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QCD sum rules for vector mesons in nuclear medium
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Vector mesons show up in the electromagnetic current-current correlator. QCD sum rules provide a con-
straint on hadronic models for this correlator. This constraint is discussed for the case of finite nuclear density
concerning the longitudinal as well as the transverse part of the current-current correlator at finite three-
momentum]S0556-28188)01211-4

PACS numbegps): 24.85+p, 21.65+f, 12.38.Lg, 14.40.Cs

I. INTRODUCTION guark and gluon degrees of freeddsee, e.g., Refd21—
23]). An important ingredient for the description of vector
In the last few years a lot of work has been devoted tamesons by QCD sum rules is the assumption that the spectral
study the behavior of vector mesons in a medium with finitefunctions of these resonances can be reliably approximated
baryonic density. The basic motivation was to find a sign ofby & functions (narrow width approximation In this way,
chiral symmetry restoration in heavy-ion collision experi- the experimentally found vector meson masses can be repro-
ments, when studying the dilepton spectra which corresponduced reasonably well. Of course, it is supported by experi-
to the vector mesons. Indeed, the CERES experiments fanents that, e.g., the respective width of the spectral function
S-Au and Pb-Au collisions show a novel feature when com-of p and @ meson is small as compared to the mass of the
pared to proton-nucleus collisions, namely, an enhancememeson. However, it is important to realize that the narrow
of the dilepton yield for invariant masses somewhat belowwidth approximation is not a result, but an ingredient of the
the vacuum mass of the meson[1-3]. Some years ago it traditional QCD sum rule approach.
was argued by Brown and Rho that such an enhancement In the last few years QCD sum rules were also developed
might be due to the restoration of chiral symmefdy}. In  for in-medium situations, i.e., for hadronic matter at finite
their model they assumed that the masses of the vector méemperaturgsee, e.g., Ref§24,25) or finite baryonic den-
sons should scale with the quark condensate, i.e., drop witkity (e.g., Refs[26—30). For p and » mesons it was found
rising baryonic density. If this is true, thepeak in the dilep- that their masses decrease with increasing temperature and/or
ton spectrum would be shifted to lower invariant mass. Thidensity, if the narrow width approximation is used for the
might be an explanation for the observed enhancement of thearametrization of the respective spectral function. In con-
dilepton vyield in that regior{5-7]. However, the idea of trast to the vacuum case, there is, however, no experimental
chiral symmetry restoration alone without additional modelsupport that the narrow width approximation is a reasonable
assumptions does not provide a unique picture. Other sce&ssumption for the in-medium case. Indeed, some hadronic
narios predict a rising mass based on the effect that ihe models for thep meson predict a very large collisional
becomes degenerate with its chiral partner,ahenesori8]. broadening already at nuclear saturation density due to the
Besides the problem of what the consequences of chiraioupling of thep meson to resonance hole lodds,14,17—
symmetry restoration might be there is still the possibility 19]. Clearly, such effects have to be taken into account for a
that the experimental finding of the enhancement might alsproper modeling of the spectral function of the respective
be explained by conventional hadronic degrees of freedomiector meson which enters the hadronic side of QCD sum
To clarify that issue hadronic models for the in-medium be-rules [31]. Unfortunately, the narrow width approximation
havior of vector mesons were developed by various groupsrucially influences the QCD sum rule prediction for a pos-
see e.g., Refd9-19. Some of them predict a large peak sible mass shift in a nuclear surrounding. If a spectral func-
broadening of thep meson or even distinct new peak struc- tion with an appropriately chosen large width is used in the
tures. It was found that the enhancement in the dilepton yiel@CD sum rule approach at finite density, one could get an
might also be explained within a purely hadronic scenario, ifunshifted meson mass, in contrast to the finding utilizing the
a lot of strength is shifted to lower invariant md44,20. So  narrow width approximation. This was first discussed in Ref.
far we are not in a position to confirm or rule out such had-[15] using a specific hadronic model and later systematically
ronic models by experimental data. Therefore, it is of interesstudied in Ref[31].
to find additional model independent consistency checks This shows that QCD sum rules provideo model-
which should be obeyed by arbitrary hadronic models deindependent prediction about a possible mass shift of vector
scribing vector mesons and their in-medium behavior. Such eesons in nuclear medium. Only together with some addi-
consistency check is provided by the QCD sum rule apiional assumptionge.g., about the width of the respective
proach. vector mesojcan a statement about the density dependence
Originally, QCD sum rules were developed for vacuumof the masses of the vector mesons be deduced from the sum
processes not as a consistency check for hadronic modelsjle analysis. Nevertheless, once a hadronic model for vector
but as an alternative to them, i.e., to deduce modelmesons has been chosen the sum rules can be used as a
independent information about hadrons from the underlyingonsistency check for this model. We believe it to be impor-
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tant to have such consistency checks, since it is not eear

priori if a hadronic model—e.g., with coupling constants de- J#ZE(UYMU +dy,d), (2.2
rived from vacuum processes—yields a correct description
of the in-medium behavior. where the minus sign is for themeson and the plus sign for

In most of the studies on QCD sum rules only the vectorlthe . The current-current correlator enters, e.g., the cross
mesons which are at rest with respect to the medium wergection ofe*e™— hadrons(see, e.g., Ref[15]). Within a
considered. On the other hand, since Lorentz invariance |§|mp|e vector meson dominanCVMD) picture the current
broken, the behavior of vector mesons clearly depends o[p.2) can be identified with the vector meson which carries

their velocity with respect to the surrounding. Indeed, somehe respective isospin, e.g., for tpeneson[32]:
of the hadronic models mentioned above yield very different

spectral functions for different three-momenta of the respec- VMD 2
tive vector meson and for different polarizatiofesg., Ref. Ju = —pp,“ (2.3
[17]). Only recently has the influence of finite three- 9p

momentum on the QCD sum rule predictiqn for vector me-yhere p,. denotes thep meson field amplitude ang, the

son massegwithin the classical narrow width approxima- coypling of thep meson to pions. Therefore, within simple
tion) been explored30]. Also at finite three-momentum, of \/\D the current-current correlator is proportional to the
course, the narrow width approximation is an assumptioryrgpagator of the respective vector meson. Speaking more
which may be justified or not, but in any case it is not agenerally, i.e., without referring to simple VMD, the vector

model-independent statement. meson propagator is closely related to the current-current
In this work we will derive QCD sum rules fos andw  orrelator.

mesons for arbitrary three-momentum of the respective vec- The expectation value in E€.1) is taken with respect to

tor meson with respect to the nuclear medium. The purposg,e syrrounding medium. We study herdigospin neutral

is to provide a consistency check for hadronic models. This,omogeneous equilibrated medium with finite nuclear den-

is in contrast to the traditional QCD sum rule approachsity and vanishing temperature. In the medium Lorentz in-

which aims at a prediction for the vector meson mass assUfiariance is broken. All the formulas we will present in the

ing that the width of the vector meson is negligibly foliowing refer to the Lorentz frame where the medium is at

small (see especially Ref30] concerning the extension t0 yest j.e., where the spatial components of the baryonic cur-

nonvanishing three-momentum within the traditional QCD ant vanish.

sum rule approaohin the application of the traditional QCD  The current-current correlator can be decomposed in the

sum rule approach to nuclear matter the attention was fofg|iowing way [32]:

cused on the utilization of the sum rule within the narrow

width approximatior{26,27,29,30 rather than on a detailed I, (Q)=HH(a)T,,(q)+1I (q)L,.(9), (2.9

discussion of the derivation of the sum rule and of the cal-

culation of the various condensates which contribute. In th&vhere we have introduced two independent projectors

present article we try to bridge this gap. L.,(q) andT,,(q) which both satisfy current conservation
In the next section we introduce the basic quantity ofd“L,.(d)=g“T,,(q)=0 and add up to

interest, namely, the current-current correlator, and present a

dispersion relation which connects the calculations for this

correlator using hadronic degrees of freedom on the one

hand side and quarks and gluons on the other. In Sec. Il we L ,

sketch the method of operator product expansion and calcdN€ t€nsorsT and L are transverse and longitudinal with

late the current-current correlator within that framework. Inrespect to three-momentuq) respectivelyT is given by

Sec. IV we present a QCD sum rule derived from the disper-

4.9,
q2

T,LLV(q)+L/LV(q):g/LV_ . (25)

sion relation mentioned above. To get more insight into the 0, o n=0 or »=0,
various contributions calculated in Sec. lll we discuss in Sec. T(0)= .oad . (2.6)
V an approximation linear in the nuclear density. In Sec. VI -+ ? (p,v)=(,}),

we discuss the various approximations which have led to the

resu_lts presented in the preceding sections. Finally we suMyniie L can be deduced from E(R.5). The scalar functions
marize our results in Sec. VII. T;, can be obtained using

2
Il. THE CURRENT-CURRENT CORRELATOR (2,2 = %Hw(q)TW(q): % T+ %Hoo)

The quantity we study in the following is the covariant 2.7
time ordered current-current correlator:

and

Huv(q)zlf d4XquX<TJM(X)JV(O)> (21) HL(qzyaz):HW(Q)LM(Q):_?_zﬂoo (28)
q

Here] , is an electromagnetic current with the isospin quan-To get the respective last equality in the last two equations,
tum number of the respective vector meson use is made of the fact thét,,(q) is a conserved quantity,
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i.e., transverse with respect to tfeur-momentum gNote  following connection between the current-current correlator
thatIT; andII, depend only on the invariant mass squaredcalculated from OPE on the one hand side and from a had-
g2 and on the three-momentum squaggd The latter prop-  Fonic model on the other:

erty is due to the remainin®(3) symmetry of the equili-

brated system. N27Q%, g% =1113(0,4%) —¢1,. (99 Q?

At vanishing temperature the scalar functiols, IT, 4 had
deduced from the time ordered current-current correlator +Q_ J"” S Im 117, (s,9)
(2.1) can be related to the commutai@pectral function T )2 (st Q2—|e)(s+ ie)?’

(2.1

where we have used E(R.12) to express the spectral func-
, , _ tion in terms of the imaginary part di. In the next section
in the following way(see, e.g., Re{33]): we shall elaborate on the calculation of the left-hand side

R . (LHS) of Eq. (2.15.
Im I11 (g%,9%) = —sgr(do) A, (do,0%), (2.10 ) q

where At and. A, are deduced fromi,,, analogously to Egs. lll. OPERATOR PRODUCT EXPANSION

(2.7) and (2.8), respectively. At first sight, it seems that  within the method of operator product expansion we have
Im I, does not only depend og? and g% as claimed to calculate the current-current correlat(®.1) for large
above, but also on the sign of,. However, it is easy to spacelike moment@2= —q?2. Here the relevant length scale
check from the definitior{2.9) and the symmetry properties for the x integration given by the inverse of \IQ? is small.

of the system under consideration th&t and.4, are anti- This defines the hard scale in our problem. Suppose that the
symmetric with respect to the transformatiap— —qq. distancex is much smaller than the typical length of the

L[ e o o
A== [ dxe™(,00.0,00 @9

Therefore we define system(soft scalé. The latter might be characterized, e.g., by
R R the average particle distance in the medium drgdp, as the
A7 L(02,0%) =sg1(qo) At (do,0?). (2.11)  scale where nonperturbative effects appeax.iff that small
it is reasonable to assume that a product of local operators
Inserting this relation in Eq2.10), andB, i.e.,
Im Iy | (0%,6%) = — A7 (6°,°), (212 A(X)B(0), (3.9)
it becomes obvious that the dependence on the sigp @  should look like a local operator, since the system
only apparent. cannot resolve such small distancesThus we find
For <0 the current-current correlat¢2.1) can be cal-
culated using Wilson’s operator product expansi@PE A(x)B(O)wE C.(X)O,, 3.2

[34] for quark and gluonic degrees of freed¢gl] (for in-

medium calculations see, e.g., R€i24,26,27). In the fol-

lowing we shall call the result of that calculatiéh?=. On  whereC, denotesc-number functiongWilson coefficients

the other hand, a hadronic mod@.g., for vector mesons andQ, local operators. The only dependence on the system
[9-15,17 using one or the other form of VMDcan give an  under consideration enters via the respective matrix elements
expression for the current-current correlator valid in theof the local operator®), . Thus, the dependence on the soft
timelike regiong®>0. We denote the result of the hadronic scale is entirely given by the local operators. On the other
model by Hhad A second representation in the spacelikehand, the Wilson coefficientS,, can be calculated indepen-
region which has to matcHOPE can be obtained fro,ﬁ[had dently from the system under consideration. Since the opera-

by utilizing a twice subtracted dispersion relation. We fmd tors O, are local, the dependence on the hard s¢htre
given by thex dependencgeenters only the Wilson coeffi-

I (02,99 =11, (0% +cr (492 cients. Thus we have achieved a separation of the hard from
the soft scale.
4 (e A{L(s,ﬁZ) In our case, the operatofsandB are the currentg, and
f _st (s—q%—ie)(stie)? i, respectively. The Fourier transformation which appears

in Eq. (2.1) does not touch the local operata®s, but only
(2.13 changes th& dependence of,, into aq dependence. From
the line of arguments one can already guess that the Wilson
coefficients finally yield a power series inQ7 (corrected by
logarithms from renormalizationThe expectation values of

with the subtraction constant

&HT L(k? ,q °) (2.14 the local operator®,, (condensatgsshow up as coefficients
a(k?) K2=0 ' of that series. On dimensional grounds it is obvious that the
higher the dimensiofin terms of masse®f a condensate is,
As we shall see belowAd had(q) diverges linearly withg?. the more it is suppressed by powers a1/

Therefore we have used above a twice subtracted dispersion In the following we will consider condensates up to di-
relation. In the spacelike region f@?:=—q?>0 we getthe mension 6. In vacuum only scalar condensates contribute.
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For the case at hand, however, the condensates might also A. Scalar condensates

carry spin, since Lorentz invariance is broken. It is common  The contribution of the scalar condensates to the current-
practice to classify the condensates by their dimensiondlity current correlator for the system with finite nuclear density is
and their twistr. The latter is defined as the difference of formally identical to the vacuum case. The only difference is
dimensiond and spins, i.e., 7=d—s. We decompose the that in the former case the expectation value is taken with
current-current correlatd2.1) in the following way: respect to the medium. The latter case was already discussed
o o o in the original paper by Shifmaet al. [21]. The result is
TGRS et | R | BRI | (see, e.g., Ref24] for detail9
3.3
4.9,

q2

) QZRscalath) (34)

where we have neglected contributions from higher- H,SfflaEQ): ( Quv—
dimensional condensates. We will discuss the various contri-
butions separately in the following subsections. with

QZ
'”(F

scalay 2 1 mq T Ar 1 )
R (Q )%——2 +2—Q4<UU+dd>+T4Q4 ?G

1+ %
8 T

s J— J— J— _
- 2—Q§<(U7ﬂs>\au1 dy, yshd)(uy*ys\uFdy*ys\2d))

T&s [ — a q. a PN
~5a | (UyAutdy,\*d) X qy\q), (3.5
9Q g=u,d,s

where we have neglected contributions quadratic in the lightvhere{O), denotes the vacuum expectation value of an ar-
current quark mass, as well as differences in the masses ofbitrary operator O, kg the Fermi momentum, E;

up and down quark. This is reasonable, since the hard scale /mﬁ+|22 the energy of a nucleon, arid)\l(lZ)} a single
VQ? s typically .Of the order of 1 Ge\(’ghe order of magni- (isospin averagechucleon state with momentuk normal-
tude of the considered vector megomhile the masses of up ized according to

and down quarks are of the order of a few MeV. Again the
minus sign refers to the meson and the plus sign to tlhe . R N
To simplify Eq.(3.5) we assume that the quark condensates (N(K)IN(K"))=(2m)3 2E, S(k—K'). (3.9

of up and down quarks are approximately the same. Further-

more, we replace the four-quark condensates by products &fe will use the approximatioii3.7) throughout this work
two-quark condensates. Since it is not clear how accurate thend comment on it in Sec. VI.

assumption of ground state saturatigfiartree approxima- If O is a scalar operator, the expectation value

tion) is, we multiply thg result with &still to be determined <N(|Z)|O|N(|Z)> is a scalar as well and therefore independent
factor x. We end up with of the momentum of the nucleon. Thus we get

2
R¥AQ?)~ — % 1+ a;s I”(% ’ %@v (Oscatar=(Oscaiado
d3k
N L <% 2> B 1127 ay K<aq>2' +4<N(O)|OscalalN(0)> K =ke m
24Q° 81Q° 56 (3.9

For the evaluation of the condensates in E96) we need to
. h iKad) | ! . | know the expectation values of the quark and gluon conden-
since there are no terms likeid) in an isospin neutral me-  ga0 with respect to single nucleon states. The former can be

dium. . . related to the nucleon sigma tefi26]*
Of course, the crucial question is how to evaluate the

expectation values with respect to the nuclear medium. If the
density is _smaII, it is reasonable to approximate the medium <N(O)|Eq|N(O)>= mN‘TN, (3.10
by a Fermi gas of free nucleons, i.e., m

Note that there is no difference betwegmand w any more,

d3k R .
0)~(O +4J ——35= (N(K)|O|N(k)),
(0)=(Olo K<ke (271)° 2B (N(O[OIN() INote that the normalization of the nucleon state in R26] is
3.7 different from ours.
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TABLE |. Parameters used in the calculation of the OPE contributions to the current-current correlator.
See main text for details.

o 0.36 oy [GeV]  0.045 c, [GeV?] 0.005

m, [GeV] 0.006 m? [Gev] 0.75 c, [GeV?] 0.011

(qq)o [GeV?]  —0.0156 c3 [GeV?] 0.035

((as! m)G?)o [GeVH] 0.012 Kly[GeV?]  —0.088
K 2.36

while the latter can be calculated from the trace anomaly ogates to the current-current correlator, but instead present a
QCD recipe how to deduce the necessary information from the
DIS calculations of Refd.35-37.

The twist-2 operators of dimensionality 4 which contrib-
ute are given by

ag 16 0
<N(O)?G2 N(0)> =— 3mNm<N>. (3.11)
Here oy denotes the nucleon sigma term am{®’ the
nucleon mass in the chiral limit.

Finally, we have to make a choice for the parameter
which parametrized the deviation of the four-quark conden&nd
sate from the product of two-quark condensates. Even for the
vacuum case, the question about the valuefar not settled STG}G,,. (3.19

yet (see, e.g., Refd.26,24,27,15,2B. In addition, « might

depend on the nuclear density. For simplicity, we take in th‘?—|ere$7’denotes an operator producing an expression which

gollovytl_ng tget va;:uijr?t\:ﬁ_lue_z ,Io"(‘j also for afb'”tafytf"?"te this symmetric and traceless with respect to the Lorentz indices
ensities, but note Mat tis INtroduces an uncertaimy o the, and ., D, is the covariant derivative an@d,, the gluonic

evaluation of the OPE. All the parameters not specified so f ield strength tensor. In principle, composite operators mix

?hr_e te;]ke_n fr_orré Ref\[/lls] and listed in Table |. We discuss |, ger the renormalization group, if they have the same quan-
IS choice In Sec. V1. tum numberg38]. To study that mixing we have to decom-

bIUS;ing Ilzqsl’(tz?h (2'8)’t (g‘? (3.Ef3){h(3.9)_l(3.1]) v(\j/e arei ose Eq(3.19 in a flavor singlet part which mixes with the
avle to calculate the contribution of the scaiar condensates éuonic operator(3.15 and a flavor nonsinglet part which

the LHS of Eq.(2.15. In the next subsection we discuss the
contribution of the twist-2 condensates wilks 4.

STi(uy,D,u+dy,D,d) (3.14

does not mix. For the energy region of interest, i.e., roughly
about the masses @f and w meson, we have to deal with

three active flavors. Therefore, we decompose(Bd.4) ac-
B. Twist-2 spin-2 condensates cording to

In vacuum only scalar condensates contribute to the
current-current correlator since there is no Lorentz vector 1
which can account for the spin of a nonscalar condensate. utd=z[2(u+td+s)+(u+d-29)], (3.1
Contrary to the vacuum case, in a nuclear medium the bary-
onic current can yield the spin. Using the approximation

(3.7) we find for spin-2 condensates whereu is an abbreviation fouy,D,u, etc. Renormaliza-
3 tion group mixing applies to+d+s) and G, i.e., sche-
X K % matically
O, ~4J'Q N(K)| O JN K)).
(Oun=4 ]\ @m3 g, (NOIOwING)

(3.12

In this approximation the four-momentum of the nucleon
accounts for the spin of the condensate. Thus we get

1 2
u+d—>§[2(u+d+s+G)+(u+d—23)]=u+d+ §G.
(3.17

. . 9ur > The contribution of the twist-2 spin-2 condensates to the
(N(K)[ O, IN(K))~ Kk, = = =My =:S,,(K). (313 current-current correlata®.1) can be written as

Note that the nonscalar operators are traceless with respectto [14=47=2(q)
the Lorentz indices. r

_ Expectation values of twist-2 condensates with respect to _ J dk ( 1)2 S ps=20=2q k)
single nucleon states as they appear in Bql2 are thor- K =ke (2m)3 2E, | 2 g a,
oughly studied in deep inelastic scatteriii)S), albeit for a
somewhat different kinematical situation. We can utilize the (3.18
results obtained there for our case at hand—as already
pointed out in Refd26,27,3Q. Therefore, we will not give a  with the twist-2 spin-2 contribution to the forward scattering
detailed calculation for the contributions of these condenamplitude between a nucleon and a quark current,
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TABLE Il. Relevant coefficient functlonﬁif , taken from Ref.
[36] and moments of parton distributiord, calculated from Ref.
[37] for u?=1 Ge\~.

TE,%,)S: 2,7= 2( q, k)

:ziJ d*xeax

cy, 1.013 o 1.171 Cls 1.316
XANCK)[To(X) v, (X) (0) ¥, 4(0) IN(K) ) s=2 =2 C‘g,z 0.050 0%4 0.030 C‘;},e 0.022
(3.19 Cg , —0.042 Cg“ —0.063 cé,6 —0.060
cf,  0.057 ce, 0.023 cgs 0.012
The latter quantity is calculated in R¢85] for the DIS case. ALte 112 AUt 0.11 AUt 0.03
Note that the factor 1/2 in the definition of the current AG 0.83 AC 0.04 AC 0.01
. . . . 2 4 6
(2.2—which enters Eq(2.1) quadratically—is not contained
in the definition of the forward scattering amplitude, but is
given in Eq.(3.18 explicitly. 4
The strategy to utilize the DIS results for the forward Bi=— — > CLA) (3.29
scattering amplitud€3.19 is the following: We make a gen- Q- ’
eral ansatz for this amplitude, specify it to the DIS case,
match it with the calculations of Reff35], and determine in
. - and
this way the unknown quantities of the general ansatz.
The Lorentz structure of the forward scattering amplitude
(3.19 must be built up from the tensag,,, the four- 4 i
momentumq of the quark current, and the tensgy,,(k), A @ Z L Az, 3.29

defined in Eq(3.13. In addition, the amplitude has to obey

current conservation. Finally, it must be symmetric with re-

spect to an exchange of the Lorentz indices. A general ansatith the process independent coefficient funct@hn and
which fulfills all requirements is the (n— 1)th momentA!, of the distribution of the partonin

the nucleon. Expressmns for the former can be found, e.g., in
Ref. [36] including a, corrections: The latter is given by
[30]

TS 27 2(a.k)=B4[q*

nv

S,..(K)—0%0,9S, (k)
—0°0,9°S,4(K) +9,,0°9%0”S,5(K)]
v o mv (e9¢]

— 2 q2ghB 1 —
+B2(9,9,~9,,099"S,4(k) (3.20 A,‘f=2f0dxx”‘lw(x,uz)w(x.uz)] (3.26
with so far arbitrary coefficient8, and B, which might
depend org? andq-k.

The kinematical situation of DIS is such that both for quarks and
—q? andq-k are large with the Bjorken variabbe= — g2/
(29-k) fixed. In this limit only thek,k, term of S, (k) has
to be taken into accouRtWe get

1
ASZZL dxX""1G(x, u?) (3.27)

TWs=27=2P8(q k) = —q*(q-k)%(B4d,,, + Boe,,,)

(321 for gluons. The parton distributiong E andG at the renor-
, malization scaleu? are parametrized in Reff37].
with the tensor¢35] Now we collect all the obtained information to get the
contribution of the twist-2 spin-2 condensates to the current-
€= 0u— q_g? (3.2  current correlator:
and Hd:4,7':2(q):f d3k T(U+d)S:2,T:2(q k)
ry K<ke (27)° 2B H '
k,k, k,q,+k, 3.2
d,,=—— Zlan L e (323 (329
(9-k) q-k

By comparison of Eq(3.21) with Eqg. (2.4) of Ref.[35] we
find

°Note that this is not true for the case we are actually interested injon cl,

Because the three- momentuqnmlght be small, we also have to
take into account thg,,, term. However, for the determination of
the coefficient88,; andB, this does not matter.

with

SNote that our notationbasically adopted from Ref35]) is
somewhat different from the one of R§86]: Our coefficient func-
» is identical toC21 of Ref.[36] with n=N. The longitudi-
nal coeff|C|ent functions differ by a factor EL n—ZCL] , Where
again the former is our coefficient function and the latter the one of
Ref. [36].



PRC 58 QCD SUM RULES FOR VECTOR MESONS IN NUCLEAR MEDIUM 2945
d)s=2,=2 d)s=4,=2
T 72Xk T V4 %a.k)
- e [0S, 0,078,400~ 0,875, (K) - (0,0,8°0~ 0,7670,6°~ 0,°5°q, ¢°
q4 q v q/.Lq va q.9 ma qu q,u.quq q gp. q-q.q9 9,9 q,LLq
anfB q pu+d 2 G AG any Bad 8 q u+d 2 G AG
+0u0°07S,p(K)]| C2 A2+ 3C2 A +9,79,707)070%S0p,6(K)| C24 Az "+ 3C24 A
_i _ 2ya%afsS. .(k _E _ 2yq2afg7a’s K
q6(q,uqv g,lLVq )q q a,B( ) qu(q/.LqV g,uvq )q q7q’q aBy&( )

(3.29

2 2
X CE,2A5+“+§CE,2AS), x (CE,4—Cg,4)A5+d+§(Cf,4—c(23,4)Af), (3.39

where we have taken into account that the gluonic contribuwhere the tensoB,;,s(k) is defined in Eq(3.31) and the
tion enters with a factor 2/3 according to E@.17. The  coefficient functions and parton distribution moments are
coefficient functions and the moments of the parton distribulisted in Table II.

tions are listed in Table Il. We note in passing that the mo-
mentum integrations in E43.28 can be performed analyti-
cally. Since it is not illuminating to present the lengthy result

of these integrations we stick to the compact form given bycallc:::;:g{li)c/)nwj tltjgn dE?ng;\ZiglngeGi?;1V\gs\§vgor?geegsc:z§r?§.erl1:s?art§sr
Egs.(3.28 and(3.29. P =

with twist 7=4 and spins=2 (besides the higher twist con-
densates which are scalar and have already been discussed in
Sec. lll A). These condensates d89—-42

The twist-2 spin-4 condensates can be treated in the same
way as the twist-2 spin-2 condensates. We use the approxi-

D. Twist-4 spin-2 condensates

C. Twist-2 spin-4 condensates

mation (3.7) to find
3
B, (NRIO,aIN(K).
(3.30

<O/.wl<}\>~4j

K| <kg

For the expectation value with respect to a single nucleon

state we get the decomposition
<N(IZ)|O,MVK}\|N(IZ)>Nk,lLkaKk)\

1
- g(k#kvg,dmﬁwL 5 permutations

1 —
0,,,=ST@? 7 (Uuy,ys\uTdy, yshd)
X (U7, 751 2uF dy,751°d), (3.36

02,=ST? = Uy, A u+Tyad) S Gy
uv' T g 4 (uyM u YM ) 4 qy,ATq,
g=u,d,s
(3.37

R R = o
O,%,V::STIQ Z (U{D,u7GV&}ya75u+d{DMvaa}'ya’)/Sd)i
(3.39

1 — _
STg Z(U[D,u1Gva]’yau+d[D,u.7eva]'yad)a (339

1
+—(9,,9,0My+2 permutations
487+
and
=:S,uan(K). (3.31) 1
8T = (muuD ,D,u+mydD ,D,d), 3.4
The relevant operators are 4 (myub,D,u+mydD,D,d) (340
STi(uy,D,D, Dyu+dy,D, D, D,d) (337 Where the minus sign in E43.36 corresponds to the and
the plus sign to thes meson. For an unknown reason the
and condensate given in E¢3.39 actually does not contribute to
the current-current correlatp40]; we have listed it here for
STGD, DG, (3.33 the sake of completeness, only. In the following we will

neglect the condensatd.40), since it is proportional to the
very small light quark masses and therefore suppressed. Ad-
ditionally, we will neglect the contribution of the strange
quarks to the nucleon expectation values of the operators
given aboveg41].

As in the previous subsections we use the Fermi gas ap-
proximation which for the case of spin-2 condensates we
have already given in Eq3.12. We can also use the Lor-
entz decomposition from E¢3.13:

By comparison with the DIS calculations we find

3
d>k T(u+d)s:4,r:2

d=6,7=2 —
H,uy (Q) LQ|SKF (277_)3 2Ek 3% (q;k)

(3.39

with
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- .
where the index = 1,2g denotes the twist-4 operators speci-
fied in Egs.(3.36—(3.39.% 1 o g

In Ref.[41] it is thoroughly discussed how the expecta- A%=7 (Ky+Ka), (3.50
tion values of these condensates with respect to single
nucleon states can be extracted from DIS experiments. Tahere the plus sign in E¢3.48 corresponds to the and the
determine the contribution of these condensates to theinus sign to thew meson. The paramete@ are given by
current-current correlator we follow the same strategy as dethe expectation values of the twist-4 condensd®:86)—
scribed in Sec. Il B, i.e., (3.38 with respect to a single proton stafe [see Egs.

(3.36—(3.39, (3.4D)]:

d3k
d=6,7=4, 1\ _ s=2,7=4 _ _ _
M, =4 f“qng 2miag, w (@K (P(K)|STg?Uy,, 75A2u(Uy, ysh U+ dy, y5hd)|p(K))

3.4
(3.42 =:K!S,,(K), (3.5

with the twist-4 spin-2 contribution to the forward scattering = m— va. i <a

amplitude between a nucleon and the respective isospin cur-  (P(K)[S7g*uy, Au(uy,\*u+dy,\%d)[p(k))

rent (2.2 :3K55;w(k)’ (3.52

Ts=27=4 k . ~
(@O (p(k)|STigu{D,,G, .} y*ysulp(k))=:KIS, (k)
(3.53

=i [ AN T 001 (O INK) s |
and respective definitions fat);, j=1,2g. Furthermore,

(3.43 . .
. P(K)|STg%u,, ysh*udy, ysh2d|p(K)) = K¢S, (K).
With the general ansafsee Eq(3.20] { | e sl ) udm (3.54)
T32774(q,k) =B1[0*S,..(K) — 9%0,,9%S,a(K) Since the flavor structure ¢3¢ andK_ﬁ'29 are governed by
” 2B the d quark and thau quark, respectively, it seems reason-
—0°9,9S,4(K) +9,,9°9°9"S,5(K)] able to assume that the ratio is always the saig
+B2(0,8,~0,,0%)9°0°S,4(k)  (3.49 Ki Ki K§ 355
Kﬁ_Kﬁ_Kg_-ﬂ- .

we get for the kinematical situation of DIS

o ~ ~ Within that assumption, the ratjg and the quantitieB; and
T(l//)s 2,7=2 DIS ,k — _n2 .k 2 B.d +B.e o 1
ry (Q.K)==0%a-)%(Bad,, + By “”()3 45 Bz for pandw can be determined from the DIS data. As
' expected from the valence quark decomposition of the pro-

which has to be compared with E(®) from Ref.[41]. We  ton one finds

end up with 5~05 (3.56
~ 4 5 1 o
512? Alt §A2+ o Ag) (3.46 within a small error. Furthermore we get
~ 1
and 812?[18(01—02)—(11”1)&1,(,] (3.57)
B _ 4 1A2 3Ag 34 and
. B,=—56c3, (3.58
Based on a flavor decomposition new parametéj;sare q

introduced in Ref[41] in terms of which the coefficiental
can be expressed. We refer to Refl] for details and only
give the final result for our isospin averaged coefficieflts

14 can be found

where the constants, i=1,2,3, as well aK
in Table I.
In total, the contribution of the twist-4 spin-2 operators is
1 given by Egs.(3.42), (3.44), (3.57), (3.58. We note that a
At="TKI+Ki-(1x 1)KL, (3.48  difference between theand thew meson within the OPE up
4 to dimensionalityd=6 only shows up for the twist-4 con-
densates and is expressed here in terms of the quétity
To summarize, we have presented in this section the op-
“The coefficientsAl should not be confused with the parton dis- erator product expansion of the current-current correlator
tribution momentsA!, . (2.1 including condensates up to dimensionality 6. The
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general form for the transverse and longitudinal part of the 1 o Q2 < (§D)
current-current correlator which enter E@.15 is given by —— |1+ = |n<—2) +> LM—
8m T M n Q
2 0,02 .
H?T_E(Qz 2) Qz{ 1+ In(Q ) = T_CT,L(qZ)
,u
> 2 o Im Hhad(s q )
C?’,L(qz) Q_ j
+; —or | (3.59 T ,azds sT0iestien? 49

Therefore we need to know the Borel transformsf ¢?)
=(Q%+s) # andf(Q?) =In Q2 From the definition(4.2) it

where the coefficients] | have to be deduced from the vari- .
' s easy to derivg38]

ous contributions discussed in this section. We note that co
trary to the vacuum cagd@1,23 and to the in-medium case

- ~ 1 1
with vanishing three-momenturg [26,24,43,27,29,15,31 f(Q%)=(Q%+s) P=f(M?)= ) We*”\"z
for the general casg+ 0 there are not only ©* and 1Q° (4.9
terms in Eq.(3.59 but also higher order terms, even when
we restrict the OPE td<6 condensates. Appropriate pow- and
ers ofq in the numerator serve to achieve the correct overall 5 s %o
dimension. We will come back to that point in Sec. V. f(Q9)=In Q*=f(M*)=—-1. (4.5
Applying the Borel transformation to E¢4.3) we get
IV. QCD SUM RULE .
: 1 as 1 cr.(99)
In the last section we have calculated the LHS of Eqg. 8.2 1+? +E mv
(2.19 within the operator product expansion and some addi- n
tional assumptions. We postpone the discussion of these as- had
, : 0.0
sumptions to Sec. VI and present here some general ideas _2_
about the calculation of the RHS of E®.15 and about the M
use of this equation. had, . =2
If one has a model at hand which yields the current- _ 1 fw dslm Iri(s.a9) —siM?
current correlator for arbitrary positive energy and arbitrary m™? —g? S+I6
three-momentum, one could directly use E215 to judge (4.6)

the reliability of this model. In practice, however, the situa-
tion is such that one might have a model for the lowestt is useful to write the RHS of the last equation in a form,
hadronic resonance in the respective isospin channel, i.e., fQyhere it is more obvious that this expression is actually real

p and w, respectively, but one usually has no model whichyalued. To this aim we split 1%+ i €) into a principal value
remains valid for arbitrary high energies. In the dispersiongnd as function:

integral of Eq.(2.15 higher lying resonances are suppressed,
but only by a factor B®. Clearly, it is desirable to achieve a

larger suppression of the part of the hadronic spectral func-
tion on which one has less access. With this goal, a Borel

transformation(21,38 can be applied to Eq2.15. For an  Using this decomposition we find the QCD sum rule
arbitrary functionf(Q?) the Borel transformation is defined

1
s+ie

(4.7)

S .
:§2+—62—|7T5(S).

as 1 s 1 cju(q)
el e DY R VL
B
f(Q9)—T(M?) 4.2 ReHHAD(O,qZ)
M2
with S 2
wsz ds Im I1%(s,q?) o 2e*S"\".
. d \N
B:= lim 2 (—) . (42 (4.9
QZHOOYNHOC F(N) ( Q ) Q2 ( )

We observe that higher resonance states are now exponen-
tially suppressed. Additionally we find aslksuppression.
The latter is due to the fact that we have applied the Borel

Q2%/N=:M2=fixed

whereM is the so-called Borel mass.
We will apply the Borel transformation tgsee Egs.

(2.19, (3.59]

transformation to 192 times Eq.(2.15 instead of directly
applying it to Eq.(2.15. On the one hand, such an additional
suppression factor is desirable. On the other hand, we have to
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pay a price for this, namely, that the subtraction constant 0.015
1112%0,9%) has not dropped out in contrast to the other sub-
traction constantr, L(q ). Had we applied the Borel trans-
formation to 1Q* times Eq.(2.15), the latter would also
have survived. This is of course easy to understand from the ;
point of view of subtracted dispersion relations: the suppres- =

0.0145

sion of high-energy contributions has to be compensated for 0.014
by a more detailed knowledge of the function at the subtrac-
tion point. We note that it is easy to get from E4.8) also

0.0135 |

the direct Borel transformation of Ed2.15 without the
1/Q? factor. We simply have to multiply Eq(4.8) by
(—M?) and differentiate with respect td? afterwards. Us-

0.013

ing this recipe the subtraction constab#’’(0,g?) obviously b4 08 08 1 12 14 18 18 2
would drop out. Also the %/ suppression in the integral of M2 [Gev?]
Eq. (4.8 would disappear.

Having achieved a reasonable suppression of the energy FIG. 1. Transverse part of the LHS of E¢.8) as a function of
region above the lowest lying resonance the integral in Eqthe Borel mass squared? for three-momentag| =0, 0.5, 1 GeV
(4.8) is no longer sensitive to the details of the hadronic(top to bottom and forp (full lines) and @ mesongdashed lines
spectral function in that region. For high energies the quark
structure of the current-current correlator is resolved. QCDObviously, the exponential suppression in E4.11) works
perturbation theory becomes applicable yielding only if the Borel masdV is not too large. On the other hand,
the OPE expression on the LHS of E4.11) gives a reliable
prescription, ifM is not too small, since we have neglected
higher order condensates which are accompanied by higher
orders in 1M2. At best, the sum rulé.11) is valid inside of
a Borel window

had &s
Im I15 (sq )= - 1+ - for large s. (4.9

These considerations suggest the ansatz

- 2 2 M2
Im T15%(s,62) = © (so—)Im T} (5,G?) Minin=M*=M e (4.12

-s ag where M2, has to be determined such that the neglected

+0(s—so) 87 1+? » (410 condensates do not spoil the validity of the LHS of Eqg.

(4.11), while M2, has to be determined such that the sup-
wheres, denotes the threshold between the low energy repression of the details in the high-energy structure of the
gion described by a spectral function for the lowest lyingcurrent-current correlator becomes effective. Of course, it is
resonance IniI"**and the high-energy region described by anot cleara priori, if SLICh a Borel wmdow exists at all. It
continuum calculated from perturbative QCD. Of course, thenight happen thaM?2,, is larger thanM?,. In this worst
high-energy behavior given in E4.10 is only an approxi- case, the sum rulgt.11) would be useless.
mation on the true spectral function for the current-current The strategy to determine the Borel window is as follows
correlator. Also the rapid crossover in E@.10 from the [23].
resonance to the continuum region is not realistic. However, (i) For M2 we require that for this Borel mass the abso-
exactly here the suppression factors discussed above shouide value of the contribution of thd=6 condensates is a
become effective making a more detailed description of theertain percentage of the total absolute value of the LHS of
cross-over and the high-energy region insignificant. Eq. (4.9). Since thed=6 condensates have the highest order

The price we have to pay for the simple decompositionin mass which is taken into account, one might expect that
(4.10 is the appearance of a new paramesdgr the con- the relative contribution of the neglected condensates is
tinuum threshold, which in general depends on the threemuch less thap. Following Ref.[23] we takep=10%, i.e.,
momentumﬁ and on the nuclear density. We will elaborate

later on the determination . 1 CH 6(qz)
Inserting Eq.(4.10 into Eq. (4.8 yields zn: I'(n) (MZ)n
min

1 1 (g?) 1 a 1 ct(q?)
—— 1+ 1— e Sol@)/M? — 0= |1+ =+ —— .
g’ )« Y2 o T 0-lg= (! 2 ) (MR
ReII'(0,9%) (4.13
-
M (i) For M2, we require that for this Borel mass the ab-
1 (q ) solute value of the continuum contribution to the integral in
— 2 9 4s Im T3 (s, q —SIM7 Eg. (4.8 is a certain percentagg of the total absolute value

(4.11

of the integral. Again we follow Ref[23] and takep’
=50%, i.e.,
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0.016

0.0155

l.h.s.

0.015

0.0145

0014 1 1 1 1 1 1 1
04 0.6 0.8 1 1.2 14 1.6 1.8 2
M2 [Gev?]

FIG. 2. Longitudinal part of the LHS of Ed4.8) as a function

of the Borel mass squarell? for three-momentdq|=0, 0.5, 1
GeV (bottom to top and for p (full lines) and » mesons(dashed
lines).

2
e—s/Mmax

f_azds(s— so)Im IF(s,0%) o7

oo N S 2
_ had 2 —s/Ma
_0% f_a2d5|m HT,L(S’q ) me +
(4.19
By insertion of the decompositiof#.10 we get
1

8

a -,
1+ s e So(a?)/M rznax
a

— So(dz) res ~2 S —s/M?
= f—iz dsIm HT,L(S’q ) me max,
(4.15

We note in passing that the sign of f’,‘_d and therefore
also the sign of InfIT} is always negativgsee Eqs(4.9),

(2.12)].
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does not necessarily mean that there is not much difference
in their spectral functions. It only means that the integrated
quantity given in Eq(4.1J) (to be rigorous, the RHS of that
equation is nearly the same for both mesons. Nonetheless,
the fact that the sum rulé4.8) is nearly insensitive to the
choice for the meson provides a strong constraint on a had-
ronic model which aims at a description pfand w on the
same footing, like, e.g., Ref15].

We also observe that the dependence of the LHS of the
sum rule(4.8) on the three—momentunﬁis rather weak. This
also constrains the hadronic model. Again, we stress that this
does not mean that the dependence of the spectral function
on the three-momentum is weak.

Suppose now that one has a hadronic model at hand

which yields at least the imaginary part Ej’f(s,ﬁz) for the
respective isospin channel at finite nuclear density. Examples
can be found in Refs[9-15,17. Then, for given nuclear
density and three—momentu&mne can utilize the sum rule
(4.11) and the results shown in Figs. 1 and 2 as a consistency
check for the hadronic model in the following wésee also
Ref.[31]).

(i) Choose a continuum threshofy and a subtraction
constant RET(0,g%).

(i) Calculate the limits of the Borel window according to
Egs.(4.13 and(4.15.

(iii) Calculate the relative deviatianof the RHS from the
LHS of the sum rule(4.11), averaged over the Borel win-
dow, i.e., schematically

2
r= szmaXd(MZ)u— RHS/LHS/AM? (4.1

min
with

AM2=MZ_—M2

min-

(4.17

The LHS function can be taken from Figs. 1 and 2.
(iv) Tune the “fit parameters’s, and ReH?f(O,ﬁZ) such
that the deviationm becomes minimal.

Obviously, the lower limit of the Borel window depends  If this optimalr is reasonably small and the Borel win-
only on the condensates calculated in Sec. lll. In contrast tdow not too small, one might conclude that the considered
that, the upper limit depends on the choice for the continuunfiadronic model is in agreement with the QCD sum rule for
thresholds, and on the hadronic model which yieldﬂiﬁf. the chosen nuclear density and three-momenﬁum
In general, both limits may depend on the three-momentum We close this section with some remarks on the respective

g and on the nuclear density.

size of the “fit parameters’s, and ReHrT‘fE(O,ﬁz). Clearly,

Figure 1 shows the transverse component of the LHS ofhe more fit parameters we have the less restrictive is the sum

Eq. (4.8 as a function of the Borel mass squaré, for
various values of three-momentum squaréﬂ, and for p

rule for the hadronic model which should be checked. At
least, it is therefore important to get an idea about the size

and w meson. For the nuclear density we have chosen thand the possible influence of the fit parameters.

nuclear saturation density of 0.17 ffh Figure 2 shows the

In vacuum the continuum threshok} turns out to be

same for the longitudinal component. On the left hand sideétbout 1-1.6 Ge¥/[31,15,23. At least it has to be below the

both figures start withM?=M?2. as deduced from Eq.

(4.13. Obviously, the difference betwegnand w meson is
only very small and vanishes with risiig?. The latter ob-

exited states op and w. Model calculations suggest that the
threshold decreases with increasing deng2$,29,15,31

Concerning the subtraction constant R%f(o,ﬁz) it is

servation can be easily understood recalling that the onlymportant to note that within the Fermi gas approximation it
difference in the OPE’s fop and w comes from the twist-4 can be rigorously calculated for vanishing three-momentum
spin-2 condensates which are suppressed at least by a fac{@7,15. Here it turned out that it is so small that it would not

1/M®. Hence, the suppression becomes more effective witchange the results drastically, if it is simply neglected. Un-
rising M2. Note that the small difference betweprandw  fortunately, the expectation that it could be neglected also for
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0.002 — T Of course, the most fortunate situation would be if the
considered hadronic model already provides a value for
g 0001y RelI£3(0,g). Then, only the continuum threshalg would
52 remain as a fit parameter.
o 0
&
o -0.001 | V. LINEAR DENSITY APPROXIMATION
2 -0

Obviously, the contributions of the OPE presented in Sec.
Il are quite unillustrative, simply due to its complexity. To
get more insight in the various contributions we restrict our-
selves in this section to the parts which are at most linear in
the nuclear density, i.e., cubic in the Fermi momentum. Re-
calling that we have evaluated all in-medium condensates
using the Fermi gas approximati@B.7) we have neglected
nucleon-nucleon correlations anyway which are quadratic in

FIG. 3. Real part of isospin averaqu\] forward scattering the density. Thus, the reSUItS presented in SeC. I” are at beSt
amplitude as a function of the photon energy in the rest frame of th€orrect up to Fermi momentum to the power of 5, i.e., up to
nucleon[rescaled withpy /(2myM?), see text for details o(p,‘?,B). Therefore, we do not lose too much information, if

we restrict ourselves here to the linear density approxima-

finite three-momentum is presumably not justified. If we usetion. To put it in physical terms, what we neglect further on
the full electromagnetic current in E¢R.2) instead of a part is the Fermi motion of the nucleons. Anyway, for concrete
of it with well-defined isospin, then within the Fermi gas calculations we can use the full results presented above. We
approximation the transverse part of the subtraction constamiote in passing that actually all the required integrals over
would simply be the real part of the forward scattering am-the Fermi sphere can be calculated analytically. The results,

plitude T(G,E) of a (rea) photon with momentunﬁ on a however, are lengthy and unillustrative. Thus, for pedagogi-

nucleon with momentunk averaged over the Fermi sphere cal reasons it is useful to discuss the linear density case
ie.
' 3

4 —
d3k - f (2m)3 2E

[k|<kg ™ k
—3—(277) oE, Re T(q,k)

-0.002

-0.008

-0.004

0 005 01 015 02 025 03 035 04 045 05
E, [GeV]

(N(K)| OIN(K))

Re H?”‘(O,d2)=4ja
|k|<kg

PN
N A Hﬂ(N(O)IOIN(O»- (5.1
~ Z_mN Re T(q,O), (4.18) )
In this case, the coefficients?vL(qz) introduced in Eq.

where we have used the linear density approximatichh (3,59 are given by
next sectiohto obtain the last expression. It is reasonable to

assume that RHQ?S(O,C?) is of the same order of magnitude n (aZ)ZCQ’d:“r((?) +cld=6(g?) (5.2)

. CrL TL
as Rell$"(0,g%). Thus, to get an idea about the size of the
corresponding quantity in the sum rui.11) we have plot- with the contributions from thel=4 condensates to the

ted in Fig. 3 the quantity transverse part

1 N ReT(d 0) (4.19 n=2d=4_ 1 /as 2 oy

M2 2my (a, : Cr =52\ C 0+ Mq(Aa)o
as a function of the photon eneréy,= |g| for nuclear satu- . my Lo Ml g §Cq
ration density and a typical value for the Borel mabs, PN 27 2 T4 |2 227 o -L2
=1 GeV. We have used the model for photoproduction pre-
sented in Ref[44] to obtain the real part of the isospin 2 sl 3.
averaged photon-nucleon forward scattering amplitude. + §A2 Caa §CL,2 ' 5.3

Comparing the absolute sizes in Figs. 1 and 3 we find indeed

that the subtraction constant might be negligible cﬁt#o, n=3,d=4(d’2)
but not for arbitrary three-momentum. Especially, if we are T

interested in the dependence on the three-momentum we SN | d g q 2 5 G G
have to take the subtraction constant into account, since the = ~PNG" 5 | Az (Cz2m CLo) + 3A2(C2=Cr) |,
variation of the curves in Fig. 1 with three-momentum is of

the same order of magnitude as the quantity plotted in Fig. 3. (5.9

Concerning the longitudinal part of the subtraction constant o
we cannot compare with photon-nucleon scattering, sinc@nd to the longitudinal part
there are no real longitudinal photons. Therefore, we refrain h2d_4

. . ; =2d=4
from presenting any estimates for this case. CL cT , (5.5
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—3d=4, > -, My
@) = pna® A5+dcﬁ,z+3

2
SASCEy|
(5.6)

and the corresponding contributions from the 6 conden-
sates,

112 — 120y —
ch=s8d=6___"" . 7T<qq>2+ PN| — o — kasm{(qQ)g
T g1 *%s 0 81 m, s
5m3, 3
- e Set)
2 3
+ §Af C§,4_ ECEA)
9mN 1 1 1
—5 [C17Ca— 5Cs— g1 DKyl 57
I N gmﬁ 10
C?4’d6(q2):PNq2{T Afd(cg,zﬁgcﬁA)

2 10
+ 28] o, et
1 1 1
—9my|cy—Co— 503— E(lt DKyl (s

(5.9

o7 *7%a?)

— 2}y AY (G CEL0+ SAS(CE,CE ),
(5.9
and
Cn-3d-6_ cn=3d-6, (5.10

o a?)

3

. (md 2
:quZ{T A2+d(cg,4_ 5Cl )+ §AE(C§,4_ 5CE4)
+ 3mNC3] : (5.11)
- - 2
el ~>47%(g?) =2png*my A2+dcﬂ,4+ §A$C(L;,4}'
(5.12

All coefficients which are not given explicitly above vanish.
As always, thex sign which accompanies thﬁd term cor-
responds tep and w.
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Obviously, there are contributions from numerous con-
densates to each of the coefficients presented above. On in-
spection of the parameters given in Tables | and Il we can
work out which condensates dominate which coefficient. Ne-
glecting less important condensates we find

1l /«a m
n=2d=4_ .n=2d=4_ ~ [ %s > N pu+d
CT CL 24< ,ﬂ_G >O+pN 4 A2 ’
(5.13
o D)= —pnaP o AR, (5.14
Sl @ (619
112 —
C$:3‘d:6=CE:3’d:6“—ﬁkasﬂqcﬁg
— PN ﬁm_qKas77<QQ>Ov (5.16
n=4d=6, 32 32 gmﬁ‘ u+d 1
cr 7 P(g9)~pnNd 2 Ay " —9my €17 C2~ 308
1 1
BETE S LTI (5.17
o7 0@~ —2pa'myAT Y, (518
3
n=4d=6, 22 = N u+d
el (@) =pnat| 5 Ag TH3myes |, (519

|l ™*40(q%)] <[e >4 7). (5.20
Especially we have neglected all corrections to the twist-2
condensates, i.e., we have approximatigq, by 1 and ne-
glected all otherC; | (see Ref[36]). For vanishing three-

momentumﬁ the density dependent terms are dominated by
the twist-2 spin-2 quark condensate and the scalar four-quark

condensate. Concerning tﬁé—terms it is remarkable that the
twist-4 condensates are equally important as the twist-2
spin-4 quark condensates. Of course, both are suppressed for
large Borel masses as compared to tde4) terms. Thus,

for the transverse part the twist-2 spin-2 quark condensate

governs theﬁz-terms. For the longitudinal direction the situ-
ation is more involved, since thel&4) coefficient given in
Eq. (5.6 is quite small. Therefore, we have competing con-
tributions from Eqgs(5.6) and (5.19.

We stress that in principle it is not necessary to perform
the approximations which have led from E¢5.3—(5.12) to
(5.13—(5.20. Of course, one can use the exact expressions
for the coefficients. The purpose here was only to figure out
the condensates which have the most influence on the coef-

We immediately observe that the scalar condensates coffigients.
tribute only to the three-momentum independent coefficients  sjnce we have nonvanishing coefficients upnte5 we

ch1297* and ¢} 7% These coefficients are identical for

transverse and longitudinal part, since@tco we cannot

find contributions up t@(1/Q%. One may suspect that it is
inconsistent to keep terms of ordef1/Q®) and higher, since

distinguish between transverse and longitudinal directionsve have neglectedd= 8) condensates which would contrib-

[24].

ute ato(1/Q8). However, this is misleading, since the de-
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pendence on the three—momentuinis different in both
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cases. Schematically the neglected higher order condensates

would contribute as

(d=8) condensat @ q*
QS #"1‘#@4‘#@4‘"‘ , (56.21

PRC 58
with

P (!

dy%d=e= & : (5.26

where # denotes arbitrary dimensionless numbers which do

not depend org. Thus, e.g.,
condensates are actuathf1/Q'%, while the corresponding
terms of the condensates taken into accountogigQ?®).

theﬁz terms of the neglected Let us discuss now the range of validity for the new sum

rules(5.23 and(5.25. As pointed out in Sec. lll it is crucial
to find a non-vanishing Borel window where the validity of

To work out the dependence of the current-current corihe sum rule is guaranteed inside of this window. To find the

relator on the three-momentuﬁw more explicitly we study

Eq. (4.8 in the vicinity of q=0. For vanishing three-
momentum we find

1 as Crl:2,d:4 Cn:3,d:6
e Y L TV
_ ReIl"™{0,0
-
- # f:ds Im 11" s,0) sziez g sIM?
(5.22

lower limit of this window we have compared the contribu-
tion of the highest order condensates to the LHS of (B®)
with the total resul{see Eq.4.13]. In Eq. (5.22 we have
four different orders in M?2, namely zeroth to third ordér.
Thus, it is no problem to compare the third order contribu-
tion to the total result. In Eq5.23 we are left with third and
fourth order in 1M?, only. Thus, the number of orders we
have access on is already diminished. This leads to a lower
limit of the Borel window of M2, ~3 Ge\? for the trans-
verse component of sum ru(®.23 which is already much
higher than the one for sum rul&.22: MZ;,~0.6 Ge\~.

For the longitudinal component of sum rulg.23 we even
find M2, ~10 Ge\2. As already discussed above tifepart

of the (d=4) contribution to the longitudinal paf6.6) is

We have skipped the labdl,L, since there are no distinct quite small. Therefore, only for very large values of the
directions at vanishing three-momentum. Next we differenti-Borel mass the d=4) contribution can overwhelm thed(

ate Eq.(4.8) with respect tog? and putq=0 afterwards.
This yields

n=3d=4 n=4d=6
ClT,L dT,L

2M*©

6M?8

d (ReH??‘E(o,&2>
d(g? M?

1 * - S 2

_ dslﬁﬁﬂhw S, 2 e—yM
M2 f&2 T'L( a°) s2+ €2 * o
q=

(5.23
with

n=3d=4,32
dn:3,d:4_CTr|— (q )
T,L - =5 )

q

n=4d=6, 32
dn:4,d:6_CTvL (q )
T,L - ) .

(5.29
In the same way we find by differentiating twice
dn:5d:6

T,L
PYIVES

_ & [RellFf(0g?)
~d(g?)? M?

1
YE

fazds Im 11§%(s,q%)

S e—s/M2
s+ €

q=0

(5.25

=6) contribution. Both for the longitudinal and the trans-
verse part we find that the respective lower limit of the Borel
window for sum rule(5.23 is much higher than the one for
Eq. (5.22. If the upper limit of the Borel window does not
rise in the same way, the sum rul®.23 would not be as
useful as Eq.5.22. To determine the upper limit of the
Borel window we would need, of course, a hadronic model.
For the most simple case, the approximation of the spectral
function by a#é function, it was found in Ref[30] that the
upper limit of the Borel window also rises. Thus, also the
sum rule(5.23 might be useful as a consistency check for
hadronic models. We note, however, that the definition of the
Borel window in Ref.[30] differs from ours. For Eq(5.25

the situation is even worse. There we have only access on
one order in 2. Thus, we cannot determine a lower limit
for the Borel window. The sum rulé.25 is therefore use-
less.

We stress again that the approximations performed in this
section are not mandatory. The purpose of these approxima-
tions was to obtain more qualitative insight in the importance
of the various contributions and in the dependence on the

three—momentuntﬁ. To check the consistency of a hadronic
model with the QCD sum rul¢4.11) the OPE coefficients
should be deduced from the formulas presented in Sec. Ill.
Only if the hadronic model is also restricted to the linear
density case, would a direct comparison with the simplified
expressions be appropriate.

Note that the first order term vanishes. Strictly speaking it is
proportional to the light current quark mass squared which is neg-
ligibly small.
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VI. DISCUSSION OF THE ASSUMPTIONS the second problem we have no solution to offer so far.
. . A . . Without any better knowledge we use the vacuum value for
In this section we will discuss the various assumptions 2 . ) . .
- -k also at finite density. To get rid of this uncertainty one can

that have led to the condensate contributions calculated in; . .

. . ifferentiate the sum rul€4.8) with respect to the three-
Sec. lll. The basic assumption we have made for the evalu- s :
ation of in-medium condensates is the Fermi gas approximahomentum squared=. In this way, all scalar condensates
tion (3.7). Clearly, this approximation is only valid for not drop out, since they do not yielg-dependent contributions
too high densities. Of course, it would be of interest to quanto the OPE side of the sum rule. As already discussed in Sec.
tify this statement. Unfortunately this is hard to do within the V this differentiated sum rule results in a lower limit for the
OPE approach, since it is not clear how to calculate expeddorel window which is much higher than the one for the
tation values with respect to multinucleon states for arbitraryoriginal sum rule. This might diminish or even close the
nuclear densities. An idea about the importance of multiBorel window, i.e., the thus obtained sum rule might be less
nucleon states might be obtained from a comparison of théeliable or even useless. This clearly depends on the explicit
moments of parton distribution.26), (3.27) as deduced hadronic model under consideration.
from DIS experiments with nucleons on the one hand side A second possibility to deal with the uncertainty in the
and with nuclei on the other. This might be a direction ofdensity dependence of the four-quark condensate would be
future studies. Concerning the parton distributions in nucleto usex as a free “fit parameter” in the same way as the “fit

Within the framework of a hadronic model it is tedious (4.17. In contrast to the latterx does not depend on the
but possible to approximately take into account interaCtion?hree-momenturnﬁ Therefore. oncex is determined from a

of the vector meson with more than one nucl¢dr14,17. : ) . .
In Ref. [17] it was found that already at nuclear saturationflt of the OPE side to the hadronic model under consider-

density it is important to account for such processes. On th@tion, e.g., ag=0, then is fixed for arbitraryg. Nonethe-
other hand, presumably in every hadronic model one calfSs, one ”,‘,'ght be afraid that one now has too many “fit
distinguish between single and multinucleon interactionsParameters” so that effectively there remains no constraint

Therefore, it should be possible to compare the OPE calci®" the hadronic model under consideration. Fortunately the
lation with the hadronic model treated in a “single nucleon situation is not that bad. To see this one can count the num-

mode.” This comparison was, e.g., performed in Ras]  Per of orders in 2 one has on the OPE side of a sum rule.
for vanishing three-momentuuﬁL If in the framework of a -(I)—p !‘Sﬁfag:;?nseigpsf sisﬂI]aerngrmtEZrnotL?QS:ﬂ;ﬁrﬁ;fe :(;Jr:rs]?rgnts
hadronic model it turns out that interactions with more than P 9

: . one cannot learn anything from the sum rule. If the situation
one nucleon are important for the nuclear density under con- ything

sideration, then the QCD sum rule cannot serve to check th:énggilolgzzre\rlvgna;%lé?gﬁgge _qutzgogz?:'gtsegigcﬂ}gth:srgig'_c
consistency of the whole hadronic model but only of its re- . P

> . . uss as an example E¢p.22. For ImII"® we use the de-
f‘t&'cclgg?l tfcr)osnﬁtkinggr&riogsr?:res of the vector meson with On§0m|oositi0n(4.1(). On the LHS of Eq(5.22 we find four

. 2 . .
After these general considerations about the validity Oforders in 1M~ However, the size of the purely perturbative

the calculation of in-medium condensates we turn now to thgontnbutlon, i.e., the constant term, has already been used to

discussion of the accuracy in the determination of the differ—determme the high-en_ergy behavior in E.q'.lo)' Therefore,

of Sec. Ill A we have neglected there terms which are qua: - This ’r)as to be compa'red Wi.th the number O.f “.ﬁt
dratic in the light current quark masses, as well as pos- parameters. Asealready mentlone(: in S»ec. IV for vanishing
sible differences in the condensates of up and down quark&rée-momentung the quantity Rd]T?Ld(O’qz) can be calcu-

In view of the fact that the light current quark masses ardated rigorously within the Fermi gas approximati@v,15.
about 6 MeV, while the Borel window for the QCD sum rule Thus, even if one uses, and « as “fit parameters” one is
(4.8) starts at abouM?2, ~0.6 Ge\? (see Figs. 1,2 the ne-  Still in the situation that the number of constrain® is
glect of mj terms is very well justified. Also, a possible higher than the number of “fit parameters2). In addition,
difference between up and down quark condensate is prd.a hadronic modelis suggested to be reasonable by this sum
sumably small and anyway hard to disentangle in view of thdU!€ analysis it might yield a prediction for thgpossibly
uncertainties in the determination of thaverage light _densny depe_ndthaIue ofx. This, of course, is an interest-
quark condensatésee, e.g., discussions in Ref81,23). In NG Perspective.

addition, the contribution from the two-quark condensate toh The tW'kSt'Z condens_,ate_s discussed in Secs. Il B, Il C arﬁ
Eq. (3.6) is much smaller than the one from the gluon con-t€ best known contributions, as soon as one accepts the

densate. The largest uncertainty lies in the evaluation of thE€Mi 9as approximation discussed above. We even can use
four-quark condensate, i.e., in the value forFirst, even the € results of DIS to get an idea about the neglected higher
vacuum value is still under discussion. Second, it might venyPTd€r condensatesee below

well be that the value fok varies with nuclear density. Con- The twist-4 spin-2 condensates can in .prlnc[ple also .be
cerning the first problem, it is useful to choose a hadronic@educed from DIS data. The uncertainties in their extraction

model which describes the data fef e~ — hadrons reason- &r€ however, quite large. We have adopted the analysis of
ably well and utilize the sum rulét.11) for the vacuum case

to determinex. This was performed in Ref15] and we

therefore have taken the condensate values given there. FofA similar analysis was performed in R¢R7].
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Ref.[41]. There, condensates depending on the light current 0.003
guark masses, strange quark contributions, and dependence:
on the renormalization scale were neglected. These errors are  0.0025 |
presumably smaller than the uncertainties in the extraction of
these condensates from DIS data. In general, the contribu- g  0.002 |
tions of the twist-4 spin-2 condensates are small as compared @
to the twist-2 spin-2 contributions. For tg-contributions £ 00015
to the longitudinal direction, however, the twist-2 spin-2
contribution is suppressed hy,. There, the twist-4 spin-2 0.001 1
condensates cannot be disregarf&d.

Of course, one is forced to somewhere cut off the OPE 0.0005 r

used here as an expansion in the dimensionality of the con-
densates. We have neglected all condensates of dimension- 0
ality 8 or higher. To get an idea about the size of the ne-
glected condensates we calculate now the twist-2 spin-6

0.4

06 08 1 12
M2 [Gev?]

1.4 1.6 1.8 2

contribution to the current-current correlator, since we have g5 4. Relative error made by the neglect of twist-2 spin-6

access on that quantity utilizing the DIS results. The calcuzongensates in the calculation of the transverse part of the LHS of
lation proceeds along the lines described in Secs. Il B, Il Cgq. (4.8) as a function of the Borel mass squamed for three-

We use the Fermi gas approximation

d3k . .
<O[LVK)\§X>%4J‘|IZ|<I( (ZTZ%ZEK <N(k)|0,uVK)\§)(|N(k)>
=RF
(6.9

and the decomposition

(NCK)| O en e N(K))
~K, K K kykek,

1
- 1—2(k”kyk,(k)\g§xmﬁ,+ 14 permutations

4 .
+ m(kﬂkvg,dggmeJrM permutations
1 6 _
- %(gwgmg&m,\ﬁ 14 permutations
= :S;LVK)\gf)((k)' (62)
The relevant operators are
STi(uy,D,D,D,D.D u+dy,D,D,D,D.D,d)
(6.3
and
STG!D,D,D,\DG,,. (6.4)

From the DIS calculations we can deduce the following con-

tribution to the current-current correlat¢2.1) which was
neglected in Eq(3.3):

d3k
d=8,7=2 — (u+d)s=6,7r=2
H,u.v (q) LRISkF (277)3 2Ek T,u,y (q,k)
(6.9

with the forward scattering amplitude

momentaq| =0 (upper ling, 0.5 (lower line), 1 GeV (middle line),
and forp (full lines) and w mesongdashed lines The only notice-
able difference betweemand @ meson appears in the slightly dif-
ferent lower limits of the Borel window, i.e., in the starting points
of the curves on the left-hand side.

TLUVJr d)s=6,7= Z(q, k)
64
=— p(quqvq“qﬁ—gﬂaqzquﬁ—gv“qzqﬂqﬁ

+0,°9,°9M)970°9°9¢S, g 5¢,(K)

2
x| CIAL I+ §C§,e°~ff

64
- p(qﬂqv— 0,,99)0°0%979°0°0°S, gy se,(K)

X

2
(Clem CIoA "+ 5(CEe-C0A5|. (69

With this at hand we can calculate the ratio between the
twist-2 spin-6 contribution to the LHS of the sum rui&8
and the total value for this LHS as calculated in Sec. Ill. We

0.0025

0.002

rel. error

0.0015 |
0.001

0.0005 |

04 06 08 1 12 14 16 18 2
M2 [Gev?]

FIG. 5. Same as Fig. 4 for longitudinal part. The curves refer to
|g|=0, 0.5, 1 GeV(top to botton).
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have calculated that ratio in Figs. 4,5 for transverse and lonmomentum the twist-2 spin-2 condensates contribute with a
gitudinal directions and fop and w mesons. Obviously, the term proportional topymy/M* [see Eq.(5.3]] and the
obtained ratios are very small justifying at least the neglectwist-2 spin-4 condensates with a term proportional to
of twist-2 spin-6 condensates and suggesting that all highepymy/M°® [see Eq(5.7)]. In general, the twist-2 spig-con-
dimensional condensates are reasonably suppressed. @dnsates yield a contributiorprmi’llMS*z. Since the
course, for a thorough discussion of the error made by neaucleon massny is large this expansion might break down
glecting higher-dimensional condensates we also would neefér the Borel masses of intere@ypically of the order of 1
to know the other condensates beside the twist-2 spin-6 corfseV). However, one should not discuss the convergence of a
densates. Since we do not know, e.g., the scalar) con-  series without looking at its coefficients. The twist-2 spin-
densates, etc., the error analysis presented here is only a figntribution is accompanied by tlséh moment of the parton
guess. distributions. Inspecting the last two lines of Table Il we find
As long as we do not know the actual values of the nethat these moments become very small with increasing
glected condensatder at least an upper limit for thenwe  Indeed, we have already discussed above that the twist-2
cannot present a rigorous proof that the OPE approachpin-6 condensates do not spoil the truncation of the OPE, in
works, i.e., that the truncated series yields a reliable value fogpite of the fact that they are proportionalptgmﬁlM 8 This
the current-current correlator in the region of interest. In-shows that also the second argument raised in Ri]
deed, in Ref[16] it was doubted that the QCD sum rule against the QCD sum rule approach is oversimplified.
approach provides any reliable information about the
medium modifications of vector mesorisee also Refs.
[46,47)). Two arguments were given there to support these VIl. SUMMARY

doubts: The first qualitative argument concerns the connec- _ _ .
tion between the mass shift of a vector meson and the for- 1hiS work was motivated by the finding that the QCD

ward scattering amplitude of this vector meson with aSUm rule approach provides no model-independent predic-

nucleon. It was argued there that the forward scattering amfion about a possible mass shift of vector mesons in nuclear

plitude and hence also the mass shift is a long distance prop?€dium[15,31. In Ref.[31] we discussed at length that the

erty, while the OPE is only capable of short distance propSUM rule restricts the meson only to a rather wide area in

erties. We think that this argument is misleading, since thdh® (mass, width plane without making any further state-
OPE always concerns the interplay of long and short distanc&'€Nts about the specific properties of themeson. Only
properties, as already pointed out in Sec. Il Actually, in theWithin additional model assumptions can the behavior of the

same oversimplifying way one might argue just the other® MESON in nuclear mat.ter be further spec.ified. For example,
way round: The in-mediurp mass is still large, i.e., a short if one assumeshat the width of thep meson is not increased,
distance property, and therefore can be described by the OPfen the sum rule predicts amass which decreases with

approach. This shows that one needs more quantitative arglficréasing nuclear density. However, it is also possible to
ments to check the validity of the sum rule approach. apassumenstead that the mass is not shifted. In this case the

useful self-consistency check within the Borel sum ruleSUM rule suggests an increasing width of the spectral func-
method is the Borel stability analysis described in Sec. Iv: Alion of the p meson.
breakdown of the sum rule might be observed in a small or 1hiS, however, does not mean that the sum rule approach
even vanishing Borel window. Indeed, this stability analysis'S Us€less: We have presented here a QCD sum rujedod
was the key point to resolve the question, whether mass shiff Mesons propagating with arbitrary three-momentum
and/or forward scattering amplitude can be extracted withif?rough nuclear matter at vanishing temperature. This sum
the traditional sum rule approach utilizing the narrow width"U!€ Provides a nontrivial consistency check for hadronic
approximation. We refer to Reff48,27,29,49for details. In models which d_escrlbe that propagation. At least as long as
general, the Borel window can only be determined aﬁe,dlfferent hadromc models c_annot be judged unqmblguously
specifying a hadronic model. Therefore, we do not discus®Y €xperiments such consistency checks are important to
this point here any further. The preceding discussion ha§Onfirm or rule out hadronic models.
clearly emphasized the necessity to perform a Borel stability '€ main formula was given in E@4.11). The OPE co-
analysis. efficientscy | which appear on the LHS of this formula are
A second, formal argument has been raised in Reg]  defined vialI?in Eq. (3.59. In view of their complexity
against the applicability of the OPE approach to vector mewe have not given the explicit formulas fok | . However,
sons in nuclear medium: It was claimed there that the OPEhey can be easily deduced in the following way from the
turns out to be an expansion in the nucleon nragover the  equations presented in Sec. Ill: The transverse and longitu-
invariant mass/Q2. After Borelization this would turn into  dinal parts of [I2%" are obtained from the respective last
an expansion iy over the Borel mas#l. If the latter is ~ expressions of Eq$2.7) and(2.8). The current-current cor-
assumed to be of the order of themeson mass, one would relator with the full Lorentz structurH;OLfEis decomposed in
get an expansion parametey /m, which is obviously not  Eg. (3.3).
small. Therefore, it was argued in R¢L6] that the trunca- The scalar contribution is given in E3.4) whereRS®3&
tion of the OPE at thel=6 condensates is not appropriate. can be read off from Ed3.6). The expectation values show-
Indeed, concerning the twist-2 condensates the statementiisg up there are decomposed in vacuum and medium-
true that the used OPE is an expansiomig/M. This can  dependent expectation values in E§.9) using the Fermi
most easily be discussed within the linear density approxigas approximation. The vacuum expectation values are listed
mation of Sec. V. For example, for vanishing three-in Table I. Finally, the medium-dependent parts of the scalar
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condensates are connected in EsL0, (3.11) with param-  nuclear density there are important structures in the spectral
eters also listed in Table |. function of the vector mesons also in the spacelike region.
The contribution from the twist-2 spin-2 condensates isThis is in contrast to the vacuum case where there is no
given in Egs.(3.28, (3.29 with the traceless tensds,, structure below the two-piotthree-pion threshold for thep
defined in Eq(3.13. In the same way the contribution from (w) meson.
the twist-2 spin-4 condensates is given in E@34), (3.35 Qualitatively, we have found that our sum rules are not
with the traceless tensd,;,, defined in Eq.(3.31). The  very sensitive to the difference betweprand » meson as
required values for the moments of the parton distributionsvell as to a variation in the three-momentum of the vector
A}, and the coefficient€; , are collected in Table II. meson with respect to the nuclear medium. This, however,
The contribution from the twist-4 spin-2 condensates isdoes nota priori mean that the current-current correlator for
given in Egs.(3.42, (3.44 where the coefficientélvz are different isospin channels and for different three-momenta

connected in Eqs(3.57), (3.589 to quantities listed in Table Should be more or less the same. In the sum rule only an
I integral over this correlator enters which might be the same,
In this way, the OPE coefficients can be easily calculated®-9-» forp and « mesons, even if the respective correlators
As discussed in the last section the QCD sum fdl&1) can themselves are different. Thus, on this qual_ltatlve level t_he
be used to check the consistency of a hadronic model, pr&Um rule approach does not rule out hadronic models which
vided that in the latter the medium is also described by thdredict a different behavior of vector mesons with different
Fermi gas approximation. Going one step further by neglectthrée-momenta, such as, e.g., R¢ts3,14,16—-18 A quan-
ing the Fermi motion of the nucleons both in the hadronicitative analysis of these models is beyond the scope of this

model under consideration and in the calculation of the OPEPaPer.
coefficients one might also utilize the sum rule in this linear = W€ believe that the QCD sum rule presented here pro-

density approximation. For this case the OPE coefficient¥ides an interesting and nontrivial consistency check for had-
C?,L are explicitly given in Eqs(5.2—(5.12). ronic models which describe vector mesons in nuclear mat-

By inspecting the QCD sum ruleh.11) we observe that ter. We have tried to present the derivation of the sum rule in

the hadronic model which should be checked has to yield th9:$at ?ﬁta" to mlakfe it poss[bl':a for nr?ne?p?rttﬁ _th(IjDE to
current-current correlator for invariant masses in the regior!"''#€ th€ SUM ruie for a consistency check ot their hadronic

- o . models also.
(—q?) to sp. The lower limit refers to vanishing energy. For

nonvanishing three—momenturﬁ this means that we need

information not qnly abqut the timelike region, but also ACKNOWLEDGMENTS
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