations as a
ta, while F, (F;) are calculated from the elementasyNN matrix LS equation
production(absorption vertices in a manner that is detailed
below. As for the notation, it must be observed that the ab- TE=vE+VvEGHTE), (2.4
sorption amplitudeJ}, is not directly associated to the corre- i o
sponding production amplitude via Hermitian conjugation,Where all operators are nowx77 matrix operators with in-
since the effect of complex conjugation on the boundary condices spanning all the three-cluster partitions of the
ditions must be taken into account. The same consideratiof@NNN-NNN system. This can be obtained by introducing
apply for the 7NN vertices, as these include the energy-the following definitions:
dependent distortion effects due to the nonpetér interac-
tion [11]. Moreover we omit for conciseness the dependence

GOtaGO‘sab 0
upon the total energy of the system, since its role can be Gg3>5 0 g ) ' (2.9
) 0
easily recovered by resorting to the analogy with the stan-
dard few-body case. _
The operatorG, represents the free four-body Green's Go an Fa
function andgy denotes the free three-nucleon Green'’s func- V= (=} AE (2.6)
tion (with the inclusion of the pion self-energy contribu- b
tions). The boundary conditions are fixed by approaching the
right-hand cut in the complex energy plane from above. Fi- Uap U,
nally, V represents the total interaction acting among the T(3)E< ut U ) 2.7
three nucleons, and is given by the sum over the three pair- b

wise nuclear interactions, which must include the nonstatic
OPE diagrams. For the sake of simplicity, we will not as-  While for theNN problem the above equation is already
sume the occurrence of a residual three-body force, althougtonnected and couples all the possible two-cluster partitions
irreducible three-nucleon forces can be—and indeed have abf the systemwhich include the two-nucleon state without
ready been—accommodated in formalisms of this 6t  pionsg, in the #NNN case the same equation couples only
we will, however, add in Sec. VI a discussion on the subjecthree-cluster partitions, thus leading to the nonconnectedness
under a general perspective. Equati¢®sl) can be viewed of the equation. This problem can be immediately under-
(or reinterpretefl as a generalized Lippmann-Schwinger stood by reasoning in terms of classes of “disconnected”
equation; in fact if we restrict the description to the zero-piondiagrams. In Egs(2.1) all diagrams connecting only two of
sector, which corresponds to freezing the pion degrees ahe four particles have been subtracted, via ttheatrices.
freedom, the set of equations collapses to the well-knowrThese same diagrams, if considered in t#¢N case, group
Lippmann-Schwinger equation describing the standardhe system into two fragments, hence all the remaining dia-
quantum-mechanical situation of nucleons interactinggrams contained in Eq$2.1) must connect the whole equa-
through the nuclear potential, i.e., tion. However in therNNN case such two-body diagrams
arrange the system into three clusters; therefore Ejj$)
U=V+Vg,U, (2.2 contain either diagrams connecting the entire system, or dia-
grams arranging the system into two fragments. One has to
isolate this last class of diagrams of higher connectivity but
still “disconnected” before the correct equation can be
p_und. This scenario is perfectly analogous to the situation
or the standard few-body problem, where the Faddeev-AGS
equation solves the three-body problem but leaves the four-
7N or NN, which forms the composite fragment in the four- body proplem still out of re_:gch. _In the four-body problem
one must introduce the partitions into two clusters and repeat

body space. Witb,p(=1— ) itis 1 if the pairsa, bare e same logical scheme to obtain four-body connected-
different, O otherwise. The link between the two spaces i§qrne| equations of YakubovsiGS type.

. T . .
made possible by the operatdfs andF,, defined in terms From the above considerations it is clear that great atten-

of the elementary pion production or absorption vertices, tjon must be paid first in finding the correct two-cluster par-
titions for the system and then one can proceed toward

and for the simpler two-nucleon systetd, corresponds to
the well-known nucleon-nucleoh matrix. Equations(2.1)
generalize the above equation by providing a direct link be
tween the three-nucleon space and the three-cluster re
rangement processes in the four-particle space. As is obv
ous, the indexa (or b, etc) denotes the particle pair, either

3 3
F=>"01f. F=>75 23 7NNN-NNN connected-kgrnel equations. Conversely_, in the
a izl a a 21 ra 23 approach attempted previoudly] the two-cluster partitions
_ _ _ _ are identified literally with the seven two-cluster partitions of
Here, “i” has a twofold meaning since it denotes the the standard four-body problem, while in the three-nucleon

nucleon which emitgor absorbsthe pion and at the same space the homologous partitions were playing a secondary
time the corresponding pion-nucleon pair. As mentionedole. That fragmentation scheme, depicted in Table |, leads
above, the employed elementary vertices have to be dressegl the difficulties observed in Ref9], where it was found

by the distortion effects of the nonpolar contribution to thethat the resulting two-cluster amplitudes had intrinsic ambi-

7N t matrix, fi=(1+t,Go)f!®, and similar distortions guities and the kernel of the resolving equation was not con-
hold for f/ . nected. Both aspects originate from the same problem; the
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TABLE I. The seven two-cluster partitions of treNNN-NNN inferred from Table II. Thus, in the three-nucleon sector we

system in previous approaches. denote the two-nucleon potential by

a’ 7NNN sector NNN sector vs=(vs)— — . (2.9

1 Ny (N2 N3 m) N1(N2 Ng3) Up to now we have identified the diagonal blocks of the
2 Ny (N3 Ny m) N2(N3 Nj) channel interaction; however, it is obvious that the index
3 N3 (N; Ny m) N3(N;y Ny) structure of the diagonal block fixes unavoidably the struc-
4 (m Ni) (N2 Na) Ny(N, Nj) ture of the off-diagonal couplings between the two sectors,
5 (m N3z) (N3 Ny) N2(N3 Ny) e.g.,

6 (m Nz) (N1 Ny) Na(N; Np)

7 7 (N; Ny Ng) vs=(Vs)ara,- - (2.10

The way the channel interaction operates is rather remark-
able and deserves further comments: note that if we drop all
complete system into two clusters. the explicit links to the one-pion sector the _interact?on opera-

In the current approach, we identify only four two-cluster tOr collapses to _the standard two-nucleon |nte.ract|on._ In this
partitions, listed in Table Il. We label these partitions with €2S€; the one-pion sector affects the channel interaction only
the indexs, spanning from 0 to 3. The partitics=0 repre- throygh the. OPE diagram, this being expllc!tly |_ncludeq in
sents the only genuine four-body partition of thaINN sys- e interaction. Thus the present approach implies a highly
tem and corresponds to the last partition reported in Table fiontrivial generalization of what we identify as the NN po-

Here the pion is isolated from the rest of the system, henciEntial in the three-nucleon system. For a given0, the
there is no direct coupling with the zero-pion sector. Thehucleon-nucleon potential becomes a matrix operator acting

remaining partitions witts= 1, 2, and 3 exhibit a new struc- "t Only as a standard two-nucleon potential in the three-
ture with no counterparts in the standard few-body theoried1UCleon space, but acquires extra components and couplings
Each partition represents a physical cluster decompositiofp the chain-of-partition space of the four-body sector. For

which can be detected as an asymptotic channel and whergStance, fors=1, v not only represents the standard NN
according to Table II, one two-cluster no-pion state ispotentlal between nucleons 2 and 3, but has further couplings

coupled with two different two-cluster one-pion states. in the one-pion sector to all possible sequential _breakups of
We can now introduce the equations for the charipel the four-body system which are allowed by the gigend
subsystern dynamics. First we have to define the channelthere is more than this. In addition there is a fourth interac-
interactionv.. (We will assumes#0 since thes=0 case tion term (for s=Q) Wh|ch has no dlrec_t action in the three-
will be discussed separately with standard few-body techDUCl€on space since it operates only in the four-body sector
niques) When s#0 the subsystem interaction couples the@nd in particular in the chain of partitions obtained from the

zero-pion sector with the one-pion sector and one has tgeduential breakup of the+(NNN) channel.
define the action of s in each sector. In the one-pion sector _UP 10 now we have discussed the general structure of the

v, is labeled by the chain-of-partition indefa’a}, where channellinteractions, but.we h.ave not _yet given its explicit
a’ represents one of the possible partitidtvso, for a given ~ €XPressions. To accomplish this we write

s#0) into two clusters of the four-body sector, whdeep- =

resents one of the possible three-cluster partitions which can (Us)ara,b'b=Go " Oabdarb’ Sapcardar brcs  (2.11)

be obtained from the sequential breakup of the parti&ibn
Therefore the structure af in the one-pion sector can be
best represented as

(non) proper identification of the physical partitions of the

for the interaction in the one-pion sector, while in the no-
pion sector(only for s+ 0)

(ve)—,—=Vs (2.12

denotes the pair potential between the two interacting nucle-
where the partition indexes fulfill the chain conditions ons, representing the nonstatic OPE diagréaa well as
aca’'CsandbCb’Cs. In the no-pion sector, the indesis ~ other possible static contributions which phenomenologically
sufficient to identify the two-cluster partition of the system, take into account more complicated diagrams such as heavy-
since fors+0 there is a one to one correspondence betweehoson exchanges and/or multipion exchangémally, the
the indexs and the spectator nucleon, as can be directlyoff-diagonal interactions connecting the three-nucleon and
four-body sectors are defined by

vs:(vs)a’a,b’ba (2.9

TABLE Il. The two-cluster partitions of therNNN-NNN sys-

tem defined in this approach. >

(vara-= 2, fidadiaca Sarcs=(fara (2133

S 7NNN sector NNN sector

0 7 (N; Ny N and

1 Ny (N N3 m); (7 Nji) (N2 Ng) N1(N2 Ns) 3

2 No (Ng Ny )i (m Na) (N3 Ni) - No(Ng Ny (09 po=2, T ipdi b Sorcs=(fDprn-
3 N3 (N; Ny 7); (7 N3) (Ny Np) N3(N; Ny) i=1

(2.13b
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It must be observed that Table Il is crucial for discussing thesystem, according to the scheme illustrated in Table Il. We
structure of the subamplitudes. For eachO, there are two observe that for each partitia¥ O the no-pion sector acts as
two-cluster partitions in the four-body sector and one two-a doorway state and couples two different two-cluster parti-
cluster partition in the three-nucleon sector. Then, in theionsa’ of the four-body sector. The operatork); . and
four-body sector, there are five possible sequential breakupg!),,, are fundamental in this sense, since without these the
for a givens (three when the partition is of typetd, and  two-cluster partitions of the four-body sector would remain
two when it is of the form 22), and in the three-nucleon uncoupled(as happens in the standard four-body thgory
sector there is an additional one associated with the breakup Whens=0 the subamplitude is a genuine four-body sub-
of the nucleonic pair. In conclusion we have a total numbemmplitude, identified by one single two-cluster partition of
of six components for each channel interaction weth0.  the four-body system. The corresponding channel equation
The cases=0 is obviously simpler, since the corresponding has the standard three-component AGS strudiarthe pres-
fragmentation mode passes through one single two-clusteince of a spectator partigle
partition (of type 3+1) of the four-body sector with no cou-
plings to the three-nucleon sector. As is well known, this
standard four-body partition has three possible ulterior frag- (Ua)ab=Co "Fapt 2 GacteGolUa)ep, (2.1
. . . . c(ca’)

mentations into three clusters. The subsystem interaction
for s=0 couples together only these three components.  ith a,bca’.

For each of these four different modes of fragmentation e prefer to rewrite such an equation for the 0 sub-
into two clusters, we introduce the subamplitudgfaving  amplitude as follows:
the same chain-labeled structure of the channel interactions,

with six components (tdarabb=GCp BabOarty
(ts)a’a,b’b (ts)a'a,f —
s™ (t) (t) (2'14> + 2 2 5ac5a’c’thO(ts)c’c,b’b’
s)—,b’b s)—,— c’(Cs) c(Cc’)
for s# 0. These subamplitudes represent the solutions of the (217
equation for the subsystem dynamics which can be explicitl
w?itten as y y P )(whereaca’cs andbCb’ Cs) with the position
(ts)a’a,b’b:Galgab5a’b’ ts:(tS)a/a,b/bE(ua’)a,b5a’b’ " (218
— Clearly, Eq.(2.17) is not the simplest way to write a standard
+ Z 2 SacOarc'tcGolts)creprp AGS equation, however, it does correspond to the standard
c(Cs) e(ce) AGS equation, Eq(2.16), since only thg (NNN) ] parti-
+(fs)arado(ts)— prb (2.153 tion is relevant for s=0 (hence a’'=b’'=c’
=[(NNN) 7r]). The form given by Eq(2.17 has the ad-
(ts)_’b,bz(fl)b,bﬁL VOo(ts) - brp vantage that it treats the=0 subamplitude with the same
formalism which must be introduced to describe the much
+ £ t Ga(t . more complexs#0 subamplitudes. In this way the index
C%S) C(CEC,)( s)ercGoteGoltsereprp structure of all subamplitudes, including tlse=0 one, is
(2.15D given by the same rules.
' Up to now we have discussed the partition modes of the
o 7wNNN-NNN system into two clusters and have given the
(t9)ara—=(f)a a+ Z > OaclarctcGolts)ere,— corresponding subsystem equations. We show now that the
'(Cs) c(cc’) channel interactiom ¢ satisfies a sum-rule property. For con-
(f9)arao(te) (2.150 venience, we discuss separately the effect of the sum rule in
saastism the various sectors.
(- _=Vet Vego(te) - — In the four-body sector, the driving terftotal interaction
¥ S osERST of the TRABAM equations is a matrix potential with com-
ponents ranging within the six three-cluster partitions of the
+ 1) ‘o g )
C,(EC:S) C(é,) (fo)ercGoteGolto)ere, - systemV{}) =G, '8, In the same sector the channel inter-
action has a structure which is conceptually more compli-
(2,159 ion h hich i I li

cated, since for each partitiathe potential in the four-body
with aca’Cs andbCb’Cs. sector is a matrix potential ranging between all the possible

One can directly compare the structure of these equatlorf§""i'nS of partitions corresponding to eash (vs)arabp
with the previously discussed TRABAM equations, Eqs.=Gg 6apdarn Sanca’Oarcs- IN particular, for each partition
(2.1). They are obviously similar, the former being the dy- with s#0 we have five chains while f@=0 there are three
namical equation for the whole system, the latter carrying thehains. The total corresponds to the 18 Yakubdwskmpo-
information for the internal dynamics with respect to thenents necessary for the complete dynamical description of
partitions. In Egs.(2.15 a careful disentanglement has beenfour-body states. We observe that the following sum rule
made of which components contribute within the same subholds:



PRC 58

(V) 4p= 2 >

04’ (Cs)

(2.19

(Us)a’a,b’b .

This can be easily demonstrated once it has been reallze[

that the right-hand can be rewritten

2a’GO 5ab5abca' .

term

Similarly, for the interaction operators connecting the
four-body and the three-nucleon sectors, we observe the fol-

lowing sum rules:

Fa=2 (fara (2.208
S a'(cs)
Fi=2 X (fDaa (2.20h
S a’'(cs)
They both come from the identity
5, ZES Z giaﬁi,aca’ga'Csv (2-2])

a

which can be demonstrated by observifrgm Table 1)) that
a partitiona’ corresponds to one single subsysterand a
pair of different three-cluster partitions,a corresponds to

PION-THREE-NUCLEON PROBLEM WITH TWO-CLUSTE . ..
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We summarize the results obtained so far.

(I) Our starting point is given by the TRABAM equations
which have been symbolically rewritten as a matrix LS equa-
Hm connecting all the three-cluster partitiotis both sec-
ors) of the system:

TE=vE+vEGETE (2.23

(I) We have introduced the dynamical equations for the
subamplitudes. Since we have already expressed these equa-
tions in detaillin Egs.(2.195], we rewrite the same equations

in a more compact matrix form, namely,

(2.29

It has to be recalled that only whes# 0 is there a direct
coupling to the three-nucleon sector. The operators involved
in Eq. (2.24 act in a conceptually more complex space, if
compared to the three-cluster partition spacer6¥, V&),
andG{®, since it involves the chain-of-partition labeling of
the Yakubovsk approach. Therefore care must be taken in
considering the operatorial produgiG§®'t; since the opera-
tors are defined in different spaces, as can be directly seen by
inspection of the detailed formulag.15 previously re-
ported.

(11" Within this formalism, we can collect the three sum
rules previously discussed in a more general and compact

3
te=Vs+ VGt

one single two-cluster partitioa’. Furthermore, we observe SUm rule

that thes= 0 contribution to the sum ovexis identically null

since there are no pion-nucleon pairs which can be identified

from the sequential breakup of the (NNN) partition.

Finally, in the no-pion sector/ represents the sum over

all the pair interactions among the three nucleons,

(2.22

having assumed that only two-body NN potentials are given

as input. The sum over the threeomponentgfrom 1 to 3
saturates the total interaction in the three-nucleon sétter

(V(s))ab (V(a))a,—

V@ =
(V) _p (V) -

2 2

S a’,b'(Cs)

E 2 (Us)—,b'b

S b'(Cs)

(Ve)arab'b E 2 (v9)aa-

a’(Cs)

ES (Us)f,f

(2.295

(IV) We now can proceed in analogy with the methods

s=0 case does not contribute here as well as in the vertesleveloped in standad-body theory, namely, we introduce
interactions. the new unknowngJ, with the following definition:

> X

S a’,b'(Cs)

2 2 > 2

s,s’ a’,c’(Cs) b’'(Cs’) c(Cc’)

<ts)aabrb+2 > Y 2 2 (taacGoteGo(Uss)ereda aGotaGolts )aranb

s,s’ a’,c’(Cs) d’,b’(Cs’) c(Cc’) d(cd’)

(T ap=

s)a 'a,c’c 0t G ( ss’)c’c,—go(ts’)—,b’b

+> X > > (t)ara,—9o(Uss) - ardGotaGolts ) ard b b

s,s’ a’(Cs) d’,b’(Cs’) d(cd’)

2 >

s,s’ a’(Cs) b'(cs’)

(ts)a’a,—go(us,s’)—,—go(ts')—,b’b1 (2-263
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(Ta=2 2 (aa-+t2 2 2 2 2 (tdaaccGoteGo(Uss)ercadGotaGolts )ara,

S a'(cs) s,s’ a’,c’(Cs) d’'(cs’) c(cc’) d(cd’)

+2 E 2 (ts)a’a,c'cGothO(Us,s’)c’c,fgo(ts’)f,f

s,s’ a’,c’(Cs) c(Cc’)
+2 2 2 2 (taa-Go(Use) - aaGotaGolts)wa -+ 2 2 (tdarago(Use) -, Golte) - —,
s,s’ a’(Cs) d’'(cs’) d(cd’) s,s’ a’(Cs)

(2.26b

(T(g))beE E (ts)—,b'b+2 E 2 2 2 (ts)f,c'cGOthO(Us,s’)c’c,d’dGOthO(ts’)d’d,b’b

S b'(Cs) s,s’ ¢'(Cs) d’,b'(Cs’) c(cc’) d(cd’)

+E E E E (ts)—,c'cGOthO(Us,s')c’c,—go(ts’)—,b’b

s,s’ ¢’(Cs) b’(Cs’) c(Cc’)

+2 2 2 (t9--go(Uss) - araGotaGolts)arapnt 2 2 (- -Go(Uss)— —Golts)— prb

s,s’ d’,b’(Ccs’) d(cd’) s,;s’ b'(Cs’)
(2.260
(T =2 (t) +2 X X X 2 (t) cGoteGo(Uss)ere,araGotaGolts )ara, -
S s,s’ ¢/(Cs) b’(Cs’) c(cc’) d(cd’)
+2 2 2 (ts)—,c’cGOthO(Us,s’)c’c,—go(ts’)—|—
s,s’ ¢’(Cs) c(Cc’)
+2 2 2 2 (tdaa-Go(Use) - adGotaGolts)ara, + 2 (to) - -Go(Ussr) - Golts) -
s,s’" a’(Cs) d’'(cs’) d(cd’) s,s’
(2.260

Now, we substitute Eqg2.25 and(2.26 into Eq.(2.23, and use repeatedly ER.24). We find that

(Uss)aranb=(GotaGo) 10an(Fss+ 8ss Garp )+ 2 2 2 (st 8sg0are)(ts)eraaraGotaGo(Usr.s)ard b

s’ ¢’,d'(cs”) d(cd’)

+2 (Esd""555"361’0’)(ts”)c’a,—go(us”,s’)—,b’bv (2-273

g’ C’(CS”)

(Uss)-pb=2 2 2 (8s9)(te) - araGotaGo(Usr s )aranrnt 2 (Ss)(te)— —Go(Usrs) - prp, (2.27D
S” d/(CS") d(Cdl) s//

(Us,s’)a’aﬁ:E 2 E (Ess”""535"561’0’)(ts”)c’a,d'dGOthO(Us”,s’)d’d,f
s’ ¢’,d'(cs”) d(cd’)
+2 2 (Begrt Ssgdare)(te)era,-Go(Ugrsr) - — (2.279

S/I C/(CS/I)

(Uss) - —=(go) *(8ss)+ 2 (8sg)(te) - Go(Ugrg)—+2 > > (s¢)(ter) araGotaGo(Ugr s )ara,— »
S" S” d,(CS”) d(Cd,) (2 27@
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with aCa’CsandbCh’Cs’. We stress that there is always 7NNN-NNN system has been discussed within the diagram-
a relation between the chains of partitions of the four-bodymatic approach.
sector,{a’a}, and the two-cluster partitions since for a As shown in Ref[13], if we apply the last-cut lemma to
givens, the allowed partitionsg’ Cs) are listed in Table Il.  the 4—4 (i.e., FNNN«— 7NNN) amplitude we obtain
Keeping this in mind, it is obvious thats{y + dsg dap)
= Oarpy - T(1[1)=T(1[0)goT(0[1)1+T(1[1), (3.9

These four coupled equations represent the main theoret- ) i .
ical result of the paper. The first two equations couple four\While applying the first-cut lemma to the <43 (ie.,
body scattering and pion absorption, while the last two™NNN<—NNN) amplitude yields
couple three-nucleon scattering with pion production. The
equations decouple into ordinary four- and three-body equa- T(1/0)=T(1[0)4[1+goT(0[0)]. 3.2
tions if we switch off the couplings between the three- and i _ _ _
four-particle channels, however, this is much less obvioud "€ subscript “1” denotes that the given amplitude contains
than the corresponding decoupling for the simpHtN sys- at Ie'as.t one pion in all the intermediate states. '
tem. To show how this happens one must first observe that Similar assumptions folf(0[1); and T(1/0); yield [to
the four two-cluster partitions of the whole system decoupld® lowest order, see Eq&2.6), (2.8), and (2.10 of Ref.
into the seven two-cluster partitions of the four-body sector! 13]]
plus the three two-cluster partitions of the three-nucleon sec-
For. Moreover all the production/absorptipn amplitudes van- T(1/0),= ( E fi(o>
ish, and therefore Eq(2.279d changes into the standard i
three-component AGS equation, and EJ.273 becomes
precisely the standard 18-component GS equation. With the
pion-nucleon vertex interaction switched on, we have instead ~ 1(0[1)1= ( > T
a new 21-component equation which is remarkably different '
in structure. In the Appendix it is shown that the kernel of
this set of coupled equations leads exclusively to connecte
diagrams, after two iterations.

In the following we intend to discuss the properties of this T(1|1):T(1|1)1+[1+T(1|1)1G0]< 2 f(©
set of equations in the light of the quasiparticle interpreta- !
tion. Then we will derive the corresponding bound-state
equation and finally give the rules for calculating the colli- X[got+ gOT(0|O)gO]( > fot
sion amplitudes for rearrangement and breakup processes. !

+T(1|1)1G0( > fi(")) . (3.3

+| > fot

GoT(1|1)1, (3.9

%nd from these last equations we obtain

[1+GoT(1|1)4].

(3.5

) . o S If we identify T(1|1), with the standard four-body four to
~ The introduction of the quasiparticle formalism is in prin- four amplitude T(1|1);=Uqo, We can use the relations con-
ciple not indispensable, since direct solutions of multivari-pecting the various AGS amplitudes,

able few-body-type integral equations are possible by resort-
ing to the nowadays available computational tools. The Ugo=Ugi(1+Got;) —Gg L, (3.6)
historical reason for introducing the quasiparticle method is
that it reduces by one unit the dimensionality of the multi-
particle equation whenever the method is applied. By re-
peated applications of the method, one reduces the problem Bv substituting the two expressions in the previous for-
to the solution of a two-cluster multiparticle equation in one Iy i 9 P P
single variable, after angular momentum decomposition.muawe g€
However, the quasiparticle or separable method not only rep- N
resents a converging approximation scheme but it also al- T(1|1)=U00+i§]_: UoiGofildot9oT(0[0)do]fjUjo
lows us to reinterpret the previously obtained equations in a (3.9
physically more transparent way, and by translating the
theory in terms of coalescence diagrams, it allows us t0 exand recalling that
hibit diagrammatically the connected-kernel properties of the
final equations. —

To introduce the quasiparticle formalism, we derive first Yoo za: ta+a2,:3 taGoUanGolo. 39
the amplitude for the fully unclusterized reaction process.
This corresponds to the four to four amplitude, denoted by _n-l _
T(1]1), describing the process of a free collision of the four Yoi=Co +c:21,6tCGOUC“ (3.10
particles. The amplitude for this process is linked to the
TRABAM amplitudes previously defined[®) (we remind Uo=G 1+ S U, Gt (3.19)
the reader that such amplitudes for thaBINN-NNN system 10770 T g e '
refer to all three to three procesge$o obtain this link, we
resort to Ref.[13] where the TRABAM theory for the we obtain

lll. THE QUASIPARTICLE FORMALISM

Ugo=(1+1;Gp)Ujo— Gy *. (3.7
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Here, for simplicity, we have assumed a rank-one struc-
T(1/1)= 2 tat 2 taGoUarGols ture, but the extension of the formalism to higher ranks is
2 ab straightforward, although practical extensions might require
. a major computational work. Depending on the specific sepa-
+ Eb taGoUaifil9o+9oT(0]0)go]f{UjpGoty rable expansion method, the states may or may not depend
a on the parametric energy, Moreover,(a®(z)| does not
: necessarily have to be the adjoint|af®)(z)); for instance,
+; taGoUaifil 9o+ doT(0]0)go]f; in the case of Weinberg states a possible choice is
: (a®(2)|=]a®(z*))", but depending on the normalization
+ conventions other choices are also posdiBlg. We have no
+”Zb fildo+goT(0[0)go]f{UjsGot, reasons here for analyzing in detail the technical differences
which characterize the variety of separable-expansion meth-
+ ods available in the literatur@or this we refer to Ref[15]);
+§j) filgo+goT(0]0)golf; - (312 aslong as they correctly reproduce the polar structure of the
subsystent matrices we generically denote all these methods
By the use of the AGS equationsee Ref.[13], pp. as “quasiparticle” approaches, although the quasiparticle
1238-1240 it is possible to directly express the above am-idea historically refers to the application in terms of Wein-
plitude in terms of the TRABAM amplitudes for the three- berg state$28.

cluster partitions of the system, thereby obtaining the final We note that the separable assumption affects only the
result four-body space, given that the two-botlynatricest, act

within this space, and, by means of the form Egj14), the
fully unclusterized amplitude becomgsmitting the super-

script “(3)” in the states|a
T(1|1)=§ t;ﬁ% figof;+§) t.Go(T®)1,Gols pt “(3) |a)]

T(L)=2 layral+ 2 figof] + 2 [a)7IXE 7(b]
(3) T (3) a ij ab
+;j t.Go(T )a_gofj+% f.90(T®)_,Gotp

+2 [y 7 IXPgof [+ > figoX)® 7t (b
3) T aj ib
+Zj fi9o(T®)_ _gof] . (3.13

+2 figoX¥gof], (316
It must be observed that in previous studié®] the second, !
and the three last terms were missing in the reported expres-
sions for the fully unclusterized amplitudg(1|1). In par-
ticular, the simplest pole-type diagramjfigoff were not
considered in that approach.

We now introduce the quasiparticle method. According to (3)_ (3)

this method, the two-body matrix is represented by means Xab (2 Go(T™)anGolb), (3173
of the separable ansatz,

where the folded amplitudes are given according to the equa-
tions

X$'=(alGo(T¥),-, (3.17D

XT(3): T(3) . Gnlb ’ 3.17
t.(2)=1a®(2)) 73 (2)(a®(2)|. (3.14 b =(T)_pGolb) (8.179
X®=(TE)_ _. (3.179

When calculating the matrix element of this operator in the
four-body space, we obtain

In the X®® amplitudes the variable describing the internal
(Pd102ltalp’aids) = 8(a;—qy) 8(ay—d)(pla®(z— A)) structure of the pair has been integrated over, thereby reduc-
ing the dimensionality of the corresponding dynamical equa-
><Tgs>(z—A)<a(3>(z—A)|p’>, (3.15 tion. Such a quasiparticle equation for thé> amplitudes
has been given in Eq2.6) of Ref.[5]. However, it is known
that the equation is not connected for the pion-three-nucleon
where it is assumed that is the relative momentum of the problem[5,13].
pair a, while q;, g, are the Jacobi coordinates for the two ~ We solve the problem by introducing the representation
spectators and the c.m. of the pé&onsidered in toto as a given in Eq.(2.26 which allows us to express the three-
three-body systeim andz— A(q;,q,) the kinetic energy of cluster partition amplitudes in terms of the new quantities
the paira with respect to its c.m. andU.y ,
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2t+2 figof[+> 2 2 2 taGolt)aransGolo

S a’,b’(Cs) a(ca’) b(cb’)

+2 Z 2 2 2 2 2 taGO(ts)a'a,c’cGOthO(Uss/)c’c,d'dGOthO(ts’)d’d,b’bGOtb

a’,c’(Cs) b’,d’(Cs’) a(ca’) c(Cc’) b(Cb’) d(cd’)

+2 2 > Y 2 2 t.Go(tdara-9o(Use) - adGotaGolts )ard.pbGols

a’(Cs) b',d’(Cs’) a(ca’) b(cb’) d(cd’)

+2 2 2 2 2 2 tGo(tdaraccGoteGo(Uss)ere.~olts) - pGotp

ss’ a’,c’(Cs) b’(Cs’) a(ca’) c(Cc’) b(Cb’)

+2 > X 2 X t.Go(ts)ara,—9o(Usy) - —Golts) - puGotp

! a’(Cs) b’(Cs’) a(ca’) b(Cb’)

3 S 3 tGolta- go(zf)

a’(Cs) a(ca’)

+E E E 2 2 E s)a 'a,c’c Ot G ( ss’)c’c,b’bGOtbGO(ts’)b’b,90(21_: fJT)

ss’ a’,c’(Cs) a(ca’) c(Cc’) b’(Cs’) b(Cb’)

+2 E > X 2 tGo(tdara-9o(Uss)— bGotsGolts )orb,— go<2f)

ss’ a’'(Cs) a(ca’) b’(cs’) b(cb’)

+2 > > X t.Goltear rac’¢GotcGo(Usg)ere, - Goltsr) 90(2 fT)

a’,c’(Cs) a(ca’) c(cc’)

+2 2 2 taGo(tdara-go(Uss) . Golts) __go(Ef*

ss’ a’(Cs) a(ca’)

+§ (Z fi)QO(ts)—,b’bGOtb

b'(Cs) b(Cb')

2 > 2 2 > X (Z fi)gous),c/cGOtCG(,(ussf>c/c,d,deotdeo<ts/)d/d,bbeotb
ss’ b’,d’(Cs’) b(Cb’) d(cd’) c’(Cs) c(Cc’) !

+> X > > ( | |)go(ts),go(uss’),d’dGOthO(ts’)d’d,b'bGOtb

ss’ b’,d’(Cs’) b(cb’) d(cd’)

> 2 2 X (Eifi)go(ts>_,cchotho(ussoc’c,_go(ts,>_,bbeotb

ss’ b’(cs’) b(Cb’) ¢’(Cs) c(Cc’)

+2 > X (2 fi)Qo(ts),go(Uss/),go(ts'),b'bGotb+§S:

ss’ b’(Cs’) b(cb’) !

> fi)goas),go(z f;)

J

+E PIRDID D) (Zfi)go<ts>_,cchotho<uss/>crc,d/deotdeo<ts/>drd,_go(Eiff)

c’(Cs) c(cc’) d’(cs’) d(cd’)

+2 2 X (2 fi>go(ts),gO(Uss’),d’dGOthO(ts’)d’d,go(; fJT>

ss’ d’(cs’) d(cd’) !

+E 2 2 (Z fi)QO(ts),c’cGothO(Uss’)c’c,go(ts’),go(; ff)

/ ¢/(Cs) c(Cc’)

+2 (2 f, ) (ts)— ~Go(Uss) -~ Golts) _90(2 f] ) (318
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If we introduce at this point the quasiparticle expansionthe additional component in the no-pion zofie cases
EQ. (3.14 we obtain T(1|1) expressed in terms of new #0), in close analogy with the quantitiés. This leads to

folded amplitudes referring to the subsystéor channel
dynamics

(Xs)arap'b=(a|Go(ts)arabrbGolb), (3193
(Xs)ara,— =(a|Go(ts)ara - » (3.199
()~ prb=(ts) - puGol b)), (3.199
(Xg)— —=(ts)- -, (3.19d

and to the total system
(Xss)arapb=(a|Go(Uss)arabbGolb), (3.208
(Xss)ara,-=(aGo(Uss)ara,- » (3.20b
(Xge)-pb=(Uss) - prsGolb),  (3.200
(Xsgr)— -=(Usg) - —. (3.20d

The corresponding expression Bf1|1) in terms ofx, and
Xsg Will be omitted for brevity but the derivation is quite
obvious starting from Eq(3.18: the quantitiesUgy , tq,
endowed where appropriate with the Green functy) are
replaced byX.y andxs, respectively, while the two-bodly
matrix t, is substituted with7l>). Finally 2 is further
dressed with the state vect@®) ((a®)]) if the left (right)

6X 6 matrices fors#0, while we have the standard<3
matrix for thes=0 partition. Obviously, the same consider-
ations previously observed for/s(3§)3’)tS apply also for
2.G ®xs.

It might be useful to illustrate diagrammatically what the
six components represent, e.g., st 1, as has been done in
Fig. 1. Here the diagrams representing thateraction, i.e.,
the driving term of Eq(3.21), have been drawn. The figure
represents the diagrams in a square grid denoting thé 6
interaction matrix. Both columns and rows are ordered so
that the first three elements represent the (N,), (7, N3),
and No, Nj) pairs originating from the
[(7, N5, N3), N;] two-cluster partition, the fourth and
fifth elements represent theNg, N3) and (w, N,) pairs
obtained from the breakup of the second two-cluster parti-
tion,[(N,, N3), (7, N;)], and finally the last element de-
notes the no-pion state with the three nucleons all disen-
tangled.

In the bottom-right corner, one easily recognizes the two-
nucleon OPE diagram, which is therefore extended in the
present formulation to embrace the entire set of diagrams
shown by the figure. As a matter of fact, for obvious reasons
of simplicity two diagrams have been omitted. One is a sec-
ond OPE diagram, similar to that already shown but with the
opposite time ordering, and théim the third row and last
column there should be another diagram where the red and
green lines(nucleons “2” and “3") are interchanged. It is

state refers to the asymptotic state rather than to an intermglear that the same situation occurs in the symmetric case

diate state.

(third column and last roy In passing we observe that if

The quasiparticle equation for the subsystem amplitudesne considers the iterations of this driving term, izeG,®)z

can be immediately obtained by folding the equat{@riL5
between the statgs|G, andGg|b). The result is

Xs=Zs+ 2sG ¥Xs, (3.20)
where
(Zs)a’a,b’b (Zs)a’a,—
=\ (z) e (29— -

<a| GO| b> 5a’b’gab5abca’ 53’ Cs <a| GO(fS)a’a)

(fD)brbGolb) Vs
(3.22
and with the three-clustéquasiparticl¢ propagator given by
(3)
i 823
0 Yo

Within the same matrix formalism, the solution of the equa-

tion for the subsystems is represented as

(Xs)a’a,f
Xs= (Xg)—,— |

where the elementffor each value ofs) are spanned by

(Xs)a’a,b’b
T
(Xs) - b'b

(3.29

chains of partitions in the one-pion sector, completed with

and so on, it is possible to generate in one single step all the
disconnected diagrams which have been illustrated in Figs. 6
and 8 of Ref[5]. The last diagram of Fig. 6, in particular,
represents an off-energy-shell effect where the two-nucleon
scattering amplitudéhe one defined in the four-body segtor
appears while the spectator nucleon undergoes an intermedi-
ate pion emission-reabsorption process. This self-energy
contribution has to be explicitly taken into account at the
present stage of the theory, and plays a role which is analo-
gous to a two-body scattering process in the presence of a
virtual dissociation of a composite spectator. The relevance
of that process is well known in standaxdbody theory.

In the same way as done for the subsystem dynamics,
from Eq.(2.27) it is possible to obtain the following equation
for the folded amplitudes referring to the entire system,
which we write as

Xeg =G Ao+, AgexeGIXge . (3.25
s//

Here, we have introduced a new matrix operaﬁ_J,r,de-
fined as follows:

(Kss’)a’a,b'bE 5ab3a’b’ = 5ab(§ss’ + 5ss’ga’b’)v

(3.26a
(Kss’)a'a,fzoa (3-26b
(Ass)- pp=0, (3.260
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FIG. 1. (Color) Disconnected three-cluster exchange diagrams s
z,, for s=1. These diagrams contribute to the interaction between
nucleons “2” and “3” (green and red lines, respectivel¥he blue
line (nucleon “1”) is always disconnected from the green and red
ones, for any iteration of the diagrams belonging to this set. The
pale blue line represents the pion.

(Asy)-,-=dsg - (3.260

At this point, we can proceed with the iteration of the

quasiparticle expansion, and introduce the separable struc- FIG. 3. (Color) Two-cluster exchange diagrams. The figure
ture for the four subamplitudes of the system, shows the exchange diagrams contributing to the two-cluster poten-
tial Z$2) of Eq. (3.29. The four diagrams on the left side contribute
to Zgzs) for 0#s#s’'+#0, while the two top diagrams on the right
side contribute for & s#s’, and finally the remaining two bottom
diagrams contribute fos=s’#0. There are no other diagrams to
lowest order(aside from those obtained from permutation of the

three colorg and they are all connecting-type diagrams.

(Xarabb=1(5)ara) TL((s@)prpl,  (3.272

(Xara, - =[(8P)ara) (s |, (3.27H
(X)) pp=1(s?) ) rZ((sP)prpl,  (3.270
(x9)— —=(s®)_)7P((s?)_|. (3.27d

(As usual at this point, we must note that in case0 the
states|s?)) have no components in the no-pion segtor.

In the upper side of Fig. 2 we represent two examples of
disconnected amplitude;, both referring to the partitios
a=b anda’'#b’ has been chosen for the top-left diagram, while =1, where the blue line is not connected with the red and

the top-right diagram represents the production subamplitug®f®€n ONes. The boxlike diagram on the left represents a
(X9 ara- - The corresponding diagrams on the bottom side denot@®’0CESS connecting two states of the four-body sector. We
the very same amplitudes in the quasiparticle formalism. Here, thd@ve chosen the special case where the “in” and “out”
intermediate propagation of the multiparticle two-fragment partitionthree-cluster states coincide. In spite of this fact, the diagram
is exhibited by drawing the nucleonic lines surrounded by a pionicdoes not represent @iagonal matrix element, because the
concentric line. Fos=1 the three possible intermediate two-cluster three-cluster partition on the right coalesces intot€22wo-
components are [(wN,N3)N;],  [(N,Ng)(N;m)], and cluster partition, while the same three-cluster partition on the
[(N2N3g)N,]. left has been originated from the breakup of thel3parti-

FIG. 2. (Color) Examples of disconnected three-cluster ampli-
tudes, fors=1. The two diagrams on top of the figure represent the
subamplitudexs, with s=1. In particular, the casex() 4 pr, With
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tion. The boxlike diagram on the right represents a disconpassing through the intermediate propagation of a multipar-
nected production amplitude, where there is a collision beticle two-cluster state, where the nucleon “1” is always dis-
tween nucleons “2” and “3” in the presence of the nucleon connected from the other two. The pion, however, is shared
“1,” with the pion in the final three-cluster state. The se- between both parts without being physically exchanged from
lected production amplitude shows that the final three-clusteone to the other.

partition derives from the breakup of the+r2 two-cluster Introducing the new separable expansion of the subampli-
partition, however, it must be kept in mind that the final tudes in Eq.(3.25, and folding the equation with the new
three-cluster state can be obtained also from the Parti-  statesG ®)|s(?)) referring to the two-cluster partitions one
tion. This indicates that the role of the spectator nucléba  obtains the final quasiparticle equation

blue line in the diagramis not passive at all, since it can still

interact with the pion. This contrasts with the standard three-

particle case where the spectator merely plays a passive role. st) = Z(st) +> Z(SZ;),Q (SZ)X(SZ)S , (3.28

In the lower part of the figure, the same amplitudes are rep- s’

resented in the form of quasiparticle diagrams, thus repro-

ducing Egs.(3.27. The diagrams represent the processesvhere

2 A ' — ’ Y
Zg; :<S(2)|g(3)Ass’ |S (2)>=<(S(2))— |90|(S (2))—>5ss’

+ 2 2 2 (5P TS D)) (Ssg + Bss Barpy)s (3.29

a’(Cs) b’(cs’) a(ca’,b’)
g(SZ): 7.22), (3.30

Xeg=(s?1G PXs5G Vs ?)

E((S(Z))7|go[(xss’)7,7]go|(sl(2))7>+ 2 E E 2 <(S(2>)a’a| 7'(as>[(xss’)a’a,b’b]Tg)a)l(sr(z))b’b>

a’(Cs) b’(cs’) a(ca’) b(cb’)

+ 2 2 {8 ard T Xse)ara 190l (") )+ 2 2 ((8?)_|gol (Xss) - brb] 751 (S" @) i)

a’(Cs) a(ca’) b’(cs’) b(cb’)

(3.3)

The expression EQ.(3.28 represents the two-cluster nisms. This can be seen in Fig. 3 where the diagrams con-

connected-kernel equation which solves th&NN-NNN  tributing to theZ terms[as expressed by Ed3.29] are

problem. It represents the translation within the quasiparticldlustrated.

formalism of the general result represented by @R7). In

spite of the fact that Eq(3.28 must be considered an ap- IV. THE BOUND-STATE EQUATION

proximated result holding only when thematrix separabil- _ o ) _

ity is assumed, nevertheless the result should be considered This section is devoted to the discussion of the bound-

under a very general perspective because the representatidffte equation for theNNN-NNN system. The equation we

of the t matrix as a sum of separable terms is a mathematiderive is in fact a bound—_state equation fo'r the three—nucleqn

cally converging procedurk28] and approaches of this kind _system, t_)ut has the_spe_u_al feature that it incorporates explic-

have been demonstrated to work numeric®g] in few-  itly the pion dynamicglimited to the degree of freedom of

body applications involving realistic nuclear interactions. ~©Nne pion, while in the standard approach this aspect is usu-
In Eq. (3.28 the complete dynamics of E(R.27) is rep- ally restricted in the limits of the OPE tail of the NN inter-

resented in terms of two-body multiparticle correlated state&Ction. _

(bound states, or resonances, etc., for the subsykstaimsy In t_he AGS approach, the three-nu_cleon bound state is

give a physically clear description of the meaning of the@ssociated to the homogeneous solution of the AGS equa-

general equations, otherwise difficult to interpret in terms oftion. In close similarity, here we seek the homogeneous so-

processes or diagrams. For instance, B®8 can be easily lution of the TRABAM equation for therNNN system.

compared with the AGS quasiparticle equation for the stan- According to the matrix notation previously introduced,

dard three-particle problem: Here, the equation is endowe®€ denote the homogeneous equation as

with a fourth componenfthe s=0 componentwhich does

not appear in the AGS equations, and the number of dia- 1) =vEGF|r®), 4.9

grams contributing to th&-exchange terms are considerably

larger with some of them giving rise to totally new mecha-where|I'®)) represents the state eigenvector of the operator
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vEGE . oObviously |®®)=G|Ir®) represents the and
analogous eigenvector for the transposed kernel

[(@P) Y= 2> X G e b

|®(3)>:G83)V(3)|q)(3)>- (4.2) B b’(Cs) b(Ch’)
If we neglect all the couplings with the pion sector, this last XE E | e
equation represents precisely the Sclimger equation for - (g )ern)

4 X X X s’ c¢'(cs’)
the three-nucleon system, with the constituents interacting

through pairwise potentials and in such a cgB€) denotes
simply the complete three-body ScHinger wave function.
Once the one-pion degrees of freedom are explicitly included
in the theory, the equation acquires the typical TRABAM- for the components in the four-body and three-nucleon sec-
like structure and couples the three-nucleon Sdimger tors, respectively.

wave function with the six Faddeev-like components refer- With simple algebraic manipulations we obtain

ring to the partition of therNNN system into three clusters.

Obviously, being the kernel of the homogeneous equation P2 . E 2 2

the same as discussed in the previous sections, we have an I Jara) =
equation whose kernel is not connected. We proceed as fol-

+Gg3)(vs),y,2’ (@) )y (45D

b’(Cs) ¢’(Cs) b(Cb’,c’)

lows. X G (vs)aran bl (P)crp)
We introduce the partitions of the system into two clusters 3) @
and recall the interaction sum rule EQ.25. Then, we de- +Gy (ve)ara, - [(Ps7) )

fine the new two-cluster-partition components for the wave

function: +2 533' 2 > >

"(Cs) ¢’(cs’) b(cb’,c")

(@)ara)=GF X X (05)araprnl (@) xegs')(vs)afa,brbl(@y Jerb)
b’(Cs) b(Cb’)
+GP (vg)ara (@) ) (4.33 +G§ >(us)aa,2 Sex[(@) )
and (4.69
(@) )=6 3 X (v pel (@) and
b’(Cs) b(Cb’)
+GE (v _[(@®)), @3n (@)= X XX Gwe - pul(@P)e)
b’(Cs) ¢’(Cs) b(Cb’,c’)
where the first expression refers to components associated to +GP(vg)_ _|(@P)_)

the four-body sector while the second one to the components
in the three-nucleon space.

With this definition from the homogeneous equation for +z s 2 2 X ? ,
|®®)y, Eq. (4.2, it is possible to express the three-cluster b(Cs) ¢'(Cs) b(Cb',eh)
components as sum over all the two-cluster partitions XGE)S)(US)f,b’bK(DSr )erb)
|(<D<3>)a>=§ Y (@P)ara), (4.43 +GP(vg) > Seg|(PP) ). (4.6b
a'(Cs) o

The last two equations can be rewritten as

(@) )=2 [(@P)-). (4.4b
|(q)(52))a’a>_ 2 2 Gg)s)(vs)a’a,b’bl((b(sz))b’b>

From the last two equations it is possible to write a new b’(Cs) b(Cb’)
homogeneous coupled equation whose solution directly _g® | e
yields the componentsb{?). We obtain 0 (Vo)ara,-|(Ps7)-)

2 3
|((I)§; ))a’a>: E E GE) )(Us)a'a,b’b s’ b’(Cs) ¢’(Cs’) b(cb’,c’)

b’(Cs) b(Cb’) — -
XGg)s)(Us)a’a,b/b(‘Sss""553’5b’6’)|(q)(s?))0'b>
x> 2 [(®)e) _
s’ ¢'(Cs') +> Gg3)(vs)a,a’_5ssr|((1>(:))_> (4.7a
S!

(Vara, _2 (@2 ) (459

and
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wave function is given by the sum over these six Faddeev

|(q>§52>)_>—2 GG (vs) - prpl (D) prn) components. In the present theory we have to take into ac-
bb count the fact that a contribution to the wave function may
~GPvg) . _|(®P)_) arise by pion emission from the pure three-nucleon compo-
0 S/—,— s /—
nent, therefore the four-body component to the three-nucleon
E 2 2 E bound-state wave function is given by
s’ b’(Cs) ¢’(cs’) b(cb’,c’) 6 3
4y = 3y 4 1p®
X G (09) b Bssr+ s B o) | (D) erp) (@)= 2 1957)+Co| 2, f') 2=
+2 G (vg) -, - e (@) ). (4.7b =3 3 3 @)
a’(Cs) a(ca’)

3

E )Zl dP)_). (4.10

From these, employing the equations for the subsystem
amplitudes, Eqs(2.19), it is possible to obtain the final +Go
bound-state equation,

Equation (4.9) represents the residue of this term at the

(DP)aa)= 2 2 > > nucleon pole for a zero-energy pion.
"(Cs) ¢’(Cs’) b(cb’,c’)
X Got2Go(ts)aran'n V. REARRANGEMENT AND BREAKUP AMPLITUDES

In Sec. Il we have restricted the discussion to the fully
unclusterized amplitudes¢four-to-foun or at most to the
_ three-to-three amplitudes. Then in Sec. Ill we have given the
+, GotaGo(tS)a,a,_5SS,|(<I>(:))_> rules to calculatd (1]1) with the quasiparticle formalism. It
s’ is clear that from the phenomenological point of view the
(4.89 most interesting amplitudes are between channels involving
the two-cluster partitions, or amplitudes where at least the

X (Ess’ + 5ss’§b’c’)|(q)(;))c’b>

and incoming state refers to an asymptotic configuration where
the system is partitioned into two clusters. To obtain such
@y y= £t ., amplitudes, we start from the th_ree-to-thre_e amplitudes and
[(®<7)-) ? b’(zcs) C/gs/) b<C§]c,) Golts) oo apply the residue method. To this end we introduce the ho-
_ _ 2 mogeneous equations associated with the two-cluster parti-
X(533’+6SS/ 5brc/)|(q)s, )C’b) t|0n
_ 2)/(E))= G @)(g
+2 go(ts)_’_555,|(¢;?))_>_ (4.8b) |7’ (Es))=Vs(Es)Gp ' (Ey) |?’ (E9)), (5.0
S/

where for eachs#0 the state|y{®)) represents a channel

Equationg4.8) represent the generalization of the bound-vector with one component in the no-pion sector and five
state three-nucleon equation and include in the three-nucleaomponents in the one-pion sectoorresponding to all pos-
dynamics also the pion dynamics. The bound-state wavseible chains of partitions starting from thet2 and 3+1
function corresponds to the solution of the homogeneoupartitions compatible witls). For the special case=0, the
equation whose kernel is transposed with respect to that afame equation couples only the three chains of partitions
Eq. (2.27) for the scattering amplitudes. which start from ther+ (NNN) separation in two clusters,

In the no-pion sector the complete three-nucleon waveand has no components in the 3N sector. Similarly, one can
function is given simply by the sum over the three compo-introduce also the corresponding homogeneous equation for
nentss=1,2,3 (thes=0 case has no direct component in thethe bra states
no-pion sector

<7(2)(Es)|_<75 (Ey) | ( Es)Vs(Es). (5.2
(3) — (2) . . . .
| )*>_ES [(D7)-). (4.9 Obviously for eacts, with the transforming relations
2 2
This result is similar to that obtained in standard Faddeev |2 = Vel ), (5.3
theory, where the three-nucleon bound state is given by the ) o (2
sum over the three Faddeev components. |62y =GG v, (5.9
One may consider at this point the other component of the

wave function, the one acting in the four-body sedtbvi- it is possible to associate an asymptotic channel state satis-

ously, in the standard three-nucleon theory these componenfgng a bound-state-type equatidthe energy dependence
are set identically to zefjoThe wave functioj®(®) in the ~ has been omittedor the two noninteracting fragments
four-body sector spans the six three-cluster partitions of the @ ) @

7NNN system. In a standard four-body theory the complete |¢s”) =G Vsl #57). (5.9
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We can view explicitly how in case+0 the new equation where the state vectots{?)) have been contracted by sum-

couples the chain space in the four-body sector with the 3Nning over the the two-body partitions of the four-body sec-
space by writing in detail the homogeneous equation tor |(;(2))a>=Ea’(Cs)|(7(2))a’a>
' S S '

The two-cluster transition matrix element is given by

(6P)ara)= 2 Gotadapl (62)arb)

b(ca’)

+GotaGo(foaral(62) ),  (5.69 Tos={($2|Ug 62))

=2 2 X X

a’(cs’) a(ca’) b’(Cs) b(Cb’)

X <(¢g))a'a|(Us’s)a'a,b’b|(¢£;2))b’b>

(6P )= 2 2 dolfDpul(6P)pry

b’(Cs) b(Cb’)
+goVdl (6 -), (5.6b

while for s=0 we have a standard three-component + > > <(¢;?))_|(us,s)_,b,b|(¢g2>)b,b>,
(Faddeev-like 3N bound-state equation, with the pion acting b’(Cs) b(Cb’)
as a spectator. In case the couplings between the two spaces (5.9
are switched off, each coupled six-component equation for
s# 0 decouples into the three different equations, one single-
component homogeneous equation for the NN pair in th&vhere in the last expression on the right the components for
presence of a spectator nucleon plus one three-componesgt acting in each sector of the theory have been explicitly
Faddeev equation for thet3 partition, and one analogous given. In this approach, such an amplitude represents the
two-component coupled equation for the correspondifi@ 2 hrocessr+ (NNN)—N + (NN) where the contributions of
partition. With the meson-nucleon vertex interaction turne he type @N)+(NN), and N+ (NN#) are both dynami-
on, these thrge different equations merge in one singlga"y included together with the N-(NN) partition.
coupled equation. . o . We may at this point report on breakup reaction ampli-

At energiesEg corresponding to nontrivial solutions of tudes, such as [ (NNN)—N N N] [ (NNN)
the homogeneous equations it follows that the solution ofthe_w N (NN)] and finally [ (NNN)—>I\’| NN 7]. The
inhomogenegus equatigp has a pole, and around suc.h val- . o be obtained fromi® b tracti ftH -
ues the matrix for the subsystem can be represented in polafJrS WO can be obtained trom™" Dy extraction ot the resi
form due of a single two-cluster partitiofbound-state singular-

ity, while for the last case one has to consider the single
1 residue from Eq(3.18.
ts(2)=|7) z—ES< Y|+, (5.7 We have(witﬂ(s=g))

where the omitted contributions are nonsingular background
remainders.
According to the residue method, the clusterized transi-

Tod NNN«—m(NNN)]

tion amplitudes can be obtained from the general expression
for T®), Egs. (2.26, by extracting the residues once the
poles of the subamplitudes are exhibited. For instance, if we
assumes=0 ands’ #0 and assuming that fd& andE the
associated homogeneous equations have a nontfiboahd-
state or narrow resonancsolution, then the corresponding
two-cluster transition amplitude emerges as the residue of
the double singularity i),

7

T
s (Z_ Es’)(z_ Es)

= HP|+---, (58 and

=2 2 2 X X

s’ a’(cs’) a(ca’) b’(Cs) b(Cb’)

XX (ts) - araGotaGo(Usis)arapbl (#2)brb)

+2 2 X

s’ b’(Cs) b(Cb’)

XX (ts) - ~9o(Usrd) - prpl(62)prp), (5.10

ZS[(NN)WNFW(NNN)]:E E 2 E E E <¢(as>|(ts’)a’a,c'cGOthO(Us’s)c’c,b’b|(¢§;2))b’b>

s’ a’(cs’) ¢’(cs’) c(cc’) b'(Cs) b(Cb')

+E 2 E 2 <¢213)|(ts’)a’aﬁgo(us’s)ab’b|(¢(52))b’b>- (5-11)

s’ a’(cs’) b’(Cs) b(Cb’)
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In this last casea represents the selected NN pair, in the presence of two remaining spectator particles, and
(PCNE )| =(dPEL)|vaGo(E,) is the asymptotic three-cluster channel with two bound nucleons in the presence of two
spectator particles.

The amplitude referring to the process with four outgoing fragments is

%S[WNNN‘*W(NNN)]:E 2 2 2 2 Z 2 <XE)4)|taGO(ts’)a’a,c’cGOthO(Us’s)c’c,b’bl(d’(sz))b’b>

s’ a’(cs’) a(ca’) ¢’(Cs’) c(Cc’) b'(Cs) b(Cb’)

+ 2 E E E <XE)4)|taGO(ts’)a’a,—gO(Us’s)—,b’b|(¢(52))b'b>

s’ a’'(cs’) a(ca’) b’(Cs) b(Cb’)

2 2 2 2 X <xg“>l(2fi)go<ts/>_,cchotho<us/s>c/c,b/b|<¢;2>)b/b>

c’(Cs’) c(cc’) b’(Cs) b(Cb’)

+> > X <xg“>l(2fi)go<tsl),go<usfs>,b/b|<¢<§>>bfb>- (5.12

s’ b’(Cs) b(cb’)

The states(x$¥)| represent, respectively, the free three-At this point, taking advantage of the separable expression

nucleon and the four-particle asymptotic waves. for the t matrix in (G®),=Gt,G, we obtain
It is worthwhile to comment on one aspect common to all 2
these amplitudes; namely, in all the physical reaction pro- Tos =S 216X GO [T, (5.15

cesses one has to sum over the posgilolea givens) two-
cluster partitions of the four-body sectdnerein denoted where
with a’, b’, andc’). Thes=0 partition of the system is an

exception only because it contains just one of these partitions (S ara) (alGol (7)) ara)
(Table 1. In other words, while the indices’ etc. are fun- &)= P = ) . (5.1
damental in the determination of the dynamical equation, (J$7)-) (%))

they do not appear in the physical amplitudes, since these N L
last quantities have to refer only to partitions of the whole . Stated in this form, this implies that to calculate the reac-
system. This specific aspect of the coupletINN theory ~ ton a@mplitudeZss we have to solve t?e equation filisy
emerges from the structure of the dynamical equations@nd the homogeneous equations fo£”) to produce the
which are labeled in the four-body sector by chains of partiStates [[Z)). It is, however, possible to exploit the
tions, e.g., the paia’a with aCa’, while the physical am- quasiparticle/separable structure for teatrix in the homo-
plitudes refer only to physical partitions of the complete sys-geneous equations for tH\QéZ)> and transform it into a ho-
tem into clusters. mogeneous equation for the stat¢§’). This can be done
In the remaining part of this section we show how theby writing explicitly Eq. (5.1), folding its components in the
quasiparticle method can be extended to the present situatidour-body space wita| G, to the left, and using Eq3.14.
to calculate the clusterized amplitudes. Previously, startingdne obtains the homogeneous equation for the subsystem
from the separable expansidff’=|a®)3(a®| we ar- dynamics in quasiparticle form
rived at the equationxs=z.+z.G ®x, where we observed
that the operators, andx, act in the chain-of-partition space |TP(Eg))=2(Es) G (E| [P (Ey)). (5.17)
of the four-body sector, andor s#0) in the space of two-
cluster partitions of the three-nucleon sector. A second itera- The corresponding inhomogeneous version of this equa-
tion of the quasiparticle method consisted in the exhibition oftion has already been given in E.21), where the block
the separable structure for,, xs=|s®)7?(s®| which  matriceszs andG® have been explicitly given. The fact that
allowed us to derive the equation the state$f(?)) are eigensolution of the kernel fag implies
that a particularly convenient expression arises when these
states are used as a basis for the quasiparticle expansion of

X2 =721 7362x2 (513  Xs, i.e,|sP)=|P(EJ)). In that case the pole structure of
s//

s S Xs for z~Eg naturally emerges in the quasiparticle expan-
sion,
In the general case, we have seen in this section that the
two-cluster rearrangement amplitudes can be written as Xs=|s?) (s?)] (5.18
z—Eq ' '
Tos = {2 |Use| 62) = (#?|GP U G| 42). Treatments of the like, based upon the idea of pole domi-

(5.149 nance of the three-body subsystem operators in the kernel of
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the standard four-body equations, have been suggested point the integral-equation approach of Thomas, Rinat,

various formg[31,15 (for a short review on recent applica- Afnan, Blankleider, Avishai, and Mizutani. Obviously, the

tions, see also Ref32]). multiparticle method here developed cannot heal the typical
With the idea of pole dominance, the solution of the finallimitations of such input formalisms based on truncation of

Eq. (3.2, i.e., the amplitudeX'?), when calculated on the Hilbert spaces.
a. (3.28 P SS The final formulation is represented by the set of Egs.

shell, directly yield the two-cluster reaction amplitudgs , (2.27, which generalizes the AGS three-nucleon approach.
We have discussed this result in the light of the quasiparticle
formalism, which allows a physically more transparent inter-
pretation in terms of coalescence diagrams. Within this for-
malism the OPE diagram between two nucleons is treated at
the same level of the particle-exchange diagrams between
VI. SUMMARY, CONCLUSIONS, AND OUTLOOK multiparticle clustergFig. 1). The final equation, Eq3.28),
) ) ] represents an effective two-cluster equation, and the corre-
This paper deals with the formulation of the three-nucleorgponding effective multichannel potential is given exclu-
freedom. The subject implies confrontation of the rather dif—3). In the same framework, we have also given the rules to
ficult question of developing a few-body integral-equationcaiculate the various multiparticle collision processes, in-
approach with particle-nonconserving interactions. The probe|yding rearrangement reactions, breakups, pion-induced ab-
lem is solved in the truncated Hilbert space defined by stategorptions, and productions.
with at most one pion, e.g., the couple®NN-NNN space. Finally, we have formulated the bound-state problem, Eq.
Attempts in this direction have been made before, but thg4 g). The equation incorporates the dynamical effect of one
solution here developed is original and more complete.  pjon in the three-nucleon bound-state equation. From the so-
The first, crucial step has been the clarification of a rathe[ytion of the equation it is possible to calculate the bound-
delicate question of fragmentation of the system into twostate wave function in both its NNN angNNN compo-
clusters (Table 1l). The meson-nucleon vertex interaction nents, through Eqs(4.9 and (4.10, respectively. This
radically changes the cluster properties of the system withypproach represents a formulation of the three-nucleon prob-
four-body case, the-81 and 2t2 partitions are not coupled, potentials, which is notoriously inadequases shown in Ref.
while in the 7NNN system three over four-81 partitions  [30] and in the references therein containeti does not
are coupled to the corresponding-2 partitions, with the  require, on the other hand, the employment of three-nucleon
2+1 partition of the three-nucleon space acting as a doorwajprces(3NF) and the associated additional fixing of new pa-
state. Only the remaining fourth+3l partition (the one with rameteritypica”y, 3NF Cutoffs; 3NF represent an approxi_
the spectator pigrkeeps its standard four-body role and con-mate, effective way to describe the underlying meson dy-
serves the number Of pal’tiC|eS. In Othel’ WOI’dS, the SUbdiVinamiCS in the three_nuc|eon System and the Separation
sion of the coupledrNNN-NNN system into two-cluster petween 2NF and 3NF requires a high level of consistency.
partitions is transversal with respect to the separation of the, Eq. (4.8), all possible combinations of 3N diagrams re-
system in terms of the number of particles, since three pargycible to two-particle interactionsmN or NN) while the
fourth (denoteds=0) does so. _ the couplings with the four-body sector: these contributions
Then, the solution of the problem has been obtained bypviously represent a fraction of the three-nucleon force,
rewording the GS collision theory in terms of t00($) A presumab|y the part with the |0ngest range.
disconnected dynamical equation of LS type for multicluster  of course, it is always possible to consider in principle
processes of the whole syste=V+VGgT); (i) a similar  the additional effect of a residual 3NF, representing more
integral-equation approach for the subsystem dynamicssomplex(and shorter rangediagrams with at least two dy-
which allows the Systematic classification of the diSCOﬂ-namica| pions in the intermediate states, or conversely to
nected diagramst{=vs+vsGots); (iii) a sum-rule equation attempt the more ambitious program of extending the present
for the multicluster interaction, which prevents the Over-approach to include mu|tipi0n degrees of freedom. That
counting or undercounting=Z2ws); (iv) the systematic would also reduce the effect of the main limitation implied
extraction of the disconnected contributions from the initialpy the approach, wherein the input interactions have to be
multicluster collision amplitude of the whole systenT ( extracted from the disconnectedNNN-NNN amplitudes,
=Ztst Zs9tsGoUss Gotsr). In N-body scattering theory, rather than from therN subsystem amplitude.
from (i)—(iv), it is possible to obtain a new dynamical equa-
tion (of AGS type for the amplitudedJ,y , which can be ACKNOWLEDGMENTS

formally recast into the LS form. Hence, by repeated appli- The author thanks G. Pisent, W. Schadow, and J.P.

cations of the method, it is possible to extract gradually all for di _ d ful ts about th
the disconnected subamplitudes, thereby obtaining at the e maenr:;nsecri;;)tr ISCUSsions and usetul comments abou €

a connected-kernel formulation of the quantiiRbody prob-
lem.

In the present paper we have shown that these multipar-
ticle tools work also in the presence of particle- Up to this point, the discussion has been restricted to
nonconserving interactions, at least if we choose as a startimdemonstrating that Eq3.28), i.e., the quasiparticle version

2
X(s; = <s<2>|g<3>xss,g<3>|S/<2>>

2
:<'}’(52)|GE)3)USS’GE)3)|7’(5')>:Tss’ . (5.19

APPENDIX
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of the original coupled equatiof2.27), leads to connected-

type diagrams. This appendix is devoted to the proof thaivith the C1, C2, C3, andC4 coefficients defined by
also the kernel of Eq(2.27), which solves the pion-three-

nucleon problem, is connected after iterations. To achieve

this goal, we consider the kernel of EQ.27), (Clgrsmerdnin

(Ks,s’)a’a,d’d: 2 (Ess"}_555'3(3’c')(ts’)c’a,d’dGOthOr :2 GOthO(ts")e’d,f’fGOtf
c’(cs’)
(Ala) — —
X GO( 68//5///+ 55//5//75f!gl)(ts/ll)glf,h/hGOthGO
(Ks,s’)—,d’d:(535’)(ts’)—,d’dGOthOa (Alb) —
+2 GothO(tSH)e,d,ng(55”5”/)(ts”,)7,h’hGOthGO’

(Ks,s’)a'aﬁ: 2 (Ess"l' 5ss’a’c’)(ts’)c’a,7901 (A3a)
c’'(cs’)
(Alc)
(KS,S’)—,—:(ESS’)(tS’)—,—g()' (Ald) (CZS”,S’”)—,h’hZE go(tsu)_'frfeotfeo(gsusm‘f' 5Srrsrr/gfrgr)

By calculating the cube of this kernel and subsequently
showing that the result is connected, we demonstrate that
after two iterations the kernel of E€R.27) is connected, as
happens in the standard Yakubowslpproach.

After some trivial manipulations, the cube of the kernel
can be written as follows:

X(ts”')g'f,h’hGOthGO

+ dolter) . Go( Byren)

X (tgn)— nnGotnGo (A3b)

3 _ _
(KS,SH/)a’a,h'h: 2 (0sg + 6sg 5a’c')(ts’)c’a,d’d

X (8515 Bs1910qre1) (Clgn n)erdnih

+ 2 (Ess’ + 5ss'ga’c')as’)c'a,f

X (85197)(C2g1,97) — v, (A2a)
(KSgara—=2 (8sg+ 8sg Barc) (ts)eradr

X (85151 + 5151047e1)(C3gr gm)erq, -

+ 2 (8sg+ Bsg Barcr)(ts)cra -

X (85151)(Chgrgn)— _, (A2b)

(Kism)—,h'h: E (gss’)(ts’)f,d’d(gs’s”"' 55’5”5(1’6’)
X(ClSN’S!H)e!d’h!h

+) (8s¢)(ts)era—(8s9)(C2 1) hins

(A2c)

(K)o o= 2 (8ss)(ts)— ara(Bsrsr+ SsrrBarer)

><(C:';s”,s"’)e’d,— + E (gss’)(ts’)c’a,—(gs’s")

X ( C4Srr’5m) R — (AZd)

(C3¢.g)era = GotqGolte)erq 1 iGotiGol Sgren
+ 55![5”/5!g!)(tslﬂ)g!f’_go

+ 2, GotgGoltsr)erd,— Jol Srgn)

X(tgr) -G, (A30)

(C4S!I‘SIH) - - = 2 gO(tS”)f,f’fGOthO(gs”S'"_l— 531151/15/91)
X(ts///)g/f’,go

+ 2 Goltsr) - Go( Sgren) (tsm) - Qo-
(A3d)

For brevity, here and in the following we have assumed that
the sums run over all indexes except those appearing explic-
itly on the left-hand side of each equation.

There are two ways to prove the connectedness of these
coefficients. One consists in the replacement of all the two-
cluster subamplitudes contained in Eqs(A3) with the ex-
plicit form of their driving terms, i.e., the quantitieg given
by Egs. (2.1, (2.12, (2.133, and (2.13h, and then one
must systematically verify that this leads exclusively to
connected-type diagrams. But there is also a more economi-
cal and perhaps more transparent method. By expanding the
two-bodyt matricest,, as a sum over a series of separable
pieces, where each term is of the form given by 8914, it
is possible to reexpress the four classes of coefficients in the
following manner:
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(Clyrsm)erdhrn
=2 Gold) 7 (X)) era 11177 (Bgrgn+ S 1)

><(Xsw)g'f,h'hTﬁa)(mGo*‘2 Gold) 7

= T
X (Xgr)erd,— 9ol Fsrgm) (Xgm) — (|G,

(CZS”,SW) —,h'h

(Ada)

t — —
:2 gO(XSI')f,f’nga)(55”3”’+ 53”5/"51”9/)
X(Xsrrr)grf’hrhTa3)<h|GO
+ 2 golXs) -~ Gol dgrgn) (Xgn) - nenh (| Go,

(A4b)
(Css!/'s//!)eVd’_

:E GO|d>T£js)(Xs”)e’d,f’f
X 73 (Sgrgn+ SgrgnStrg1) (X gr,~Go
+ 2 Gold) 76 (Xer)erd, ~ ol Bgrsm) (Xgm) -~ o,
(A4c)
(Chg g)— =2 Do(Xi) — 11475 (Sgrgn+ Sersnprg)
X(Xgn)grt,-9o

+ 2 Jo(Xer) -~ ol Ssrgn) (Xsn) -~ Go.
(A4d)
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By iterating the quasiparticle expansion method it is pos-
sible to express these folded subamplitudgegdefined in
Sec. lll) as a sum over separable terms of the form given by
Eqg. (3.27. With this form, theseC coefficients finally be-
come

(2)7(2) (2)

3
(Cls”,s"’)e’d,h’h: GO|d>T(d )|(S”(2))eld> T IHTS/I!

s s’s

X{((8" @)l 712(N[ Gy, (A5a)

(Czs//’sm) —,h'h
" 2 2 2 ua
= gO| (S (2)) —>T(5U)Z(SH)SWT(S/H)<(S (2))h’h| T|(,-|3)<h| Go,
(A5b)

2 2 2
(C3gr.gm)erd - =Gold) 7| (8" ?)erg) 7222, 72

s/l Sl/s/l!
X((s")_|go, (A5c)

/" 2 2 2 u
(Cdy o) -, =00l (8"?) )70 25 70H(8"P) o,
(A5d)

where thezgfi,,, have been defined according to E§.29.

Thus, it has been demonstrated that thésmefficients are
connected because they have been expressed in terms of
quantities corresponding to the driving terms of the quasipar-
ticle equation. The connected structure of these objects has
been exhibited diagrammatically in Fig. 3.

It has to be noted that, for the demonstration of the con-
nectivity of theseC coefficients, it is uninfluential whether
the T matrix is of rank ongseparableor not. In this second
case, as long as it is representable in terms of a separable
expansion, the above arguments apply to each term of the
expansion, with the conclusion that these coefficients contain
no disconnected contributions at all.
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