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Particle-hole state densities with nonequidistant single-particle levels
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The correct use of energy-dependent single-particle levell) densities within particle-hole state densities
based on the equidistant spacing md@s$M) is analyzed. First, an analytical expression is obtained following
the convolution of energy-dependent excited-particle and hole densities. Next, a comparison is made with
results of the ESM formula using average s.p.l. densities for the excited particles and holes, respectively. The
Fermi-gas modelFGM) s.p.l. densities calculated at the corresponding average excitation energies are used in
both cases. The analysis concerns also the density of particle-hole bound states. The pairing correlations are
taken into account while the comparison of various effects includes the exact correction for the Pauli exclusion
principle. Quantum-mechanical s.p.l. densities andcthr@inuum effectan also match a corresponding FGM
formula, suitable for use within the average energy-dependent partial state density in multistep reaction mod-
els.[S0556-28188)03807-3

PACS numbdps): 21.10.Ma, 21.10.Pc, 24.60.Dr, 24.60.Gv

I. INTRODUCTION tion with the nonuniform s.p.l. density effef20] provided
by the harmonic oscillator model. The analysis of the
The particle-hole state densities are basic quantities foenergy-dependent s.p.l. density in the vicinity of the Fermi
the description of preequilibrium emissidRE) in semiclas- energy[21] provided a more general form and a good ap-
sical models as well as guantum-statistical theofes., proximation of the effect for low energies, where the influ-
[1,2]) involving a series of particle-hole excitations causedence of the finite depth of the potential well can be ne-
by two-body interactions. The nuclear excitation in the equi-glected. Variousg(e) have been obtained within both the
librium processes concerns the single-particle leyglp.l) semiclassical Thomas-Fermi approximat{@i—28§ and the
within an energy range of the order of the nuclear temperaexact quantum mechanical calculatigi9—31 which are
ture around the Fermi level. This explains the basic role oklso applicable at the high excitations located in the con-
the s.p.l. equidistant spacing modEISM) [3] in the analysis  tinuum region. The PSD including distinct energy-
of the equilibrium emissiorisee alsd4]). However, much dependences for the excited-particle and hole level densities
higher and lower single-particle energies are involved in PEhas recently been used in semiclassik&] or quantum-
reactions so that one should consider the reduced suitabilitytatistical[ 33,34 cross-section calculations.
of the ESM partial-state densitf?SD formula of Williams The valid use of energy-dependent s.p.l. densities within
[5]. Moreover, the inconsistency between the phenomenahe ESM particle-hole state density formula, even when cor-
logical s.p.l. densityg~A/14 MeV ! and the numbeA of  rected for the finite depth of the real nuclear potential well
nucleons in the nucleus has come under increasing criticisi85], has not yet been proved. Proving it is one aim of this
[6,7). On the other hand, combinatorial calculations per-work. First, the particle-hole state density is obtained in Sec.
formed in the space of realistic shell model s.pd] have Il by means of recursive relations particularly using the FGM
other inherent shortcominge.g., the strong dependence on s.p.l. density. Next, these are compared in Sec. Ill with the
the basic set of s.p)I[9,10]. This accounts for the continued results of the ESM formula modified by using s.p.l. densities
use of the Williams-type formula with various corrections different for excited particles and holes, obtained from the
[11,12 or exact calculatio13] for additional Pauli block- FGM at the respective average-excitation enerfl&} (the
ing and the pairing interaction. average energy-dependent ESM formalisithe analysis is
In fact, there have been early attempts at considering thelso carried out for the density of particle-hole bound states,
single-particle energy dependence of the s.p.l. dengig) with single-particle excitations not exceeding the nucleon
within PE formalisms[14—16. Next, Kalbach[17,1§ dis- binding energy36]. The advanced pairing correctiphl,12]
cussed different forms of this dependence and found it tied tis taken into account while the comparison of various effects
PE surface effects due to the interdependence of the respdacludes the exact correction for the Pauli exclusion principle
tive assumptions. Hermaet al. [6] obtained an indication [13]. The importance of distinct corrections in the average
for the energy dependence nearly as that given by the Fermenergy-dependent ESM formalism is further discussed in
gas model(FGM) below the Fermi energy, but linear Sec. IV. At the same time the subtraction of the free-gas
aboveF. Chadwick and Reff§7] found the use of either the contribution[29,30,37 is analyzed within this formalism,
FGM prescription or the equidistant parametrizatipnA/F thus making no use of arbitrary truncatif88]. The respec-
more accurate than the phenomenological one. The FGMve results are compared with the semiclassical and
s.p.l. density has also been involved in the development ofuantum-mechanical calculations of the continuum effect.
the partial level densities with linear moment{i®]. At the  Since the actual quantum-statistical analyses of the multistep
same time, the ESM accuracy has been discussed in conneeactions still involve the rough ESM, the respective results
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could be altered following consideration of the effective e
NN-interaction strength as the only free parameter. The con- g(e)=do E
clusions are drawn in Sec. V.
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is particularly taken into accourisee also the Appendix
This can be expressed in terms of the single-particle excita-
Il. THE PSD RECURSIVE FORMULA tion energiesi=¢ —F for particles, andi=F —¢ for holes.
Next, similarly to Bogilaet al. we have retained the first
three terms of its expansion in powersw#fround the value
at zero excitation energy. The general forms of the
Densities of the excited particles and holes with distinctexcitation-energy dependence then become
energy dependences or even different values at the Fermi
energy F were considered by Gadioli and co-workers dp(U)=(au’+bu+c)f(B—u) 2
[15,16], Bétak and Dobeg35], and Hermaret al. [39]. The
subsequent study6] of unperturbed shell-model Hamil- &"d
tonian spacings indicated a linear energy dependence for ex- gn(U)=(au?—bu+c)6(F —u) @)
cited particles, as well as different corresponding values at '
the Fermi level. On the other hand, Schrmedtal. [40] found  where the theta functions are unity if their argument is
that the smooth s.p.l. density in a Woods-Saxon potential liegreater than zero, and zero otherwise. The FGM values of the
between the density corresponding to an infinite box and thggefficients area=gj/2= —go/8F2, b=gj=gy/2F, and c
one for an harmonic oscillator, and approximately foIIows:go, whereg}, andg}} are the values at the Fermi level of
g(e)~e. Moreover, this energy dependence has alreadyhq respective derivatives. Various energy dependences of
been used within an improved abrasion model for heavy-iofne ¢ | density can obviously be involved within this

collisions[41]. _ _ framework, by using the appropriate values for the coeffi-
Given the need for an analytical PSD expression, we hav@ianis in Eqs(2) and (3).

followed the method of Bogileet al. [21] while the finite
depth of the nuclear potential well and the case of particle-
hole bound states have also been considered. Actually, the
particle-hole bound state formula turns into the common The bound-state density(p,h,E) for p excited particles
form in the limit of large values of the nucleon binding en- above the Fermi level artd holes below it = p+ h), at the
ergy B. The following discussion will concern the general total excitation energ¥, can be obtained by convolution of
form of g(e), with theg, value at the Fermi level. However, the single-particle and hole level densities with an excitation-
the usual FGM energy dependence energy conserving delta functidg,7,15

A. Single-particle level densities

B. The convolution state-density formula

1 © o0 o
w(p,h,E)= Wjo dulgp(ul)fo duygp(uy) - - - fo dupg,(up)

0 © p h
Xf dulgh(ul)"'f duhgh(uh)5<E_E TR Uj), (4

0 0

where the Pauli principle is not yet taken into account. One way to prd@ed to replace theS function by its integral
representation

dk, 5

so that

h
dk. (6)

1 * ®© X p o .
(A)(p,h,E): mjwelkE( jo gp(u)elkUdu) (JO gh(u)eflkudu

By using the s.p.l. densities given by E¢8) and (3), evaluation of the integrals, and expansion of the respective results, it
results

g 22 o = exf[ik(E—\B—jF)]
w(p,h,E)= 27Tp0!h!)\=o j§=:0 (_:I-)}\HC}F;CJhR)\J'(Joc F[ (Ik)N J dk), (7)
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where, by replacing. by i,

p—i  k; h—j 1 . ) | ) gg i1 tig g(/) ki+lq i ko j [P SN (gg)inrjz
R (7)= —1iithck cligh .C'l(—) (_) clecleglegle 22
1(2) klzzo ilE:O |1E:o le:o( ) Pk "h=i ™ gg 9o kZE:O iZE:O |22:o 122:0 Tk T2 (go)'T
B2 i—ky . F2 i~y _
X| 9o +9oB+do (968+96)"2'2(967—96F+go (95F —g0)'2 12z, (8a)
z is the integral which forms the functional argument in Eg), and
N:n+|l+Jl+kl+|l+|2+J2+k2+|2 (8b)

Finally, by using the Cauchy residue theorem we have obtained the expression

p

n h
g S o o n— 1)1
wW,h,EFm;} jgo(_1)'+JC'pC{1(E—|B—JF)”_16(E—|B—jF)Rij (E—uB—JF)N—“((N_l))! :

(€)

The (n—1) factorial and power have additionally been included in order to obtain a form similar to those obtained by
Obloznsky [36] in the frame of the ESM, and Bogikat al. [21] within the FGM with no constraints for particles or holes.
Thus, in the limiting case of largg andF in the above expression, thendj indices become zero so that the last four sums

in R;; disappear and the formula of Bogitd al. is obtained

p ki h Iy

o(phB=0fphE) > ¥ 3 3 (-1ithcicicic)

K1=0i1=017=0 j1=0

m\i1tiq 1\ kgt+lq _ |
X 9 % Eifrtiztkitly _(n _1)' (10)
gé go (n_1+|1+11+k1+|1)',

where Ericson formula, in agreement with the trend of the Bogila
et al. results(Fig. 1 of Ref[21]) if one takes into account the
o = different F values used in these analyses. While the former
of(p,h,E)= m (11 ratio describes the energy-dependence effect versus an ESM

formula including the potential finite-depth, the latter has the
same role versus the simplest ESM expression of Ericson.
is the well-known Ericson formul3] for the ESM case. First, the case of thefilh configuration, Fig. (a), shows
However, we underline that a definite single-particle groundnat the deviation o, (u) from g, is not really compensated
state should be marked out by the finite valug=ohithin @ py the corresponding deviation af,(u), within the s.p.l.

consistent energy-dependent s.p.I. density. Therefore, the ffensity convolution. Thus, the Oblozky and Ericson for-
nite depth of the nuclear-potential well should be explicitly

present in the particle-hole state density formulas exceeding 13
the ESM framework. The usual formula for the density of the
particle-hole bound states within the ESM approximation re-

sults immediately from Eq9) by noting the unity values of 1.0
all functionalsR;; for a constant s.p.l. density. The only dif- £
ference with respect to the formula of Obilezky [36] con-

cerns the Pauli-blocking factok,, and the corresponding 0.7
minimum energya,, for a p-h state, which have not yet

been included here. On the other hand, the temporary omis- (@ ST ©
sion of the Pauli-principle correction can be used to estimate . '
the energy-dependence effect better. Thus, the ratio between
the results of Eq(9) and Obloimsky formula without the

Pauli correction is shown in Fig. 1 for a few simpeh FIG. 1. The convolution state density given by K@), divided
configurations. Here the bound-state condition is releasecﬂ,y the Oblginsky formula without Pauli correctiofisolid curves,
go=14 MeV !, andF=38 MeV. These particle-hole states as well as by the Ericson formuldashed curvesfor the givenp-
are actually the most important ones for the PE descriptionh configurations. In Eq(9) and the Obldinsky formula, F=38
and are least affected by the Pauli-principle oversight. AlsaveV and the limit of largeB is considered. For all calculations
shown is the ratio of the PSDs given by E®) and the go,=14 MeVv ™.
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mulas provide the same PSD at excitation energies bElow T ) llh olh

which are higher than the results of H§). Second, a con- 1.0 [ e P

sideration of the potential finite depth decreases the Gbloz o '

insky PSD values versus the Ericson formula. At the same &

time, the results of EQ9) decrease less significantly above 'g 05l

E=F because of the deviation gf,(u) from g,. Moreover, ot

the case of the @1h configuration shows the increased im-

portance of the energy dependence versus the @isky 00

formula, with the deviation from unity of the respective ratio

becoming relevant at excitations higher tflanSmaller de-

viations have been obtain¢d8l] as compared with the Eric- ey

son expression. =
&

C. Inclusion of Pauli blocking and pairing correction

Tl @

e O/ L e
_ Following the vr_elat(?d forms of the recursive _PSD expres- 0'00 20 40 60 8 O 20 40 60 80 100
sion (9) and Obloinsky formula[36], the correction for the EXCITATION ENERGY (MeV)
Pauli blocking and pairing effects can be implemented
within the former by inclusion ofi) a p-h configuration- FIG. 2. The correction function for the Pauli blocking, nuclear-

dependent threshold energy |n the theta functlon’(amme potentla| finite depth and pairing-correlation ef‘feCtS, of the ESM

Pauli-blocking and pairing-correction term of the excitation Particle-hole state density for givgnh configurations. The calcu-
energy, within the Kalbach formulatidi.2] lations use the finite-depth correction alone witk-38 MeV (dot-

ted curvey, the Pauli correction withoufdashed curvesand with
the pairing effects include@solid curve$, and also the bound-state

p(p+1)+h(h+1) condition withB=10 MeV (dash-dotted curvgs
Ak(p,h)=Egx(p,h) - 290
E hase= C[0.716+2.44n/n)%"6(n/n,—0.446.
(p—1)2+(h— 1)2 (12) phase c c (15)
goF(p,h)
where the threshold energy
Actually, the latter theta function has been introduced by
s o Kalbach[12] in order to explicitly take into account the lack
E (p.h)— Jo(Ap—A%) v |[Pm 2+A2 vz 13 O©f aphase transition for smal

w(P.h)= 4 Pm g (13 The inclusion ofp,=maximungp,h) and the form of

the second term in the Kalbach correctit®®) have been
adopted for a Pauli-correction function symmetric in par-
is determined by the ground- and excited-state gipsind  ticles and holes, including the effects of passive holes. Next,
A(p,h,E). The ground-state gap is related to the condensathe third term in Eq(12) has been added in order to force the
tion energyngoASM which can be given by the constant- PSD to have the values of, and 2y, for E=E(p,h) and
pairing correctiond, [11], based on the odd-even mass dif- E=Ey(p,h) + 1/go, respectively. The function
ferences (e.g., [42]). A is obtained by using the
parametrization11,12|

F(p,h)=12+4go[E—Ew(p,h)]/pm (16)
AAO =[0.996-1.76n/nc)“*YE/C) ~*%¥| (E—~ Ephasd.

14

(14 restricts the action of this third term to just arousgl(p,h).
wheren,=0.792)pA is the critical number of excitons, and Consequently, the PSD recursive form@ now includ-
EpnhaselS the energy of the pairing phase transition given bying the Pauli and pairing corrections, becomes

an pn S -
o(PhE)= Sy % (~ 1 IC,CHE-Ac(p.h) —iB—jF]"

(n—=1)!
(N=1)!)°

X 0(E—En—iB—jF)R;| [E-Ak(p,h)—iB—jFIN" (17)
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The completeness of the Eq9) or (17) has the drawback A. The finite-depth and pairing corrections
of making them difficult to use in reaction calculations, due
to the intricate form(8a) of the functionalsR;; . The general form of the ESM density of particle-hole
bound states corrected fdr) the Pauli exclusion principle
Ill. THE AVERAGE ENERGY-DEPENDENT FORMULA [5], (ii) pairing interaction$11,12, and(iii) the finite depth

) ] ] ) _ of the nuclear potential we[B5,36 can be written, similarly
Since approximate but simpler solutions are still of real, Kalbach[18]

interest, we will discuss below the Kalbafh8] attempt to
use the energy-dependent s.p.l. density within the ESM for-

nen—1

mula. In fact, we will be checking its correctness against the _ 9oE
exact expressionil7). It seems important to note that the w(p.h.E) p'h!(n—1)! f(p.n.E.F), (18
Kalbach approach involves distinct but average s.p.l. densi-
ties for the holes and excited particles, respectively, at aver-
age excitation energies. where

P  [E—=Ax(p,h)—iB—jF]""1

fK(p,h,lz,F):ZO 20(—1)'“0',)0{1 ’E 6(E—Ey—iB—jF) (19)
i=0j=

is a function including the finite-depth, Pauli-blocking and citation energies for either particles or holes. As a first ap-
pairing corrections, as well as the bound-state condition. Theroximation, these energies were estimated in the ESM
original correction functiof18] was used to modify the PSD frame. We follow the same method below but also include
formula for the infinite potential well, with the Pauli correc- the case of the bound states.
tion termsA(p,h) neglected in all terms except the leading The probability for the occurrence of p-h state with
one. However, by means of EQq(18) the function the excitation energye and an excited particle between
fx(p,h,E,F) can now be regarded as the ratio between thes and u+du is given by g,(F+u)-w(p—1h,E
actual PSD formula and the Ericson expression. The iidex —u,F)du/w(p,h,E,F). Consequently, the average excita-
is related to the inclusion of the advanced pairing correctiortion energy per excited particle is given by
of Kalbach[12], i.e., of the term&A(p,h) andEy,.

The importance of the Pauli-blocking and pairing correc- ~
tion term Ac(p,h) is shown in Fig. 2 for simplep-h con- m _EJ’BU'gp(F+U)w(p—1,h,E—U.F)
figurations. First, omission of this correction provides the P plo w(p,h,E,F)
unit value of the functiorfy in the case of thexplh con-

figurations at gxcitation energi_es onver thanSecond, there |\, B minimun(E,B). Assuming a slow energy depen-
ISa rather's,lmllar qas@r even identical for the_ statq)lh) dence of the correction teriy , the average excitation en-
if the Pauli correctiom, a_nd the corresponding MINIMUM o ies for either particles or holes become

energy a,, [36] are taken into account but not the pairing

corrections. A small threshold behavior becomes apparent in

du, (20

this case. Third, the inclusion of the advanced pairing cor- +
. : . o . — E f(p,h,EF)
rection yields a strong reduction at lower excitation energies. B (213
Finally, the bound-state condition obviously provides a dif- n fx(p.h,E,F)
ferent function, mainly determined by the number of holes.
B. Single-particle average excitation energies - E— pﬂp (21b)
In order to take into account the long-range deviations h h

from ESM, KalbacH 18] proposed the use of average values
for the FGM s.p.l. densityl) corresponding to average ex- where

n iB

1+ — —
p E—Ax(p,h)—iB—]

p h _ .
S S (_pyticicl ET AP ZIBJF
flJE(p,h,E'F):i:ojzo(_1)|+Jclpcjh S E) J }

= O(E—E—iB—jF)

(22
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FIG. 3. (a),(b) The f¢(p,h,E,F) and(c),(d) the f(p,h,E,F) FIG. 4. (@ The fi(p,h,E,F) and(b) f«(p,h,E,F) correction

correction functions to the ESM formula for the Pauli blocking, functions to the ESM formula for the Pauli blocking, potential
potential finite-depth and pairing-correlation effects, as well asfinite-depth and pairing-correlation effects),(d) the average exci-
(e),(f) the average excitation energies for particles and holes withirtation energies for particles and holes, afe),(f) the average
the givenp-h configurations, foi(a),(c),(e) the particle-hole bound energy-dependent s.p.l. densities for excited particles and holes, for
plus continuum states, artl),(d),(f) the bound states only. For all the 2p1h configuration. The meaning of the curves is the same as
calculationsF =38 MeV, andB=10 MeV is considered for the in Fig. 2 except that the dotted line {g) and(f) gives the value of
bound states. go. For all calculationsgo=14 MeV ! and F=38 MeV, while
B=10 MeV is considered for the bound states.

returns tofx(p+1,h,E,F) for large B [18]. The shapes of

the two functionsfy(p,h,E,F) and f, (p,h,E,F), and the andu, just below the maximum excitation energy for a
average excitation energies for simpléh configurations are  given p-h bound-state configuration, due to the final occupa-
shown, bound-state case included, in Fig. 3. The abovetion of the highest allowed single-particle levels.

mentioned similarity between the functiorfg (p,h,E,F) To underscore the correlation between the specific shapes
and f(p+1h,E,F) can be observed, in the general case,of the correction functiongy, average excitation energies
for the 1plh and 2p2h-states in Figs. @) and 3b). u, anduy, and corresponding average values of the s.p.l.

It is worth noting the results of Eq$21) for the bound-  densities
plus-continuum states shown in Fig(eg and the bound
states only as displayed in Fig(f8 The distinct trends are
due to the separate constraints on hole excitation up to a 9.(p h):g(F+U) (233
value ofF in the former circumstance, and a particle excita- e b
tion limited by theB value in the latter. Firsty, and uy
increase nearly aB/n at the lowest excitations, the slightly _ =
larger values for holes arising from the fact that 9n(P:M=9(F~up), (239
fi(p,h,E,F) is smaller thanf(p,h,E,F). Next, the con-
strained average excitation energy of either héieshe gen- these quantities are shown together in Fig. 4 for the configu-

eral casgor particles(for bound statésbecomes rather satu- ration 2plh. First, the effect of the Pauli and pairing correc-

rated at energiesE above the values ofF and B, L . — — .
tion is rather small. The saturations of anduy, are dis-

respecpvely. The ESM basis of _EqéZl) determines the tinctly caused by the bound-state condition, Figc)4and

saturation values arourfé/2 for uy, in the former case, and it gepth correction, Fig. (d), respectively. This is why
aroundB/2 for Up in the latter. MoreOVer, in the limit of the the energy dependence@g(p,h), F|g 4(e), is distinct from

1p1h configuration a quite sudden change can be observeghe one ofg,,(p,h), Fig. 4f), either in the general cagsolid

at total excitation energies around the valuesFondB,  curves or for the particle-hole bound stateslot-dashed
respectively. There is also a small change in the treng,of curves.
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101 F=38 Me [F=38 MeV, B=10 MeV, =38 MeV,~ F=38 MeV, B=10 MeVj
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FIG. 5. The particle-hole state densities for the giyeh con- FIG. 6. The same as Fig. 5 except the latter PSD formula con-

figurations, obtained with the average energy-dependent ESM foisidered in the comparison is the ESM form{ig6] (dash-dotted
malism (solid curve$ and the PSD recursive formulédashed curves.
curves, and their ratio, fofa),(c) bound-plus-continuum states, and

(b),(d) bound states only. The same global values are used as in Figy o £\ formula are rather close to the exact convolution of

4. the energy-dependent s.p.l. density. The next question con-
) . cerns the need for this average energy-dependent approach.
C. ESM formula with average energy-dependent s.p.l. densities The answer can be obtained by comparing the average
The average energy-dependent formula was finally obenergy-dependent ESM results with the PSDs given by the
tained by using the average s.p.l. densiti23) within the  widely used ESM formulgd36]. This is shown in Fig. 6,
PSD formula(18) which becomes where the above global parameters were used. The pairing
effect is apparent within this latter comparison, especially at
[gp(p,h)]p[gh(p,h)]hEn_lf hEF lower energies. Besides this aspect, the behavior shown at
p'hl(n—1)! k(p.h.EF). medium energy is similar to the comparison of the recursive
(24)  and Oblomsky formulas in Fig. 1. The overall difference
obviously exceeds the variation between the predictions of

It approximately takes into account the energy dependencd&€ PSD recursive formula and the average energy-dependent
of the s.p.l. density, even though the simple ESM form is stiIIESM formalism. It is rgther small for the general case of the
in use. However, there is no basic argument why this proceParticle-hole states, Figs.(® and @c), but larger for the
dure should be used so that its accuracy needs further studgound states, Figs.(B) and Gd). This strong effect follow-
The method adopted in this respect consists in a comparild the consideration of the energy-dependent s.p.|. density is
son of the results obtained by means of the approximatear“CU'a”y caused by the constant increase in hole excita-
formula and the recursive E@L7). The corresponding pre- tion for largerE, and the related significant decrease of the
dictions and their ratio are shown in Fig. 5 for the samehole-state density as shown in Figf}4
simple p-h configurations. The global valuds=38 MeV,
B=10 MeV, go=14 MeV !, andA,=1 MeV were used.
First of all, in the general case of the particle-hole state den-
sities (i.e., for B—x) there is only a small difference be-  The Pauli-exclusion effect on particle-hole state densities
tween the two PSD formulas even at medium energies. Thbhas already been subject to additional investigation by Zhang
agreement improves for more complex configurations, wherand Yang[43] who used an exact method. Kalbach estab-
the average of the single-particle excitation energies belished later{12] that no conflict exists between their results
comes really meaningful. Similar agreement is seen when thand the frequently used Williams formulas if the energy-
respective densities for the particle-hole bound states amdependent Pauli term included pairing and passive-hole ef-
compared within the first half of the energy range for epeh fects. The ESM derivation of PSD formulas without any ap-
h configuration. However, the difference becomes significanproximation in the Pauli correction term was performed by
near the maximum energy for a given particle-hole state, anBagueret al.[44] and Mao Ming De and Guo HU4.3]. The
increases as the PSD values drop back to zero. Neverthelesaiter extended the method to the case of the finite-depth
the disagreement of these bound-state density formulas at ti@tential and bound states, and included the Kalbjdch
high-energy extremity should have little or no effect on thepairing correction. The effect of the alternative use of the
reaction cross-section calculations. approximate and exact Pauli correction, and the one caused
Therefore we may conclude that the results obtained byy the average energy-dependent ESM formula are com-
using the average energy-dependent s.p.l. densities withipared below.

o(p,h,E)=

D. Effect of exact Pauli-correction calculation
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IV. REALISTIC AND GLOBAL RESULTS

The importance of the various approximations involved in
the derivation of the PSD formulas should be well known in
las including the advanced pairing correctifi?] and either the or_der to avoid useless effort or deficient results. First, one_
exact correction for the Pauli exclusion principlks] (solid curve$ might want to know th(.alconseqlljences of the present analysis
or the respective approximate fofi36] (dashed curvésand(c),d) N the total ;tate densities obtained as the sum .of all PSD for
their ratios. For all calculationgy=14 MeV %, while A,=1 Mev  allowed particle-hole numbers=h. Next, one might ques-
is considered for the pairing correction accounténand (d). tion the usefulness of the PSD formulas discussed above,
while quantum-mechanical calculations concentrating on the
continuum region are being developlsD,31].

FIG. 7. (a),(b) The particle-hole state densities for given
n-exciton configurations witlp=h, obtained with the ESM formu-

The results that were obtained by means of @@) and
according to the exact Pauli-correction formali§t8] are
shown together in Fig. 7, for the most sensitive low-energy
region. The analysis was first carried out without pairing
correction, i.e., forA,=0 as shown in Figs. (& and 7c). Average s.p. excitation energies are shown in Fig. 8 for
The global valuego=14 MeV ! adopted by Fu and Kal- representativgp-h configurations of the PSDs sum defining
bach[11,12 was used. Then, the PSD calculation with pair-the total state density(E). The same global valueg,

A. Effect on total state density

ing correction corresponding to the valdg=1 MeV, Figs. =14 Me\fl,_F=38 MeV, andAo=1 MeV were used as
7(b) and 7d), completed the analysis of these effects unde@bove. Thus, it becomes apparent that all significant terms of
any circumstances. this sum are characterized by rather equaénduy, increas-

The ratio of the PSD obtained by using the two formal-ing nearly as£/n. The saturated average excitation energy of
isms, Figs. 7c) and 71d), shows more exactly that a close the holes plays a major role in the case of the few-exciton
agreement—even within 1 %—is established just above thetates which are vital for PE description, but not for configu-

threshold for eaclp-h configuration. Minor deviations exist rations around the most probable exciton numbg46]. The

only for larger number of excitons, of less interest for mul-jatter class of configurations mainly determine the total state
tistep reaction calculations which include them in the so-density value, so that the corresponding ESM predictions are
calledr stage[2]. Therefore, the results of the exact Pauli- meaningful in this respect. Nevertheless, the average energy-
blocking effect calculations are closely related to thosedependent approach should be considered for the calculation
obtained by wusing the approximate Pauli correctionof the PSD involved in the first stages of the multistep pro-
[5,35,38. The inclusion of a suitable pairing correction cesses.

seems more significant with the following additional remark.

The PSD for the very-few-exciton configurations become B. Consideration of the continuum effect

rather saturated within a short energy range above the thresh- Shlomo[30] performed an exact quantum mechanical cal-
old. On the other hand, these configurations have the mai@ulation of the s.p.l. density as the sum of the bound and
role in the description of multistep reactions. Thus, the ad¢qntinyum contributions in the case of finite potential wells.
equate account of the pairing effect may be found unessentig gistinct point of this approach has been the consideration
for some analyses. The analysis of the high-energy limit obf the free-gas states counted by the s.p.l. density for a finite
the particle-emission spectra, however, is quite sensitive tgotential well. The density of these states was calculated and
both pairing and nuclear-shell effedes.g.,[32,34,49). subtracted by using Green’s functions associated with the
Finally, the comparative analysis of the effects illustratedrespective single-particle Hamiltonians. Then, the commonly
in Figs. 6 and 7 shows, on a common basis, the higher imused semiclassical approximations for the s.p.l. density were
portance of the s.p.l.-density energy dependence versus tlsgmilarly considered for some widely used mean-field poten-
exact calculation of the Pauli correction. tials. Thus, Shlomo found by means of both classes of meth-
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FIG. 10. The particle-hole state densities for the gipelm con-
figurations, obtained within the average energy-dependent ESM for-
malism for (a) the bound states anth) the bound-plus-continuum
states including the continuum effe@olid curve$ or taking into
account also the free-gas single-particle levels as given by(Egjs.
and (24) in the limit of large B and with only the finite-depth

ods that, for a realistic finite depth well, the s.p.l. densitycorrection(dotted curves and(c),(d) the ratios of each of the two

decreases with energy in the continuum regitime con-
tinuum effect)
This effect may have a twofold meaning for the multistep

reaction calculations. First, the continuum s.p.l. density fol-

lowing the subtraction of the free-gas contribution should b
added to the particle-hole bound state density. The latt
guantity has been used for the description of the multiste
compound(MSC) processe$47]. It has been assumed to be
zero outside the nuclear well, which is now considered les
appropriatg27]. Second, in the opinion of Bogilet al.[28]

the subtraction of the free gas spectrum should be involve
in all PSD for PE calculations. This point could be most
important in accounting for the multistep dirg@1SD) pro-

cesse$47] which currently take into account all particle-hole

kinds of variant PSDs to the third one. The same global values are
used as in Fig. 4.

nd 9d)], with the related quantities for the particle-hole
ound statefFigs. 9a) and 9c)]. The reasons for deviations
rom the PSD general trend, for the two main additional
classes of particle-hole state densities with variant character-

istics are outlined in this way. Thus, the average excitation

energies, limited by the valuB for the excited particles,
gntirely determine the s.p.l. densities for the particle-hole
bound state densities. Actually one may note thathas a
rather constant value in this case. The valug,pis similarly
constant but obviously lower in the latter case, i.e., of the

states. Thus a correct yet simple method to estimate the s.pound and continuum state density including the continuum

density including the continuum effect is needed.

effect. However, the above-discussed asped,as the key

The continuum effect can be taken into account within theduantity for the second class of modified PSDs.

average energy-dependent ESM formyid) by using a
form similar to Eq.(30) of Ref.[31] (see the Appendijxfor
the excited-particle level density. According to Eg339) it
becomes

1+ 2

3A
gp(p.h) =] | 14 2

Up_B 1/2 o
—| =] ou,—B)|.

(25

To emphasize the origin of the particular behavior of

Moreover, these two classes of PSDs with various restric-
tions[Figs. 1Ga) and 1@b)] are at the same time compared
with the predictions of Eq923) and(24) including only the
finite-depth correction, also shown in Fig.(bR A few con-
figurations significant in PE calculations are used in this re-
spect. The ratios of each of the two variant PSDs to the
general PSD values given in Fig. (b) are further shown in
Figs. 10c) and 1@d). It follows that at medium energies the
size of the continuum effect on the PSD values, which is
given by the latter class of ratios, is rather similar to that for
the bound-state condition. Therefore, a possible replacement

%(p,h), this is shown at the same time as the correspondingiihin MSC calculations of the particle-hole bound state

u, for the basic p1h configuration in Figs. @) and 9d). It

density by the PSD corrected for the continuum eff@]

is obvious that the average excitation energy is unchange@ould not be trivial. A similar point may concern the use

(see Fig. 4 so that the continuum effect fully determines the

within the MSD calculations of the PSD either including the

corrected s.p.l. density for_excited particles. The compariso@ontinuum effect[28] or taking into account the free-gas

with the similar quantities;, and g,,(p,h) (the same as in

single particle levels as well.

Fig. 4 demonstrates the importance of this effect, the aver- The relation between the results of E®5 and the
age s.p.l. density becoming even lower for excited particlesjuantum-mechanicdQM) calculations should be also con-

than for holes.

sidered before further use of the former in reaction calcula-

On the other hand, it seems worth comparing the specifitions. Hence, following Shlomet al.[30,31, the s.p.l. den-
average excitation energies and s.p.l. densities which detesity was calculate@48] by using the respective relation with

mine the PSDs including the continuum eff¢&igs. 9b)

Green'’s function. As an alternative to the smearing proce-
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T T S V. SUMMARY AND CONCLUSIONS

T 56 j T
Fe ,“:TF WS TF (S?/)/ The particle-hole state density has been obtained by

means of recursive relations, for the bound as well as bound-
plus-continuum states. The corresponding expressions, i.e.,
Egs. (9) and (17), can be used for various energy depen-
dences of the excited-particle and hole state densities while
the particular case of the FGM is discussed. We have under-
AN lined that consideration of the finite depth of the nuclear-
40 20 0 20 40 40 20 0 20 40 . . . .
& (MeV) potential W_eII should be exphc@ly present in the particle-hole
state density formulas exceeding the ESM framework.
FIG. 11. The comparison of the smoothed quantum-mechanical Next, the results of the recursive formula are compared
s.p.l. density for the neutrons of the nucletige (solid curvé and  with the Kalbach[18] approximation still within the ESM
the results of the TF approximation usitg) the same Woods- formula but using distinct average s.p.l. densities for the
Saxon potential well as within the QM calculation, afl) the  holes and excited particles, respectively, at their average ex-
infinite (SQ and finite square potential wellsFSQ (dashed citation energies. At the same time the Kalbach formalism is
curves, and the FGM formula with the Fermi-energy values of extended to the case of the bound states, while the pairing
F =38 MeV (dotted curvgandF =20 MeV (dot-dashed curyeFor  and Pauli-blocking effects have been included in all terms of
parameters of the potential wells see RES0,48. the ESM correction function. The correctness of the average

_ _ , ) energy-dependent ESM approach is established by reference
dure, the imaginary part of Green’s function has been calCug the rigorous convolutiofd) of the energy-dependent s.p.l.

lated separately for the discrete and continuous states. Thgnsities for the case of the FGM dependence. The differ-
regular and Jost solutions of the radial Sainger equation ence petween the predictions of the two methods is com-
are used in the continuum. The smooth part of the rapidly,areq with the similar variation between average energy-

fluctqatin_g s.p.l. Qensity is calculated by means of thedependent form and the standard form(i#s, 36, the former
Strutinski smoothing procedurg49]. The Woods-Saxon peing much lower especially in the bound-state case.

(WS) potential[30] was considered in this frame as well 8 The exact calculation of the Pauli-blocking effect, which
in the semiclassical Thomas-FertiiF) formula, with the s close to the well-known approximate Pauli correction
similar results shown in Fig. 18). The familiar FGM shape |5 35 34, is also discussed. Thus it is shown on a common
is given by the TF formula with an infinite square-weQ  pasis the higher importance of the s.p.l.-density energy de-
potential, while the corresponding finite weFSQ illus-  hendence versus the exact calculation of the Pauli correction.
trates the continuum effect in Fig. @. It should be noted  The significant role of the pairing correction is pointed out,
that the continuum component of the s.p.l. density is nearlyyhile comments are made on the circumstances under which
the same within either exact quantum-mechanical calculage adequate account of the pairing effects could indeed ap-
tions with the WS potential, or TF approximation with either pear less than essentfds].
the WS or the FSQ potential wells, provided that the free-gas The continuum effect has been considered for the case of
contribution is subtracted. Moreover, a similar trend is 0ob-5 FgMm energy dependence in the average energy-dependent
tained by means of the simple FGM formul®) taking into g approach. The continuum component of the s.p.l. den-
account the continuum effect. Nevertheless,_ the quantuMity js found rather similar using either exact quantum-
mechanical s.p.l. density can be related to this formula onlynechanical calculations with the Woods-Saxon potential, or
for a reduced Fermi energy, e.d:=20 MeV [50]. This  Thomas-Fermi approximation with WS as well as finite-
value has been obtained as an average value along the tgquare potential wells, provided that the free-gas contribu-
jectory of the incident projectile with respect to the bothtion is subtracted. A similar trend is obtained by means of
nuclear density and first nucleon-nucleon collision probabilthe simple FGM formula for the s.p.l. density if the con-
ity. The usual valud==38 MeV causes loweg(eg) values, tinuum effect is taken into account. It should be noted that no
that are not consistent with the phenomenological data.  arbitrary truncation, e.g., in the range 15-25 ME38], is
Therefore one may use the simple FGM energy depenthus necessary in order to take care for the continuum effect
dence, within an appropriate form which matches thewithin the s.p.l. density account. On the other hand, since the
quantum-mechanical s.p.l. density including the continuurmactual quantum-statistical analyses of the multistep reactions
effect, in the average energy-dependent ESM formalismuse the rough ESM, the results following consideration of
This unsophisticated yet improved method could provide thehe effectiveN N-interaction strength as the only free param-
correct PSDs for MSD/MSC calculations, in agreement witheter could be altered. This point is the subject of current
the consideration that the highly-excited single-particle stategork along with systematic calculations of the s.p.l. density
are not strongly coupled to compound nuclear stgs@$or  in the continuum and the correlation with PE surface effects
partially relaxed states of composite nuclei formed in nucleaf18,5qQ.
reactions at intermediate energigg2,53. The question is
additionally made intricate by the recent proof of a much
shorter time scale required to reach thermal equilibration in
intermediate-energy nucleon-induced reactions, found to be The authors are grateful to Marshall Blann, Emil Betak,
of the order of~10~22 sec[54]. Further experimental-data Zhang Jingshang, and Shalom Shlomo for valuable discus-
analyses should thus consider a combination of reactiogsions. This work has been carried out under the Romanian
models and related PSD formalisms as well. Ministry of Research and Technology Contract No. 4/A13
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and the Research Contract No. 8886/R1 of the Internationahe nucleus itself do not depend B{29], in the case of the
Atomic Energy AgencyVienng. finite square well one has to subtract the contribution of free
Fermi gas where>0 [28,30,3]
APPENDIX: FERMI GAS MODEL s.p.l. DENSITY

IN CONTINUUM Q <2m)3/2 i

gi(e)= o2 72 (A3)

The s.p.l. density associated with a local mean fieldas
the following expression in the Thomas-Fermi approxima- ) o )
tion, by taking into account the spin degeneracy and neglectln€ s.p.l. density which is thus obtained
ing the spin-orbit interactiong28,30,55;

312 TEfe) - <2m) ¥
1 (2m Orsd €)= 7| -7
9" (e)= F( ?) f dr[e—V(r)]Y20[e—V(r)]. 27\ h
' (A1) X Qo (e=Vo)O(e=Vo)—€'0(e)],  (A4)
The single-particle energy is measured relative to the top has the well-known FGM form except the continuum correc-

of the nuclear well, in order to make a clear distinction be-tion term. In terms of the single-particle energy-e—V,
tween the bound states at<0 and unbound continuum Which is measured relative to the bottom of the nuclear well,

states a>0. it becomes

For the finite well potentials, the nucleus can be imagined 12 IRVREL
inside a spherical box of radilR larger than the range of gTFQ(S):gO (i) _(8 0) ®(8+V0)} (A5)
V(r) (see Fig. 1 off29)). In the case of a square potential Fs F F '

well of radiusR, and depthVy<<0, we have from Eq(Al) ) ]
where go=9g(er) =g(F) with reference to both notations

- 1 {2m\¥? used for the s.p.l. energy. Actually, the derivation of Eq.
9o (€)== — [Qo(e— V)20 (e— V) (A4) shows that the radiuR is indeed taken into account but

2m\ # grcd€) does not depend on it. Therefore, the final expres-

+0e0(e)—0yet?0 (€)1, (A2) sion is apparently only a difference of terms calculated for

the SQ potential well and the free-particle case, respectively,
wherer=4wR8/3 andQ =4x7R%3. Since the properties of within an infinite spherical box with the radiu.
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