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Shadowing and antishadowing effects in a model for the +d total cross section
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Based on the multiple scattering series incorporated in the Faddeev scheme the high-energy limit of the total
n+d cross section is evaluated in a nonrelativistic model system where spins are neglected. In contrast to the
naive expectation that the totak-d scattering cross section is the sum of tdl cross sections we find two
additional effects resulting from rescattering processes. These additional terms have differeishsidowing
and antishadowingand a different behavior as function of the energy. Our derivation of these results which are
already known from Glauber theory is based on the analytical evaluation of elastic transition amplitudes in the
high-energy limit. It does not depend on the diffraction-type assumptions connected with Glauber theory. In
this model of spinless Yukawa type forc@sith no absorptionthe totaln+d cross section does not approach
twice theNN total cross section in the high-energy limit but rather approaches theNdtatross section
multiplied by a number larger than 2. Therefore, the enhancement effect resulting from rescattering is larger
than the shadowing effect, which decreases faster with engB8$56-281®8)04712-§

PACS numbd(s): 21.45+v, 25.10+s, 03.65.Nk

[. INTRODUCTION energy limit, which only involve ordinary analysis, are car-
ried out in well defined integrals. There are ariori as-

Recently it became possible to calculate the total crossumptions about the scattering process involved, such as,
section for neutron-deuterom ¢ d) scattering with high pre- e.g., diffraction type approximations. We also take the iden-
cision in the energy regime up to 300 MeV projectile energytity of the particles explicitly into account. In this paper the
by solving the nonrelativistic I8 Faddeev equations based complications due to the inclusion of the spin and isospin
on modernNN forces[1]. Compared to the most naive pic- degrees of freedom are avoided so that the basic mechanism
ture, which in the high energy limit would equate the total can be seen more clearly. Taking spin and isospin degrees of
n+d cross section with the sum of the total cross sectiondreedom into account will modify the results due to the in-
for neutron-proton 1fp) and neutron-neutronn() scatter- terferences of spin and isospin dependent terms, as will be
ing, the rigorously calculated result up to 300 MeV is shown in a forthcoming article. Specifically because of those
smaller. Obviously one can expect some shadowing effect ipin and isospin interference effects, which are quite in-
the reaction, which would explain this result. On the othervolved, we want to present this more transparent case with
hand, rescattering of the nucleons upon each other naight three bosons separately.
priori also enhance the totah-d cross section over the sum  In Sec. Il we describe the Faddeev framework, its mul-
of the individual two nucleon cross sections, especially if thefiple scattering expansion, and the leading order terms in the
forces are attractive. In the context of Glauber thg@y5] NN t matrix for obtaining the totah+d cross section. The
both features, enhancement and weakening, are present. Irigh-energy limit of the corresponding expressions is carried
model of spinless particles, which is based on the Faddeegut analytically in Sec. Ill. To illustrate the behavior of the
formulation, we want to study the high-energy limit of the leading order terms in the high energy limit numerical ex-
total n+d cross section and evaluate the leading terms ansamples are given in Sec. IV for a superposition of Yukawa
lytically. This approach differs from the one used in theinteractions. We conclude with Sec. V.
Glauber formulation. Based on the multiple scattering series
incorporated in the Faddeev framework, we calculate the first || | EADING MULTIPLE SCATTERING TERMS
and second order terms of the series when taken in the high- FOR THE TOTAL n+d CROSS SECTION
energy limit and show the contributions of the two terms to
the totaln+d cross section. Starting from a multiple scatter- We consider three identical spinless bosons which interact
ing series implies that this is an ordering according to poweryia two-body forces. In our usual mannid to exploit the
in the NN t matrix. Though we restrict ourselves to a non- Faddeev scheme the operator for elastic scattering of a
relativistic framework, we nevertheless consider the result§ucleon from a bound nucleon pair is given [3

as being instructive. The analytical steps leading to the high-
U=PG,'+PT, (2.2)

*Present address: Institutrfikernphysik, Fachbereich 5, Tech- where the three-body operatdrobeys the Faddeev-type in-
nische Hochschule Darmstadt, D-64289 Darmstadt, Germany. tegral equation
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T|®)=tP|®)+tPGT| D). (2.2 am

ot“;i=—(27r)33—|m<¢>|u|q>>. (2.9
The channel state, which is composed of a two nucleon 9o
bound state(deuteron and a momentum eigenstate of the yere qo is the asymptotic momentum of the projectile

projectile nucleon, is denoted by. Furthermoref is the  pycleon relative to the bound two-body subsystem. From Eq.
two nucleon transition operatoG, the free three nucleon (2 3) follows

propagator, an& the permutation operator, which is the sum

of a cyclic and an anticyclic permutation of the three par- 2i Im{(®|U|D)=(D|U|D)—(D|U|D)*

ticles. The elastic forward scattering amplitude is given by N

the matrix elemen{®|U|®). When iterating Eq(2.2 and =(®[P(t—t)P+PtPGytP
inserting the result into Eq(2.1), we obtain the multiple — Pt'G,PtTP+ PtPGotP Gyt P
scattering series for the elastic forward scattering amplitude 0 0

— Pt'GyPt'GiPtTP|D) + - - -.
(2.5

Since the first term in Eq2.3) is real, it does not contribute
which is an expansion in orders of theN toperator. Using to the total cross section.
the optical theorem one obtains for the total cross section for For the analytical extraction of the high-energy limit it is
nucleon-deuteronn(+d) scattering/7] useful to rewrite Eq(2.5) in the following form:

(®|U]|D)=(D|PGy YD)+ (D|PtP|D)+(D|PtPG,tP| D)
+(®|PtPGtPGotP| D) + - - -, (2.3

(P|U]| D) —(D|U|D)*=(D|P(t—tT)P|D)+(D|P(t—t"PGtP|d)— (®|P(t—t") PGyt P|dD)*
+(D|PtTP(Gy— GH)tP| D)+ (P |P(t—tT)PGytP GotP| D)+ (D |PtTP(Gy— Gj)tP Got P| )
+(®|PtTPG(t—t")PGotP|®) +(P|PtTP G5t TP(Gy— G5 )tP|d)
+(®|Pt'PGtTPGE(t—tNP| D)+ - - - (2.6

The next step is to explicitly evaluate the permutations giverA similar evaluation could be done for the terms third order
by P=P,P,3+ P13P23. This specific choice of the permu- in t given in Eq.(2.5). For our present considerations of the
tation operatoP corresponds to the choice of particles 2 andn+d total cross section in the high energy limit we restrict
3 forming the two-body bound state and 1 being the projeceourselves to the terms given in Eq2.10 and(2.11).

tile, i.e.,t=t,3 and

|®)=|D)1=|¢g)23 o)1 - 2.7
First we need to consider the exact momentum space rep-
The subscripts denote which particles occupy the states. Thigsentations of Eq€2.10 and(2.11). Equivalent decompo-
specific choice leads to sitions of the unity operator are given by

|®),=P 1P P)1=]04)13do)2 2.9

lll. THE HIGH-ENERGY LIMIT

1=fd3pd3q|pq>n<pql, i=1,2, or 3. (3.1
and

Here|pq);=|p)i|q); andp andq are the standard three types
of Jacobi momenta for three particle8]. The indexi de-

|®)3=P13P23 P)1=|¢g)1ddo)3- 2.9
Taking advantage of the symmetry property of the Sub__notes the singled out nucleon. Inserting the unity operator

SyStem,P,g @), = | &), and Pysys= toPpz, ONE Obtains af- MO the first term in Eq(2.10 leads to
ter some algebra

®|t—tT|d =Jd3 d® fd?' d® 'fd3 "d3q”
(BP(t—t1)P|D)=2,(D[(t—t1)(1+ Poa) | D), APt ®)o= | dpdia | d'p'da’ | dpld’q

(2.10

and ><fd3p’”d3QZ’<<I>|pq>zz<pq|p’q’>1
>< ! ! _ T I~ "~ M I

(B|PtPGytP|D) = 25(®|tGqty(| D) + D)) P’ [t=t"p"q")1 (P"q"[P"q")2

>< "~ ® . (3.2)
+2(P[tGots(|P)1+[D),). 2p"q"|®),

(2.11 Further, one has
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(pg|®)i=8%(q— : 3.3 1
(pq| @)= %(a—ao)(p|ea) (33 <q|(t_tf)(825qz)|q>s

The standard relations among the different sets of Jacobi
momenta give .M s, - -
J =~ 2mi gqf dg’(alVlaa’)"" "(aa’|Via)s

1palp'a’),=8%*(p—30—q")8%(p’'+a+3q’). (3.9

.m . .yl .yl
" =—2m§qf da’(altlqa’)s(alt/aq’)*
In addition one has

m - .
3 =—mi —qf da’[{qltlaq’)s>. (3.10
1<pQIt(E)Ip’q’>1=<plt(E—mtf)lp’)ée(q—q’). 2
(3.9
Employing all the above given relations, it is straightforwardThiS. expression is directly related to the two-body total cross
to arrive at the following expression for E¢B.2): section
z<<1>|t—t*|<1>>z=f d*q(eal —a— 200
NN__ ? 4 ~ 1 ’
X (3a+qolt—t'3a+a0)(—a— $ad ea) Tt = (E) (2m) f 99 o e

- [ k(o =K ~Kloo)
We adopt here the usual convention for the total cross sec-
X (3qo+ LK|(t—tN)(e)|2go+ 3k). (3.6  tion for two identical particle$8] and obtain

The total energy i€= ed+(3/4m)q(2), whereeg is the deu-
teron binding energy. When expressed in termskefq

+ 20, one obtains for the energy argumenof the t matri- (q|(t—t)T)( 8:£q2) la)s=—iq E %aﬂ,{“.
ces m m (2)
(3.12
3 3 3
s—E—— =egt+ —0%— —(k—1300)?
G =€t 4mq0 4m( 20o) As a consequence E(B.6) supplemented by the symmetri-
1 1 zation as given in Eq2.10 and approximated in the energy
=eqt+—(3qo+ 1k)2— =K. (3.7 argument of the two-body matrix can be rewritten as
m m
If the projectile momentung, is sufficiently large in com-
parison to the dominant deuteron momenta contributing to 2<q>|(t_tT)(1+ P,g)| @),
the integral in Eq(3.6) and thuse ~(1/m)(3qo+ 3k)?, one
encounters on shel N forward scattering amplitudes under
the integral. The permutation operafy;in Eq.(2.10 leads 2 1
to the necessary symmetrization of thmatrix elements = 2 )3f d3k<(pd| -k)
a
1
N 1, X(—k|@g)| 300 3 klo'tot 4QO+ :k)?]. (3.13
(alt=tH| e=—a*|a)s, (38

where If the projectile momentungy is sufficiently large compared

to the typical deuteron momenta the functioi#qqy

+ k| ot (1/m) (2 g+ 3k)?] is expected to vary slowly
D=l +]-a), (3.9 over the range of thk values contributing to the integral in
Eq. (3.13. Using the normalization of the two-body bound
and q=3qo+ zk. Using the Lippmann-Schwinger equation state, expanding the function k=0 and knowing that the
for t, with the two-body forceV as driving term, and]  contribution of the first derivative vanishes, one obtains in
=|q|q one has the limit for largeqg
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. Wk 2 1 3 J1(3 |2
A{P[(t—t")(1+ Pyg)| D), — _m(ZT)ngoUtot {m(z%)

[ @tod =) (Ko

2i 1 3 NN[1(3 )2} (314

“m (ZT)3 Z Y00t | m| 7Y

The arguments leading to E(B.14 are similar to those high energies the projectile nucleon sees the individual
used in arriving at the method of optimum factorization suc-nucleons inside the deuteron as if they were independent
cessfully applied in intermediate-energy pion-nucleus angbarticles. It should be pointed out that due to the optical

nucleon-nucleus scatterirj§,10. Then+d total cross sec- theoremaVN is O(t?), though the expression of E(.15

. . . . tot
tion, Eq.(2.4), thus gives in the first order term inof Eq.  has been derived from the terms lineattim Eq. (2.6).
(2.6) in the high-energy limit

Let us now consider the contributions to the totatd
nd NN cross section second order tnas given in Eq.(2.5. A
2 3.1 . . .
Tiotl1storder* 2o (3.19 straightforward but somewhat tedious algebra using Eq.
This result corresponds to the naive expectation that ai2.11) leads to the exact form

<‘Pd|q><q,|‘Pd>
'24+q-9')+(3/2m)(q+q’) - +ie

(®|PTPG tP|cI>>=2f d3qf d*q’
° —|ed| — (1/m) (0P +q
X (5ot 30| 7(e1)]300— 39— q") (— 0o+ a+30[t(e3)| 300+ 30")s

+2J dqu dgq, - <ZDd|Q><q |(Pd> :
—| &gl = (LIm)(g°+0q'?+q-q")+(3/2m)(q+0q’) - got+ie

X(300+ 30| 7(e1)|— 200+ 20+0") (30— d—30'[t(€2)|— 3o~ 30')s- (3.16

The quantityr represents eithar—t' or t¥, and thus acts in For the limitgyo—o one can again neglect the variations

the subsystem 4(23). Again, the subscrips indicates the of the t-matrices under the integrals and obtains in this limit
symmetrized state as given in E@®.9). The energy argu-

ments in thet matrices are

61:6d+e£ §q0)2+iq-qo—i 2 (317 (®|PTPGytP|D)
" o m 3 1/3 \?\|3
" (g {2 2],
e il i (il ol
s

It should be pointed out that the occurrence of the symme-
trized state incorporates the forward and backward scatteringhere
amplitudes.

(edla) (a'|eq)
I= | d% | &’ . 3.2
J qj ? —|eg = (1m)(g*+q'?+q-q') +(3/2m)(q+q’) - go+ie (329
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The interesting insight will now arise from the quantity  with

which we still need to consider in the high-energy limit.

These considerations are most transparent if one works in

configuration space. The momentum space form will be

given in the Appendix. Let (rlpq)= \/—<Pd(r) (3.22

(Aled=—] drem (g @20

(27)%2 Then the quantity from Eq. (3.20 becomes

! Qst /fds Jd3r’eIqr —iar’ edll) ¢alr’) .
(277)3 am —|eql—(Um)(a®+q'?+q-q') +(32m)(q+q’) - go+ie
(3.23
|
Since the denominator depends q# the quantity whose aq=(q, ,q,), (3.29
infinite limit we want to consider, it is natural to split the
vector g (q') in components parallel and perpendicular to r=(r, ,z),
0o and considery, pointing into thez direction. For the
vectorr (r') we define a similar decomposition and obtain
|
=2 347J ququd%d(r)f A py(r')elh eI quzf dg ee 1%
1
X - 3 — —. (3.2
—mled —af—a'f—d, -9’ —97— 0’7 a0, + 3do(A+ Ap) Fie
|
Further we substitute o o o, , —4/3
f dsf ds/e|(z+z )S e(l/Z)(zfz )s. _ _
, (s—2qp—ie)(stie)
g.+q;=s, (3.26
2i .
N =——(2m)?8(z+2")[0(2)e*%*+ 9(—2)]. (3.3
(g~ ) =5, 3qo( ™) )L6(2) (-=2)]. (3.30
so that the denominator takes the form Inserting this into Eq(3.25 and carrying out the integrations
overq, andq; yields
D=—-3(s?—2qps+ 5a’—ie), (3.2
. - 3 2l 2 200 [ c o
with l~m(2) der, | dr; dz| dz
3do —w —w
a®=mlegl+q?+q'f+q,-q' +s'?>0. (3.28 X @g(\r2+22) og(\r'2+2'2)
For largeq, one obtains , / 2iqoz _ i
X 8(ry) o(r')) 8(z+2")[ 6(z)e"90*+ 6( Z)]477'
2
D~—3(s— 2q0—|s)(s——a—+|s (33D
3 do

The & functions under the integral show that contributions to
~—3(s—2qp—ie)(s+is) (3.29 | only arise if the two nucleons in the deuteron sit behind
each other with respect to the projectile momentgm

and thus encounters two poles in the compexane. The =q,z. This coincides with our naive understanding of shad-

integrals overs ands’ can be carried out analytically, lead- owing. The term containing?9%? falls off fastest in Eq.
ing to (3.32) and will be neglected. Thus, one arrives at
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_ ;1 (= , 1 The integral term can simply be related to the expression
|~ —2im(2m) ﬁj quod(z)E from Eq.(3.20. Similarly to the Appendix we work in mo-
070 mentum space and obtain

B 2im2 3 1
——3—%( ) <Pdr—2<Pd

The corresponding algebraic steps performed in momentum
space are shown in the Appendix and yield the result <S

1
> —_— (3.32
4
G wzjdwjd%%%mxwwa

1 2 12
~legl =~ (a*+a"*+q-q )+—qo (q+qg")

=fd2qlfd2q1quzf da, ¢q

1
X(\/QL_"qz) @d(\/q L+q’§)ﬂ

2im o
- 3 //2
= e [ dnieum [ appentp o

(3.33

wherep~ =max(p,p’).
We now return to Eq(3.19, setr=t—t", use the relation
given in Eq.(3.12 to the totaINN cross section and obtain

Sl = _i 2+ /2+ A’
€l = (ai+a’T+a,-a';

(D|P(t—t"PGytP|®)

R

+QZ+q z +_QO(QZ+QZ)) (338)

3 3
201 2o, 2o
S

Then using Eq(3.29 for the argument of thé function we

1 1 arrive at the dominant term
X\ @qg 2 Pd) g7 (3.39
[ 2 2.7 ' 4
Finally subtracting the conjugate complex according to Eq. ' ~mj d qu d qlf ds f ds3

(2.6) and using the optical theorem in the two-body sub-

system ><—5s> ga(Nal +(s'+39)?)

* do s
<%q0|t|%q0>s_<%q0|t|%q0>s__2|4_(2_) Tlot X og(Vq 2+ (5 —

(3.35
2m
leads to _2m 5 - ,
S%Jd qu quS
(@|P(t—t" PG, tP|®)—(P|P(t—t")PGytP|d)* .
2 12 12 2y
309 1 N2 1 1 - X @g(NoZ +5'%) pg(\q'2 +s )4
_)IW(ZW)g(UtOt Pdl 5| Pd) 7 (3.36 .
=- (3.39
i

Because of ¢h)? this expression is of orded(t?).
It remains now to discuss the last term of second order in

tin Eq. (2.6 in the high-energy limit. Here we encounter The last step follows from Eq/AL), if one evaluates this
Go—Gy=—2im8(E—H,) and obtain integral in a different way. Thus we end up with

(®|PtTP(Gy— Gp)tP| D)
, (®|Pt'P(Gy— Gg)tP|P)

7 Yo/t 1|7 Yo e am 3

x [ o @a(eda) arled X<¢
d

——4ix 2

(ol 2w

1
=|®d| 7 (3.40

1
8| —led = —(a*+0a'*+q-q")
Adding the above expression to E§.36) and using Eq2.4)
(3.37) gives the asymptotic contribution of the terms second order
' in t of Eq. (2.6) to the totaln+d cross section as

3
+%Q0'(q+q ) |-
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. N 1 1 4m\? /3 1(3 \3\[3 \|? 1
Tiotl2nd orde™ — 2( 0yt ) Pa| 3| P 1. 72 m)° 34, 2%/t 7% |7 % . ¢a| 7| ¢ - (3.4)
If we use the optical theorem in the two-body system for the imaginary part occurring in
3 1(3 |23 2
4q0 4q0 ZQO . ’
we obtain
o NN 2 1 1 o 4m\?( /3 1(3 \?|I3 2 1 1
ot 2nd order™ ~ (o1 )| @4 2| ¥ 2, F@m) 30, Re| 7 doit| {7 9] ||z % . ?d 5|94 77
(3.42

In summary, we obtain in the high-energy limit for the dard and transparent evaluations of integrals, which could
total n+d cross section based on the terms of first and secalso be calculated numerically without going to the high-

ond order int in the expression for I§d|U|D) energy limit.
nd_ _nd nd
oz g t+o
tot — Y totl 1st order t0t|2nd order IV. APPLICATION
_ NN
=2 O

In this section we want to give a numerical illustration of

4m) 2 3 1/3 \2\|3 2 the results derived in the previous section. We use Mo
+ (277)6(3—) (Re< ol t ( (4 qo) ) — qo> ] model forces of Malfliet-Tjon typd11], one being purely
Go s attractive and the other having attractive and repulsive parts.
1 1 1 Both are of Yukawa type and given as
<<Pd <Pd> 477—(0&\‘) < ‘Pd>m
1 Vg Va
=2 oy +O(t?) —O(t?). (3.43 V(g',q)= - :
“ (@ -g2+ud (q'—9)+ud

. . ' . . 4.1
As mentioned earlier, the first term, obtained from the first “.D

order term in the two-nucleohmatrix within the multiple

scattering expansion gives twice theN total cross section, The parameters are given in Table I. As we saw in the last
thus considering the two nucleons in the deuteron as beingection, there are two momenta which control the asymptotic
free particles. The terms of second ordet imithin the mul-  expansion. The first is the initial projectile momentuy)

tiple scattering expansion of E(R.6) give rise to two cor-  which appears a$qo in the three-body context. The second
rection terms. The positive term in E@3.43, being of is the “typical” deuteron momentum. For the two model
O(t?), enhances the contribution of the first term. It is tempt-potentials we display in Fig. 1 the corresponding deuteron
ing to consider this term as an antishadowing effect. Thavave functions. We see that in both cases the wave functions
third, negative term in Eq3.43, which is due to ¢})2 of  drop by about a factor of 10 within 0.6 fm. Thus we
O(t%), reduces the value of the two totdN cross sections expect that for2q, sufficiently larger than this value the
and its action is naturally called a shadowing effect. In theasymptotic expressions derived in the previous section
Glauber approximatiorj2—5] one arrives formally at the should be valid. In order to get quantitative insight into the
same result. However, it should be pointed out that Eqonset of the validity of the asymptotic expressions one
(3.43 contains the symmetrized two-bothynatrix elements should evaluate the terms in the multiple scattering series
and thus implicitly forward and backward amplitudes. Weexactly. Strictly spoken this amounts to solving the Faddeev
think that our derivation based on the multiple scatteringequation, Eq(2.2). As a first step we exactly evaluate here
expansion of the Faddeev formulation together with the mothe term in Eq(2.10, which is in first order irt. Using Eq.
mentum space treatment is a viable alternative. It uses stali3.6) one finds the following exact form:

TABLE I. Parameters of the Malfliet-Tjon type potentials. As conversion factor we use units such that
Ac=197.3286 MeV fm=1.

1
Va a [MeV] VR MR [MeV] (edl r‘2|<Pd> [fm~?]

MT-IV 0.3303 124.91 0.6343
MT-Il 3.1769 305.86 7.291 613.69 0.3090




— MT-III
——= MT-IV

k [fm™

FIG. 1. The absolute values of the bound state wave functions

¢q(k) as calculated from the two potential models MT-IIl and
MT-IV given in Table I.

N
(@[P(t-t)PI®)=— [ dped(2lp-Fad m(pltie) o).
(4.2

where

1 4
s=egt —p°—— (P~ 300" (4.3
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FIG. 2. The contribution of the first order term of the multiple
Scattering series for the+d total cross section calculated exactly
from the MT-III potential model as function of the asymptotic mo-
mentum %qo (solid line). The dashed line represents the corre-
sponding contribution of the first order term in the high-energy
limit. The variable%qoz V(M/2)E ,, is chosen such that the kinetic
laboratory energies for the two and three body systems are the
same.

exactly in three dimensions, i.e., without partial wave expan-
sion[12]. The quantities entering the integral in £4.4) are
off-shell t-matrix elements for equal magnitudes of the mo-
menta. Thus the integration requires a two-dimensional in-
terpolation of the imaginary part of the forward scattering
amplitude in the variablggands. We use standardsplines

Introducing as variables explicitly the magnitudes of thefor the numerical calculatiofl3].

momentum vectorp and gy and the angle between them,

X=p- Qo We obtain for then+d total cross section in the
first order int

nd 34m 1 “ 2
ot 15t order™ — (277) 3—%8 —1dX . dpp?es

X (2\p?+(300)2— 2paex) IMt(p,p.ée).
(4.4)

The integral over the imaginary part of the forward scattering

amplitude receives contributions from the regior0 and
the deuteron pole. The conditier>0 limits the integration
regions inx as well asp. Thex integration has to be carried
out only between

m|eq|

g

3 1
Xmin™ Z+ §

andX,.= 1, andp values given by

(4.9

Pmax,min= JoX* \/q(z)xz_ ?qu_ %m| €d| .

The pole contribution is obtained from an integration oxer
with similar boundaries at fixed values.

The off-shellNN scattering amplitude is determined by

The first order term of the total+d cross sections for the
two potential models MT-IIl and MT-IV is shown in Figs. 2
and 3 as function ofq, and compared to its asymptotic
limit 2o given in EqQ.(3.15. A closer inspection reveals
that this limit is reached at nucleon laboratory energies of
about 300(600) MeV within 1% for MT-IIl (MT-IV). This
energy is fairly high so that the simple potential picture will
no longer be valid and relativistic features will be important,
including meson production. These absorption processes will

80.0
60.0
&
© 400
200
0.0 . . ‘ .
100.0 200.0 300.0 400.0 500.0 600.0
3/4 q, [MeV/c]

FIG. 3. Same as Fig. 2, except that the two-body potential em-

firstly solving the two-body Lippmann-Schwinger equation ployed is the MT-IV potential.
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o [fm’]

FIG. 4. Contributions to th@+d total cross sections as given

E,, [MeV]

by the MT-III potential as function of the correspondiNgN labo-
ratory energy. The solid line shows twice the totN cross sec-
tion. Successively added to this is the positive contributiamti-
shadowing of O(t?) (long dashefland the negative contribution

(shadowmg of O(t*) (dash-dottel] The magnitudes of those con-

short dashed line for the negative term.

We start our investigation with the MT-III potential,
which has a short range repulsion and a intermediate range
attraction, and thus contains some realistic features of the
NN force. In Fig. 4 the three different terms of the right-hand
side of Eq.(3.43 are shown separately as function of the
nucleon laboratory energy together with their partial sums
building up then+d total cross section in the high-energy
limit. We see that the rescattering term ©ft?) is quite
large and can not be neglected in relation to the leading term
20N in the whole energy range shown. For a more quanti-
tative inspection the three different terms are listed sepa-
rately in Table Il for the higher energies. The first column
gives twice theNN total cross section, the second column
shows the positive term, which is also ©{t?) like the total
NN cross section, and the third column gives the negative
term, which is ofO(t*%), and which causes shadowing. We
see from the table that the positive term @ft?), which
results from the second order irof the multiple scattering
expansion of the elastic forward scattering amplitude
(®|U|D) is relatively large. Already at 100 MeV the shad-
owing term is much smaller than the other two terms and

O(l/qo) From these numbers we see that the rescattering
corrections are quite large in this pure potential picture. This
is even more pronounced for the purely attractive potential

of course change our results as is known from studies withiMT-IV as shown in Fig. 5. The corresponding terms are
the Glauber formalisr3,4]. Nevertheless we think it should dlsplayed in Table Ill. We see that the positive term of
be of theoretical interest to see the results within a pure po(t?), which results from the second ordertiof the mul-
tential picture. We leave the exact solution of the Faddeeviple scattering expansion of the elastic forward scattering
equation, Eq(2.2), to a future study and estimate now the amplitude(®|U|®) is quite large and more important than
resulting rescattering terms via the asymptotic expressionthe sum of the twd\N total cross sections.

contained in Eq.3.43. They are expected to be a good

In the purely attractive potential model MT-IV we are

approximation around 300 MeV and above for the potentiakble to rigorously provide the extreme high-energy limit of
containing the realistic feature of repulsion. The deuterorthe n+d total cross section. In this limit the Born term for
matrix elements for the two potentials entering in thethe NN tmatrix gives the only contribution and we can re-
asymptotic expression of Eg&.32 and(3.43 are given in

Table I.

place thet-matrix element in Eq(3.41) with the potential
matrix element, which is real,

TABLE Il. Contributions of the different leading order terms of the MT-IIl potential to the tatald
Cross section as function of tHéN laboratory energy. The last column shows the faéigy.,, , which
multiplies Utot and approaches a constant for higher energies.

200+ 0(1?)

Furmn=——=xn—
Eip [MeV] 2 ot [fm?] O(t?) [fm?] o(t% [fm?] Tiot
50 63.945 22.845 -25.218 2.71
100 23.438 19.410 -3.388 3.66
300 9.885 8.376 -0.603 3.69
500 7.314 5.027 -0.330 3.37
1000 4.577 2.595 -0.129 3.13
1500 3.400 1.769 -0.071 3.04
2000 2.725 1.341 -0.046 2.98
2500 2.283 1.078 -0.032 2.94
3000 1.970 0.899 -0.024 2.91
3500 1.738 0.771 -0.019 2.88
4000 1.557 0.673 -0.015 2.86
4500 1.414 0.597 -0.012 2.84
5000 1.296 0.536 -0.010 2.83
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Using the definition of theNN total cross section we obtain

(Fa0lVI3q >2—>(%)2—1 oaN. (4.8
2%l VI2Go/s m | (2m)5(12u2) tot - :

As a consequence one can write E843 as

Th— 207 1+2<<Pd 5 <Pd>
MAT
E,, [MeV]

i i NNy 2 1 1
FIG. 5. Same as Fig. 4 except that the two-body potential em- — (o) @g =|%d) 7 (4.9

ployed is the MT-IV potential. r ™

2
3 t 13 3 R 3 Vi 3 (4.6  For the potential MT-IV the term additive to 1 is 3.166s-
2 Y0 2%/ ||7% 29V |70/ - . . . . )
m s s ing the quantities given in Table band therefore the total

] . ] NN cross section is multiplied by 8.33 if the exact limit is
This expression can be related to the total cross section, angdached. This number is substantially larger than the naive
one finds after a simple integration expectation, which would be twice tH¥N cross section.

Numerically this asymptotic limit is reached around 4000
8 MeV nucleon laboratory energy within 2% as we see from
ol(3a.nlv]2 2 23 3432 the last column in Table Ill. There we display the ratio of the
f dp(2qop|Vdo)s| _>4779q§ #a (3GolVI20o)s high-energy limit obtained from Eq3.43 and the exact
(4.7 limit from Eq. (4.9

o 200+ (27)*(4m/300) (R (3/4)aglt{ UL (3/4)90]°}|(3/4) 00 o 00l U *| ) (1/4)

= (4.10
2 o[ 1+ 2@ Lnar? ¢q)]

TABLE Ill. Contributions of the different leading order terms of the MT-IV potential to the tatald
cross section as function of tiéN laboratory energy. The explicit expression ®is given in Eq.(4.10.
The definition forF .y is the same as in Table II.

Ein [MeV] 2 gy [fm?] O(t?) [fm?] o(t*) [fm?] Furiv R

50 82.057 101.812 -84.392 4.48 0.54
100 39.035 76.478 -19.098 5.92 0.71
300 12.076 31.616 -1.828 7.24 0.87
500 7.040 19.590 -0.621 7.57 0.91
1000 3.411 9.989 -0.146 7.86 0.94
1500 2.242 6.693 -0.063 7.97 0.96
2000 1.669 5.035 -0.035 8.03 0.96
2500 1.329 4.035 -0.022 8.07 0.97
3000 1.097 3.349 -0.015 8.08 0.97
3500 0.946 2.894 -0.011 8.12 0.97
4000 0.817 2.513 -0.008 8.15 0.98
4500 0.729 2.240 -0.007 8.15 0.98

5000 0.661 2.034 -0.006 8.15 0.98
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where contributions o (t%) to the total cross section are energy and of precise solutions of the Faddeev equations
neglected. The factd¥ .,y shown in Table Ill is explained using modermNN forces[1] it is of interest to understand the
below. leading rescattering effects which modify the naive expecta-
For the MT-IIl potential there is interference among thetion that the totah+d scattering cross section is the sum of
repulsive and attractive parts of the potential and the connedhe np and nn total cross sections. In a model of spinless
tion between the potential matrix element in forward direc-nucleons we investigate the first few terms of the multiple
tion and the totaNN cross section is more involved. Since scattering series for the forward elastie-d scattering am-
opN=0(1/g3) and the real part of the forward scattering plitude resulting from the Faddeev equations in the high en-
amplitudet approaches a constant, both positive terms in Egergy limit. Although the treatment is purely nonrelativistic
(3.43 can again be combined aﬁ‘,{“x F and we determined and enters far into the region, where relativity is important,
the factor multiplyingo Ry asFyr.;, =2.83, as shown in the We think it is interesting to kn(_)W the asymptotic behavior_ at
last column of Table II. Because of the repulsion containedigh energies for pure potential models without absorption.
in the model MT-IIl the asymptotic limit is reached much Absorption processefparticle productions occurring in a
later compared to the purely attractive potential model MT-relativistic context will, however, change the results pre-

V.
In both cases the rigorous asymptotic limits are

nd N
Otot— 1o

NXF, (4.11)
whereF is eitherF ., or Fyr.v. The factorsF contain
the deuteron matrix elemefig| 1/r?|¢4) and numerical as

well as potential parameter constants. The facterare

sented her¢2,4]. In accordance to the naive expectation we
extract from the second order term in the multiple scattering
series a shadowing effect proportional to the to& cross
section squared, which is negative and reduces the total
+d cross section. However, we also find a positive term
proportional to the square of the real part of tbl forward
scattering amplitude, which decreases in energy only propor-
tional to the totalNN cross section, whereas the shadowing
term vanishes faster. Both terms are proportional to the ex-

larger than 2 for both potential models, and thus the resca?€ctation value of 1/(nucleon distanéeyith respect to the

tering process enhances the asymptotic cross section over t

sum of the twoNN cross sections, the shadowing has van-

ished already before that.

We started from an expansion of the elasticd forward
scattering amplitudé®|U|®) in powers of theNN t matrix.
Due to the optical theorem the term first ordett iended up
as a term second order tnin the totaln+d cross section.
The terms second order trin the elastic forward scattering
amplitude provide two terms in the totak-d cross section,
one of second order and one of fourth ordert.iThe one
second order it behaves a@(l/qg), whereas the one of
fourth order int decreases a@(l/qé) in the limit g going to
infinity. It is therefore natural to group the terms together
according to their power ihas we did in Eq(3.43), which

coincides with their energy dependence. Thus the shadowingc/

effect will disappear faster than the antishadowing effect. Fo
the two model forces considered these antishadowing effec
modify the naive expectation that the total cross section fo
n+d scattering tends to twice the totBIN cross section.
The true asymptotic result is larger than twice thN cross
section, which means that the two nucleons in the deutero
can never be considered to be independent. Finally it is o
vious that the terms in Eq2.6), which are third order irt
can not cancel the tern®(t?) in the totaln+d cross sec-
tion. They may, however, modify the shadowing effect, sinc
there will be also contributions of ord@(t*) to the total
n+d cross section. Thus the asymptotic value of thed
total cross section in our model of spinless nucleons interac
ing by local forces is the first term on the right hand side of
Eqg. (4.9 in case of the purely attractive Yukawa potential
MT-IV, and ofy X F with F=2.83 for the potential model
MT-IIIl. These are exact results for our potential models.

V. SUMMARY

In view of new precise measurements of the totald

€

geuteron wave function.

In a numerical illustration usindNN force models of
Yukawa type the positive term has as limit the tokiN
cross section multiplied by a number larger tharwaich
would be the naive expectatipnFor the purely attractive
potential this factor is 8.15, whereas for the potential with
the additional repulsion this factor is 2.83. These are exact
results for our choice of potential models. For both potentials
the negative shadowing effect decreases faster as function of
energy than the positive terms.

We expect that the asymptotic expressions given in Eq.
(3.43 start to be valid around 300-600 MeV depending on
the potential model employed. Strictly speaking this can only
be assured, if the Faddeev equation, £32), is solved ex-
tly. The estimate given in this work is based on the exact
aluation of the term first order in tHéN t matrix in the

+d elastic forward scattering amplitude. From this calcu-
ation we found the corresponding asymptotic limit starting
to be valid at the quoted energies.

The formal expression, E¢3.43), has also been found in
We context of the Glauber approximati®,5]. A simple

eometrical explanation of the deuteron matrix element has
een given in Ref[2]. Our derivation is different and fol-
lows simply from the elastic forward+d scattering ampli-
tude evaluated in leading orders in tR& t matrix and tak-
ing the high-energy limit analytically. A similar investigation
including spin and isospin degrees of freedom is in prepara-

fion.
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APPENDIX: DERIVATION OF THE MOMENTUM SPACE 1
FORM OF THE INTEGRAL | <Pd(CI) ®4(q") A

. . . _— + tig AT
In this appendix we derive the limiting momentum space qx a’x’ +ie

form of the integral | given in Eq(3.20. Using the leading
expression for the denominator as given in E829 the Thex andx’ integrals are elementary and one ends up di-
expression in Eq(3.20 can be rewritten as rectly with the expression given in E(B.33.
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