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Pion-three-nucleon problem with two-cluster connected-kernel equations

L. Canton
Istituto Nazionale di Fisica Nucleare, via Marzolo 8, Padova I-35131, Italy

~Received 1 June 1998!

A new set of integral equations for the coupledpNNN-NNN problem is obtained starting from the obser-
vation that this system breaks into fragments in a nontrivial way. Assuming the particles as distinguishable,
there are indeed four modes of fragmentation into two clusters, while in the standard three-body problem there
are three possible two-cluster partitions and conversely the four-body problem has seven different possibilities.
The pion-three-nucleon collision problem is formulated through the integral-equation approach by taking into
account the proper fragmentation of the system. The final result does not depend on the assumption of
separability of the two-bodyt matrices. Then, the quasiparticle methodà la Grassberger and Sandhas is applied
and effective two-cluster connected-kernel equations are obtained. The corresponding bound-state problem is
also formulated, and the resulting homogeneous equation provides an approach which generalizes the com-
monly used approaches via 3N Hamiltonians~where the meson degrees of freedom are usually suppressed! to
describe the three-nucleon bound-state problem.@S0556-2813~98!03712-1#

PACS number~s!: 21.45.1v, 25.10.1s, 25.80.Hp, 21.30.Fe
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I. INTRODUCTION

In the past, there have been various attempts to gener
the integral-equation approach to the quantum few-b
problem, and specifically theN-body formulation of Sandha
and collaborators@1,2#, to obtain a formulation of the pion
three-nucleon problem with the aim to handle this differe
problem~where the number of particles is not fixed! with the
same nonperturbative computational techniques which h
been developed and widely tested in standard few-body
plications.

In the standardN-body approach, as is well known, re
peated applications of Faddeev’s three-body treatment@3#
and, in every step of the quasiparticle method@4#, lead to
effective two-body equations for the collision processes
tween composite particles. A few authors@5,6# some years
ago proposed a treatment of thepNNN problem where qua-
siparticle equations were assumed from the very beginn
as a starting ansatz. The treatment of Ref.@5# started from
the coupled pion-three-nucleon (pNNN-NNN) dynamics
and successfully arrived at a connected-kernel integral
mulation of the problem, however, two-body equations
scribing binary collisions between composite particles of
completesystem have not been obtained, since the am
tudes were represented in terms of cluster partitions of
four- and three-body spaces as if these were two comple
disjoint sectors. In Ref.@6# the underlying three- and four
body dynamics has been approximated by phenomenolog
multicluster two- and three-body relativistic equations,
cluding a 24-channel effective two-body equation which th
was solved numerically and compared with pion product
data; however in this case it was not possible to show
the approach is linked to or can be directly obtained from
underlying three- and four-body dynamics.

More recently, there has been another attempt to fin
better formulation of the coupledpNNN-NNN problem@7#.
The approach is more general than the previous ones sin
does not assume from the beginning the quasiparticle~sepa-
rable! ansatz but relies on the four-body chain-labeled f
PRC 580556-2813/98/58~6!/3121~22!/$15.00
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malism à la Yakubovsk� @8# and extends this formalism to
the pNNN situation where the pion can disappear throu
the pNN vertex interaction. In this case, by repeated use
the quasiparticle method~in close analogy with the standar
four-body formulation@2#! effective two-body equations fo
the collision problem between composite fragments of
whole system have been found, but it has been shown
subsequent analysis@9# that ~i! the leading equation has
disconnected kernel and~ii ! the amplitudes referring to the
various rearrangement processes have intrinsic ambigu
and cannot be univocally identified with the physical col
sion processes. Both problems cannot be solved in that
malism unless one disregards certain diagrams referrin
the 212 partitions, thereby making an approximation whi
at the least breaks unitarity.

Since all the above-mentioned approaches achieved
a limited success in the attempt to generalize
Grassberger-Sandhas transition operator formalism~or the
equivalent Faddeev-Yakubovsk� Green function formalism!
to the pion-three-nucleon problem, one may raise the qu
tion whether these multiparticle approaches are well suite
treat the multinucleon dynamics in the presence of an
sorbable pion. This paper is mainly focused on this import
question and arrives at an affirmative~although not general!
conclusion: It is indeed possible to generalize the Fadde
Yakubovsk�-Alt-Grassberger-Sandhas formalism, develop
for the quantum-mechanical treatment of a fixed number
bodies, to the case of the pion-multinucleon dynamics,
least under the assumption that the proper Fock space
its infinite number of particles~unavoidable whenever pro
duction and/or absorption occurs! is truncated and the sol
states with at most one dynamical pion are retained. T
formalism illustrated in the next section is indeed an appro
mate, effective description of the three-nucleon collisi
problem below the production threshold of the second pi
and within the limits set by the truncation of the Hilbe
space to three and four particles it is shown that it is poss
to obtain the formal solution of the coupledpNNN-NNN
3121 ©1998 The American Physical Society
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3122 PRC 58L. CANTON
collision problem in terms of effective two-cluste
connected-kernel equations.

The approach begins with a set of equations, origina
developed for the coupledpNN-NN problem by Thomas
and Rinat@10#, and later extended by Afnan and Blankleid
@11#, and following a somewhat different method by Avish
and Mizutani @12#. Their final equations merge the thre
body dynamics in thepNN sector together with the two
body dynamics of the NN sector and provide the additio
couplings between the two sectors. The introduction of
quasiparticle~separable! ansatz for the two-bodyt matrices
allows one to derive two-body effective equations coupl
together the two-cluster partitions of the whole system,
close similarity with the Alt-Grassberger-Sandhas~AGS! @1#
quasiparticle formalism for the pure three-body problem.
important aspect of this formalism is that it satisfies unitar
by construction at both two- and three-body level@11,12#
provided that for the input two-bodyt matrices the off-shell
unitarity relation is assumed, that the Green functions in
no-pion sector include the pion-loop self-energy diagram
that thepNN vertex is properly dressed with the contributio
coming from the nonpolarpN interaction, and that at leas
the one-pion exchange~OPE! contribution of the NN inter-
action is treated nonstatically. All these features have b
carefully maintained@13# in the equations herein used a
input for the pion-three-nucleon problem. Another asp
worth mentioning here is that the relativistic dynamics of t
system can be incorporated in these sets of equation
modification of the Green functions, along the lines of t
relativistic three-particle isobar approach in the Aaro
Amado-Young model, or by using the Blankenbecker-Su
reduction method to eliminate the time component from
integration variables in the four-dimensional covariant eq
tions. We refer to the books@14,15# and to the reference
contained therein for these possible relativistic reformu
tions of the problem.

It must be acknowledged, on the other hand, that in s
of all these attractive features the input equations we s
with are not free from conceptual problems. The difficulti
unavoidably arise when a truncation of the Hilbert space
to a limited number of particles is introduced in the conte
of a time-ordered perturbation theory. Such problems ma
fest themselves directly, e.g., in the dressing of the mu
nucleon propagator which turns out to be incomplete sinc
the one-pion truncation approximation two nucleons~not to
speak of three! cannot be dressed at the same time. T
problem is known as the nucleon renormalization probl
@16,17#, and has important practical consequences in that
effectivepNN coupling constant in the multinucleon med
becomes systematically smaller than the one used as inp
describe the pion-nucleon subsystem dynamics, thereby
ducing an underestimation of the predictions for thepp-pd
cross section. Also, it has been shown@18# that the inclusion
of equal-time dressing contributions introduces signific
modifications in the two-nucleon Green’s function, at le
for energies above the pion threshold while at lower energ
the differences are smaller. Full dressing of the multinucle
propagator entering in thepNN-NN dynamical equations
can be obtained by means of the representation in term
convolution integrals@19#. Another associated difficulty is
that in this dynamical approach, while certain time-orde
y
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diagrams are included, others which are topologica
equivalent but differ only for the choice of the time orderin
remain excluded. A significant example, besides the eq
time two-nucleon self-energy diagram, is the Jennin
mechanism@20# in pd scattering, which has to be include
in order to correctly reproduce the deuteron tensor polar
tion T20. This mechanism is not included in standa
pNN-NN equations, while other diagrams differing mere
for the time order are included. An approximate but effect
solution to these problems consists in generalizing
pNN-NN formulation by including contributions from the
two-pion Hilbert space, so that the important diagrams w
two pions at the same time are not missing. The model
veloped and discussed in Ref.@21# represents an approac
formulated along these lines. It does not solve, however,
general problem of arbitrarily excluding certain diagrams
the ground of the sole difference in the time order, but si
ply refers the problem to the truncation at a higher-ord
level. The difficulty can be circumvented if one starts with
four-dimensional covariant approach rather than from
‘‘old-fashioned’’ time-ordered perturbation theory. In th
way diagrams differing merely by the time order are syste
atically collected together in one single covariant diagra
Covariant four-dimensional equations which are free fro
double countings have been obtained only very recently
the pNN-NN system@22#, and their extension to the three
nucleon case is not within the scope of this work.

With these limitations, we arrive in this paper at the ide
tification of a new set of coupled integral equations for t
pNNN-NNN dynamics, whose kernel is connected after
eration. The structure of the new coupled equation is ch
labeled, as in the standard four-body~Yakubowsk�! ap-
proach. However, the chain labeling of the equation is ric
in structure than the standard four-body formulation, beca
of the coupling with the three-nucleon space. We ident
this structure starting from the study of the fragmentation
the pNNN-NNN system into two clusters. We then adapt
this context the quasiparticle method, and obtain the re
mulation of thepNNN-NNN dynamics in terms of a multi-
particle two-cluster equation, where the effective two-clus
potential is given by particle-exchange diagrams. We a
formulate the bound-state problem, and show that it can
obtained as a solution of the homogeneous problem ass
ated to the new dynamical equation obtained in this pap
We finally provide also the rules to calculate the physica
interesting scattering amplitudes starting from the solutio
of these new dynamical equations.

The paper is organized as follows: In Section II the fo
partitions of the whole system into two clusters are int
duced. This partition mode has no counterparts either in
four-body sector~where there are seven two-cluster par
tions! or in the three-body sector~three two-cluster parti-
tions! but allows the two sectors to dialogue. Then, to obt
the new integral-equation formulation, the following ste
are taken. First, the input equations are reformulated i
matrix Lippmann-Schwinger-type~LS! form where the role
of the t matrix ~denotedT(3) in matrix notation! is played by
the multiparticle transition amplitudes referring to all po
sible three-cluster partitions of the system. Secondly, the
namical equations~again in LS form! for the subsystems
identified by two-cluster partitions are introduced. Then
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new sum rule is introduced with respect to the two-clus
partition index, for the ‘‘generalized’’ potentialV(3) ~that is,
the operator that plays the role of the potential in the in
LS equation!. Subsequently, from the set of three-cluster a
plitudesT(3) the two-cluster disconnected contributions a
extracted. Finally, by means of the previous results, a n
equation for the remaining connected part ofT(3) has been
derived. The result by no means relies on the assumpt
that the subsytemt matrices or amplitudes have a rank-o
structure. It is to be noted that in the standardN-body prob-
lem it is possible to recover the whole Grassberger-Sand
~GS! multiparticle formulation, and rederive their fina
connected-kernel equations by recursive application of
procedure made by the steps just mentioned above, since
recursive procedure allows us to extract from theN-body
collision amplitude the whole set of disconnected contrib
tions ranging from the highest level~corresponding to parti-
tions of the system inN21 clusters!, down to the lowest
level of disconnectedness where the system is partitio
into two clusters@7#. This fact emphasizes the close ana
gies between the GS formulation and the approach h
adopted to solve thepNNN problem.

In Sec. III the quasiparticle formalism is introduced. T
quasiparticle method is applied once in the four-body se
and a second time simultaneously in both three- and fo
body sectors, to exhibit diagrammatically the connect
kernel structure of the theory, and to recast the result in te
of coupled multiparticle equations for the two-cluster d
namics, since this is physically more transparent and ea
to communicate. The equations are discussed in term
coalescence diagrams and particular attention is paid to
nonstandard role of the pion. All the driving terms of th
final two-cluster coupled equations are exchange-type
grams and are shown to connect the entire set of equati

In Sec. IV the bound-state equation for the coup
pNNN-NNN system is derived. As is well known, in th
two-nucleon system the bound-state wave function can
expressed as the negative-energy solution of the hom
neous equation whose kernel is transposed with respe
that of the two-body LS equation, and similarly the thre
nucleon bound-state wave function can be expressed in te
of the negative-energy solution of the homogeneous equa
whose kernel is transposed with respect to that of the A
equation. The homogeneous solution of the coup
pNN-NN equations provides the natural way to include t
pion dynamics in the two-nucleon bound-state wave fu
tion, and from this fact it is shown that it is possible to deri
a three-nucleon bound-state wave function~explicitly includ-
ing the pion dynamics! which can be given as a solution of
new homogeneous equation whose kernel is similarly rela
to that of the equation we have derived in Sec. II for t
multiparticle collision problem. If we switch off the cou
plings due to thepNN vertices the homogeneous equati
splits into two independent ones~with of course two inde-
pendent spectra!: one whose kernel is referable to th
Faddeev-AGS one for the pure three-nucleon sector, and
other homogeneous Yakubowsk�-GS-type equation for the
pure four-particle bound state. With the complete equatio
is possible to merge the three- and four-particle aspect
the problem, thus providing, for the three-nucleon system
bound-state equation of new structure which generalizes
ones investigated so far. The approach may also serv
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guidance to develop a consistent formulation which divid
the interaction of the three-nucleon system between a t
and a three-body force. In fact, the need of three-body for
naturally arises in theories where the meson degrees of f
dom are suppressed and the three nucleons are depict
pointlike quantum particles interacting via local two-bod
potentials. The common procedure relies on symmetry p
ciples to evaluate certain three-nucleon irreducible diagra
selected on physical grounds to give the dominant contri
tion to the three-body force (pN s-wave interaction at
threshold@23,24#, or p-waveD excitation at intermediate en
ergies @25,26#!. The approach here discussed performs
complete resummation of the whole multiple scattering
ries including all one-pion intermediate states, provides
source of all reducible and irreducible three-nucleon con
butions of the one-pion type, and furthermore sets the pro
framework for their nonperturbative handling.

In Sec. V attention is returned to the collision proble
and in particular to the rules for calculating the scatter
amplitudes for all possible combinations of multipartic
fragmentation involved in the collision. Finally, in Sec. VI
brief summary and the conclusions are given.

II. CLUSTER DECOMPOSITION
OF THE PION-THREE-NUCLEON SYSTEM

We consider as starting point the result obtained in R
@13#. Here the dynamical equations coupling all the partitio
of the pNNN system into three clusters have been deriv
following the diagrammatic approach and applying no
trivial properties of the four-body transition operators d
fined within the standard AGS theory. In this manner, it w
possible to obtain an equation for new amplitudes wh
scattering processes, pion production, and absorption
coupled in a unitary treatment.

The final coupled equations were formally identic
to the Thomas-Rinat-Afnan-Blankleider-Avishai-Mizuta
~TRABAM ! equations, originally designed for the couple
pNN system:

Uab5G0
21d̄ab1(

c
d̄actcG0Ucb1Fag0Ub

† , ~2.1a!

Ua
†5Fa

†1Vg0Ua
†1(

c
Fc

†G0tcG0Uca , ~2.1b!

Ua5Fa1(
c

d̄actcG0Uc1Fag0U, ~2.1c!

U5V1Vg0U1(
c

Fc
†G0tcG0Uc . ~2.1d!

We briefly recall the meaning of the symbols, referring
Ref. @13# and to the references therein contained for m
detailed explanations. The transition matricesUab andU rep-
resent the scattering amplitudes for the three-fragment c
sion processes in the four-particle and three-nucleon sec
respectively, whileUa

† andUb are the corresponding absorp
tion and production amplitudes.
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3124 PRC 58L. CANTON
The two-bodyt matrices acting between all the possib
pairs~labeled ‘‘a’’ ! of the four-particle sector are denoted b
ta , while Fa (Fa

†) are calculated from the elementarypNN
production~absorption! vertices in a manner that is detaile
below. As for the notation, it must be observed that the
sorption amplitudeUa

† is not directly associated to the corr
sponding production amplitude via Hermitian conjugatio
since the effect of complex conjugation on the boundary c
ditions must be taken into account. The same considerat
apply for the pNN vertices, as these include the energ
dependent distortion effects due to the nonpolarpN interac-
tion @11#. Moreover we omit for conciseness the depende
upon the total energy of the system,E, since its role can be
easily recovered by resorting to the analogy with the st
dard few-body case.

The operatorG0 represents the free four-body Green
function andg0 denotes the free three-nucleon Green’s fu
tion ~with the inclusion of the pion self-energy contribu
tions!. The boundary conditions are fixed by approaching
right-hand cut in the complex energy plane from above.
nally, V represents the total interaction acting among
three nucleons, and is given by the sum over the three p
wise nuclear interactions, which must include the nonst
OPE diagrams. For the sake of simplicity, we will not a
sume the occurrence of a residual three-body force, altho
irreducible three-nucleon forces can be—and indeed hav
ready been—accommodated in formalisms of this sort@5#;
we will, however, add in Sec. VI a discussion on the subj
under a general perspective. Equations~2.1! can be viewed
~or reinterpreted! as a generalized Lippmann-Schwing
equation; in fact if we restrict the description to the zero-p
sector, which corresponds to freezing the pion degree
freedom, the set of equations collapses to the well-kno
Lippmann-Schwinger equation describing the stand
quantum-mechanical situation of nucleons interact
through the nuclear potential, i.e.,

U5V1Vg0U, ~2.2!

and for the simpler two-nucleon system,U corresponds to
the well-known nucleon-nucleont matrix. Equations~2.1!
generalize the above equation by providing a direct link
tween the three-nucleon space and the three-cluster
rangement processes in the four-particle space. As is o
ous, the indexa ~or b, etc.! denotes the particle pair, eithe
pN or NN, which forms the composite fragment in the fou
body space. Withd̄ab([12dab) it is 1 if the pairsa, b are
different, 0 otherwise. The link between the two spaces
made possible by the operatorsFa andFa

† , defined in terms
of the elementary pion production or absorption vertices,

Fa5(
i 51

3

d̄ ia f i , Fa
†5(

i 51

3

d̄ ia f i
† . ~2.3!

Here, ‘‘i ’’ has a twofold meaning since it denotes th
nucleon which emits~or absorbs! the pion and at the sam
time the corresponding pion-nucleon pair. As mention
above, the employed elementary vertices have to be dre
by the distortion effects of the nonpolar contribution to t
pN t matrix, f i5(11t iG0) f i

(o) , and similar distortions
hold for f i

† .
-
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The analogy with the standard LS equation can be b
exploited by formally rewriting the TRABAM equations as
matrix LS equation

T~3!5V~3!1V~3!G0
~3!T~3!, ~2.4!

where all operators are now 737 matrix operators with in-
dices spanning all the three-cluster partitions of t
pNNN-NNN system. This can be obtained by introducin
the following definitions:

G0
~3![S G0taG0dab 0

0 g0D , ~2.5!

V~3![S G0
21d̄ab Fa

Fb
† V D , ~2.6!

T~3![S Uab Ua

Ub
† U D . ~2.7!

While for thepNN problem the above equation is alread
connected and couples all the possible two-cluster partiti
of the system~which include the two-nucleon state withou
pions!, in the pNNN case the same equation couples on
three-cluster partitions, thus leading to the nonconnected
of the equation. This problem can be immediately und
stood by reasoning in terms of classes of ‘‘disconnecte
diagrams. In Eqs.~2.1! all diagrams connecting only two o
the four particles have been subtracted, via thet matrices.
These same diagrams, if considered in thepNN case, group
the system into two fragments, hence all the remaining d
grams contained in Eqs.~2.1! must connect the whole equa
tion. However in thepNNN case such two-body diagram
arrange the system into three clusters; therefore Eqs.~2.1!
contain either diagrams connecting the entire system, or
grams arranging the system into two fragments. One ha
isolate this last class of diagrams of higher connectivity
still ‘‘disconnected’’ before the correct equation can
found. This scenario is perfectly analogous to the situat
for the standard few-body problem, where the Faddeev-A
equation solves the three-body problem but leaves the f
body problem still out of reach. In the four-body proble
one must introduce the partitions into two clusters and rep
the same logical scheme to obtain four-body connect
kernel equations of Yakubovsk�-GS type.

From the above considerations it is clear that great at
tion must be paid first in finding the correct two-cluster pa
titions for the system and then one can proceed tow
pNNN-NNN connected-kernel equations. Conversely, in
approach attempted previously@7# the two-cluster partitions
are identified literally with the seven two-cluster partitions
the standard four-body problem, while in the three-nucle
space the homologous partitions were playing a second
role. That fragmentation scheme, depicted in Table I, le
to the difficulties observed in Ref.@9#, where it was found
that the resulting two-cluster amplitudes had intrinsic am
guities and the kernel of the resolving equation was not c
nected. Both aspects originate from the same problem;
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~non! proper identification of the physical partitions of th
complete system into two clusters.

In the current approach, we identify only four two-clust
partitions, listed in Table II. We label these partitions w
the indexs, spanning from 0 to 3. The partitions50 repre-
sents the only genuine four-body partition of thepNNN sys-
tem and corresponds to the last partition reported in Tab
Here the pion is isolated from the rest of the system, he
there is no direct coupling with the zero-pion sector. T
remaining partitions withs51, 2, and 3 exhibit a new struc
ture with no counterparts in the standard few-body theor
Each partition represents a physical cluster decompos
which can be detected as an asymptotic channel and wh
according to Table II, one two-cluster no-pion state
coupled with two different two-cluster one-pion states.

We can now introduce the equations for the channel~or
subsystem! dynamics. First we have to define the chann
interactionvs . ~We will assumesÞ0 since thes50 case
will be discussed separately with standard few-body te
niques.! When sÞ0 the subsystem interaction couples t
zero-pion sector with the one-pion sector and one has
define the action ofvs in each sector. In the one-pion sect
vs is labeled by the chain-of-partition index,$a8a%, where
a8 represents one of the possible partitions~two, for a given
sÞ0) into two clusters of the four-body sector, whilea rep-
resents one of the possible three-cluster partitions which
be obtained from the sequential breakup of the partitiona8.
Therefore the structure ofvs in the one-pion sector can b
best represented as

vs5~vs!a8a,b8b , ~2.8!

where the partition indexes fulfill the chain condition
a,a8,s andb,b8,s. In the no-pion sector, the indexs is
sufficient to identify the two-cluster partition of the system
since forsÞ0 there is a one to one correspondence betw
the index s and the spectator nucleon, as can be direc

TABLE I. The seven two-cluster partitions of thepNNN-NNN
system in previous approaches.

a8 pNNN sector NNN sector

1 N1 (N2 N3 p) N1(N2 N3)
2 N2 (N3 N1 p) N2(N3 N1)
3 N3 (N1 N2 p) N3(N1 N2)
4 (p N1) (N2 N3) N1(N2 N3)
5 (p N2) (N3 N1) N2(N3 N1)
6 (p N3) (N1 N2) N3(N1 N2)
7 p (N1 N2 N3)

TABLE II. The two-cluster partitions of thepNNN-NNN sys-
tem defined in this approach.

s pNNN sector NNN sector

0 p (N1 N2 N3)
1 N1 (N2 N3 p); (p N1) (N2 N3) N1(N2 N3)
2 N2 (N3 N1 p); (p N2) (N3 N1) N2(N3 N1)
3 N3 (N1 N2 p); (p N3) (N1 N2) N3(N1 N2)
I.
e

e
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to
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inferred from Table II. Thus, in the three-nucleon sector
denote the two-nucleon potential by

vs5~vs!2,2 . ~2.9!

Up to now we have identified the diagonal blocks of t
channel interaction; however, it is obvious that the ind
structure of the diagonal block fixes unavoidably the str
ture of the off-diagonal couplings between the two secto
e.g.,

vs5~vs!a8a,2 . ~2.10!

The way the channel interaction operates is rather rem
able and deserves further comments: note that if we drop
the explicit links to the one-pion sector the interaction ope
tor collapses to the standard two-nucleon interaction. In
case, the one-pion sector affects the channel interaction
through the OPE diagram, this being explicitly included
the interaction. Thus the present approach implies a hig
nontrivial generalization of what we identify as the NN p
tential in the three-nucleon system. For a givensÞ0, the
nucleon-nucleon potential becomes a matrix operator ac
not only as a standard two-nucleon potential in the thr
nucleon space, but acquires extra components and coup
to the chain-of-partition space of the four-body sector. F
instance, fors51, vs not only represents the standard N
potential between nucleons 2 and 3, but has further coupl
in the one-pion sector to all possible sequential breakup
the four-body system which are allowed by the givens. And
there is more than this. In addition there is a fourth inter
tion term~for s50) which has no direct action in the three
nucleon space since it operates only in the four-body se
and in particular in the chain of partitions obtained from t
sequential breakup of thep1(NNN) channel.

Up to now we have discussed the general structure of
channel interactions, but we have not yet given its expl
expressions. To accomplish this we write

~vs!a8a,b8b5G0
21d̄abda8b8da,b,a8da8,b8,s ~2.11!

for the interaction in the one-pion sector, while in the n
pion sector~only for sÞ0)

~vs!2,25Vs ~2.12!

denotes the pair potential between the two interacting nu
ons, representing the nonstatic OPE diagram~as well as
other possible static contributions which phenomenologica
take into account more complicated diagrams such as he
boson exchanges and/or multipion exchanges!. Finally, the
off-diagonal interactions connecting the three-nucleon a
four-body sectors are defined by

~vs!a8a,25(
i 51

3

f i d̄ iad i ,a,a8da8,s[~ f s!a8a ~2.13a!

and

~vs!2,b8b5(
i 51

3

f i
†d̄ ibd i ,b,b8db8,s[~ f s

†!b8b .

~2.13b!
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It must be observed that Table II is crucial for discussing
structure of the subamplitudes. For eachsÞ0, there are two
two-cluster partitions in the four-body sector and one tw
cluster partition in the three-nucleon sector. Then, in
four-body sector, there are five possible sequential break
for a givens ~three when the partition is of type 311, and
two when it is of the form 212!, and in the three-nucleon
sector there is an additional one associated with the brea
of the nucleonic pair. In conclusion we have a total num
of six components for each channel interaction withsÞ0.
The cases50 is obviously simpler, since the correspondi
fragmentation mode passes through one single two-clu
partition ~of type 311! of the four-body sector with no cou
plings to the three-nucleon sector. As is well known, t
standard four-body partition has three possible ulterior fr
mentations into three clusters. The subsystem interactiovs
for s50 couples together only these three components.

For each of these four different modes of fragmentat
into two clusters, we introduce the subamplitudests having
the same chain-labeled structure of the channel interacti
with six components

ts5S ~ ts!a8a,b8b ~ ts!a8a,2

~ ts!2,b8b ~ ts!2,2
D ~2.14!

for sÞ0. These subamplitudes represent the solutions of
equation for the subsystem dynamics which can be explic
written as

~ ts!a8a,b8b5G0
21d̄abda8b8

1 (
c8~,s!

(
c~,c8!

d̄acda8c8tcG0~ ts!c8c,b8b

1~ f s!a8ag0~ ts!2,b8b , ~2.15a!

~ ts!2,b8b5~ f s
†!b8b1Vsg0~ ts!2,b8b

1 (
c8~,s!

(
c~,c8!

~ f s
†!c8cG0tcG0~ ts!c8c,b8b ,

~2.15b!

~ ts!a8a,25~ f s!a8a1 (
c8~,s!

(
c~,c8!

d̄acda8c8tcG0~ ts!c8c,2

1~ f s!a8ag0~ ts!2,2 , ~2.15c!

~ ts!2,25Vs1Vsg0~ ts!2,2

1 (
c8~,s!

(
c~,c8!

~ f s
†!c8cG0tcG0~ ts!c8c,2 ,

~2.15d!

with a,a8,s andb,b8,s.
One can directly compare the structure of these equat

with the previously discussed TRABAM equations, Eq
~2.1!. They are obviously similar, the former being the d
namical equation for the whole system, the latter carrying
information for the internal dynamics with respect to t
partitions. In Eqs.~2.15! a careful disentanglement has be
made of which components contribute within the same s
e

-
e
ps

up
r

er

-

n

s,

e
ly

ns
.

e

-

system, according to the scheme illustrated in Table II.
observe that for each partitionsÞ0 the no-pion sector acts a
a doorway state and couples two different two-cluster pa
tions a8 of the four-body sector. The operators (f s)a8a and
( f s

†)b8b are fundamental in this sense, since without these
two-cluster partitions of the four-body sector would rema
uncoupled~as happens in the standard four-body theory!.

Whens50 the subamplitude is a genuine four-body su
amplitude, identified by one single two-cluster partition
the four-body system. The corresponding channel equa
has the standard three-component AGS structure~in the pres-
ence of a spectator particle!

~ua8!ab5G0
21d̄ab1 (

c~,a8!

d̄actcG0~ua8!cb , ~2.16!

with a,b,a8.
We prefer to rewrite such an equation for thes50 sub-

amplitude as follows:

~ ts!a8a,b8b5G0
21d̄abda8b8

1 (
c8~,s!

(
c~,c8!

d̄acda8c8tcG0~ ts!c8c,b8b ,

~2.17!

~wherea,a8,s andb,b8,s) with the position

ts5~ ts!a8a,b8b[~ua8!a,bda8b8 . ~2.18!

Clearly, Eq.~2.17! is not the simplest way to write a standa
AGS equation, however, it does correspond to the stand
AGS equation, Eq.~2.16!, since only the@(NNN) p# parti-
tion is relevant for s50 „hence a85b85c8
5@(NNN) p#…. The form given by Eq.~2.17! has the ad-
vantage that it treats thes50 subamplitude with the sam
formalism which must be introduced to describe the mu
more complexsÞ0 subamplitudes. In this way the inde
structure of all subamplitudes, including thes50 one, is
given by the same rules.

Up to now we have discussed the partition modes of
pNNN-NNN system into two clusters and have given t
corresponding subsystem equations. We show now that
channel interactionvs satisfies a sum-rule property. For co
venience, we discuss separately the effect of the sum ru
the various sectors.

In the four-body sector, the driving term~total interaction!
of the TRABAM equations is a matrix potential with com
ponents ranging within the six three-cluster partitions of
systemVab

(3)5G0
21d̄ab . In the same sector the channel inte

action has a structure which is conceptually more com
cated, since for each partitions the potential in the four-body
sector is a matrix potential ranging between all the poss
chains of partitions corresponding to eachs: (vs)a8a,b8b

5G0
21d̄abda8b8dab,a8da8,s . In particular, for each partition

with sÞ0 we have five chains while fors50 there are three
chains. The total corresponds to the 18 Yakubovsk� compo-
nents necessary for the complete dynamical description
four-body states. We observe that the following sum r
holds:
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~V~3!!ab5(
s50

3

(
a8,b8~,s!

~vs!a8a,b8b . ~2.19!

This can be easily demonstrated once it has been rea
that the right-hand term can be rewritten
(a8G0

21d̄abdab,a8 .
Similarly, for the interaction operators connecting t

four-body and the three-nucleon sectors, we observe the
lowing sum rules:

Fa5(
s

(
a8~,s!

~ f s!a8a , ~2.20a!

Fa
†5(

s
(

a8~,s!

~ f s
†!a8a . ~2.20b!

They both come from the identity

d̄ ia5(
s

(
a8

d̄ iad i ,a,a8da8,s , ~2.21!

which can be demonstrated by observing~from Table II! that
a partitiona8 corresponds to one single subsystems and a
pair of different three-cluster partitionsi ,a corresponds to
one single two-cluster partitiona8. Furthermore, we observ
that thes50 contribution to the sum overs is identically null
since there are no pion-nucleon pairs which can be identi
from the sequential breakup of thep (NNN) partition.

Finally, in the no-pion sector,V represents the sum ove
all the pair interactions among the three nucleons,

V5(
s
Vs , ~2.22!

having assumed that only two-body NN potentials are giv
as input. The sum over the threes components~from 1 to 3!
saturates the total interaction in the three-nucleon sector~the
s50 case does not contribute here as well as in the ve
interactions!.
ed

l-

d

n

ex

We summarize the results obtained so far.
~I! Our starting point is given by the TRABAM equation

which have been symbolically rewritten as a matrix LS eq
tion connecting all the three-cluster partitions~in both sec-
tors! of the system:

T~3!5V~3!1V~3!G0
~3!T~3!. ~2.23!

~II ! We have introduced the dynamical equations for
subamplitudes. Since we have already expressed these e
tions in detail@in Eqs.~2.15!#, we rewrite the same equation
in a more compact matrix form, namely,

ts5vs1vsG0
~3!ts . ~2.24!

It has to be recalled that only whensÞ0 is there a direct
coupling to the three-nucleon sector. The operators invol
in Eq. ~2.24! act in a conceptually more complex space,
compared to the three-cluster partition space ofT(3), V(3),
andG0

(3) , since it involves the chain-of-partition labeling o
the Yakubovsk� approach. Therefore care must be taken
considering the operatorial productvsG0

(3)ts since the opera-
tors are defined in different spaces, as can be directly see
inspection of the detailed formulas~2.15! previously re-
ported.

~III ! Within this formalism, we can collect the three su
rules previously discussed in a more general and com
sum rule

V~3![S ~V~3!!ab ~V~3!!a,2

~V~3!!2,b ~V~3!!2,2
D

5S (
s

(
a8,b8~,s!

~vs!a8a,b8b (
s

(
a8~,s!

~vs!a8a,2

(
s

(
b8~,s!

~vs!2,b8b (
s

~vs!2,2
D .

~2.25!

~IV ! We now can proceed in analogy with the metho
developed in standardN-body theory, namely, we introduc
the new unknownsU, with the following definition:
~T~3!!ab5(
s

(
a8,b8~,s!

~ ts!a8a,b8b1(
s,s8

(
a8,c8~,s!

(
d8,b8~,s8!

(
c~,c8!

(
d~,d8!

~ ts!a8a,c8cG0tcG0~Us,s8!c8c,d8dG0tdG0~ ts8!d8d,b8b

1(
s,s8

(
a8,c8~,s!

(
b8~,s8!

(
c~,c8!

~ ts!a8a,c8cG0tcG0~Us,s8!c8c,2g0~ ts8!2,b8b

1(
s,s8

(
a8~,s!

(
d8,b8~,s8!

(
d~,d8!

~ ts!a8a,2g0~Us,s8!2,d8dG0tdG0~ ts8!d8d,b8b

1(
s,s8

(
a8~,s!

(
b8~,s8!

~ ts!a8a,2g0~Us,s8!2,2g0~ ts8!2,b8b , ~2.26a!
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~T~3!!a25(
s

(
a8~,s!

~ ts!a8a,21(
s,s8

(
a8,c8~,s!

(
d8~,s8!

(
c~,c8!

(
d~,d8!

~ ts!a8a,c8cG0tcG0~Us,s8!c8c,d8dG0tdG0~ ts8!d8d,2

1(
s,s8

(
a8,c8~,s!

(
c~,c8!

~ ts!a8a,c8cG0tcG0~Us,s8!c8c,2g0~ ts8!2,2

1(
s,s8

(
a8~,s!

(
d8~,s8!

(
d~,d8!

~ ts!a8a,2g0~Us,s8!2,d8dG0tdG0~ ts8!d8d,21(
s,s8

(
a8~,s!

~ ts!a8a,2g0~Us,s8!2,2g0~ ts8!2,2 ,

~2.26b!

~T~3!!2b5(
s

(
b8~,s!

~ ts!2,b8b1(
s,s8

(
c8~,s!

(
d8,b8~,s8!

(
c~,c8!

(
d~,d8!

~ ts!2,c8cG0tcG0~Us,s8!c8c,d8dG0tdG0~ ts8!d8d,b8b

1(
s,s8

(
c8~,s!

(
b8~,s8!

(
c~,c8!

~ ts!2,c8cG0tcG0~Us,s8!c8c,2g0~ ts8!2,b8b

1(
s,s8

(
d8,b8~,s8!

(
d~,d8!

~ ts!2,2g0~Us,s8!2,d8dG0tdG0~ ts8!d8d,b8b1(
s,s8

(
b8~,s8!

~ ts!2,2g0~Us,s8!2,2g0~ ts8!2,b8b ,

~2.26c!

~T~3!!2,25(
s

~ ts!2,21(
s,s8

(
c8~,s!

(
b8~,s8!

(
c~,c8!

(
d~,d8!

~ ts!2,c8cG0tcG0~Us,s8!c8c,d8dG0tdG0~ ts8!d8d,2

1(
s,s8

(
c8~,s!

(
c~,c8!

~ ts!2,c8cG0tcG0~Us,s8!c8c,2g0~ ts8!2,2

1(
s,s8

(
a8~,s!

(
d8~,s8!

(
d~,d8!

~ ts!a8a,2g0~Us,s8!2,d8dG0tdG0~ ts8!d8d,21(
s,s8

~ ts!2,2g0~Us,s8!2,2g0~ ts8!2,2 .

~2.26d!

Now, we substitute Eqs.~2.25! and ~2.26! into Eq. ~2.23!, and use repeatedly Eq.~2.24!. We find that

~Us,s8!a8a,b8b5~G0taG0!21dab~ d̄ss81dss8d̄a8b8!1(
s9

(
c8,d8~,s9!

(
d~,d8!

~ d̄ss91dss9d̄a8c8!~ ts9!c8a,d8dG0tdG0~Us9,s8!d8d,b8b

1(
s9

(
c8~,s9!

~ d̄ss91dss9d̄a8c8!~ ts9!c8a,2g0~Us9,s8!2,b8b , ~2.27a!

~Us,s8!2,b8b5(
s9

(
d8~,s9!

(
d~,d8!

~ d̄ss9!~ ts9!2,d8dG0tdG0~Us9,s8!d8d,b8b1(
s9

~ d̄ss9!~ ts9!2,2g0~Us9,s8!2,b8b , ~2.27b!

~Us,s8!a8a,25(
s9

(
c8,d8~,s9!

(
d~,d8!

~ d̄ss91dss9d̄a8c8!~ ts9!c8a,d8dG0tdG0~Us9,s8!d8d,2

1(
s9

(
c8~,s9!

~ d̄ss91dss9d̄a8c8!~ ts9!c8a,2g0~Us9,s8!2,2 , ~2.27c!

~Us,s8!2,25~g0!21~ d̄ss8!1(
s9

~ d̄ss9!~ ts9!2,2g0~Us9,s8!2,21(
s9

(
d8~,s9!

(
d~,d8!

~ d̄ss9!~ ts9!2,d8dG0tdG0~Us9,s8!d8d,2 ,

~2.27d!
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with a,a8,s andb,b8,s8. We stress that there is alway
a relation between the chains of partitions of the four-bo
sector,$a8a%, and the two-cluster partitionss, since for a
givens, the allowed partitions (a8,s) are listed in Table II.
Keeping this in mind, it is obvious that (d̄ss81dss8d̄a8b8)
5 d̄a8b8 .

These four coupled equations represent the main theo
ical result of the paper. The first two equations couple fo
body scattering and pion absorption, while the last t
couple three-nucleon scattering with pion production. T
equations decouple into ordinary four- and three-body eq
tions if we switch off the couplings between the three- a
four-particle channels, however, this is much less obvi
than the corresponding decoupling for the simplerpNN sys-
tem. To show how this happens one must first observe
the four two-cluster partitions of the whole system decou
into the seven two-cluster partitions of the four-body sec
plus the three two-cluster partitions of the three-nucleon s
tor. Moreover all the production/absorption amplitudes va
ish, and therefore Eq.~2.27d! changes into the standar
three-component AGS equation, and Eq.~2.27a! becomes
precisely the standard 18-component GS equation. With
pion-nucleon vertex interaction switched on, we have inst
a new 21-component equation which is remarkably differ
in structure. In the Appendix it is shown that the kernel
this set of coupled equations leads exclusively to conne
diagrams, after two iterations.

In the following we intend to discuss the properties of th
set of equations in the light of the quasiparticle interpre
tion. Then we will derive the corresponding bound-sta
equation and finally give the rules for calculating the co
sion amplitudes for rearrangement and breakup process

III. THE QUASIPARTICLE FORMALISM

The introduction of the quasiparticle formalism is in pri
ciple not indispensable, since direct solutions of multiva
able few-body-type integral equations are possible by res
ing to the nowadays available computational tools. T
historical reason for introducing the quasiparticle method
that it reduces by one unit the dimensionality of the mu
particle equation whenever the method is applied. By
peated applications of the method, one reduces the prob
to the solution of a two-cluster multiparticle equation in o
single variable, after angular momentum decompositi
However, the quasiparticle or separable method not only
resents a converging approximation scheme but it also
lows us to reinterpret the previously obtained equations
physically more transparent way, and by translating
theory in terms of coalescence diagrams, it allows us to
hibit diagrammatically the connected-kernel properties of
final equations.

To introduce the quasiparticle formalism, we derive fi
the amplitude for the fully unclusterized reaction proce
This corresponds to the four to four amplitude, denoted
T(1u1), describing the process of a free collision of the fo
particles. The amplitude for this process is linked to t
TRABAM amplitudes previously defined,T(3) ~we remind
the reader that such amplitudes for thepNNN-NNN system
refer to all three to three processes!. To obtain this link, we
resort to Ref. @13# where the TRABAM theory for the
y
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pNNN-NNN system has been discussed within the diagra
matic approach.

As shown in Ref.@13#, if we apply the last-cut lemma to
the 4←4 ~i.e., pNNN←pNNN) amplitude we obtain

T~1u1!5T~1u0!g0T~0u1!11T~1u1!1 , ~3.1!

while applying the first-cut lemma to the 4←3 ~i.e.,
pNNN←NNN) amplitude yields

T~1u0!5T~1u0!1@11g0T~0u0!#. ~3.2!

The subscript ‘‘1’’ denotes that the given amplitude conta
at least one pion in all the intermediate states.

Similar assumptions forT(0u1)1 and T(1u0)1 yield †to
the lowest order, see Eqs.~2.6!, ~2.8!, and ~2.10! of Ref.
@13#‡

T~1u0!15S (
i

f i
~o!D 1T~1u1!1G0S (

i
f i

~o!D , ~3.3!

T~0u1!15S (
i

f i
~o!†D 1S (

i
f i

~o!†DG0T~1u1!1 , ~3.4!

and from these last equations we obtain

T~1u1!5T~1u1!11@11T~1u1!1G0#S (
i

f i
~o!D

3@g01g0T~0u0!g0#S (
i

f i
~o!†D @11G0T~1u1!1#.

~3.5!

If we identify T(1u1)1 with the standard four-body four to
four amplitude,T(1u1)15U00, we can use the relations con
necting the various AGS amplitudes,

U005U0i~11G0t i !2G0
21 , ~3.6!

U005~11t iG0!Ui02G0
21 . ~3.7!

By substituting the two expressions in the previous f
mula we get

T~1u1!5U001(
i j

U0iG0f i@g01g0T~0u0!g0# f j
†U j 0

~3.8!

and recalling that

U005(
a

ta1(
a,b

taG0UabG0tb , ~3.9!

U0i5G0
211 (

c51,6
tcG0Uci , ~3.10!

Ui05G0
211 (

c51,6
UicG0tc , ~3.11!

we obtain
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T~1u1!5(
a

ta1(
a,b

taG0UabG0tb

1(
ai jb

taG0Uai f i@g01g0T~0u0!g0# f j
†U jbG0tb

1(
ai j

taG0Uai f i@g01g0T~0u0!g0# f j
†

1(
i jb

f i@g01g0T~0u0!g0# f j
†U jbG0tb

1(
i j

f i@g01g0T~0u0!g0# f j
† . ~3.12!

By the use of the AGS equations~see Ref.@13#, pp.
1238–1240!, it is possible to directly express the above a
plitude in terms of the TRABAM amplitudes for the thre
cluster partitions of the system, thereby obtaining the fi
result

T~1u1!5(
a

ta1(
i j

f ig0f j
†1(

a,b
taG0~T~3!!abG0tb

1(
a j

taG0~T~3!!a2g0f j
†1(

ib
f ig0~T~3!!2bG0tb

1(
i j

f ig0~T~3!!2,2g0f j
† . ~3.13!

It must be observed that in previous studies@7,9# the second,
and the three last terms were missing in the reported exp
sions for the fully unclusterized amplitudeT(1u1). In par-
ticular, the simplest pole-type diagrams( i j f ig0f j

† were not
considered in that approach.

We now introduce the quasiparticle method. According
this method, the two-bodyt matrix is represented by mean
of the separable ansatz,

ta~z!5ua~3!~z!&ta
~3!~z!^a~3!~z!u. ~3.14!

When calculating the matrix element of this operator in
four-body space, we obtain

^pq1q2utaup8q18q28&5d~q182q1!d~q282q2!^pua~3!~z2D!&

3ta
~3!~z2D!^a~3!~z2D!up8&, ~3.15!

where it is assumed thatp is the relative momentum of th
pair a, while q1, q2 are the Jacobi coordinates for the tw
spectators and the c.m. of the pair~considered in toto as a
three-body system!, and z2D(q1,q2) the kinetic energy of
the paira with respect to its c.m.
-

l

s-

o

e

Here, for simplicity, we have assumed a rank-one str
ture, but the extension of the formalism to higher ranks
straightforward, although practical extensions might requ
a major computational work. Depending on the specific se
rable expansion method, the states may or may not dep
on the parametric energy,z. Moreover, ^a(3)(z)u does not
necessarily have to be the adjoint ofua(3)(z)&; for instance,
in the case of Weinberg states a possible choice
^a(3)(z)u5ua(3)(z* )&†, but depending on the normalizatio
conventions other choices are also possible@27#. We have no
reasons here for analyzing in detail the technical differen
which characterize the variety of separable-expansion m
ods available in the literature~for this we refer to Ref.@15#!;
as long as they correctly reproduce the polar structure of
subsystemt matrices we generically denote all these metho
as ‘‘quasiparticle’’ approaches, although the quasiparti
idea historically refers to the application in terms of Wei
berg states@28#.

We note that the separable assumption affects only
four-body space, given that the two-bodyt matricesta act
within this space, and, by means of the form Eq.~3.14!, the
fully unclusterized amplitude becomes@omitting the super-
script ‘‘~3!’’ in the statesua&]

T~1u1!5(
a

ua&ta
~3!^au1(

i j
f ig0f j

†1(
ab

ua&ta
~3!Xab

~3!tb
~3!^bu

1(
a j

ua&ta
~3!Xa

~3!g0f j
†1(

ib
f ig0Xb

†~3!tb
~3!^bu

1(
i j

f ig0X~3!g0f j
† , ~3.16!

where the folded amplitudes are given according to the eq
tions

Xab
~3!5^auG0~T~3!!abG0ub&, ~3.17a!

Xa
~3!5^auG0~T~3!!a2 , ~3.17b!

Xb
†~3!5~T~3!!2bG0ub&, ~3.17c!

X~3![~T~3!!2,2 . ~3.17d!

In the X(3) amplitudes the variable describing the intern
structure of the pair has been integrated over, thereby re
ing the dimensionality of the corresponding dynamical eq
tion. Such a quasiparticle equation for theX(3) amplitudes
has been given in Eq.~2.6! of Ref. @5#. However, it is known
that the equation is not connected for the pion-three-nucl
problem@5,13#.

We solve the problem by introducing the representat
given in Eq. ~2.26! which allows us to express the thre
cluster partition amplitudes in terms of the new quantitiests
andUss8 ,



PRC 58 3131PION-THREE-NUCLEON PROBLEM WITH TWO-CLUSTER . . .
T~1u1!5(
a

ta1(
i j

f ig0f j
†1(

s
(

a8,b8~,s!
(

a~,a8!
(

b~,b8!

taG0~ ts!a8ab8bG0tb

1(
ss8

(
a8,c8~,s!

(
b8,d8~,s8!

(
a~,a8!

(
c~,c8!

(
b~,b8!

(
d~,d8!

taG0~ ts!a8a,c8cG0tcG0~Uss8!c8c,d8dG0tdG0~ ts8!d8d,b8bG0tb

1(
ss8

(
a8~,s!

(
b8,d8~,s8!

(
a~,a8!

(
b~,b8!

(
d~,d8!

taG0~ ts!a8a,2g0~Uss8!2,d8dG0tdG0~ ts8!d8d,b8bG0tb

1(
ss8

(
a8,c8~,s!

(
b8~,s8!

(
a~,a8!

(
c~,c8!

(
b~,b8!

taG0~ ts!a8a,c8cG0tcG0~Uss8!c8c,2g0~ ts8!2,b8bG0tb

1(
ss8

(
a8~,s!

(
b8~,s8!

(
a~,a8!

(
b~,b8!

taG0~ ts!a8a,2g0~Uss8!2,2g0~ ts8!2,b8bG0tb

1(
s

(
a8~,s!

(
a~,a8!

taG0~ ts!a8a,2g0S (
j

f j
†D

1(
ss8

(
a8,c8~,s!

(
a~,a8!

(
c~,c8!

(
b8~,s8!

(
b~,b8!

taG0~ ts!a8a,c8cG0tcG0~Uss8!c8c,b8bG0tbG0~ ts8!b8b,2g0S (
j

f j
†D

1(
ss8

(
a8~,s!

(
a~,a8!

(
b8~,s8!

(
b~,b8!

taG0~ ts!a8a,2g0~Uss8!2,b8bG0tbG0~ ts8!b8b,2g0S (
j

f j
†D

1(
ss8

(
a8,c8~,s!

(
a~,a8!

(
c~,c8!

taG0~ ts!a8a,c8cG0tcG0~Uss8!c8c,2g0~ ts8!2,2g0S (
j

f j
†D

1(
ss8

(
a8~,s!

(
a~,a8!

taG0~ ts!a8a,2g0~Uss8!2,2g0~ ts8!2,2g0S (
j

f j
†D 1(

s
(

b8~,s!
(

b~,b8!
S (

i
f i Dg0~ ts!2,b8bG0tb

1(
ss8

(
b8,d8~,s8!

(
b~,b8!

(
d~,d8!

(
c8~,s!

(
c~,c8!

S (
i

f i Dg0~ ts!2,c8cG0tcG0~Uss8!c8c,d8dG0tdG0~ ts8!d8d,b8bG0tb

1(
ss8

(
b8,d8~,s8!

(
b~,b8!

(
d~,d8!

S (
i

f i Dg0~ ts!2,2g0~Uss8!2,d8dG0tdG0~ ts8!d8d,b8bG0tb

1(
ss8

(
b8~,s8!

(
b~,b8!

(
c8~,s!

(
c~,c8!

S (
i

f i Dg0~ ts!2,c8cG0tcG0~Uss8!c8c,2g0~ ts8!2,b8bG0tb

1(
ss8

(
b8~,s8!

(
b~,b8!

S (
i

f i Dg0~ ts!2,2g0~Uss8!2,2g0~ ts8!2,b8bG0tb1(
s

S (
i

f i Dg0~ ts!2,2g0S (
j

f j
†D

1(
ss8

(
c8~,s!

(
c~,c8!

(
d8~,s8!

(
d~,d8!

S (
i

f i Dg0~ ts!2,c8cG0tcG0~Uss8!c8c,d8dG0tdG0~ ts8!d8d,2g0S (
j

f j
†D

1(
ss8

(
d8~,s8!

(
d~,d8!

S (
i

f i Dg0~ ts!2,2g0~Uss8!2,d8dG0tdG0~ ts8!d8d,2g0S (
j

f j
†D

1(
ss8

(
c8~,s!

(
c~,c8!

S (
i

f i Dg0~ ts!2,c8cG0tcG0~Uss8!c8c,2g0~ ts8!2,2g0S (
j

f j
†D

1(
ss8

S (
i

f i Dg0~ ts!2,2g0~Uss8!2,2g0~ ts8!2,2g0S (
j

f j
†D . ~3.18!
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If we introduce at this point the quasiparticle expans
Eq. ~3.14! we obtain T(1u1) expressed in terms of new
folded amplitudes referring to the subsystem~or channel!
dynamics

~xs!a8a,b8b5^auG0~ ts!a8a,b8bG0ub&, ~3.19a!

~xs!a8a,25^auG0~ ts!a8a,2 , ~3.19b!

~xs
†!2,b8b5~ ts!2,b8bG0ub&, ~3.19c!

~xs!2,2[~ ts!2,2 , ~3.19d!

and to the total system

~Xss8!a8a,b8b5^auG0~Uss8!a8a,b8bG0ub&, ~3.20a!

~Xss8!a8a,25^auG0~Uss8!a8a,2 , ~3.20b!

~Xss8
†

!2,b8b5~Uss8!2,b8bG0ub&, ~3.20c!

~Xss8!2,2[~Uss8!2,2 . ~3.20d!

The corresponding expression ofT(1u1) in terms ofxs and
Xss8 will be omitted for brevity but the derivation is quit
obvious starting from Eq.~3.18!: the quantitiesUss8 , ts ,
endowed where appropriate with the Green functionG0 , are
replaced byXss8 andxs , respectively, while the two-bodyt
matrix ta is substituted withta

(3) . Finally ta
(3) is further

dressed with the state vectorua(3)& (^a(3)u) if the left ~right!
state refers to the asymptotic state rather than to an inte
diate state.

The quasiparticle equation for the subsystem amplitu
can be immediately obtained by folding the equation~2.15!
between the stateŝauG0 andG0ub&. The result is

xs5zs1zsG ~3!xs , ~3.21!

where

zs5S ~zs!a8a,b8b ~zs!a8a,2

~zs
†!2,b8b ~zs!2,2 D

5S ^auG0ub&da8b8d̄abdab,a8da8,s ^auG0~ f s!a8a

~ f s
†!b8bG0ub& Vs

D
~3.22!

and with the three-cluster~quasiparticle! propagator given by

G ~3!5S ta
~3!dab 0

0 g0
D . ~3.23!

Within the same matrix formalism, the solution of the equ
tion for the subsystems is represented as

xs5S ~xs!a8a,b8b ~xs!a8a,2

~xs
†!2,b8b ~xs!2,2 D , ~3.24!

where the elements~for each value ofs) are spanned by
chains of partitions in the one-pion sector, completed w
e-

s

-

h

the additional component in the no-pion zone~in cases
Þ0), in close analogy with the quantitiests . This leads to
636 matrices forsÞ0, while we have the standard 333
matrix for thes50 partition. Obviously, the same conside
ations previously observed forvsG0

(3)ts apply also for
zsG (3)xs .

It might be useful to illustrate diagrammatically what th
six components represent, e.g., fors51, as has been done i
Fig. 1. Here the diagrams representing thez interaction, i.e.,
the driving term of Eq.~3.21!, have been drawn. The figur
represents the diagrams in a square grid denoting the 636
interaction matrix. Both columns and rows are ordered
that the first three elements represent the (p, N2), (p, N3),
and (N2 , N3) pairs originating from the
@(p, N2 , N3), N1# two-cluster partition, the fourth and
fifth elements represent the (N2 , N3) and (p, N1) pairs
obtained from the breakup of the second two-cluster pa
tion, @(N2 , N3), (p, N1)#, and finally the last element de
notes the no-pion state with the three nucleons all dis
tangled.

In the bottom-right corner, one easily recognizes the tw
nucleon OPE diagram, which is therefore extended in
present formulation to embrace the entire set of diagra
shown by the figure. As a matter of fact, for obvious reaso
of simplicity two diagrams have been omitted. One is a s
ond OPE diagram, similar to that already shown but with
opposite time ordering, and then~in the third row and last
column! there should be another diagram where the red
green lines~nucleons ‘‘2’’ and ‘‘3’’ ! are interchanged. It is
clear that the same situation occurs in the symmetric c
~third column and last row!. In passing we observe that
one considers the iterations of this driving term, i.e.,zsG (3)zs
and so on, it is possible to generate in one single step all
disconnected diagrams which have been illustrated in Fig
and 8 of Ref.@5#. The last diagram of Fig. 6, in particula
represents an off-energy-shell effect where the two-nucl
scattering amplitude~the one defined in the four-body secto!
appears while the spectator nucleon undergoes an interm
ate pion emission-reabsorption process. This self-ene
contribution has to be explicitly taken into account at t
present stage of the theory, and plays a role which is an
gous to a two-body scattering process in the presence
virtual dissociation of a composite spectator. The releva
of that process is well known in standardN-body theory.

In the same way as done for the subsystem dynam
from Eq.~2.27! it is possible to obtain the following equatio
for the folded amplitudes referring to the entire syste
which we write as

Xss85G
~3!21D̄ss81(

s9
D̄ss9xs9G

~3!Xs9s8 . ~3.25!

Here, we have introduced a new matrix operator,D̄, de-
fined as follows:

~D̄ss8!a8a,b8b[dabd̄a8b85dab~ d̄ss81dss8d̄a8b8!,
~3.26a!

~D̄ss8!a8a,2[0, ~3.26b!

~D̄ss8!2,b8b[0, ~3.26c!
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~D̄ss8!2,2[d̄ss8 . ~3.26d!

At this point, we can proceed with the iteration of th
quasiparticle expansion, and introduce the separable s
ture for the four subamplitudes of the system,

FIG. 1. ~Color! Disconnected three-cluster exchange diagra
zs , for s51. These diagrams contribute to the interaction betw
nucleons ‘‘2’’ and ‘‘3’’ ~green and red lines, respectively!. The blue
line ~nucleon ‘‘1’’! is always disconnected from the green and r
ones, for any iteration of the diagrams belonging to this set.
pale blue line represents the pion.

FIG. 2. ~Color! Examples of disconnected three-cluster amp
tudes, fors51. The two diagrams on top of the figure represent
subamplitudexs , with s51. In particular, the case (xs)a8a,b8b with
a5b and a8Þb8 has been chosen for the top-left diagram, wh
the top-right diagram represents the production subamplit
(xs)a8a,2 . The corresponding diagrams on the bottom side den
the very same amplitudes in the quasiparticle formalism. Here,
intermediate propagation of the multiparticle two-fragment partit
is exhibited by drawing the nucleonic lines surrounded by a pio
concentric line. Fors51 the three possible intermediate two-clus
components are @(pN2N3)N1#, @(N2N3)(N1p)#, and
@(N2N3)N1#.
c-

~xs!a8a,b8b5u~s~2!!a8a&ts
~2!^~s~2!!b8bu, ~3.27a!

~xs!a8a,25u~s~2!!a8a&ts
~2!^~s~2!!2u, ~3.27b!

~xs
†!2,b8b5u~s~2!!2&ts

~2!^~s~2!!b8bu, ~3.27c!

~xs!2,25u~s~2!!2&ts
~2!^~s~2!!2u. ~3.27d!

~As usual at this point, we must note that in cases50 the
statesus(2)& have no components in the no-pion sector.!

In the upper side of Fig. 2 we represent two examples
disconnected amplitudexs , both referring to the partitions
51, where the blue line is not connected with the red a
green ones. The boxlike diagram on the left represent
process connecting two states of the four-body sector.
have chosen the special case where the ‘‘in’’ and ‘‘ou
three-cluster states coincide. In spite of this fact, the diag
does not represent adiagonal matrix element, because th
three-cluster partition on the right coalesces into a 212 two-
cluster partition, while the same three-cluster partition on
left has been originated from the breakup of the 311 parti-

s
n

e

-
e

e
te
e

c

FIG. 3. ~Color! Two-cluster exchange diagrams. The figu
shows the exchange diagrams contributing to the two-cluster po
tial Zss8

(2) of Eq. ~3.28!. The four diagrams on the left side contribu
to Zss8

(2) for 0ÞsÞs8Þ0, while the two top diagrams on the righ
side contribute for 05sÞs8, and finally the remaining two bottom
diagrams contribute fors5s8Þ0. There are no other diagrams t
lowest order~aside from those obtained from permutation of t
three colors! and they are all connecting-type diagrams.
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tion. The boxlike diagram on the right represents a disc
nected production amplitude, where there is a collision
tween nucleons ‘‘2’’ and ‘‘3’’ in the presence of the nucleo
‘‘1,’’ with the pion in the final three-cluster state. The s
lected production amplitude shows that the final three-clu
partition derives from the breakup of the 311 two-cluster
partition, however, it must be kept in mind that the fin
three-cluster state can be obtained also from the 212 parti-
tion. This indicates that the role of the spectator nucleon~the
blue line in the diagram! is not passive at all, since it can sti
interact with the pion. This contrasts with the standard thr
particle case where the spectator merely plays a passive
In the lower part of the figure, the same amplitudes are r
resented in the form of quasiparticle diagrams, thus rep
ducing Eqs.~3.27!. The diagrams represent the proces
r
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passing through the intermediate propagation of a multip
ticle two-cluster state, where the nucleon ‘‘1’’ is always di
connected from the other two. The pion, however, is sha
between both parts without being physically exchanged fr
one to the other.

Introducing the new separable expansion of the subam
tudes in Eq.~3.25!, and folding the equation with the new
statesG (3)us(2)& referring to the two-cluster partitions on
obtains the final quasiparticle equation

Xss8
~2!

5Zss8
~2!

1(
s9

Zss9
~2!G s9

~2!Xs9s8
~2! , ~3.28!

where
Zss8
~2!

5^s~2!uG ~3!D̄ss8us8~2!&[^~s~2!!2ug0u~s8~2!!2&d̄ss8

1 (
a8~,s!

(
b8~,s8!

(
a~,a8,b8!

^~s~2!!a8auta
~3!u~s8~2!!b8a&~ d̄ss81dss8d̄a8b8!, ~3.29!

G s
~2!5ts

~2! , ~3.30!

Xss8
~2!

5^s~2!uG ~3!Xss8G
~3!us8~2!&

[^~s~2!!2ug0@~Xss8!2,2#g0u~s8~2!!2&1 (
a8~,s!

(
b8~,s8!

(
a~,a8!

(
b~,b8!

^~s~2!!a8auta
~3!@~Xss8!a8a,b8b#tb

~3!u~s8~2!!b8b&

1 (
a8~,s!

(
a~,a8!

^~s~2!!a8auta
~3!@~Xss8!a8a,2#g0u~s8~2!!2&1 (

b8~,s8!
(

b~,b8!

^~s~2!!2ug0@~Xss8!2,b8b#tb
~3!u~s8~2!!b8b&.

~3.31!
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The expression Eq.~3.28! represents the two-cluste
connected-kernel equation which solves thepNNN-NNN
problem. It represents the translation within the quasipart
formalism of the general result represented by Eq.~2.27!. In
spite of the fact that Eq.~3.28! must be considered an ap
proximated result holding only when thet-matrix separabil-
ity is assumed, nevertheless the result should be consid
under a very general perspective because the represen
of the t matrix as a sum of separable terms is a mathem
cally converging procedure@28# and approaches of this kin
have been demonstrated to work numerically@29# in few-
body applications involving realistic nuclear interactions.

In Eq. ~3.28! the complete dynamics of Eq.~2.27! is rep-
resented in terms of two-body multiparticle correlated sta
~bound states, or resonances, etc., for the subsystems!. They
give a physically clear description of the meaning of t
general equations, otherwise difficult to interpret in terms
processes or diagrams. For instance, Eq.~3.28! can be easily
compared with the AGS quasiparticle equation for the st
dard three-particle problem: Here, the equation is endow
with a fourth component~the s50 component! which does
not appear in the AGS equations, and the number of
grams contributing to theZ-exchange terms are considerab
larger with some of them giving rise to totally new mech
le

red
tion
ti-

s

f

-
d

a-

-

nisms. This can be seen in Fig. 3 where the diagrams c
tributing to the Z terms @as expressed by Eq.~3.29!# are
illustrated.

IV. THE BOUND-STATE EQUATION

This section is devoted to the discussion of the bou
state equation for thepNNN-NNN system. The equation we
derive is in fact a bound-state equation for the three-nucl
system, but has the special feature that it incorporates ex
itly the pion dynamics~limited to the degree of freedom o
one pion!, while in the standard approach this aspect is u
ally restricted in the limits of the OPE tail of the NN inte
action.

In the AGS approach, the three-nucleon bound state
associated to the homogeneous solution of the AGS eq
tion. In close similarity, here we seek the homogeneous
lution of the TRABAM equation for thepNNN system.

According to the matrix notation previously introduce
we denote the homogeneous equation as

uG~3!&5V~3!G0
~3!uG~3!&, ~4.1!

whereuG(3)& represents the state eigenvector of the opera
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V(3)G0
(3) . Obviously uF (3)&5G0

(3)uG(3)& represents the
analogous eigenvector for the transposed kernel

uF~3!&5G0
~3!V~3!uF~3!&. ~4.2!

If we neglect all the couplings with the pion sector, this la
equation represents precisely the Schro¨dinger equation for
the three-nucleon system, with the constituents interac
through pairwise potentials and in such a caseuF (3)& denotes
simply the complete three-body Schro¨dinger wave function.
Once the one-pion degrees of freedom are explicitly inclu
in the theory, the equation acquires the typical TRABAM
like structure and couples the three-nucleon Schro¨dinger
wave function with the six Faddeev-like components ref
ring to the partition of thepNNN system into three clusters
Obviously, being the kernel of the homogeneous equa
the same as discussed in the previous sections, we hav
equation whose kernel is not connected. We proceed as
lows.

We introduce the partitions of the system into two clust
and recall the interaction sum rule Eq.~2.25!. Then, we de-
fine the new two-cluster-partition components for the wa
function:

u~Fs
~2!!a8a&5G0

~3! (
b8~,s!

(
b~,b8!

~vs!a8a,b8bu~F~3!!b&

1G0
~3!~vs!a8a,2u~F~3!!2& ~4.3a!

and

u~Fs
~2!!2&5G0

~3! (
b8~,s!

(
b~,b8!

~vs!2,b8bu~F~3!!b&

1G0
~3!~vs!2,2u~F~3!!2&, ~4.3b!

where the first expression refers to components associat
the four-body sector while the second one to the compon
in the three-nucleon space.

With this definition from the homogeneous equation
uF (3)&, Eq. ~4.2!, it is possible to express the three-clus
components as sum over all the two-cluster partitions

u~F~3!!a&5(
s

(
a8~,s!

u~Fs
~2!!a8a&, ~4.4a!

u~F~3!!2&5(
s

u~Fs
~2!!2&. ~4.4b!

From the last two equations it is possible to write a n
homogeneous coupled equation whose solution dire
yields the componentsuFs

(2)&. We obtain

u~Fs
~2!!a8a&5 (

b8~,s!
(

b~,b8!

G0
~3!~vs!a8a,b8b

3(
s8

(
c8~,s8!

u~Fs8
~2!

!c8b&

1G0
~3!~vs!a8a,2(

s8
u~Fs8

~2!
!2& ~4.5a!
t

g

d
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u~Fs
~2!!2&5 (

b8~,s!
(

b~,b8!

G0
~3!~vs!2,b8b

3(
s8

(
c8~,s8!

u~Fs8
~2!

!c8b&

1G0
~3!~vs!2,2(

s8
u~Fs8

~2!
!2& ~4.5b!

for the components in the four-body and three-nucleon s
tors, respectively.

With simple algebraic manipulations we obtain

u~Fs
~2!!a8a&5 (

b8~,s!
(

c8~,s!
(

b~,b8,c8!

3G0
~3!~vs!a8a,b8bu~Fs

~2!!c8b&

1G0
~3!~vs!a8a,2u~Fs

~2!!2&

1(
s8

d̄ss8 (
b8~,s!

(
c8~,s8!

(
b~,b8,c8!

3G0
~3!~vs!a8a,b8bu~Fs8

~2!
!c8b&

1G0
~3!~vs!a8a,2(

s8
d̄ss8u~Fs8

~2!
!2&

~4.6a!

and

u~Fs
~2!!2&5 (

b8~,s!
(

c8~,s!
(

b~,b8,c8!

G0
~3!~vs!2,b8bu~Fs

~2!!c8b&

1G0
~3!~vs!2,2u~Fs

~2!!2&

1(
s8

d̄ss8 (
b8~,s!

(
c8~,s!

(
b~,b8,c8!

3G0
~3!~vs!2,b8bu~Fs8

~2!
!c8b&

1G0
~3!~vs!2,2(

s8
d̄ss8u~Fs8

~2!
!2& . ~4.6b!

The last two equations can be rewritten as

u~Fs
~2!!a8a&2 (

b8~,s!
(

b~,b8!

G0
~3!~vs!a8a,b8bu~Fs

~2!!b8b&

2G0
~3!~vs!a8a,2u~Fs

~2!!2&

5(
s8

(
b8~,s!

(
c8~,s8!

(
b~,b8,c8!

3G0
~3!~vs!a8a,b8b~ d̄ss81dss8d̄b8c8!u~Fs8

~2!
!c8b&

1(
s8

G0
~3!~vs!a8a,2d̄ss8u~Fs8

~2!
!2& ~4.7a!

and
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u~Fs
~2!!2&2(

b8b

G0
~3!~vs!2,b8bu~Fs

~2!!b8b&

2G0
~3!~vs!2,2u~Fs

~2!!2&

5(
s8

(
b8~,s!

(
c8~,s8!

(
b~,b8,c8!

3G0
~3!~vs!2,b8b~ d̄ss81dss8d̄b8c8!u~Fs8

~2!
!c8b&

1(
s8

G0
~3!~vs!2,2d̄ss8u~Fs8

~2!
!2&. ~4.7b!

From these, employing the equations for the subsys
amplitudes, Eqs.~2.15!, it is possible to obtain the fina
bound-state equation,

u~Fs
~2!!a8a&5(

s8
(

b8~,s!
(

c8~,s8!
(

b~,b8,c8!

3G0taG0~ ts!a8a,b8b

3~ d̄ss81dss8d̄b8c8!u~Fs8
~2!

!c8b&

1(
s8

G0taG0~ ts!a8a,2d̄ss8u~Fs8
~2!

!2&

~4.8a!

and

u~Fs
~2!!2&5(

s8
(

b8~,s!
(

c8~,s8!
(

b~,b8,c8!

g0~ ts!2,b8b

3~ d̄ss81dss8d̄b8c8!u~Fs8
~2!

!c8b&

1(
s8

g0~ ts!2,2d̄ss8u~Fs8
~2!

!2&. ~4.8b!

Equations~4.8! represent the generalization of the boun
state three-nucleon equation and include in the three-nuc
dynamics also the pion dynamics. The bound-state w
function corresponds to the solution of the homogene
equation whose kernel is transposed with respect to tha
Eq. ~2.27! for the scattering amplitudes.

In the no-pion sector the complete three-nucleon w
function is given simply by the sum over the three comp
nentss51,2,3 ~thes50 case has no direct component in t
no-pion sector!:

u~F~3!!2&5(
s

u~Fs
~2!!2&. ~4.9!

This result is similar to that obtained in standard Fadd
theory, where the three-nucleon bound state is given by
sum over the three Faddeev components.

One may consider at this point the other component of
wave function, the one acting in the four-body sector~obvi-
ously, in the standard three-nucleon theory these compon
are set identically to zero!. The wave functionuF (3)& in the
four-body sector spans the six three-cluster partitions of
pNNN system. In a standard four-body theory the compl
m

-
on
e
s
of

e
-

v
e

e

nts

e
e

wave function is given by the sum over these six Fadd
components. In the present theory we have to take into
count the fact that a contribution to the wave function m
arise by pion emission from the pure three-nucleon com
nent, therefore the four-body component to the three-nucl
bound-state wave function is given by

uF~4!&5 (
a51

6

uFa
~3!&1G0S (

i 51

3

f i D uF2
~3!&

5(
s

(
a8~,s!

(
a~,a8!

u~Fs
~2!!a8a&

1G0S (
i 51

3

f i D(
s

u~Fs
~2!!2&. ~4.10!

Equation ~4.9! represents the residue of this term at t
nucleon pole for a zero-energy pion.

V. REARRANGEMENT AND BREAKUP AMPLITUDES

In Sec. II we have restricted the discussion to the fu
unclusterized amplitudes~four-to-four! or at most to the
three-to-three amplitudes. Then in Sec. III we have given
rules to calculateT(1u1) with the quasiparticle formalism. I
is clear that from the phenomenological point of view t
most interesting amplitudes are between channels involv
the two-cluster partitions, or amplitudes where at least
incoming state refers to an asymptotic configuration wh
the system is partitioned into two clusters. To obtain su
amplitudes, we start from the three-to-three amplitudes
apply the residue method. To this end we introduce the
mogeneous equations associated with the two-cluster p
tion:

ugs
~2!~Es!&5vs~Es!G0

~3!~Es!ugs
~2!~Es!&, ~5.1!

where for eachsÞ0 the stateugs
(2)& represents a channe

vector with one component in the no-pion sector and fi
components in the one-pion sector~corresponding to all pos
sible chains of partitions starting from the 212 and 311
partitions compatible withs). For the special cases50, the
same equation couples only the three chains of partiti
which start from thep1(NNN) separation in two clusters
and has no components in the 3N sector. Similarly, one
introduce also the corresponding homogeneous equation
the bra states

^gs
~2!~Es!u5^gs

~2!~Es!uG0
~3!~Es!vs~Es!. ~5.2!

Obviously for eachs, with the transforming relations

ugs
~2!&5vsufs

~2!&, ~5.3!

ufs
~2!&5G0

~3!ugs
~2!&, ~5.4!

it is possible to associate an asymptotic channel state s
fying a bound-state-type equation~the energy dependenc
has been omitted! for the two noninteracting fragments

ufs
~2!&5G0

~3!vsufs
~2!&. ~5.5!



3

n
g
a
fo

gl
th
n
s

e
g

f
th
l-

ola

un

s
si
e
w

g

-
c-

for
itly
the

f

li-

gle

PRC 58 3137PION-THREE-NUCLEON PROBLEM WITH TWO-CLUSTER . . .
We can view explicitly how in casesÞ0 the new equation
couples the chain space in the four-body sector with the
space by writing in detail the homogeneous equation

u~fs
~2!!a8a&5 (

b~,a8!

G0tad̄abu~fs
~2!!a8b&

1G0taG0~ f s!a8au~fs
~2!!2&, ~5.6a!

u~fs
~2!!2&5 (

b8~,s!
(

b~,b8!

g0~ f s
†!b8bu~fs

~2!!b8b&

1g0Vsu~fs
~2!!2&, ~5.6b!

while for s50 we have a standard three-compone
~Faddeev-like! 3N bound-state equation, with the pion actin
as a spectator. In case the couplings between the two sp
are switched off, each coupled six-component equation
sÞ0 decouples into the three different equations, one sin
component homogeneous equation for the NN pair in
presence of a spectator nucleon plus one three-compo
Faddeev equation for the 311 partition, and one analogou
two-component coupled equation for the corresponding 212
partition. With the meson-nucleon vertex interaction turn
on, these three different equations merge in one sin
coupled equation.

At energiesEs corresponding to nontrivial solutions o
the homogeneous equations it follows that the solution of
inhomogeneous equationts has a pole, and around such va
ues thet matrix for the subsystem can be represented in p
form

ts~z!.ugs
~2!&

1

z2Es
^gs

~2!u1•••, ~5.7!

where the omitted contributions are nonsingular backgro
remainders.

According to the residue method, the clusterized tran
tion amplitudes can be obtained from the general expres
for T(3), Eqs. ~2.26!, by extracting the residues once th
poles of the subamplitudes are exhibited. For instance, if
assumes50 ands8Þ0 and assuming that forEs andEs8 the
associated homogeneous equations have a nontrivial~bound-
state or narrow resonance! solution, then the correspondin
two-cluster transition amplitude emerges as the residue
the double singularity inT(3),

T~3!5uḡs8
~2!&

Ts8s

~z2Es8!~z2Es!
^ḡs

~2!u1•••, ~5.8!
N
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where the state vectorsugs
(2)& have been contracted by sum

ming over the the two-body partitions of the four-body se

tor, u(ḡs
(2))a&5(a8(,s)u(gs

(2))a8a&.
The two-cluster transition matrix element is given by

Ts8s5^fs8
~2!uUs8sufs

~2!&

5 (
a8~,s8!

(
a~,a8!

(
b8~,s!

(
b~,b8!

3^~fs8
~2!

!a8au~Us8s!a8a,b8bu~fs
~2!!b8b&

1 (
b8~,s!

(
b~,b8!

^~fs8
~2!

!2u~Us8s!2,b8bu~fs
~2!!b8b&,

~5.9!

where in the last expression on the right the components
s8 acting in each sector of the theory have been explic
given. In this approach, such an amplitude represents
processp1(NNN)→N 1 (NN) where the contributions o
the type (pN)1(NN), and N1 (NNp) are both dynami-
cally included together with the N1~NN! partition.

We may at this point report on breakup reaction amp
tudes, such as @p (NNN)→N N N#, @p (NNN)
→p N (NN)# and finally @p (NNN)→N N N p#. The
first two can be obtained fromT(3) by extraction of the resi-
due of a single two-cluster partition~bound-state! singular-
ity, while for the last case one has to consider the sin
residue from Eq.~3.18!.

We have~with s50)

T0s@NNN←p~NNN!]

5(
s8

(
a8~,s8!

(
a~,a8!

(
b8~,s!

(
b~,b8!

3^~x0
~3!!u~ ts8!2,a8aG0taG0~Us8s!a8a,b8bu~fs

~2!!b8b&

1(
s8

(
b8~,s!

(
b~,b8!

3^~x0
~3!!u~ ts8!2,2g0~Us8s!2,b8bu~fs

~2!!b8b&, ~5.10!

and
Tas@~NN!pN←p~NNN!#5(
s8

(
a8~,s8!

(
c8~,s8!

(
c~,c8!

(
b8~,s!

(
b~,b8!

^fa
~3!u~ ts8!a8a,c8cG0tcG0~Us8s!c8c,b8bu~fs

~2!!b8b&

1(
s8

(
a8~,s8!

(
b8~,s!

(
b~,b8!

^fa
~3!u~ ts8!a8a,2g0~Us8s!2,b8bu~fs

~2!!b8b&. ~5.11!
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In this last casea represents the selected NN pair, in the presence of two remaining spectator particle
^fa

(3)(Ea)u5^fa
(3)(Ea)uvaG0(Ea) is the asymptotic three-cluster channel with two bound nucleons in the presence o

spectator particles.
The amplitude referring to the process with four outgoing fragments is

T0s@pNNN←p~NNN!] 5(
s8

(
a8~,s8!

(
a~,a8!

(
c8~,s8!

(
c~,c8!

(
b8~,s!

(
b~,b8!

^x0
~4!utaG0~ ts8!a8a,c8cG0tcG0~Us8s!c8c,b8bu~fs

~2!!b8b&

1(
s8

(
a8~,s8!

(
a~,a8!

(
b8~,s!

(
b~,b8!

^x0
~4!utaG0~ ts8!a8a,2g0~Us8s!2,b8bu~fs

~2!!b8b&

1(
s8

(
c8~,s8!

(
c~,c8!

(
b8~,s!

(
b~,b8!

^x0
~4!uS (

i
f i Dg0~ ts8!2,c8cG0tcG0~Us8s!c8c,b8bu~fs

~2!!b8b&

1(
s8

(
b8~,s!

(
b~,b8!

^x0
~4!uS (

i
f i Dg0~ ts8!2,2g0~Us8s!2,b8bu~fs

~2!!b8b&. ~5.12!
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The states^x0
(3,4)u represent, respectively, the free thre

nucleon and the four-particle asymptotic waves.
It is worthwhile to comment on one aspect common to

these amplitudes; namely, in all the physical reaction p
cesses one has to sum over the possible~for a givens) two-
cluster partitions of the four-body sector~herein denoted
with a8, b8, andc8). Thes50 partition of the system is an
exception only because it contains just one of these partit
~Table II!. In other words, while the indicesa8 etc. are fun-
damental in the determination of the dynamical equati
they do not appear in the physical amplitudes, since th
last quantities have to refer only to partitions of the who
system. This specific aspect of the coupledpNNN theory
emerges from the structure of the dynamical equatio
which are labeled in the four-body sector by chains of pa
tions, e.g., the paira8a with a,a8, while the physical am-
plitudes refer only to physical partitions of the complete s
tem into clusters.

In the remaining part of this section we show how t
quasiparticle method can be extended to the present situ
to calculate the clusterized amplitudes. Previously, star
from the separable expansionta

(3)5ua(3)&ta
(3)^a(3)u we ar-

rived at the equationxs5zs1zsG (3)xs where we observed
that the operatorszs andxs act in the chain-of-partition spac
of the four-body sector, and~for sÞ0) in the space of two-
cluster partitions of the three-nucleon sector. A second ite
tion of the quasiparticle method consisted in the exhibition
the separable structure forxs , xs5us(2)&ts

(2)^s(2)u which
allowed us to derive the equation

Xss8
~2!

5Zss8
~2!

1(
s9

Zss9
~2!Gs9

~2!Xs9s8
~2! . ~5.13!

In the general case, we have seen in this section tha
two-cluster rearrangement amplitudes can be written as

Tss85^fs
~2!uUss8ufs

~2!&5^gs
~2!uG0

~3!Uss8G0
~3!ugs8

~2!&.
~5.14!
-
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At this point, taking advantage of the separable express
for the t matrix in (G(3))a5G0taG0 we obtain

Tss85^*s
~2!uG ~3!Xss8G

~3!u*s8
~2!&, ~5.15!

where

u*s
~2!&[S u~*s

~2!!a8a&

u~*s
~2!!2&

D 5S ^auG0u~gs
~2!!a8a&

u~gs
~2!!2&

D . ~5.16!

Stated in this form, this implies that to calculate the rea
tion amplitudeTss8 we have to solve the equation forXss8
and the homogeneous equations forugs

(2)& to produce the
states u*s

(2)&. It is, however, possible to exploit th
quasiparticle/separable structure for thet matrix in the homo-
geneous equations for theugs

(2)& and transform it into a ho-
mogeneous equation for the statesu*s

(2)&. This can be done
by writing explicitly Eq. ~5.1!, folding its components in the
four-body space witĥauG0 to the left, and using Eq.~3.14!.
One obtains the homogeneous equation for the subsys
dynamics in quasiparticle form

u*s
~2!~Es!&5zs~Es!G ~3!~Es!u*s

~2!~Es!&. ~5.17!

The corresponding inhomogeneous version of this eq
tion has already been given in Eq.~3.21!, where the block
matriceszs andG (3) have been explicitly given. The fact tha
the statesu*s

(2)& are eigensolution of the kernel forxs implies
that a particularly convenient expression arises when th
states are used as a basis for the quasiparticle expansio
xs , i.e., us(2)&[u*s

(2)(Es)&. In that case the pole structure o
xs for z;Es naturally emerges in the quasiparticle expa
sion,

xs.us~2!&
1

z2Es
^s~2!u. ~5.18!

Treatments of the like, based upon the idea of pole do
nance of the three-body subsystem operators in the kern
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the standard four-body equations, have been suggeste
various forms@31,15# ~for a short review on recent applica
tions, see also Ref.@32#!.

With the idea of pole dominance, the solution of the fin
Eq. ~3.28!, i.e., the amplitudesXss8

(2) , when calculated on
shell, directly yield the two-cluster reaction amplitudesTss8 ,

Xss8
~2!

5^s~2!uG ~3!Xss8G
~3!us8~2!&

5^gs
~2!uG0

~3!Uss8G0
~3!ugs8

~2!&5Tss8 . ~5.19!

VI. SUMMARY, CONCLUSIONS, AND OUTLOOK

This paper deals with the formulation of the three-nucle
problem with inclusion of an additional pionic degree
freedom. The subject implies confrontation of the rather d
ficult question of developing a few-body integral-equati
approach with particle-nonconserving interactions. The pr
lem is solved in the truncated Hilbert space defined by st
with at most one pion, e.g., the coupledpNNN-NNN space.
Attempts in this direction have been made before, but
solution here developed is original and more complete.

The first, crucial step has been the clarification of a rat
delicate question of fragmentation of the system into t
clusters ~Table II!. The meson-nucleon vertex interactio
radically changes the cluster properties of the system w
respect to the standard case. For instance, in the stan
four-body case, the 311 and 212 partitions are not coupled
while in the pNNN system three over four 311 partitions
are coupled to the corresponding 212 partitions, with the
211 partition of the three-nucleon space acting as a door
state. Only the remaining fourth 311 partition~the one with
the spectator pion! keeps its standard four-body role and co
serves the number of particles. In other words, the subd
sion of the coupledpNNN-NNN system into two-cluster
partitions is transversal with respect to the separation of
system in terms of the number of particles, since three p
titions do not conserve the number of particles while
fourth ~denoteds50) does so.

Then, the solution of the problem has been obtained
rewording the GS collision theory in terms of tools:~i! A
disconnected dynamical equation of LS type for multiclus
processes of the whole system (T5V1VG0T); ~ii ! a similar
integral-equation approach for the subsystem dynam
which allows the systematic classification of the disco
nected diagrams. (ts5vs1vsG0ts); ~iii ! a sum-rule equation
for the multicluster interaction, which prevents the ove
counting or undercounting (V5(svs); ~iv! the systematic
extraction of the disconnected contributions from the init
multicluster collision amplitude of the whole system (T
5(sts1(ss8tsG0Uss8G0ts8). In N-body scattering theory
from ~i!–~iv!, it is possible to obtain a new dynamical equ
tion ~of AGS type! for the amplitudesUss8 , which can be
formally recast into the LS form. Hence, by repeated ap
cations of the method, it is possible to extract gradually
the disconnected subamplitudes, thereby obtaining at the
a connected-kernel formulation of the quantumN-body prob-
lem.

In the present paper we have shown that these multi
ticle tools work also in the presence of particl
nonconserving interactions, at least if we choose as a sta
in
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point the integral-equation approach of Thomas, Rin
Afnan, Blankleider, Avishai, and Mizutani. Obviously, th
multiparticle method here developed cannot heal the typ
limitations of such input formalisms based on truncation
the Hilbert spaces.

The final formulation is represented by the set of E
~2.27!, which generalizes the AGS three-nucleon approa
We have discussed this result in the light of the quasipart
formalism, which allows a physically more transparent int
pretation in terms of coalescence diagrams. Within this f
malism the OPE diagram between two nucleons is treate
the same level of the particle-exchange diagrams betw
multiparticle clusters~Fig. 1!. The final equation, Eq.~3.28!,
represents an effective two-cluster equation, and the co
sponding effective multichannel potential is given exc
sively by connected-type particle-exchange diagrams~Fig.
3!. In the same framework, we have also given the rules
calculate the various multiparticle collision processes,
cluding rearrangement reactions, breakups, pion-induced
sorptions, and productions.

Finally, we have formulated the bound-state problem, E
~4.8!. The equation incorporates the dynamical effect of o
pion in the three-nucleon bound-state equation. From the
lution of the equation it is possible to calculate the boun
state wave function in both its NNN andpNNN compo-
nents, through Eqs.~4.9! and ~4.10!, respectively. This
approach represents a formulation of the three-nucleon p
lem going beyond a description in terms of pure two-nucle
potentials, which is notoriously inadequate~as shown in Ref.
@30# and in the references therein contained!. It does not
require, on the other hand, the employment of three-nucl
forces~3NF! and the associated additional fixing of new p
rameters~typically, 3NF cutoffs!; 3NF represent an approxi
mate, effective way to describe the underlying meson
namics in the three-nucleon system and the separa
between 2NF and 3NF requires a high level of consisten
In Eq. ~4.8!, all possible combinations of 3N diagrams r
ducible to two-particle interactions (pN or NN) while the
dynamical pion is ‘‘in flight’’ are taken into account throug
the couplings with the four-body sector: these contributio
obviously represent a fraction of the three-nucleon for
presumably the part with the longest range.

Of course, it is always possible to consider in princip
the additional effect of a residual 3NF, representing m
complex~and shorter range! diagrams with at least two dy
namical pions in the intermediate states, or conversely
attempt the more ambitious program of extending the pres
approach to include multipion degrees of freedom. T
would also reduce the effect of the main limitation implie
by the approach, wherein the input interactions have to
extracted from the disconnectedpNNN-NNN amplitudes,
rather than from thepN subsystem amplitude.
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APPENDIX

Up to this point, the discussion has been restricted
demonstrating that Eq.~3.28!, i.e., the quasiparticle versio
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of the original coupled equation~2.27!, leads to connected
type diagrams. This appendix is devoted to the proof t
also the kernel of Eq.~2.27!, which solves the pion-three
nucleon problem, is connected after iterations. To achi
this goal, we consider the kernel of Eq.~2.27!,

~Ks,s8!a8a,d8d5 (
c8~,s8!

~ d̄ss81dss8d̄a8c8!~ ts8!c8a,d8dG0tdG0 ,

~A1a!

~Ks,s8!2,d8d5~ d̄ss8!~ ts8!2,d8dG0tdG0 , ~A1b!

~Ks,s8!a8a,25 (
c8~,s8!

~ d̄ss81dss8d̄a8c8!~ ts8!c8a,2g0 ,

~A1c!

~Ks,s8!2,25~ d̄ss8!~ ts8!2,2g0 . ~A1d!

By calculating the cube of this kernel and subsequen
showing that the result is connected, we demonstrate
after two iterations the kernel of Eq.~2.27! is connected, as
happens in the standard Yakubovsk� approach.

After some trivial manipulations, the cube of the kern
can be written as follows:

~Ks,s-
3

!a8a,h8h5( ~d̄ss81dss8d̄a8c8!~ ts8!c8a,d8d

3~ d̄s8s91ds8s9d̄d8e8!~C1s9,s-!e8d,h8h

1( ~d̄ss81dss8d̄a8c8!~ ts8!c8a,2

3~ d̄s8s9!~C2s9,s-!2,h8h , ~A2a!

~Ks,s-
3

!a8a,25( ~d̄ss81dss8d̄a8c8!~ ts8!c8a,d8d

3~ d̄s8s91ds8s9d̄d8e8!~C3s9,s-!e8d,2

1( ~d̄ss81dss8d̄a8c8!~ ts8!c8a,2

3~ d̄s8s9!~C4s9,s-!2,2 , ~A2b!

~Ks,s-
3

!2,h8h5( ~d̄ss8!~ ts8!2,d8d~ d̄s8s91ds8s9d̄d8e8!

3~C1s9,s-!e8d,h8h

1( ~d̄ss8!~ ts8!c8a,2~ d̄s8s9!~C2s9,s-!2,h8h ,

~A2c!

~Ks,s-
3

!2,25( ~d̄ss8!~ ts8!2,d8d~ d̄s8s91ds8s9d̄d8e8!

3~C3s9,s-!e8d,21( ~d̄ss8!~ ts8!c8a,2~ d̄s8s9!

3~C4s9,s-!2,2 , ~A2d!
t

e

y
at

l

with the C1, C2, C3, andC4 coefficients defined by

~C1s9,s-!e8d,h8h

5( G0tdG0~ ts9!e8d, f 8 fG0t f

3G0~ d̄s9s-1ds9s-d̄ f 8g8!~ ts-!g8 f ,h8hG0thG0

1( G0tdG0~ ts9!e8d,2g0~ d̄s9s-!~ ts-!2,h8hG0thG0,

~A3a!

~C2s9,s-!2,h8h5( g0~ ts9!2, f 8 fG0t fG0~ d̄s9s-1ds9s-d̄ f 8g8!

3~ ts-!g8 f ,h8hG0thG0

1( g0~ ts9!2,2g0~ d̄s9s-!

3~ ts-!2,h8hG0thG0, ~A3b!

~C3s9,s-!e8d,25( G0tdG0~ ts9!e8d, f 8 fG0t fG0~ d̄s9s-

1ds9s-d̄ f 8g8!~ ts-!g8 f ,2g0

1( G0tdG0~ ts9!e8d,2g0~ d̄s9s-!

3~ ts-!2,2g0, ~A3c!

~C4s9,s-!2,25( g0~ ts9!2, f 8 fG0t fG0~ d̄s9s-1ds9s-d̄ f 8g8!

3~ ts-!g8 f ,2g0

1( g0~ ts9!2,2g0~ d̄s9s-!~ ts-!2,2g0.

~A3d!

For brevity, here and in the following we have assumed t
the sums run over all indexes except those appearing ex
itly on the left-hand side of each equation.

There are two ways to prove the connectedness of th
coefficients. One consists in the replacement of all the tw
cluster subamplitudests contained in Eqs.~A3! with the ex-
plicit form of their driving terms, i.e., the quantitiesvs given
by Eqs. ~2.11!, ~2.12!, ~2.13a!, and ~2.13b!, and then one
must systematically verify that this leads exclusively
connected-type diagrams. But there is also a more econo
cal and perhaps more transparent method. By expanding
two-body t matrices,ta , as a sum over a series of separab
pieces, where each term is of the form given by Eq.~3.14!, it
is possible to reexpress the four classes of coefficients in
following manner:
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~C1s9,s-!e8d,h8h

5( G0ud&td
~3!~xs9!e8d, f 8 ft f

~3!~ d̄s9s-1ds9s-d̄ f 8g8!

3~xs-!g8 f ,h8hth
~3!^huG01( G0ud&td

~3!

3~xs9!e8d,2g0~ d̄s9s-!~xs-
†

!2,h8hth
~3!^huG0, ~A4a!

~C2s9,s-!2,h8h

5( g0~xs9
†

!2, f 8 ft f
~3!~ d̄s9s-1ds9s-d̄ f 8g8!

3~xs-!g8 f ,h8hth
~3!^huG0

1( g0~xs9!2,2g0~ d̄s9s-!~xs-
†

!2,h8hth
~3!^huG0,

~A4b!

~C3s9,s-!e8d,2

5( G0ud&td
~3!~xs9!e8d, f 8 f

3t f
~3!~ d̄s9s-1ds9s-d̄ f 8g8!~xs-!g8 f ,2g0

1( G0ud&td
~3!~xs9!e8d,2g0~ d̄s9s-!~xs-!2,2g0,

~A4c!

~C4s9,s-!2,25( g0~xs9
†

!2, f 8 ft f
~3!~ d̄s9s-1ds9s-d̄ f 8g8!

3~xs-!g8 f ,2g0

1( g0~xs9!2,2g0~ d̄s9s-!~xs-!2,2g0.

~A4d!
b-

m

By iterating the quasiparticle expansion method it is p
sible to express these folded subamplitudesxs ~defined in
Sec. III! as a sum over separable terms of the form given
Eq. ~3.27!. With this form, theseC coefficients finally be-
come

~C1s9,s-!e8d,h8h5G0ud&td
~3!u~s9~2!!e8d.ts9

~2!Zs9s-
~2! ts-

~2!

3^~s-~2!!h8huth
~3!^huG0, ~A5a!

~C2s9,s-!2,h8h

5g0u~s9~2!!2&ts9
~2!Zs9s-

~2! ts-
~2!^~s-~2!!h8huth

~3!^huG0,

~A5b!

~C3s9,s-!e8d,25G0ud&td
~3!u~s9~2!!e8d&ts9

~2!Zs9s-
~2! ts-

~2!

3^~s-~2!!2ug0, ~A5c!

~C4s9,s-!2,25g0u~s9~2!!2&ts9
~2!Zs9s-

~2! ts-
~2!^~s-~2!!2ug0,

~A5d!

where theZs9s-
(2) have been defined according to Eq.~3.29!.

Thus, it has been demonstrated that theseC coefficients are
connected because they have been expressed in term
quantities corresponding to the driving terms of the quasip
ticle equation. The connected structure of these objects
been exhibited diagrammatically in Fig. 3.

It has to be noted that, for the demonstration of the c
nectivity of theseC coefficients, it is uninfluential whethe
theT matrix is of rank one~separable! or not. In this second
case, as long as it is representable in terms of a separ
expansion, the above arguments apply to each term of
expansion, with the conclusion that these coefficients con
no disconnected contributions at all.
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