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Shadowing and antishadowing effects in a model for then1d total cross section
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H. Kamada* and W. Glöckle
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Based on the multiple scattering series incorporated in the Faddeev scheme the high-energy limit of the total
n1d cross section is evaluated in a nonrelativistic model system where spins are neglected. In contrast to the
naive expectation that the totaln1d scattering cross section is the sum of twoNN cross sections we find two
additional effects resulting from rescattering processes. These additional terms have different signs~shadowing
and antishadowing! and a different behavior as function of the energy. Our derivation of these results which are
already known from Glauber theory is based on the analytical evaluation of elastic transition amplitudes in the
high-energy limit. It does not depend on the diffraction-type assumptions connected with Glauber theory. In
this model of spinless Yukawa type forces~with no absorption! the totaln1d cross section does not approach
twice theNN total cross section in the high-energy limit but rather approaches the totalNN cross section
multiplied by a number larger than 2. Therefore, the enhancement effect resulting from rescattering is larger
than the shadowing effect, which decreases faster with energy.@S0556-2813~98!04712-8#

PACS number~s!: 21.45.1v, 25.10.1s, 03.65.Nk
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I. INTRODUCTION

Recently it became possible to calculate the total cr
section for neutron-deuteron (n1d) scattering with high pre-
cision in the energy regime up to 300 MeV projectile ener
by solving the nonrelativistic 3N Faddeev equations base
on modernNN forces@1#. Compared to the most naive pic
ture, which in the high energy limit would equate the to
n1d cross section with the sum of the total cross secti
for neutron-proton (np) and neutron-neutron (nn) scatter-
ing, the rigorously calculated result up to 300 MeV
smaller. Obviously one can expect some shadowing effec
the reaction, which would explain this result. On the oth
hand, rescattering of the nucleons upon each other miga
priori also enhance the totaln1d cross section over the sum
of the individual two nucleon cross sections, especially if
forces are attractive. In the context of Glauber theory@2–5#
both features, enhancement and weakening, are present
model of spinless particles, which is based on the Fadd
formulation, we want to study the high-energy limit of th
total n1d cross section and evaluate the leading terms a
lytically. This approach differs from the one used in t
Glauber formulation. Based on the multiple scattering se
incorporated in the Faddeev framework, we calculate the
and second order terms of the series when taken in the h
energy limit and show the contributions of the two terms
the totaln1d cross section. Starting from a multiple scatte
ing series implies that this is an ordering according to pow
in the NN t matrix. Though we restrict ourselves to a no
relativistic framework, we nevertheless consider the res
as being instructive. The analytical steps leading to the h

*Present address: Institut fu¨r Kernphysik, Fachbereich 5, Tech
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energy limit, which only involve ordinary analysis, are ca
ried out in well defined integrals. There are noa priori as-
sumptions about the scattering process involved, such
e.g., diffraction type approximations. We also take the id
tity of the particles explicitly into account. In this paper th
complications due to the inclusion of the spin and isos
degrees of freedom are avoided so that the basic mecha
can be seen more clearly. Taking spin and isospin degree
freedom into account will modify the results due to the i
terferences of spin and isospin dependent terms, as wil
shown in a forthcoming article. Specifically because of tho
spin and isospin interference effects, which are quite
volved, we want to present this more transparent case w
three bosons separately.

In Sec. II we describe the Faddeev framework, its m
tiple scattering expansion, and the leading order terms in
NN t matrix for obtaining the totaln1d cross section. The
high-energy limit of the corresponding expressions is carr
out analytically in Sec. III. To illustrate the behavior of th
leading order terms in the high energy limit numerical e
amples are given in Sec. IV for a superposition of Yuka
interactions. We conclude with Sec. V.

II. LEADING MULTIPLE SCATTERING TERMS
FOR THE TOTAL n1d CROSS SECTION

We consider three identical spinless bosons which inte
via two-body forces. In our usual manner@6# to exploit the
Faddeev scheme the operator for elastic scattering o
nucleon from a bound nucleon pair is given by@7#

U5PG0
211PT, ~2.1!

where the three-body operatorT obeys the Faddeev-type in
tegral equation
3109 ©1998 The American Physical Society



o
e

m
ar
b

d

f

le
Eq.

is

3110 PRC 58CH. ELSTER, W. SCHADOW, H. KAMADA, AND W. GLÖCKLE
TuF&5tPuF&1tPG0TuF&. ~2.2!

The channel state, which is composed of a two nucle
bound state~deuteron! and a momentum eigenstate of th
projectile nucleon, is denoted byF. Furthermore,t is the
two nucleon transition operator,G0 the free three nucleon
propagator, andP the permutation operator, which is the su
of a cyclic and an anticyclic permutation of the three p
ticles. The elastic forward scattering amplitude is given
the matrix element̂FuUuF&. When iterating Eq.~2.2! and
inserting the result into Eq.~2.1!, we obtain the multiple
scattering series for the elastic forward scattering amplitu

^FuUuF&5^FuPG0
21uF&1^FuPtPuF&1^FuPtPG0tPuF&

1^FuPtPG0tPG0tPuF&1•••, ~2.3!

which is an expansion in orders of theNN t operator. Using
the optical theorem one obtains for the total cross section
nucleon-deuteron (n1d) scattering@7#
e
-
nd
ec

Th

ub
n

-
y

e

or

s tot
nd52~2p!3

4m

3q0
Im^FuUuF&. ~2.4!

Here q0 is the asymptotic momentum of the projecti
nucleon relative to the bound two-body subsystem. From
~2.3! follows

2i Im^FuUuF&[^FuUuF&2^FuUuF&!

5^FuP~ t2t†!P1PtPG0tP

2Pt†G0
!Pt†P1PtPG0tPG0tP

2 Pt†G0
!Pt†G0

!Pt†PuF&1•••.

~2.5!

Since the first term in Eq.~2.3! is real, it does not contribute
to the total cross section.

For the analytical extraction of the high-energy limit it
useful to rewrite Eq.~2.5! in the following form:
^FuUuF&2^FuUuF&!5^FuP~ t2t†!PuF&1^FuP~ t2t†!PG0tPuF&2 ^FuP~ t2t†!PG0tPuF&!

1^FuPt†P~G02G0
!!tPuF&1^FuP~ t2t†!PG0tPG0tPuF&1^FuPt†P~G02G0

!!tPG0tPuF&

1^FuPt†PG0
!~ t2t†!PG0tPuF&1^FuPt†PG0

!t†P~G02G0
!!tPuF&

1^FuPt†PG0
!t†PG0

!~ t2t†!PuF&1•••. ~2.6!
er
e

ict

rep-

s

tor
The next step is to explicitly evaluate the permutations giv
by P[P12P231P13P23. This specific choice of the permu
tation operatorP corresponds to the choice of particles 2 a
3 forming the two-body bound state and 1 being the proj
tile, i.e., t[t23 and

uF&[uF&1[uwd&23uq0&1 . ~2.7!

The subscripts denote which particles occupy the states.
specific choice leads to

uF&2[P12P23uF&15uwd&13uq0&2 ~2.8!

and

uF&3[P13P23uF&15uwd&12uq0&3 . ~2.9!

Taking advantage of the symmetry property of the s
system,P23uF&15uF&1 and P23t235t23P23, one obtains af-
ter some algebra

^FuP~ t2t†!PuF&522^Fu~ t2t†!~11P23!uF&2
~2.10!

and

^FuPtPG0tPuF&522^FutG0t2~ uF&11uF&3)

122^FutG0t3~ uF&11uF&2).

~2.11!
n

-

is

-

A similar evaluation could be done for the terms third ord
in t given in Eq.~2.5!. For our present considerations of th
n1d total cross section in the high energy limit we restr
ourselves to the terms given in Eqs.~2.10! and ~2.11!.

III. THE HIGH-ENERGY LIMIT

First we need to consider the exact momentum space
resentations of Eqs.~2.10! and ~2.11!. Equivalent decompo-
sitions of the unity operator are given by

15E d3pd3qupq& i i ^pqu, i 51,2, or 3. ~3.1!

Hereupq& i[up& i uq& i andp andq are the standard three type
of Jacobi momenta for three particles@6#. The indexi de-
notes the singled out nucleon. Inserting the unity opera
into the first term in Eq.~2.10! leads to

2^Fut2t†uF&25E d3pd3qE d3p8d3q8E d3p9d3q9

3E d3p-d3q2-^Fupq&2 2^pqup8q8&1

31^p8q8ut2t†up9q9&1 1^p9q9up-q-&2

32^p-q-uF&2 . ~3.2!

Further, one has
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i^pquF& i5d3~q2q0!^puwd&. ~3.3!

The standard relations among the different sets of Ja
momenta give

1^pqup8q8&25d3~p2 1
2 q2q8!d3~p81q1 1

2 q8!. ~3.4!

In addition one has

1^pqut~E!up8q8&15^putS E2
3

4m
q2D up8&d3~q2q8!.

~3.5!

Employing all the above given relations, it is straightforwa
to arrive at the following expression for Eq.~3.2!:

2^Fut2t†uF&25E d3q^wdu2q2 1
2 q0&

3^ 1
2 q1q0ut2t†u 1

2 q1q0&^2q2 1
2 q0uwd&

5E d3k^wdu2k&^2kuwd&

3^ 3
4 q01

1
2 ku~ t2t†!~«!u 3

4 q01
1
2 k&. ~3.6!

The total energy isE5ed1(3/4m)q0
2 , whereed is the deu-

teron binding energy. When expressed in terms ofk5q
1 1

2 q0 one obtains for the energy argument« of the t matri-
ces

«[E2
3

4m
q25ed1

3

4m
q0

22
3

4m
~k2 1

2 q0!
2

5ed1
1

m
~ 3

4 q01
1
2 k!22

1

m
k2. ~3.7!

If the projectile momentumq0 is sufficiently large in com-
parison to the dominant deuteron momenta contributing

the integral in Eq.~3.6! and thus«'(1/m)( 3
4 q01

1
2 k)2, one

encounters on shellNN forward scattering amplitudes unde
the integral. The permutation operatorP23 in Eq. ~2.10! leads
to the necessary symmetrization of thet-matrix elements

^qu~ t2t†!S «5
1

m
q2D uq&s , ~3.8!

where

uq&s5uq&1u2q&, ~3.9!

and q5 3
4 q01 1

2 k. Using the Lippmann-Schwinger equatio
for t, with the two-body forceV as driving term, andq
[uquq̂ one has
bi

o

^qu~ t2t†!S «5
1

m
q2D uq&s

522p i
m

2
qE dq̂8^quVuqq̂8&~1 ! ~1 !^qq̂8uVuq&s

522p i
m

2
qE dq̂8^qutuqq̂8&s^qutuqq̂8&*

52p i
m

2
qE dq̂8u^qutuqq̂8&su2. ~3.10!

This expression is directly related to the two-body total cro
section

s tot
NN5S m

2 D 2

~2p!4E dq̂8U^qutuqq̂8&s

1

A2
U2

. ~3.11!

We adopt here the usual convention for the total cross s
tion for two identical particles@8# and obtain

^qu~ t2t !†!S «5
1

m
q2D uq&s52 iq

2

m

1

~2p!3 s tot
NN .

~3.12!

As a consequence Eq.~3.6! supplemented by the symmetr
zation as given in Eq.~2.10! and approximated in the energ
argument of the two-bodyt matrix can be rewritten as

2^Fu~ t2t†!~11P23!uF&2

52
2i

m

1

~2p!3E d3k^wdu2k&

3^2kuwd&u
3
4 q01

1
2 kus tot

NNS 1

m
~ 3

4 q01
1
2 k!2D . ~3.13!

If the projectile momentumq0 is sufficiently large compared

to the typical deuteron momenta the functionu 3
4 q0

1 1
2 kus tot

NN@(1/m)( 3
4 q01

1
2 k)2# is expected to vary slowly

over the range of thek values contributing to the integral in
Eq. ~3.13!. Using the normalization of the two-body boun
state, expanding the function atk50 and knowing that the
contribution of the first derivative vanishes, one obtains
the limit for largeq0
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2^Fu~ t2t†!~11P23!uF&2 →
q0@k

2
2i
m

1

~2p!3

3
4 q0 s tot

NNF 1
m S 3

4q0D 2G E d3k^wdu2k& ^2kuwd&

52
2i
m

1

~2p!3

3
4 q0s tot

NNF 1
m S 3

4q0D 2G . ~3.14!
c
n

t

ual
ent

cal

Eq.
The arguments leading to Eq.~3.14! are similar to those
used in arriving at the method of optimum factorization su
cessfully applied in intermediate-energy pion-nucleus a
nucleon-nucleus scattering@9,10#. The n1d total cross sec-
tion, Eq. ~2.4!, thus gives in the first order term int of Eq.
~2.6! in the high-energy limit

s tot
ndu1st order→2s tot

NN . ~3.15!

This result corresponds to the naive expectation tha
ri
-
d

at

high energies the projectile nucleon sees the individ
nucleons inside the deuteron as if they were independ
particles. It should be pointed out that due to the opti
theorems tot

NN is O(t2), though the expression of Eq.~3.15!
has been derived from the terms linear int in Eq. ~2.6!.

Let us now consider the contributions to the totaln1d
cross section second order int as given in Eq.~2.5!. A
straightforward but somewhat tedious algebra using
~2.11! leads to the exact form
^FuPtPG0tPuF&52E d3qE d3q8
^wduq&^q8uwd&

2uedu2~1/m!~q21q821q•q8!1~3/2m!~q1q8!•q01 i«

3^ 3
4 q01

1
2 qut~e1!u 3

4 q02
1
2 q2q8& ^2 3

4 q01q1 1
2 q8ut~e3!u 3

4 q01
1
2 q8&s

12E d3qE d3q8
^wduq&^q8uwd&

2uedu2~1/m!~q21q821q•q8!1~3/2m!~q1q8!•q01 i«

3^ 3
4 q01

1
2 qut~e1!u2 3

4 q01
1
2 q1q8& ^ 3

4 q02q2 1
2 q8ut~e2!u2 3

4 q02
1
2 q8&s . ~3.16!
s
it
The quantityt represents eithert2t† or t†, and thus acts in
the subsystem 15~23!. Again, the subscripts indicates the
symmetrized state as given in Eq.~3.9!. The energy argu-
ments in thet matrices are

e15ed1e
1

m S 3

4
q0D 2

1
3

4m
q•q02

3

4m
q2 ~3.17!

and

e35e25ed1
1

mS 3

4
q0D 2

1
3

4m
q8•q02

3

4m
q82.

~3.18!

It should be pointed out that the occurrence of the symm
trized state incorporates the forward and backward scatte
amplitudes.
e-
ng

For the limit q0→` one can again neglect the variation
of the t-matrices under the integrals and obtains in this lim

^FuPtPG0tPuF&

'2 K 3

4
q0UtS 1

mS 3

4
q0D 2D U34 q0L

s

3 K 3

4
q0UtS 1

mS 3

4
q0D 2D U34 q0L

s

3I , ~3.19!

where
I 5E d3qE d3q8
^wduq& ^q8uwd&

2uedu2~1/m!~q21q821q•q8!1~3/2m!~q1q8!•q01 i«
. ~3.20!
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The interesting insight will now arise from the quantityI,
which we still need to consider in the high-energy lim
These considerations are most transparent if one work
configuration space. The momentum space form will
given in the Appendix. Let

^quwd&[
1

~2p!3/2E d3reiq•r ^r uwd& ~3.21!
e
to

-

in
e

with

^r uwd&[
1

A4p
wd~r !. ~3.22!

Then the quantityI from Eq. ~3.20! becomes
I 5
1

~2p!3

1

4pE d3qE d3q8E d3r E d3r 8eiq•r e2 iq8•r8
wd~r ! wd~r 8!

2uedu2~1/m!~q21q821q•q8!1~3/2m!~q1q8!•q01 i«
.

~3.23!
Since the denominator depends onq0, the quantity whose
infinite limit we want to consider, it is natural to split th
vector q (q8) in components parallel and perpendicular
q0, and considerq0 pointing into thez direction. For the
vector r (r 8) we define a similar decomposition
q[~q' ,qz!, ~3.24!

r[~r' ,z!,

and obtain
I 5
m

~2p!3

1

4pE d2q'E d2q'8 E d3rwd~r !E d3r 8wd~r 8!eiq'•r'e2 iq8'•r8' E dqzE dqz8e
iqzze2 iqz8z8

3
1

2muedu2q'
2 2q8'

2 2q'•q8'2qz
22q8z

22qzqz81 3
2 q0~qz1qz8!1 i«

. ~3.25!
s

to
nd

d-
Further we substitute

qz1qz85s, ~3.26!

1
2 ~qz2qz8!5s8,

so that the denominator takes the form

D52 3
4 ~s222q0s1 4

3 a22 i«!, ~3.27!

with

a25muedu1q'
2 1q8'

2 1q'•q8'1s82.0 . ~3.28!

For largeq0 one obtains

D'2 3
4 ~s22q02 i«!S s2

2

3

a2

q0
1 i« D

'2 3
4 ~s22q02 i«!~s1 i«! ~3.29!

and thus encounters two poles in the complexs plane. The
integrals overs ands8 can be carried out analytically, lead
ing to
E
2`

`

dsE
2`

`

ds8ei ~z1z8!s8e~ i /2!~z2z8!s
24/3

~s22q02 i«!~s1 i«!

52
2i

3q0
~2p!2d~z1z8!@u~z!e2iq0z1u~2z!#. ~3.30!

Inserting this into Eq.~3.25! and carrying out the integration
over q' andq'8 yields

I'm ~2p!3
22i

3q0
E d2r'E d2r'8 E

2`

`

dzE
2`

`

dz8

3 wd~Ar'
2 1z2! wd~Ar 8'

2 1z82!

3d~r'! d~r 8'! d~z1z8!@u~z!e2iq0z1u~2z!#
1

4p
.

~3.31!

Thed functions under the integral show that contributions
I only arise if the two nucleons in the deuteron sit behi
each other with respect to the projectile momentumq0

5q0ẑ. This coincides with our naive understanding of sha
owing. The term containinge2iq0z falls off fastest in Eq.
~3.31! and will be neglected. Thus, one arrives at
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I'22im~2p!3
1

3q0
E

0

`

dzwd
2~z!

1

4p

52
2im

3q0
~2p!3 K wdU 1

r 2UwdL 1

4p
. ~3.32!

The corresponding algebraic steps performed in momen
space are shown in the Appendix and yield the result

I→2
2im

3q0
~2p!3E

0

`

dpp2 wd~p!E
0

`

dp8p82 wd~p8!
1

p.

1

4p
,

~3.33!

wherep.5max(p,p8).
We now return to Eq.~3.19!, sett5t2t†, use the relation

given in Eq.~3.12! to the totalNN cross section and obtai

^FuP~ t2t†!PG0tPuF&

→22 s tot
NNK 3

4
q0UtS 1

mS 3

4
q0D 2D U34 q0L

s

3K wdU 1

r 2UwdL 1

4p
. ~3.34!

Finally subtracting the conjugate complex according to E
~2.6! and using the optical theorem in the two-body su
system

^ 3
4 q0utu 3

4 q0&s2^ 3
4 q0utu 3

4 q0&s* 522i
3q0

4mS 1

2p D 3

s tot
NN ,

~3.35!

leads to

^FuP~ t2t†!PG0tPuF&2^FuP~ t2t†!PG0tPuF&!

→ i
3q0

m

1

~2p!3
~s tot

NN!2K wdU 1

r 2UwdL 1

4p
. ~3.36!

Because of (s tot
NN)2 this expression is of orderO(t4).

It remains now to discuss the last term of second orde
t in Eq. ~2.6! in the high-energy limit. Here we encounte
G02G0

!522ipd(E2H0) and obtain

^FuPt†P~G02G0
!!tPuF&

→24ip U K 3

4
q0UtS 1

m S 3

4
q0D 2D U34q0L

s
U2

3E d3qE d3q8^wduq& ^q8uwd&

3 dS 2uedu2
1

m
~q21q821q•q8!

1
3

2m
q0•~q1q8! D . ~3.37!
m

.
-

in

The integral term can simply be related to the expressioI
from Eq. ~3.20!. Similarly to the Appendix we work in mo-
mentum space and obtain

I 8[E d3qE d3q8^wduq&^q8uwd&

3dS 2uedu2
1

m
~q21q821q•q8!1

3

2m
q0•~q1q8! D

5E d2q'E d2q'8 E dqzE dqz8wd

3~Aq'
2 1qz

2! wd~Aq8'
2 1q8z

2!
1

4p

3 dS 2uedu2
1

m
~q'

2 1q8'
2 1q'•q8'

1qz
21q8z

2!1
3

2m
q0~qz1qz8! D . ~3.38!

Then using Eq.~3.29! for the argument of thed function we
arrive at the dominant term

I 8'mE d2q'E d2q'8 E ds8E ds 4
3

3
1

2q0
d~s! wd„Aq'

2 1~s81 1
2 s!2

…

3wd„Aq8'
2 1~s82 1

2 s!2
…

1

4p

5
2m

3q0
E d2q'E d2q'8 E ds8

3wd~Aq'
2 1s82! wd~Aq8'

2 1s82!
1

4p

52
1

ip
I . ~3.39!

The last step follows from Eq.~A1!, if one evaluates this
integral in a different way. Thus we end up with

^FuPt†P~G02G0
!!tPuF&

→22i
4m

3q0
~2p!3U K 3

4
q0UtS 1

mS 3

4
q0D 2D U34 q0L

s
U2

3K wdU 1

r 2UwdL 1

4p
. ~3.40!

Adding the above expression to Eq.~3.36! and using Eq~2.4!
gives the asymptotic contribution of the terms second or
in t of Eq. ~2.6! to the totaln1d cross section as
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s tot
ndu2nd order522~s tot

NN!2K wdU 1

r 2UwdL 1

4p
1~2p!6S 4m

3q0
D 2U K 3

4
q0UtS 1

mS 3

4
q0D 2D U34 q0L

s
U2 K wdU 1

r 2UwdL 1

4p
. ~3.41!

If we use the optical theorem in the two-body system for the imaginary part occurring in

U K 3

4
q0UtS 1

mS 3

4
q0D 2D U34 q0L

s
U2

,

we obtain

s tot
ndu2nd order→2~s tot

NN!2K wdU 1

r 2UwdL 1

4p
1~2p!6S 4m

3q0
D 2H ReK 3

4
q0UtF 1

m S 3

4
q0D 2GU34 q0L

s
J 2K wdU 1

r 2UwdL 1

4p
.

~3.42!
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In summary, we obtain in the high-energy limit for th
total n1d cross section based on the terms of first and s
ond order int in the expression for Im̂FuUuF&

s tot
nd5s tot

ndu1st order1s tot
ndu2nd order

52 s tot
NN

1 ~2p!6S 4m

3q0
D 2H ReK 3

4
q0UtS 1

m S 3

4
q0D 2D U34 q0L

s
J 2

3K wdU 1

r 2UwdL 1

4p
2~s tot

NN!2K wdU 1

r 2UwdL 1

4p

52 s tot
NN1O~ t2!2O~ t4!. ~3.43!

As mentioned earlier, the first term, obtained from the fi
order term in the two-nucleont matrix within the multiple
scattering expansion gives twice theNN total cross section
thus considering the two nucleons in the deuteron as b
free particles. The terms of second order int within the mul-
tiple scattering expansion of Eq.~2.6! give rise to two cor-
rection terms. The positive term in Eq.~3.43!, being of
O(t2), enhances the contribution of the first term. It is tem
ing to consider this term as an antishadowing effect. T
third, negative term in Eq.~3.43!, which is due to (s tot

NN)2 of
O(t4), reduces the value of the two totalNN cross sections
and its action is naturally called a shadowing effect. In
Glauber approximation@2–5# one arrives formally at the
same result. However, it should be pointed out that
~3.43! contains the symmetrized two-bodyt-matrix elements
and thus implicitly forward and backward amplitudes. W
think that our derivation based on the multiple scatter
expansion of the Faddeev formulation together with the m
mentum space treatment is a viable alternative. It uses s
c-

t

g

-
e

e

.

g
-
n-

dard and transparent evaluations of integrals, which co
also be calculated numerically without going to the hig
energy limit.

IV. APPLICATION

In this section we want to give a numerical illustration
the results derived in the previous section. We use twoNN
model forces of Malfliet-Tjon type@11#, one being purely
attractive and the other having attractive and repulsive pa
Both are of Yukawa type and given as

V~q8,q!5
1

2p2S VR

~q82q!21mR
2

2
VA

~q82q!21mA
2 D .

~4.1!

The parameters are given in Table I. As we saw in the
section, there are two momenta which control the asympt
expansion. The first is the initial projectile momentumq0,
which appears as34 q0 in the three-body context. The secon
is the ‘‘typical’’ deuteron momentum. For the two mod
potentials we display in Fig. 1 the corresponding deute
wave functions. We see that in both cases the wave funct
drop by about a factor of 10 within 0.6 fm21. Thus we
expect that for3

4 q0 sufficiently larger than this value th
asymptotic expressions derived in the previous sec
should be valid. In order to get quantitative insight into t
onset of the validity of the asymptotic expressions o
should evaluate the terms in the multiple scattering se
exactly. Strictly spoken this amounts to solving the Fadde
equation, Eq.~2.2!. As a first step we exactly evaluate he
the term in Eq.~2.10!, which is in first order int. Using Eq.
~3.6! one finds the following exact form:
that
TABLE I. Parameters of the Malfliet-Tjon type potentials. As conversion factor we use units such
\c5197.3286 MeV fm51.

VA mA @MeV# VR mR @MeV# ^wdu
1
r 2 uwd& @ fm22#

MT-IV 0.3303 124.91 0.6343
MT-III 3.1769 305.86 7.291 613.69 0.3090
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^FuP~ t2t†!PuF&5
8i

p E d3pwd
2~2up2 3

4 q0u!Im^put~«!up&s ,

~4.2!

where

«5ed1
1

m
p22

4

m
~p2 3

4 q0!
2. ~4.3!

Introducing as variables explicitly the magnitudes of t
momentum vectorsp and q0 and the angle between them
x5p̂•q̂0, we obtain for then1d total cross section in the
first order int

s tot
ndu1st order52~2p!3

4m

3q0
8E

21

1

dxE
0

`

dpp2wd
2

3„2Ap21~ 3
4 q0!22 3

2 pq0x… Im ts~p,p,«!.

~4.4!

The integral over the imaginary part of the forward scatter
amplitude receives contributions from the region«.0 and
the deuteron pole. The condition«.0 limits the integration
regions inx as well asp. Thex integration has to be carrie
out only between

xmin5A3

4
1

1

3

muedu

q0
2

andxmax51, andp values given by

pmax,min5q0x6Aq0
2x22 3

4 q0
22 1

3 muedu. ~4.5!

The pole contribution is obtained from an integration ovex
with similar boundaries at fixedp values.

The off-shellNN scattering amplitude is determined b
firstly solving the two-body Lippmann-Schwinger equati

FIG. 1. The absolute values of the bound state wave funct
wd(k) as calculated from the two potential models MT-III an
MT-IV given in Table I.
g

exactly in three dimensions, i.e., without partial wave exp
sion @12#. The quantities entering the integral in Eq.~4.4! are
off-shell t-matrix elements for equal magnitudes of the m
menta. Thus the integration requires a two-dimensional
terpolation of the imaginary part of the forward scatteri
amplitude in the variablesp and«. We use standardb splines
for the numerical calculation@13#.

The first order term of the totaln1d cross sections for the
two potential models MT-III and MT-IV is shown in Figs. 2
and 3 as function of34 q0 and compared to its asymptoti
limit 2s tot

NN given in Eq.~3.15!. A closer inspection reveals
that this limit is reached at nucleon laboratory energies
about 300~600! MeV within 1% for MT-III ~MT-IV !. This
energy is fairly high so that the simple potential picture w
no longer be valid and relativistic features will be importa
including meson production. These absorption processes

s
FIG. 2. The contribution of the first order term of the multip

scattering series for then1d total cross section calculated exact
from the MT-III potential model as function of the asymptotic m
mentum 3

4 q0 ~solid line!. The dashed line represents the corr
sponding contribution of the first order term in the high-ener
limit. The variable3

4 q05A(m/2)Elab is chosen such that the kineti
laboratory energies for the two and three body systems are
same.

FIG. 3. Same as Fig. 2, except that the two-body potential e
ployed is the MT-IV potential.
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of course change our results as is known from studies wi
the Glauber formalism@3,4#. Nevertheless we think it shoul
be of theoretical interest to see the results within a pure
tential picture. We leave the exact solution of the Fadd
equation, Eq.~2.2!, to a future study and estimate now th
resulting rescattering terms via the asymptotic express
contained in Eq.~3.43!. They are expected to be a goo
approximation around 300 MeV and above for the poten
containing the realistic feature of repulsion. The deute
matrix elements for the two potentials entering in t
asymptotic expression of Eqs.~3.32! and~3.43! are given in
Table I.

FIG. 4. Contributions to then1d total cross sections as give
by the MT-III potential as function of the correspondingNN labo-
ratory energy. The solid line shows twice the totalNN cross sec-
tion. Successively added to this is the positive contribution~anti-
shadowing! of O(t2) ~long dashed! and the negative contribution
~shadowing! of O(t4) ~dash-dotted!. The magnitudes of those con
tributions are shown separately as dotted line for the positive an
short dashed line for the negative term.
in

o-
v

ns

l
n

We start our investigation with the MT-III potentia
which has a short range repulsion and a intermediate ra
attraction, and thus contains some realistic features of
NN force. In Fig. 4 the three different terms of the right-ha
side of Eq.~3.43! are shown separately as function of th
nucleon laboratory energy together with their partial su
building up then1d total cross section in the high-energ
limit. We see that the rescattering term ofO(t2) is quite
large and can not be neglected in relation to the leading t
2s tot

NN in the whole energy range shown. For a more qua
tative inspection the three different terms are listed se
rately in Table II for the higher energies. The first colum
gives twice theNN total cross section, the second colum
shows the positive term, which is also ofO(t2) like the total
NN cross section, and the third column gives the nega
term, which is ofO(t4), and which causes shadowing. W
see from the table that the positive term ofO(t2), which
results from the second order int of the multiple scattering
expansion of the elastic forward scattering amplitu
^FuUuF& is relatively large. Already at 100 MeV the shad
owing term is much smaller than the other two terms a
drops of course quickly due to its energy depende
O(1/q0

4). From these numbers we see that the rescatte
corrections are quite large in this pure potential picture. T
is even more pronounced for the purely attractive poten
MT-IV as shown in Fig. 5. The corresponding terms a
displayed in Table III. We see that the positive term
O(t2), which results from the second order int of the mul-
tiple scattering expansion of the elastic forward scatter
amplitude^FuUuF& is quite large and more important tha
the sum of the twoNN total cross sections.

In the purely attractive potential model MT-IV we ar
able to rigorously provide the extreme high-energy limit
the n1d total cross section. In this limit the Born term fo
the NN t-matrix gives the only contribution and we can r
place thet-matrix element in Eq.~3.41! with the potential
matrix element, which is real,

as
TABLE II. Contributions of the different leading order terms of the MT-III potential to the totaln1d
cross section as function of theNN laboratory energy. The last column shows the factorFMT-III , which
multiplies s tot

NN and approaches a constant for higher energies.

Elab @MeV# 2 s tot
NN @ fm2# O(t2) @ fm2# O(t4) @ fm2#

FMT-III 5
2s tot

NN1O~ t2!

s tot
NN

50 63.945 22.845 -25.218 2.71
100 23.438 19.410 -3.388 3.66
300 9.885 8.376 -0.603 3.69
500 7.314 5.027 -0.330 3.37
1000 4.577 2.595 -0.129 3.13
1500 3.400 1.769 -0.071 3.04
2000 2.725 1.341 -0.046 2.98
2500 2.283 1.078 -0.032 2.94
3000 1.970 0.899 -0.024 2.91
3500 1.738 0.771 -0.019 2.88
4000 1.557 0.673 -0.015 2.86
4500 1.414 0.597 -0.012 2.84
5000 1.296 0.536 -0.010 2.83



a

n

l
is
ive

00
m

he

m

3118 PRC 58CH. ELSTER, W. SCHADOW, H. KAMADA, AND W. GLÖCKLE
K 3

4
q0UtF 1

mS 3

4
q0D 2GU34 q0L

s

→ K 3

4
q0UVU34 q0L

s

. ~4.6!

This expression can be related to the total cross section,
one finds after a simple integration

E dp̂ u^ 3
4 q0p̂uVu 3

4 q0&su2→4p
8

9q0
2

mA
2 ^ 3

4 q0uVu 3
4 q0&s

2 .

~4.7!

FIG. 5. Same as Fig. 4 except that the two-body potential e
ployed is the MT-IV potential.
nd

Using the definition of theNN total cross section we obtai

^ 3
4 q0uVu 3

4 q0&s
2→S 3q0

m D 2 1

~2p!5~1/2mA
2 !

s tot
NN . ~4.8!

As a consequence one can write Eq.~3.43! as

s tot
nd→2s tot

NNF112K wdU 1

mA
2r 2UwdL G

2~s tot
NN!2K wdU 1

r 2UwdL 1

4p
. ~4.9!

For the potential MT-IV the term additive to 1 is 3.166~us-
ing the quantities given in Table I! and therefore the tota
NN cross section is multiplied by 8.33 if the exact limit
reached. This number is substantially larger than the na
expectation, which would be twice theNN cross section.
Numerically this asymptotic limit is reached around 40
MeV nucleon laboratory energy within 2% as we see fro
the last column in Table III. There we display the ratio of t
high-energy limit obtained from Eq.~3.43! and the exact
limit from Eq. ~4.9!

-

R[
2 s tot

NN1~2p!6~4m/3q0!2
„Rê ~3/4!q0ut$1/m@~3/4!q0#2%u~3/4!q0&s…

2^wdu1/r 2uwd&~1/4p!

2 s tot
NN@112^wdu1/mA

2r 2uwd&#
, ~4.10!

TABLE III. Contributions of the different leading order terms of the MT-IV potential to the totaln1d
cross section as function of theNN laboratory energy. The explicit expression forR is given in Eq.~4.10!.
The definition forFMT-IV is the same as in Table II.

Elab @MeV# 2 s tot
NN @ fm2# O(t2) @ fm2# O(t4) @ fm2# FMT-IV R

50 82.057 101.812 -84.392 4.48 0.54
100 39.035 76.478 -19.098 5.92 0.71
300 12.076 31.616 -1.828 7.24 0.87
500 7.040 19.590 -0.621 7.57 0.91
1000 3.411 9.989 -0.146 7.86 0.94
1500 2.242 6.693 -0.063 7.97 0.96
2000 1.669 5.035 -0.035 8.03 0.96
2500 1.329 4.035 -0.022 8.07 0.97
3000 1.097 3.349 -0.015 8.08 0.97
3500 0.946 2.894 -0.011 8.12 0.97
4000 0.817 2.513 -0.008 8.15 0.98
4500 0.729 2.240 -0.007 8.15 0.98
5000 0.661 2.034 -0.006 8.15 0.98
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where contributions ofO(t4) to the total cross section ar
neglected. The factorFMT-IV shown in Table III is explained
below.

For the MT-III potential there is interference among t
repulsive and attractive parts of the potential and the conn
tion between the potential matrix element in forward dire
tion and the totalNN cross section is more involved. Sinc
s tot

NN5O(1/q0
2) and the real part of the forward scatterin

amplitudet approaches a constant, both positive terms in
~3.43! can again be combined ass tot

NN3F and we determined
the factor multiplyings tot

NN asFMT-III 52.83, as shown in the
last column of Table II. Because of the repulsion contain
in the model MT-III the asymptotic limit is reached muc
later compared to the purely attractive potential model M
IV.

In both cases the rigorous asymptotic limits are

s tot
nd→s tot

NN3F, ~4.11!

whereF is eitherFMT-III or FMT-IV . The factorsF contain
the deuteron matrix element^wdu1/r 2uwd& and numerical as
well as potential parameter constants. The factorsF are
larger than 2 for both potential models, and thus the res
tering process enhances the asymptotic cross section ove
sum of the twoNN cross sections, the shadowing has va
ished already before that.

We started from an expansion of the elasticn1d forward
scattering amplitudêFuUuF& in powers of theNN t matrix.
Due to the optical theorem the term first order int ended up
as a term second order int in the totaln1d cross section.
The terms second order int in the elastic forward scatterin
amplitude provide two terms in the totaln1d cross section,
one of second order and one of fourth order int. The one
second order int behaves asO(1/q0

2), whereas the one o
fourth order int decreases asO(1/q0

4) in the limit q0 going to
infinity. It is therefore natural to group the terms togeth
according to their power int as we did in Eq.~3.43!, which
coincides with their energy dependence. Thus the shadow
effect will disappear faster than the antishadowing effect.
the two model forces considered these antishadowing eff
modify the naive expectation that the total cross section
n1d scattering tends to twice the totalNN cross section.
The true asymptotic result is larger than twice theNN cross
section, which means that the two nucleons in the deute
can never be considered to be independent. Finally it is
vious that the terms in Eq.~2.6!, which are third order int
can not cancel the termsO(t2) in the totaln1d cross sec-
tion. They may, however, modify the shadowing effect, sin
there will be also contributions of orderO(t4) to the total
n1d cross section. Thus the asymptotic value of then1d
total cross section in our model of spinless nucleons inter
ing by local forces is the first term on the right hand side
Eq. ~4.9! in case of the purely attractive Yukawa potent
MT-IV, and s tot

NN3F with F52.83 for the potential mode
MT-III. These are exact results for our potential models.

V. SUMMARY

In view of new precise measurements of the totaln1d
cross section at energies above 100 MeV nucleon labora
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energy and of precise solutions of the Faddeev equat
using modernNN forces@1# it is of interest to understand th
leading rescattering effects which modify the naive expec
tion that the totaln1d scattering cross section is the sum
the np and nn total cross sections. In a model of spinle
nucleons we investigate the first few terms of the multip
scattering series for the forward elasticn1d scattering am-
plitude resulting from the Faddeev equations in the high
ergy limit. Although the treatment is purely nonrelativist
and enters far into the region, where relativity is importa
we think it is interesting to know the asymptotic behavior
high energies for pure potential models without absorpti
Absorption processes~particle productions! occurring in a
relativistic context will, however, change the results p
sented here@2,4#. In accordance to the naive expectation w
extract from the second order term in the multiple scatter
series a shadowing effect proportional to the totalNN cross
section squared, which is negative and reduces the totn
1d cross section. However, we also find a positive te
proportional to the square of the real part of theNN forward
scattering amplitude, which decreases in energy only prop
tional to the totalNN cross section, whereas the shadowi
term vanishes faster. Both terms are proportional to the
pectation value of 1/(nucleon distance)2 with respect to the
deuteron wave function.

In a numerical illustration usingNN force models of
Yukawa type the positive term has as limit the totalNN
cross section multiplied by a number larger than 2~which
would be the naive expectation!. For the purely attractive
potential this factor is 8.15, whereas for the potential w
the additional repulsion this factor is 2.83. These are ex
results for our choice of potential models. For both potenti
the negative shadowing effect decreases faster as functio
energy than the positive terms.

We expect that the asymptotic expressions given in
~3.43! start to be valid around 300–600 MeV depending
the potential model employed. Strictly speaking this can o
be assured, if the Faddeev equation, Eq.~2.2!, is solved ex-
actly. The estimate given in this work is based on the ex
evaluation of the term first order in theNN t matrix in the
n1d elastic forward scattering amplitude. From this calc
lation we found the corresponding asymptotic limit starti
to be valid at the quoted energies.

The formal expression, Eq.~3.43!, has also been found in
the context of the Glauber approximation@2,5#. A simple
geometrical explanation of the deuteron matrix element
been given in Ref.@2#. Our derivation is different and fol-
lows simply from the elastic forwardn1d scattering ampli-
tude evaluated in leading orders in theNN t matrix and tak-
ing the high-energy limit analytically. A similar investigatio
including spin and isospin degrees of freedom is in prepa
tion.
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APPENDIX: DERIVATION OF THE MOMENTUM SPACE
FORM OF THE INTEGRAL I

In this appendix we derive the limiting momentum spa
form of the integral I given in Eq.~3.20!. Using the leading
expression for the denominator as given in Eq.~3.29! the
expression in Eq.~3.20! can be rewritten as
R

,

m

I→
2m

3q0
E d3qE d3q8

wd~q! wd~q8!

qz1qz81 i«

1

4p

5
2m

3q0
~2p!2E

0

`

dqq2E
0

`

dq8q82E
21

1

dxE
21

1

dx8

3
wd~q! wd~q8!

qx1q8x81 i«

1

4p
. ~A1!

The x and x8 integrals are elementary and one ends up
rectly with the expression given in Eq.~3.33!.
,

e,
d
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