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Particle-hole state densities with nonequidistant single-particle levels

A. Harangozo, I. S¸ teţcu, M. Avrigeanu, and V. Avrigeanu
Institute for Nuclear Physics and Engineering, P.O. Box MG-6, 76900 Bucharest, Romania

~Received 17 January 1997; revised manuscript received 17 November 1997!

The correct use of energy-dependent single-particle level~s.p.l.! densities within particle-hole state densities
based on the equidistant spacing model~ESM! is analyzed. First, an analytical expression is obtained following
the convolution of energy-dependent excited-particle and hole densities. Next, a comparison is made with
results of the ESM formula using average s.p.l. densities for the excited particles and holes, respectively. The
Fermi-gas model~FGM! s.p.l. densities calculated at the corresponding average excitation energies are used in
both cases. The analysis concerns also the density of particle-hole bound states. The pairing correlations are
taken into account while the comparison of various effects includes the exact correction for the Pauli exclusion
principle. Quantum-mechanical s.p.l. densities and thecontinuum effectcan also match a corresponding FGM
formula, suitable for use within the average energy-dependent partial state density in multistep reaction mod-
els. @S0556-2813~98!03807-2#

PACS number~s!: 21.10.Ma, 21.10.Pc, 24.60.Dr, 24.60.Gv
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I. INTRODUCTION

The particle-hole state densities are basic quantities
the description of preequilibrium emission~PE! in semiclas-
sical models as well as quantum-statistical theories~e.g.,
@1,2#! involving a series of particle-hole excitations caus
by two-body interactions. The nuclear excitation in the eq
librium processes concerns the single-particle levels~s.p.l.!
within an energy range of the order of the nuclear tempe
ture around the Fermi level. This explains the basic role
the s.p.l. equidistant spacing model~ESM! @3# in the analysis
of the equilibrium emission~see also@4#!. However, much
higher and lower single-particle energies are involved in
reactions so that one should consider the reduced suitab
of the ESM partial-state density~PSD! formula of Williams
@5#. Moreover, the inconsistency between the phenome
logical s.p.l. densityg;A/14 MeV21 and the numberA of
nucleons in the nucleus has come under increasing critic
@6,7#. On the other hand, combinatorial calculations p
formed in the space of realistic shell model s.p.l.@8# have
other inherent shortcomings~e.g., the strong dependence o
the basic set of s.p.l.! @9,10#. This accounts for the continue
use of the Williams-type formula with various correctio
@11,12# or exact calculation@13# for additional Pauli block-
ing and the pairing interaction.

In fact, there have been early attempts at considering
single-particle energy dependence of the s.p.l. densityg(«)
within PE formalisms@14–16#. Next, Kalbach@17,18# dis-
cussed different forms of this dependence and found it tie
PE surface effects due to the interdependence of the res
tive assumptions. Hermanet al. @6# obtained an indication
for the energy dependence nearly as that given by the Fe
gas model~FGM! below the Fermi energyF, but linear
aboveF. Chadwick and Reffo@7# found the use of either the
FGM prescription or the equidistant parametrizationg5A/F
more accurate than the phenomenological one. The F
s.p.l. density has also been involved in the developmen
the partial level densities with linear momentum@19#. At the
same time, the ESM accuracy has been discussed in con
PRC 580556-2813/98/58~1!/295~12!/$15.00
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tion with the nonuniform s.p.l. density effect@20# provided
by the harmonic oscillator model. The analysis of t
energy-dependent s.p.l. density in the vicinity of the Fer
energy@21# provided a more general form and a good a
proximation of the effect for low energies, where the infl
ence of the finite depth of the potential well can be n
glected. Variousg(«) have been obtained within both th
semiclassical Thomas-Fermi approximation@21–28# and the
exact quantum mechanical calculations@29–31# which are
also applicable at the high excitations located in the c
tinuum region. The PSD including distinct energ
dependences for the excited-particle and hole level dens
has recently been used in semiclassical@32# or quantum-
statistical@33,34# cross-section calculations.

The valid use of energy-dependent s.p.l. densities wit
the ESM particle-hole state density formula, even when c
rected for the finite depth of the real nuclear potential w
@35#, has not yet been proved. Proving it is one aim of t
work. First, the particle-hole state density is obtained in S
II by means of recursive relations particularly using the FG
s.p.l. density. Next, these are compared in Sec. III with
results of the ESM formula modified by using s.p.l. densit
different for excited particles and holes, obtained from t
FGM at the respective average-excitation energies@18# ~the
average energy-dependent ESM formalism!. The analysis is
also carried out for the density of particle-hole bound sta
with single-particle excitations not exceeding the nucle
binding energy@36#. The advanced pairing correction@11,12#
is taken into account while the comparison of various effe
includes the exact correction for the Pauli exclusion princi
@13#. The importance of distinct corrections in the avera
energy-dependent ESM formalism is further discussed
Sec. IV. At the same time the subtraction of the free-g
contribution @29,30,37# is analyzed within this formalism
thus making no use of arbitrary truncation@38#. The respec-
tive results are compared with the semiclassical a
quantum-mechanical calculations of the continuum effe
Since the actual quantum-statistical analyses of the multi
reactions still involve the rough ESM, the respective resu
295 © 1998 The American Physical Society
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296 PRC 58HARANGOZO, ŞTEŢCU, AVRIGEANU, AND AVRIGEANU
could be altered following consideration of the effecti
NN-interaction strength as the only free parameter. The c
clusions are drawn in Sec. V.

II. THE PSD RECURSIVE FORMULA

A. Single-particle level densities

Densities of the excited particles and holes with disti
energy dependences or even different values at the F
energy F were considered by Gadioli and co-worke
@15,16#, Běták and Dobesˇ @35#, and Hermanet al. @39#. The
subsequent study@6# of unperturbed shell-model Hamil
tonian spacings indicated a linear energy dependence fo
cited particles, as well as different corresponding values
the Fermi level. On the other hand, Schmidtet al. @40# found
that the smooth s.p.l. density in a Woods-Saxon potential
between the density corresponding to an infinite box and
one for an harmonic oscillator, and approximately follow
g(«);«. Moreover, this energy dependence has alre
been used within an improved abrasion model for heavy-
collisions @41#.

Given the need for an analytical PSD expression, we h
followed the method of Bogilaet al. @21# while the finite
depth of the nuclear potential well and the case of partic
hole bound states have also been considered. Actually
particle-hole bound state formula turns into the comm
form in the limit of large values of the nucleon binding e
ergy B. The following discussion will concern the gener
form of g(«), with theg0 value at the Fermi level. Howeve
the usual FGM energy dependence
n-
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g~«!5g0S «

F D 1/2

5
3A

2FS «

F D 1/2

~1!

is particularly taken into account~see also the Appendix!.
This can be expressed in terms of the single-particle exc
tion energiesu5«2F for particles, andu5F2« for holes.
Next, similarly to Bogilaet al. we have retained the firs
three terms of its expansion in powers ofu around the value
at zero excitation energy. The general forms of t
excitation-energy dependence then become

gp~u!5~au21bu1c!u~B2u! ~2!

and

gh~u!5~au22bu1c!u~F2u!, ~3!

where the theta functions are unity if their argument
greater than zero, and zero otherwise. The FGM values of
coefficients area5g09/252g0/8F2, b5g085g0/2F, and c
5g0, whereg08 and g09 are the values at the Fermi level o
the respective derivatives. Various energy dependence
the s.p.l. density can obviously be involved within th
framework, by using the appropriate values for the coe
cients in Eqs.~2! and ~3!.

B. The convolution state-density formula

The bound-state densityv(p,h,E) for p excited particles
above the Fermi level andh holes below it (n5p1h), at the
total excitation energyE, can be obtained by convolution o
the single-particle and hole level densities with an excitati
energy conserving delta function@2,7,15#
ts, it
v~p,h,E!5
1

p!h! E0

`

du1gp~u1!E
0

`

du2gp~u2!•••E
0

`

dupgp~up!

3E
0

`

du1gh~u1!•••E
0

`

duhgh~uh!dS E2 (
l51

p

ul2(
j 51

h

uj D , ~4!

where the Pauli principle is not yet taken into account. One way to proceed@2# is to replace thed function by its integral
representation

dS E2 (
l51

p

ul2(
j 51

h

uj D 5
1

2pE2`

`

expF ikS E2 (
l51

p

ul2(
j 51

h

uj D Gdk, ~5!

so that

v~p,h,E!5
1

2pp!h! E2`

`

eikES E
0

`

gp~u!e2 ikuduD pS E
0

`

gh~u!e2 ikuduD h

dk. ~6!

By using the s.p.l. densities given by Eqs.~2! and ~3!, evaluation of the integrals, and expansion of the respective resul
results

v~p,h,E!5
g0

n

2pp!h! (l50

p

(
j 50

h

~21!l1 jCp
lCh

j Rl j S E
2`

` exp@ ik~E2lB2 jF !#

~ ik !N dkD , ~7!



ed by
s.
ms

PRC 58 297PARTICLE-HOLE STATE DENSITIES WITH . . .
where, by replacingl by i ,

Ri j ~z!5 (
k150

p2 i

(
i 150

k1

(
l 150

h2 j

(
j 150

l 1

~21! j 11 l 1Cp2 i
k1 Ck1

i 1 Ch2 j
l 1 Cl 1

j 1S g09

g08
D i 11 j 1S g08

g0
D k11 l 1

(
k250

i

(
i 250

k2

(
l 250

j

(
j 250

l 2

Ci
k2Ck2

i 2 Cj
l 2Cl 2

j 2
~g09! i 21 j 2

~g0! i 1 j

3S g09
B2

2
1g08B1g0D i 2k2

~g09B1g08!k22 i 2S g09
F2

2
2g08F1g0D j 2 l 2

~g09F2g08! l 22 j 2z, ~8a!

z is the integral which forms the functional argument in Eq.~7!, and

N5n1 i 11 j 11k11 l 11 i 21 j 21k21 l 2 . ~8b!

Finally, by using the Cauchy residue theorem we have obtained the expression

v~p,h,E!5
g0

n

p!h! ~n21!!(i 50

p

(
j 50

h

~21! i 1 jCp
i Ch

j ~E2 iB2 jF !n21u~E2 iB2 jF !Ri j S ~E2 iB2 jF !N2n
~n21!!

~N21!! D . ~9!

The (n21) factorial and power have additionally been included in order to obtain a form similar to those obtain
Obložinský @36# in the frame of the ESM, and Bogilaet al. @21# within the FGM with no constraints for particles or hole
Thus, in the limiting case of largeB andF in the above expression, thei and j indices become zero so that the last four su
in Ri j disappear and the formula of Bogilaet al. is obtained

v~p,h,E!5vE~p,h,E! (
k150

p

(
i 150

k1

(
l 150

h

(
j 150

l 1

~21! j 11 l 1Cp
k1Ck1

i 1 Ch
l 1Cl 1

j 1

3S g09

g08
D i 11 j 1S g08

g0
D k11 l 1

Ei 11 j 11k11 l 1
~n21!!

~n211 i 11 j 11k11 l 1!!
, ~10!
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where

vE~p,h,E!5
g0

nEn21

p!h! ~n21!!
~11!

is the well-known Ericson formula@3# for the ESM case.
However, we underline that a definite single-particle grou
state should be marked out by the finite value ofF within a
consistent energy-dependent s.p.l. density. Therefore, th
nite depth of the nuclear-potential well should be explici
present in the particle-hole state density formulas excee
the ESM framework. The usual formula for the density of t
particle-hole bound states within the ESM approximation
sults immediately from Eq.~9! by noting the unity values o
all functionalsRi j for a constant s.p.l. density. The only di
ference with respect to the formula of Oblozˇinský @36# con-
cerns the Pauli-blocking factorAph and the corresponding
minimum energyaph for a p-h state, which have not ye
been included here. On the other hand, the temporary o
sion of the Pauli-principle correction can be used to estim
the energy-dependence effect better. Thus, the ratio betw
the results of Eq.~9! and Oblozˇinský formula without the
Pauli correction is shown in Fig. 1 for a few simplep-h
configurations. Here the bound-state condition is relea
g0514 MeV21, andF538 MeV. These particle-hole state
are actually the most important ones for the PE descript
and are least affected by the Pauli-principle oversight. A
shown is the ratio of the PSDs given by Eq.~9! and the
d
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-
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o

Ericson formula, in agreement with the trend of the Bog
et al. results~Fig. 1 of Ref.@21#! if one takes into account the
different F values used in these analyses. While the form
ratio describes the energy-dependence effect versus an
formula including the potential finite-depth, the latter has t
same role versus the simplest ESM expression of Ericso

First, the case of the 1p1h configuration, Fig. 1~a!, shows
that the deviation ofgh(u) from g0 is not really compensated
by the corresponding deviation ofgp(u), within the s.p.l.
density convolution. Thus, the Oblozˇinský and Ericson for-

FIG. 1. The convolution state density given by Eq.~9!, divided
by the Oblozˇinský formula without Pauli correction~solid curves!,
as well as by the Ericson formula~dashed curves!, for the givenp-
h configurations. In Eq.~9! and the Oblozˇinský formula, F538
MeV and the limit of largeB is considered. For all calculation
g0514 MeV21.
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298 PRC 58HARANGOZO, ŞTEŢCU, AVRIGEANU, AND AVRIGEANU
mulas provide the same PSD at excitation energies belowF,
which are higher than the results of Eq.~9!. Second, a con-
sideration of the potential finite depth decreases the Obˇ-
inský PSD values versus the Ericson formula. At the sa
time, the results of Eq.~9! decrease less significantly abov
E5F because of the deviation ofgp(u) from g0. Moreover,
the case of the 2p1h configuration shows the increased im
portance of the energy dependence versus the Oblozˇinský
formula, with the deviation from unity of the respective rat
becoming relevant at excitations higher thanF. Smaller de-
viations have been obtained@21# as compared with the Eric
son expression.

C. Inclusion of Pauli blocking and pairing correction

Following the related forms of the recursive PSD expr
sion ~9! and Oblozˇinský formula @36#, the correction for the
Pauli blocking and pairing effects can be implemen
within the former by inclusion of~i! a p-h configuration-
dependent threshold energy in the theta function, and~ii ! the
Pauli-blocking and pairing-correction term of the excitati
energy, within the Kalbach formulation@12#

AK~p,h!5Eth~p,h!2
p~p11!1h~h11!

4g0

1
~p21!21~h21!2

g0F~p,h!
, ~12!

where the threshold energy

Eth~p,h!5
g0~D0

22D2!

4
1pmF S pm

g0
D 2

1D2G1/2

~13!

is determined by the ground- and excited-state gapsD0 and
D(p,h,E). The ground-state gap is related to the conden
tion energyC5g0D0

2/4 which can be given by the constan
pairing correctionUp @11#, based on the odd-even mass d
ferences ~e.g., @42#!. D is obtained by using the
parametrization@11,12#

D

D0
5@0.99621.76~n/nc!

1.60~E/C!20.68#u~E2Ephase!,

~14!

wherenc50.792g0D0 is the critical number of excitons, an
Ephase is the energy of the pairing phase transition given
z
e

-

d

a-

y

Ephase5C@0.71612.44~n/nc!
2.17#u~n/nc20.446!.

~15!

Actually, the latter theta function has been introduced
Kalbach@12# in order to explicitly take into account the lac
of a phase transition for smalln.

The inclusion ofpm5maximum(p,h) and the form of
the second term in the Kalbach correction~12! have been
adopted for a Pauli-correction function symmetric in pa
ticles and holes, including the effects of passive holes. N
the third term in Eq.~12! has been added in order to force th
PSD to have the values ofg0 and 2g0 for E5Eth(p,h) and
E5Eth(p,h)11/g0, respectively. The function

F~p,h!51214g0@E2Eth~p,h!#/pm ~16!

restricts the action of this third term to just aroundEth(p,h).
Consequently, the PSD recursive formula~9!, now includ-

ing the Pauli and pairing corrections, becomes

FIG. 2. The correction function for the Pauli blocking, nuclea
potential finite depth and pairing-correlation effects, of the ES
particle-hole state density for givenp-h configurations. The calcu-
lations use the finite-depth correction alone withF538 MeV ~dot-
ted curves!, the Pauli correction without~dashed curves! and with
the pairing effects included~solid curves!, and also the bound-stat
condition withB510 MeV ~dash-dotted curves!.
v~p,h,E!5
g0

n

p!h! ~n21!!(i 50

p

(
j 50

h

~21! i 1 jCp
i Ch

j @E2AK~p,h!2 iB2 jF #n21

3u~E2Eth2 iB2 jF !Ri j S @E2AK~p,h!2 iB2 jF #N2n
~n21!!

~N21!! D . ~17!
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The completeness of the Eqs.~9! or ~17! has the drawback
of making them difficult to use in reaction calculations, d
to the intricate form~8a! of the functionalsRi j .

III. THE AVERAGE ENERGY-DEPENDENT FORMULA

Since approximate but simpler solutions are still of re
interest, we will discuss below the Kalbach@18# attempt to
use the energy-dependent s.p.l. density within the ESM
mula. In fact, we will be checking its correctness against
exact expression~17!. It seems important to note that th
Kalbach approach involves distinct but average s.p.l. de
ties for the holes and excited particles, respectively, at a
age excitation energies.
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A. The finite-depth and pairing corrections

The general form of the ESM density of particle-ho
bound states corrected for~i! the Pauli exclusion principle
@5#, ~ii ! pairing interactions@11,12#, and~iii ! the finite depth
of the nuclear potential well@35,36# can be written, similarly
to Kalbach@18#,

v~p,h,E!5
g0

nEn21

p!h! ~n21!!
f K~p,h,E,F !, ~18!

where
f K~p,h,E,F !5(
i 50

p

(
j 50

h

~21! i 1 jCp
i Ch

j FE2AK~p,h!2 iB2 jF

E Gn21

u~E2Eth2 iB2 jF ! ~19!
p-
SM
de

n

a-

-
-

is a function including the finite-depth, Pauli-blocking an
pairing corrections, as well as the bound-state condition.
original correction function@18# was used to modify the PSD
formula for the infinite potential well, with the Pauli correc
tion termsA(p,h) neglected in all terms except the leadin
one. However, by means of Eq.~18! the function
f K(p,h,E,F) can now be regarded as the ratio between
actual PSD formula and the Ericson expression. The indeK
is related to the inclusion of the advanced pairing correct
of Kalbach@12#, i.e., of the termsAK(p,h) andEth .

The importance of the Pauli-blocking and pairing corre
tion term AK(p,h) is shown in Fig. 2 for simplep-h con-
figurations. First, omission of this correction provides t
unit value of the functionf K in the case of thexp1h con-
figurations at excitation energies lower thanF. Second, there
is a rather similar case~or even identical for the state 1p1h)
if the Pauli correctionAph and the corresponding minimum
energyaph @36# are taken into account but not the pairin
corrections. A small threshold behavior becomes apparen
this case. Third, the inclusion of the advanced pairing c
rection yields a strong reduction at lower excitation energ
Finally, the bound-state condition obviously provides a d
ferent function, mainly determined by the number of hole

B. Single-particle average excitation energies

In order to take into account the long-range deviatio
from ESM, Kalbach@18# proposed the use of average valu
for the FGM s.p.l. density~1! corresponding to average ex
e

e

n

-

in
r-
s.
-
.

s

citation energies for either particles or holes. As a first a
proximation, these energies were estimated in the E
frame. We follow the same method below but also inclu
the case of the bound states.

The probability for the occurrence of ap-h state with
the excitation energyE and an excited particle betwee
u and u1du is given by gp(F1u)•v(p21,h,E
2u,F)du/v(p,h,E,F). Consequently, the average excit
tion energy per excited particle is given by

ūp5
1

pE0

B̃u•gp~F1u!v~p21,h,E2u,F !

v~p,h,E,F !
du, ~20!

whereB̃5minimum(E,B). Assuming a slow energy depen
dence of the correction termAK , the average excitation en
ergies for either particles or holes become

ūp5
E

n

f K
1~p,h,E,F !

f K~p,h,E,F !
, ~21a!

ūh5
E2pūp

h
, ~21b!

where
f K
1~p,h,E,F !5(

i 50

p

(
j 50

h

~21! i 1 jCp
i Ch

j FE2AK~p,h!2 iB2 jF

E GnF11
n

p

iB

E2AK~p,h!2 iB2 jF Gu~E2Eth2 iB2 jF !

~22!
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returns tof K(p11,h,E,F) for large B @18#. The shapes of
the two functionsf K(p,h,E,F) and f K

1(p,h,E,F), and the
average excitation energies for simplep-h configurations are
shown, bound-state case included, in Fig. 3. The abo
mentioned similarity between the functionsf K

1(p,h,E,F)
and f K(p11,h,E,F) can be observed, in the general ca
for the 1p1h and 2p2h-states in Figs. 3~a! and 3~b!.

It is worth noting the results of Eqs.~21! for the bound-
plus-continuum states shown in Fig. 3~e!, and the bound
states only as displayed in Fig. 3~f!. The distinct trends are
due to the separate constraints on hole excitation up
value ofF in the former circumstance, and a particle exci
tion limited by theB value in the latter. First,ūp and ūh
increase nearly asE/n at the lowest excitations, the slightl
larger values for holes arising from the fact th
f K

1(p,h,E,F) is smaller thanf K(p,h,E,F). Next, the con-
strained average excitation energy of either holes~in the gen-
eral case! or particles~for bound states! becomes rather satu
rated at energiesE above the values ofF and B,
respectively. The ESM basis of Eqs.~21! determines the
saturation values aroundF/2 for ūh in the former case, and
aroundB/2 for ūp in the latter. Moreover, in the limit of the
1p1h configuration a quite sudden change can be obse
at total excitation energies around the values ofF and B,
respectively. There is also a small change in the trend oūh

FIG. 3. ~a!,~b! The f K
1(p,h,E,F) and ~c!,~d! the f K(p,h,E,F)

correction functions to the ESM formula for the Pauli blockin
potential finite-depth and pairing-correlation effects, as well
~e!,~f! the average excitation energies for particles and holes wi
the givenp-h configurations, for~a!,~c!,~e! the particle-hole bound
plus continuum states, and~b!,~d!,~f! the bound states only. For a
calculationsF538 MeV, andB510 MeV is considered for the
bound states.
e-

,

a
-

ed

and ūp just below the maximum excitation energyE for a
givenp-h bound-state configuration, due to the final occup
tion of the highest allowed single-particle levels.

To underscore the correlation between the specific sha
of the correction functionsf K , average excitation energie
ūp and ūh , and corresponding average values of the s.
densities

gp~p,h!5g~F1ūp!, ~23a!

gh~p,h!5g~F2ūh!, ~23b!

these quantities are shown together in Fig. 4 for the confi
ration 2p1h. First, the effect of the Pauli and pairing corre
tion is rather small. The saturations ofūp and ūh are dis-
tinctly caused by the bound-state condition, Fig. 4~c!, and
finite-depth correction, Fig. 4~d!, respectively. This is why
the energy dependence ofgp(p,h), Fig. 4~e!, is distinct from
the one ofgh(p,h), Fig. 4~f!, either in the general case~solid
curves! or for the particle-hole bound states~dot-dashed
curves!.

s
in

FIG. 4. ~a! The f K
1(p,h,E,F) and ~b! f K(p,h,E,F) correction

functions to the ESM formula for the Pauli blocking, potenti
finite-depth and pairing-correlation effects,~c!,~d! the average exci-
tation energies for particles and holes, and~e!,~f! the average
energy-dependent s.p.l. densities for excited particles and holes
the 2p1h configuration. The meaning of the curves is the same
in Fig. 2 except that the dotted line in~e! and~f! gives the value of
g0. For all calculationsg0514 MeV21 and F538 MeV, while
B510 MeV is considered for the bound states.
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C. ESM formula with average energy-dependent s.p.l. densities

The average energy-dependent formula was finally
tained by using the average s.p.l. densities~23! within the
PSD formula~18! which becomes

v~p,h,E!5
@gp~p,h!#p@gh~p,h!#hEn21

p!h! ~n21!!
f K~p,h,E,F !.

~24!

It approximately takes into account the energy depende
of the s.p.l. density, even though the simple ESM form is s
in use. However, there is no basic argument why this pro
dure should be used so that its accuracy needs further s

The method adopted in this respect consists in a comp
son of the results obtained by means of the approxim
formula and the recursive Eq.~17!. The corresponding pre
dictions and their ratio are shown in Fig. 5 for the sam
simple p-h configurations. The global valuesF538 MeV,
B510 MeV, g0514 MeV21, and D051 MeV were used.
First of all, in the general case of the particle-hole state d
sities ~i.e., for B→`) there is only a small difference be
tween the two PSD formulas even at medium energies.
agreement improves for more complex configurations, wh
the average of the single-particle excitation energies
comes really meaningful. Similar agreement is seen when
respective densities for the particle-hole bound states
compared within the first half of the energy range for eachp-
h configuration. However, the difference becomes signific
near the maximum energy for a given particle-hole state,
increases as the PSD values drop back to zero. Neverthe
the disagreement of these bound-state density formulas a
high-energy extremity should have little or no effect on t
reaction cross-section calculations.

Therefore we may conclude that the results obtained
using the average energy-dependent s.p.l. densities w

FIG. 5. The particle-hole state densities for the givenp-h con-
figurations, obtained with the average energy-dependent ESM
malism ~solid curves! and the PSD recursive formula~dashed
curves!, and their ratio, for~a!,~c! bound-plus-continuum states, an
~b!,~d! bound states only. The same global values are used as in
4.
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the ESM formula are rather close to the exact convolution
the energy-dependent s.p.l. density. The next question
cerns the need for this average energy-dependent appro
The answer can be obtained by comparing the aver
energy-dependent ESM results with the PSDs given by
widely used ESM formula@36#. This is shown in Fig. 6,
where the above global parameters were used. The pa
effect is apparent within this latter comparison, especially
lower energies. Besides this aspect, the behavior show
medium energy is similar to the comparison of the recurs
and Oblozˇinský formulas in Fig. 1. The overall differenc
obviously exceeds the variation between the predictions
the PSD recursive formula and the average energy-depen
ESM formalism. It is rather small for the general case of t
particle-hole states, Figs. 6~a! and 6~c!, but larger for the
bound states, Figs. 6~b! and 6~d!. This strong effect follow-
ing the consideration of the energy-dependent s.p.l. densi
particularly caused by the constant increase in hole exc
tion for largerE, and the related significant decrease of t
hole-state density as shown in Fig. 4~f!.

D. Effect of exact Pauli-correction calculation

The Pauli-exclusion effect on particle-hole state densi
has already been subject to additional investigation by Zh
and Yang@43# who used an exact method. Kalbach esta
lished later@12# that no conflict exists between their resu
and the frequently used Williams formulas if the energ
dependent Pauli term included pairing and passive-hole
fects. The ESM derivation of PSD formulas without any a
proximation in the Pauli correction term was performed
Bagueret al. @44# and Mao Ming De and Guo Hua@13#. The
latter extended the method to the case of the finite-de
potential and bound states, and included the Kalbach@12#
pairing correction. The effect of the alternative use of t
approximate and exact Pauli correction, and the one cau
by the average energy-dependent ESM formula are c
pared below.

r-

ig.

FIG. 6. The same as Fig. 5 except the latter PSD formula c
sidered in the comparison is the ESM formula@36# ~dash-dotted
curves!.
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The results that were obtained by means of Eq.~18! and
according to the exact Pauli-correction formalism@13# are
shown together in Fig. 7, for the most sensitive low-ene
region. The analysis was first carried out without pairi
correction, i.e., forD050 as shown in Figs. 7~a! and 7~c!.
The global valueg0514 MeV21 adopted by Fu and Kal
bach@11,12# was used. Then, the PSD calculation with pa
ing correction corresponding to the valueD051 MeV, Figs.
7~b! and 7~d!, completed the analysis of these effects un
any circumstances.

The ratio of the PSD obtained by using the two form
isms, Figs. 7~c! and 7~d!, shows more exactly that a clos
agreement—even within 1 %—is established just above
threshold for eachp-h configuration. Minor deviations exis
only for larger number of excitons, of less interest for m
tistep reaction calculations which include them in the
called r stage@2#. Therefore, the results of the exact Pau
blocking effect calculations are closely related to tho
obtained by using the approximate Pauli correct
@5,35,36#. The inclusion of a suitable pairing correctio
seems more significant with the following additional rema
The PSD for the very-few-exciton configurations beco
rather saturated within a short energy range above the thr
old. On the other hand, these configurations have the m
role in the description of multistep reactions. Thus, the
equate account of the pairing effect may be found unesse
for some analyses. The analysis of the high-energy limi
the particle-emission spectra, however, is quite sensitiv
both pairing and nuclear-shell effects~e.g.,@32,34,45#!.

Finally, the comparative analysis of the effects illustrat
in Figs. 6 and 7 shows, on a common basis, the higher
portance of the s.p.l.-density energy dependence versus
exact calculation of the Pauli correction.

FIG. 7. ~a!,~b! The particle-hole state densities for give
n-exciton configurations withp5h, obtained with the ESM formu-
las including the advanced pairing correction@12# and either the
exact correction for the Pauli exclusion principle@13# ~solid curves!
or the respective approximate form@36# ~dashed curves!, and~c!,~d!
their ratios. For all calculationsg0514 MeV21, while D051 MeV
is considered for the pairing correction account in~c! and ~d!.
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IV. REALISTIC AND GLOBAL RESULTS

The importance of the various approximations involved
the derivation of the PSD formulas should be well known
order to avoid useless effort or deficient results. First, o
might want to know the consequences of the present ana
on the total state densities obtained as the sum of all PSD
allowed particle-hole numbersp5h. Next, one might ques-
tion the usefulness of the PSD formulas discussed ab
while quantum-mechanical calculations concentrating on
continuum region are being developed@30,31#.

A. Effect on total state density

Average s.p. excitation energies are shown in Fig. 8
representativep-h configurations of the PSDs sum definin
the total state densityv(E). The same global valuesg0

514 MeV21, F538 MeV, andD051 MeV were used as
above. Thus, it becomes apparent that all significant term

this sum are characterized by rather equalūp andūh increas-
ing nearly asE/n. The saturated average excitation energy
the holes plays a major role in the case of the few-exci
states which are vital for PE description, but not for config

rations around the most probable exciton numbern̄ @46#. The
latter class of configurations mainly determine the total st
density value, so that the corresponding ESM predictions
meaningful in this respect. Nevertheless, the average ene
dependent approach should be considered for the calcula
of the PSD involved in the first stages of the multistep p
cesses.

B. Consideration of the continuum effect

Shlomo@30# performed an exact quantum mechanical c
culation of the s.p.l. density as the sum of the bound a
continuum contributions in the case of finite potential wel
A distinct point of this approach has been the considera
of the free-gas states counted by the s.p.l. density for a fi
potential well. The density of these states was calculated
subtracted by using Green’s functions associated with
respective single-particle Hamiltonians. Then, the commo
used semiclassical approximations for the s.p.l. density w
similarly considered for some widely used mean-field pot
tials. Thus, Shlomo found by means of both classes of m

FIG. 8. Average excitation energies of the excited particles~dot-
ted curves! and holes~dashed curves! for given n-exciton configu-
rations with p5h, as function of the total excitation energy. Th
same global values are used as in Fig. 4, whileD051 MeV is
considered for the pairing correction account.
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ods that, for a realistic finite depth well, the s.p.l. dens
decreases with energy in the continuum region(the con-
tinuum effect).

This effect may have a twofold meaning for the multist
reaction calculations. First, the continuum s.p.l. density f
lowing the subtraction of the free-gas contribution should
added to the particle-hole bound state density. The la
quantity has been used for the description of the multis
compound~MSC! processes@47#. It has been assumed to b
zero outside the nuclear well, which is now considered l
appropriate@27#. Second, in the opinion of Bogilaet al. @28#
the subtraction of the free gas spectrum should be invol
in all PSD for PE calculations. This point could be mo
important in accounting for the multistep direct~MSD! pro-
cesses@47# which currently take into account all particle-ho
states. Thus a correct yet simple method to estimate the
density including the continuum effect is needed.

The continuum effect can be taken into account within
average energy-dependent ESM formula~24! by using a
form similar to Eq.~30! of Ref. @31# ~see the Appendix! for
the excited-particle level density. According to Eq.~23a! it
becomes

gp~p,h!5
3A

2F
F S 11

ūp

F
D 1/2

2S ūp2B

F
D 1/2

u~ ūp2B!G .

~25!

To emphasize the origin of the particular behavior
gp(p,h), this is shown at the same time as the correspond
ūp for the basic 2p1h configuration in Figs. 9~b! and 9~d!. It
is obvious that the average excitation energy is unchan
~see Fig. 4! so that the continuum effect fully determines t
corrected s.p.l. density for excited particles. The compari
with the similar quantitiesūh and gh(p,h) ~the same as in
Fig. 4! demonstrates the importance of this effect, the av
age s.p.l. density becoming even lower for excited partic
than for holes.

On the other hand, it seems worth comparing the spec
average excitation energies and s.p.l. densities which de
mine the PSDs including the continuum effect@Figs. 9~b!

FIG. 9. ~a!,~b! The average excitation energies and~c!,~d! the
related s.p.l. densities for~a!,~c! the particle-hole bound states, an
~b!,~d! the general case including~solid curves! or not ~dotted
curve! the continuum effect, for the 2p1h configuration. The same
global values are used as in Fig. 4.
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and 9~d!#, with the related quantities for the particle-ho
bound states@Figs. 9~a! and 9~c!#. The reasons for deviation
from the PSD general trend, for the two main addition
classes of particle-hole state densities with variant charac
istics are outlined in this way. Thus, the average excitat
energies, limited by the valueB for the excited particles,
entirely determine the s.p.l. densities for the particle-h
bound state densities. Actually one may note thatgp has a
rather constant value in this case. The value ofgh is similarly
constant but obviously lower in the latter case, i.e., of
bound and continuum state density including the continu
effect. However, the above-discussed aspect ofgp is the key
quantity for the second class of modified PSDs.

Moreover, these two classes of PSDs with various rest
tions @Figs. 10~a! and 10~b!# are at the same time compare
with the predictions of Eqs.~23! and~24! including only the
finite-depth correction, also shown in Fig. 10~b!. A few con-
figurations significant in PE calculations are used in this
spect. The ratios of each of the two variant PSDs to
general PSD values given in Fig. 10~b! are further shown in
Figs. 10~c! and 10~d!. It follows that at medium energies th
size of the continuum effect on the PSD values, which
given by the latter class of ratios, is rather similar to that
the bound-state condition. Therefore, a possible replacem
within MSC calculations of the particle-hole bound sta
density by the PSD corrected for the continuum effect@27#
would not be trivial. A similar point may concern the us
within the MSD calculations of the PSD either including th
continuum effect@28# or taking into account the free-ga
single particle levels as well.

The relation between the results of Eq.~25! and the
quantum-mechanical~QM! calculations should be also con
sidered before further use of the former in reaction calcu
tions. Hence, following Shlomoet al. @30,31#, the s.p.l. den-
sity was calculated@48# by using the respective relation wit
Green’s function. As an alternative to the smearing pro

FIG. 10. The particle-hole state densities for the givenp-h con-
figurations, obtained within the average energy-dependent ESM
malism for ~a! the bound states and~b! the bound-plus-continuum
states including the continuum effect~solid curves! or taking into
account also the free-gas single-particle levels as given by Eqs.~23!
and ~24! in the limit of large B and with only the finite-depth
correction~dotted curves!, and~c!,~d! the ratios of each of the two
kinds of variant PSDs to the third one. The same global values
used as in Fig. 4.
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dure, the imaginary part of Green’s function has been ca
lated separately for the discrete and continuous states.
regular and Jost solutions of the radial Schro¨dinger equation
are used in the continuum. The smooth part of the rap
fluctuating s.p.l. density is calculated by means of
Strutinski smoothing procedure@49#. The Woods-Saxon
~WS! potential@30# was considered in this frame as well
in the semiclassical Thomas-Fermi~TF! formula, with the
similar results shown in Fig. 11~a!. The familiar FGM shape
is given by the TF formula with an infinite square-well~SQ!
potential, while the corresponding finite well~FSQ! illus-
trates the continuum effect in Fig. 11~b!. It should be noted
that the continuum component of the s.p.l. density is nea
the same within either exact quantum-mechanical calc
tions with the WS potential, or TF approximation with eith
the WS or the FSQ potential wells, provided that the free-
contribution is subtracted. Moreover, a similar trend is o
tained by means of the simple FGM formula~25! taking into
account the continuum effect. Nevertheless, the quant
mechanical s.p.l. density can be related to this formula o
for a reduced Fermi energy, e.g.,F̄.20 MeV @50#. This
value has been obtained as an average value along the
jectory of the incident projectile with respect to the bo
nuclear density and first nucleon-nucleon collision proba
ity. The usual valueF538 MeV causes lowerg(«F) values,
that are not consistent with the phenomenological data.

Therefore one may use the simple FGM energy dep
dence, within an appropriate form which matches
quantum-mechanical s.p.l. density including the continu
effect, in the average energy-dependent ESM formali
This unsophisticated yet improved method could provide
correct PSDs for MSD/MSC calculations, in agreement w
the consideration that the highly-excited single-particle sta
are not strongly coupled to compound nuclear states@51# or
partially relaxed states of composite nuclei formed in nucl
reactions at intermediate energies@52,53#. The question is
additionally made intricate by the recent proof of a mu
shorter time scale required to reach thermal equilibration
intermediate-energy nucleon-induced reactions, found to
of the order of;10222 sec@54#. Further experimental-dat
analyses should thus consider a combination of reac
models and related PSD formalisms as well.

FIG. 11. The comparison of the smoothed quantum-mechan
s.p.l. density for the neutrons of the nucleus56Fe ~solid curve! and
the results of the TF approximation using~a! the same Woods-
Saxon potential well as within the QM calculation, and~b! the
infinite ~SQ! and finite square potential wells~FSQ! ~dashed
curves!, and the FGM formula with the Fermi-energy values

F538 MeV ~dotted curve! andF̄520 MeV ~dot-dashed curve!. For
parameters of the potential wells see Refs.@30,48#.
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V. SUMMARY AND CONCLUSIONS

The particle-hole state density has been obtained
means of recursive relations, for the bound as well as bou
plus-continuum states. The corresponding expressions,
Eqs. ~9! and ~17!, can be used for various energy depe
dences of the excited-particle and hole state densities w
the particular case of the FGM is discussed. We have un
lined that consideration of the finite depth of the nucle
potential well should be explicitly present in the particle-ho
state density formulas exceeding the ESM framework.

Next, the results of the recursive formula are compa
with the Kalbach@18# approximation still within the ESM
formula but using distinct average s.p.l. densities for
holes and excited particles, respectively, at their average
citation energies. At the same time the Kalbach formalism
extended to the case of the bound states, while the pai
and Pauli-blocking effects have been included in all terms
the ESM correction function. The correctness of the aver
energy-dependent ESM approach is established by refer
to the rigorous convolution~9! of the energy-dependent s.p.
densities for the case of the FGM dependence. The dif
ence between the predictions of the two methods is co
pared with the similar variation between average ener
dependent form and the standard formula@35,36#, the former
being much lower especially in the bound-state case.

The exact calculation of the Pauli-blocking effect, whic
is close to the well-known approximate Pauli correcti
@5,35,36#, is also discussed. Thus it is shown on a comm
basis the higher importance of the s.p.l.-density energy
pendence versus the exact calculation of the Pauli correc
The significant role of the pairing correction is pointed o
while comments are made on the circumstances under w
the adequate account of the pairing effects could indeed
pear less than essential@45#.

The continuum effect has been considered for the cas
a FGM energy dependence in the average energy-depen
ESM approach. The continuum component of the s.p.l. d
sity is found rather similar using either exact quantu
mechanical calculations with the Woods-Saxon potential
Thomas-Fermi approximation with WS as well as finit
square potential wells, provided that the free-gas contri
tion is subtracted. A similar trend is obtained by means
the simple FGM formula for the s.p.l. density if the co
tinuum effect is taken into account. It should be noted that
arbitrary truncation, e.g., in the range 15–25 MeV@38#, is
thus necessary in order to take care for the continuum ef
within the s.p.l. density account. On the other hand, since
actual quantum-statistical analyses of the multistep react
use the rough ESM, the results following consideration
the effectiveNN-interaction strength as the only free param
eter could be altered. This point is the subject of curr
work along with systematic calculations of the s.p.l. dens
in the continuum and the correlation with PE surface effe
@18,50#.
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APPENDIX: FERMI GAS MODEL s.p.l. DENSITY
IN CONTINUUM

The s.p.l. density associated with a local mean fieldV has
the following expression in the Thomas-Fermi approxim
tion, by taking into account the spin degeneracy and negl
ing the spin-orbit interactions@28,30,55#:

gTF~e!5
1

2p2S 2m

\2 D 3/2E dr @e2V~r !#1/2Q@e2V~r !#.

~A1!

The single-particle energye is measured relative to the to
of the nuclear well, in order to make a clear distinction b
tween the bound states ate<0 and unbound continuum
states ate.0.

For the finite well potentials, the nucleus can be imagin
inside a spherical box of radiusR larger than the range o
V(r ) ~see Fig. 1 of@29#!. In the case of a square potenti
well of radiusR0 and depthV0,0, we have from Eq.~A1!

gV
TF~e!5

1

2p2S 2m

\2 D 3/2

@V0~e2V0!1/2Q~e2V0!

1Ve1/2Q~e!2V0e1/2Q~e!#, ~A2!

whereV054pR0
3/3 andV54pR3/3. Since the properties o
ns

o

,
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y
.

l
gy
al

-
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d

the nucleus itself do not depend onR @29#, in the case of the
finite square well one has to subtract the contribution of f
Fermi gas whene.0 @28,30,31#

gf~e!5
V

2p2S 2m

\2 D 3/2

e1/2. ~A3!

The s.p.l. density which is thus obtained

gFSQ
TF ~e!5

1

2p2S 2m

\2 D 3/2

3V0@~e2V0!1/2Q~e2V0!2e1/2Q~e!#, ~A4!

has the well-known FGM form except the continuum corre
tion term. In terms of the single-particle energy«5e2V0
which is measured relative to the bottom of the nuclear w
it becomes

gFSQ
TF ~«!5g0F S «

F D 1/2

2S «1V0

F D 1/2

Q~«1V0!G , ~A5!

where g05g(eF)5g(F) with reference to both notation
used for the s.p.l. energy. Actually, the derivation of E
~A4! shows that the radiusR is indeed taken into account bu
gFSQ

TF (e) does not depend on it. Therefore, the final expr
sion is apparently only a difference of terms calculated
the SQ potential well and the free-particle case, respectiv
within an infinite spherical box with the radiusR0.
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