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QCD sum rules for vector mesons in nuclear medium
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Vector mesons show up in the electromagnetic current-current correlator. QCD sum rules provide a con-
straint on hadronic models for this correlator. This constraint is discussed for the case of finite nuclear density
concerning the longitudinal as well as the transverse part of the current-current correlator at finite three-
momentum.@S0556-2813~98!01211-4#

PACS number~s!: 24.85.1p, 21.65.1f, 12.38.Lg, 14.40.Cs
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I. INTRODUCTION

In the last few years a lot of work has been devoted
study the behavior of vector mesons in a medium with fin
baryonic density. The basic motivation was to find a sign
chiral symmetry restoration in heavy-ion collision expe
ments, when studying the dilepton spectra which corresp
to the vector mesons. Indeed, the CERES experiments
S-Au and Pb-Au collisions show a novel feature when co
pared to proton-nucleus collisions, namely, an enhancem
of the dilepton yield for invariant masses somewhat bel
the vacuum mass of ther meson@1–3#. Some years ago i
was argued by Brown and Rho that such an enhancem
might be due to the restoration of chiral symmetry@4#. In
their model they assumed that the masses of the vector
sons should scale with the quark condensate, i.e., drop
rising baryonic density. If this is true, ther peak in the dilep-
ton spectrum would be shifted to lower invariant mass. T
might be an explanation for the observed enhancement o
dilepton yield in that region@5–7#. However, the idea of
chiral symmetry restoration alone without additional mod
assumptions does not provide a unique picture. Other
narios predict a risingr mass based on the effect that ther
becomes degenerate with its chiral partner, thea1 meson@8#.

Besides the problem of what the consequences of ch
symmetry restoration might be there is still the possibil
that the experimental finding of the enhancement might a
be explained by conventional hadronic degrees of freed
To clarify that issue hadronic models for the in-medium b
havior of vector mesons were developed by various grou
see e.g., Refs.@9–19#. Some of them predict a large pea
broadening of ther meson or even distinct new peak stru
tures. It was found that the enhancement in the dilepton y
might also be explained within a purely hadronic scenario
a lot of strength is shifted to lower invariant mass@14,20#. So
far we are not in a position to confirm or rule out such ha
ronic models by experimental data. Therefore, it is of inter
to find additional model independent consistency che
which should be obeyed by arbitrary hadronic models
scribing vector mesons and their in-medium behavior. Suc
consistency check is provided by the QCD sum rule
proach.

Originally, QCD sum rules were developed for vacuu
processes not as a consistency check for hadronic mo
but as an alternative to them, i.e., to deduce mod
independent information about hadrons from the underly
PRC 580556-2813/98/58~5!/2939~19!/$15.00
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quark and gluon degrees of freedom~see, e.g., Refs.@21–
23#!. An important ingredient for the description of vecto
mesons by QCD sum rules is the assumption that the spe
functions of these resonances can be reliably approxim
by d functions ~narrow width approximation!. In this way,
the experimentally found vector meson masses can be re
duced reasonably well. Of course, it is supported by exp
ments that, e.g., the respective width of the spectral func
of r and v meson is small as compared to the mass of
meson. However, it is important to realize that the narr
width approximation is not a result, but an ingredient of t
traditional QCD sum rule approach.

In the last few years QCD sum rules were also develo
for in-medium situations, i.e., for hadronic matter at fin
temperature~see, e.g., Refs.@24,25#! or finite baryonic den-
sity ~e.g., Refs.@26–30#!. For r andv mesons it was found
that their masses decrease with increasing temperature a
density, if the narrow width approximation is used for th
parametrization of the respective spectral function. In c
trast to the vacuum case, there is, however, no experime
support that the narrow width approximation is a reasona
assumption for the in-medium case. Indeed, some hadr
models for ther meson predict a very large collisiona
broadening already at nuclear saturation density due to
coupling of ther meson to resonance hole loops@13,14,17–
19#. Clearly, such effects have to be taken into account fo
proper modeling of the spectral function of the respect
vector meson which enters the hadronic side of QCD s
rules @31#. Unfortunately, the narrow width approximatio
crucially influences the QCD sum rule prediction for a po
sible mass shift in a nuclear surrounding. If a spectral fu
tion with an appropriately chosen large width is used in
QCD sum rule approach at finite density, one could get
unshifted meson mass, in contrast to the finding utilizing
narrow width approximation. This was first discussed in R
@15# using a specific hadronic model and later systematic
studied in Ref.@31#.

This shows that QCD sum rules provideno model-
independent prediction about a possible mass shift of ve
mesons in nuclear medium. Only together with some ad
tional assumptions~e.g., about the width of the respectiv
vector meson! can a statement about the density depende
of the masses of the vector mesons be deduced from the
rule analysis. Nevertheless, once a hadronic model for ve
mesons has been chosen the sum rules can be used
consistency check for this model. We believe it to be imp
2939 ©1998 The American Physical Society
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2940 PRC 58STEFAN LEUPOLD AND ULRICH MOSEL
tant to have such consistency checks, since it is not clea
priori if a hadronic model—e.g., with coupling constants d
rived from vacuum processes—yields a correct descrip
of the in-medium behavior.

In most of the studies on QCD sum rules only the vec
mesons which are at rest with respect to the medium w
considered. On the other hand, since Lorentz invarianc
broken, the behavior of vector mesons clearly depends
their velocity with respect to the surrounding. Indeed, so
of the hadronic models mentioned above yield very differ
spectral functions for different three-momenta of the resp
tive vector meson and for different polarizations~e.g., Ref.
@17#!. Only recently has the influence of finite thre
momentum on the QCD sum rule prediction for vector m
son masses~within the classical narrow width approxima
tion! been explored@30#. Also at finite three-momentum, o
course, the narrow width approximation is an assumpt
which may be justified or not, but in any case it is not
model-independent statement.

In this work we will derive QCD sum rules forr andv
mesons for arbitrary three-momentum of the respective v
tor meson with respect to the nuclear medium. The purp
is to provide a consistency check for hadronic models. T
is in contrast to the traditional QCD sum rule approa
which aims at a prediction for the vector meson mass ass
ing that the width of the vector meson is negligib
small ~see especially Ref.@30# concerning the extension t
nonvanishing three-momentum within the traditional QC
sum rule approach!. In the application of the traditional QCD
sum rule approach to nuclear matter the attention was
cused on the utilization of the sum rule within the narro
width approximation@26,27,29,30#, rather than on a detaile
discussion of the derivation of the sum rule and of the c
culation of the various condensates which contribute. In
present article we try to bridge this gap.

In the next section we introduce the basic quantity
interest, namely, the current-current correlator, and prese
dispersion relation which connects the calculations for t
correlator using hadronic degrees of freedom on the
hand side and quarks and gluons on the other. In Sec. II
sketch the method of operator product expansion and ca
late the current-current correlator within that framework.
Sec. IV we present a QCD sum rule derived from the disp
sion relation mentioned above. To get more insight into
various contributions calculated in Sec. III we discuss in S
V an approximation linear in the nuclear density. In Sec.
we discuss the various approximations which have led to
results presented in the preceding sections. Finally we s
marize our results in Sec. VII.

II. THE CURRENT-CURRENT CORRELATOR

The quantity we study in the following is the covaria
time ordered current-current correlator:

Pmn~q!5 i E d4xeiqx^T jm~x! j n~0!&. ~2.1!

Here j m is an electromagnetic current with the isospin qua
tum number of the respective vector meson
-
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j m5
1

2
~ ūgmu7d̄gmd!, ~2.2!

where the minus sign is for ther meson and the plus sign fo
the v. The current-current correlator enters, e.g., the cr
section ofe1e2→hadrons~see, e.g., Ref.@15#!. Within a
simple vector meson dominance~VMD ! picture the current
~2.2! can be identified with the vector meson which carr
the respective isospin, e.g., for ther meson@32#:

j m 5
VMD mr

2

gr
rm , ~2.3!

where rm denotes ther meson field amplitude andgr the
coupling of ther meson to pions. Therefore, within simp
VMD the current-current correlator is proportional to th
propagator of the respective vector meson. Speaking m
generally, i.e., without referring to simple VMD, the vecto
meson propagator is closely related to the current-cur
correlator.

The expectation value in Eq.~2.1! is taken with respect to
the surrounding medium. We study here a~isospin neutral!
homogeneous equilibrated medium with finite nuclear d
sity and vanishing temperature. In the medium Lorentz
variance is broken. All the formulas we will present in th
following refer to the Lorentz frame where the medium is
rest, i.e., where the spatial components of the baryonic
rent vanish.

The current-current correlator can be decomposed in
following way @32#:

Pmn~q!5PT~q!Tmn~q!1PL~q!Lmn~q!, ~2.4!

where we have introduced two independent project
Lmn(q) andTmn(q) which both satisfy current conservatio
qmLmn(q)5qmTmn(q)50 and add up to

Tmn~q!1Lmn~q!5gmn2
qmqn

q2 . ~2.5!

The tensorsT and L are transverse and longitudinal wit
respect to three-momentumqW , respectively.T is given by

Tmn~q!5H 0, m50 or n50,

2d i j 1
qiqj

qW 2
, ~m,n!5~ i , j !,

~2.6!

while L can be deduced from Eq.~2.5!. The scalar functions
PT,L can be obtained using

PT~q2,qW 2!5
1

2
Pmn~q!Tmn~q!5

1

2 S Pm
m1

q2

qW 2
P00D

~2.7!

and

PL~q2,qW 2!5Pmn~q!Lmn~q!52
q2

qW 2
P00. ~2.8!

To get the respective last equality in the last two equatio
use is made of the fact thatPmn(q) is a conserved quantity
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i.e., transverse with respect to thefour-momentum q. Note
that PT andPL depend only on the invariant mass squar
q2 and on the three-momentum squaredqW 2. The latter prop-
erty is due to the remainingO(3) symmetry of the equili-
brated system.

At vanishing temperature the scalar functionsPT , PL
deduced from the time ordered current-current correla
~2.1! can be related to the commutator~spectral function!

Amn~q!ª2
1

2 E d4xeiqx^@ j m~x!, j n~0!#& ~2.9!

in the following way~see, e.g., Ref.@33#!:

Im PT,L~q2,qW 2!52sgn~q0!AT,L~q0 ,qW 2!, ~2.10!

whereAT andAL are deduced fromAmn analogously to Eqs
~2.7! and ~2.8!, respectively. At first sight, it seems tha
Im PT,L does not only depend onq2 and qW 2 as claimed
above, but also on the sign ofq0 . However, it is easy to
check from the definition~2.9! and the symmetry propertie
of the system under consideration thatAT andAL are anti-
symmetric with respect to the transformationq0→2q0 .
Therefore we define

A T,L
1 ~q2,qW 2!ªsgn~q0!AT,L~q0 ,qW 2!. ~2.11!

Inserting this relation in Eq.~2.10!,

Im PT,L~q2,qW 2!52A T,L
1 ~q2,qW 2!, ~2.12!

it becomes obvious that the dependence on the sign ofq0 is
only apparent.

For q2!0 the current-current correlator~2.1! can be cal-
culated using Wilson’s operator product expansion~OPE!
@34# for quark and gluonic degrees of freedom@21# ~for in-
medium calculations see, e.g., Refs.@24,26,27#!. In the fol-
lowing we shall call the result of that calculationPT,L

OPE. On
the other hand, a hadronic model~e.g., for vector mesons
@9–15,17# using one or the other form of VMD! can give an
expression for the current-current correlator valid in t
timelike regionq2.0. We denote the result of the hadron
model by PT,L

had . A second representation in the spaceli
region which has to matchPT,L

OPE can be obtained fromPT,L
had

by utilizing a twice subtracted dispersion relation. We fin

PT,L~q2,qW 2!5PT,L~0,qW 2!1cT,L~qW 2!q2

2
q4

p E
2qW 2

`

ds
A T,L

1 ~s,qW 2!

~s2q22 i e!~s1 i e8!2

~2.13!

with the subtraction constant

cT,L~qW 2!5
]PT,L~k2,qW 2!

]~k2!
U

k250

. ~2.14!

As we shall see belowA T,L
had(q) diverges linearly withq2.

Therefore we have used above a twice subtracted dispe
relation. In the spacelike region forQ2

ª2q2@0 we get the
d

r

ion

following connection between the current-current correla
calculated from OPE on the one hand side and from a h
ronic model on the other:

PT,L
OPE~Q2,qW 2!5PT,L

had~0,qW 2!2cT,L~qW 2!Q2

1
Q4

p E
2qW 2

`

ds
Im PT,L

had~s,qW 2!

~s1Q22 i e!~s1 i e8!2 ,

~2.15!

where we have used Eq.~2.12! to express the spectral func
tion in terms of the imaginary part ofP. In the next section
we shall elaborate on the calculation of the left-hand s
~LHS! of Eq. ~2.15!.

III. OPERATOR PRODUCT EXPANSION

Within the method of operator product expansion we ha
to calculate the current-current correlator~2.1! for large
spacelike momentaQ252q2. Here the relevant length scal
for the x integration given by the inverse of 1/AQ2 is small.
This defines the hard scale in our problem. Suppose tha
distancex is much smaller than the typical length of th
system~soft scale!. The latter might be characterized, e.g.,
the average particle distance in the medium or 1/LQCD as the
scale where nonperturbative effects appear. Ifx is that small
it is reasonable to assume that a product of local operatoA
andB, i.e.,

A~x!B~0!, ~3.1!

should look like a local operator, since the syste
cannot resolve such small distancesx. Thus we find

A~x!B~0!'(
n

Cn~x!On , ~3.2!

whereCn denotesc-number functions~Wilson coefficients!
andOn local operators. The only dependence on the syst
under consideration enters via the respective matrix elem
of the local operatorsOn . Thus, the dependence on the so
scale is entirely given by the local operators. On the ot
hand, the Wilson coefficientsCn can be calculated indepen
dently from the system under consideration. Since the op
tors On are local, the dependence on the hard scale~here
given by thex dependence! enters only the Wilson coeffi-
cients. Thus we have achieved a separation of the hard f
the soft scale.

In our case, the operatorsA andB are the currentsj m and
j n , respectively. The Fourier transformation which appe
in Eq. ~2.1! does not touch the local operatorsOn , but only
changes thex dependence ofCn into a q dependence. From
the line of arguments one can already guess that the Wi
coefficients finally yield a power series in 1/Q2 ~corrected by
logarithms from renormalization!. The expectation values o
the local operatorsOn ~condensates! show up as coefficients
of that series. On dimensional grounds it is obvious that
higher the dimension~in terms of masses! of a condensate is
the more it is suppressed by powers of 1/Q2.

In the following we will consider condensates up to d
mension 6. In vacuum only scalar condensates contrib
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For the case at hand, however, the condensates might
carry spin, since Lorentz invariance is broken. It is comm
practice to classify the condensates by their dimensionalid
and their twistt. The latter is defined as the difference
dimensiond and spins, i.e., t5d2s. We decompose the
current-current correlator~2.1! in the following way:

Pmn
OPE'Pmn

scalar1Pmn
d54,t521Pmn

d56,t521Pmn
d56,t54,

~3.3!

where we have neglected contributions from high
dimensional condensates. We will discuss the various co
butions separately in the following subsections.
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A. Scalar condensates

The contribution of the scalar condensates to the curr
current correlator for the system with finite nuclear density
formally identical to the vacuum case. The only difference
that in the former case the expectation value is taken w
respect to the medium. The latter case was already discu
in the original paper by Shifmanet al. @21#. The result is
~see, e.g., Ref.@24# for details!

Pmn
scalar~q!5S gmn2

qmqn

q2 DQ2Rscalar~Q2! ~3.4!

with
Rscalar~Q2!'2
1

8p2 S 11
as

p D lnS Q2

m2D1
mq

2Q4 ^ūu1d̄d&1
1

24Q4 K as

p
G2L

2
pas

2Q6 ^~ ūgmg5lau7d̄gmg5lad!~ ūgmg5lau7d̄gmg5lad!&

2
pas

9Q6 K ~ ūgmlau1d̄gmlad! (
q5u,d,s

q̄gmlaqL , ~3.5!
ar-

ue
ent

en-
n be
where we have neglected contributions quadratic in the l
current quark massmq as well as differences in the masses
up and down quark. This is reasonable, since the hard s
AQ2 is typically of the order of 1 GeV~the order of magni-
tude of the considered vector meson!, while the masses of up
and down quarks are of the order of a few MeV. Again t
minus sign refers to ther meson and the plus sign to thev.
To simplify Eq. ~3.5! we assume that the quark condensa
of up and down quarks are approximately the same. Furt
more, we replace the four-quark condensates by produc
two-quark condensates. Since it is not clear how accurate
assumption of ground state saturation~Hartree approxima-
tion! is, we multiply the result with a~still to be determined!
factor k. We end up with

Rscalar~Q2!'2
1

8p2 S 11
as

p D lnS Q2

m2D1
mq

Q4 ^q̄q&

1
1

24Q4 K as

p
G2L 2

112pas

81Q6 k^q̄q&2.

~3.6!

Note that there is no difference betweenr andv any more,
since there are no terms like^ūd& in an isospin neutral me
dium.

Of course, the crucial question is how to evaluate
expectation values with respect to the nuclear medium. If
density is small, it is reasonable to approximate the med
by a Fermi gas of free nucleons, i.e.,

^O&'^O&014E
ukW u<kF

d3k

~2p!3 2Ek
^N~kW !uOuN~kW !&,

~3.7!
t
f
le

s
r-
of
he

e
e

m

where^O&0 denotes the vacuum expectation value of an
bitrary operator O, kF the Fermi momentum, Ek

5AmN
2 1kW2 the energy of a nucleon, anduN(kW )& a single

~isospin averaged! nucleon state with momentumkW normal-
ized according to

^N~kW !uN~kW8!&5~2p!3 2Ekd~kW2kW8!. ~3.8!

We will use the approximation~3.7! throughout this work
and comment on it in Sec. VI.

If O is a scalar operator, the expectation val

^N(kW )uOuN(kW )& is a scalar as well and therefore independ
of the momentum of the nucleon. Thus we get

^Oscalar&'^Oscalar&0

14^N~0!uOscalaruN~0!&E
ukW u<kF

d3k

~2p!3 2Ek
.

~3.9!

For the evaluation of the condensates in Eq.~3.6! we need to
know the expectation values of the quark and gluon cond
sate with respect to single nucleon states. The former ca
related to the nucleon sigma term@26#1

^N~0!uq̄quN~0!&5
mNsN

mq
, ~3.10!

1Note that the normalization of the nucleon state in Ref.@26# is
different from ours.
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TABLE I. Parameters used in the calculation of the OPE contributions to the current-current corr
See main text for details.

as 0.36 sN @GeV# 0.045 c1 @GeV2# 0.005
mq @GeV# 0.006 mN

(0) @GeV# 0.75 c2 @GeV2# 0.011

^q̄q&0 @GeV3# 20.0156 c3 @GeV2# 0.035

^(as /p)G2&0 @GeV4# 0.012 Kud
1 @GeV2# 20.088

k 2.36
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g

while the latter can be calculated from the trace anomaly
QCD

K N~0!Uas

p
G2UN~0!L 52

16

9
mNmN

~0! . ~3.11!

Here sN denotes the nucleon sigma term andmN
(0) the

nucleon mass in the chiral limit.
Finally, we have to make a choice for the parametek

which parametrized the deviation of the four-quark cond
sate from the product of two-quark condensates. Even for
vacuum case, the question about the value fork is not settled
yet ~see, e.g., Refs.@26,24,27,15,23#!. In addition,k might
depend on the nuclear density. For simplicity, we take in
following the vacuum value fork also for arbitrary finite
densities, but note that this introduces an uncertainty into
evaluation of the OPE. All the parameters not specified so
are taken from Ref.@15# and listed in Table I. We discus
this choice in Sec. VI.

Using Eqs.~2.7!, ~2.8!, ~3.4!, ~3.6!, ~3.9!–~3.11! we are
able to calculate the contribution of the scalar condensate
the LHS of Eq.~2.15!. In the next subsection we discuss t
contribution of the twist-2 condensates withd54.

B. Twist-2 spin-2 condensates

In vacuum only scalar condensates contribute to
current-current correlator since there is no Lorentz vec
which can account for the spin of a nonscalar condens
Contrary to the vacuum case, in a nuclear medium the b
onic current can yield the spin. Using the approximati
~3.7! we find for spin-2 condensates

^Omn&'4E
ukW u<kF

d3k

~2p!3 2Ek
^N~kW !uOmnuN~kW !&.

~3.12!

In this approximation the four-momentum of the nucle
accounts for the spin of the condensate. Thus we get

^N~kW !uOmnuN~kW !&;kmkn2
gmn

4
mN

2 5:Smn~k!. ~3.13!

Note that the nonscalar operators are traceless with respe
the Lorentz indices.

Expectation values of twist-2 condensates with respec
single nucleon states as they appear in Eq.~3.12! are thor-
oughly studied in deep inelastic scattering~DIS!, albeit for a
somewhat different kinematical situation. We can utilize t
results obtained there for our case at hand—as alre
pointed out in Refs.@26,27,30#. Therefore, we will not give a
detailed calculation for the contributions of these cond
f

-
e

e

e
ar

to

e
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te.
y-

t to

to

e
dy

-

sates to the current-current correlator, but instead prese
recipe how to deduce the necessary information from
DIS calculations of Refs.@35–37#.

The twist-2 operators of dimensionality 4 which contri
ute are given by

ST i ~ ūgmDnu1d̄gmDnd! ~3.14!

and

ST Gm
k Gkn . ~3.15!

HereST denotes an operator producing an expression wh
is symmetric and traceless with respect to the Lorentz ind
m andn. Dn is the covariant derivative andGkn the gluonic
field strength tensor. In principle, composite operators m
under the renormalization group, if they have the same qu
tum numbers@38#. To study that mixing we have to decom
pose Eq.~3.14! in a flavor singlet part which mixes with th
gluonic operator~3.15! and a flavor nonsinglet part whic
does not mix. For the energy region of interest, i.e., roug
about the masses ofr and v meson, we have to deal with
three active flavors. Therefore, we decompose Eq.~3.14! ac-
cording to

u1d5
1

3
@2~u1d1s!1~u1d22s!#, ~3.16!

whereu is an abbreviation forūgmDnu, etc. Renormaliza-
tion group mixing applies to (u1d1s) and G, i.e., sche-
matically

u1d→
1

3
@2~u1d1s1G!1~u1d22s!#5u1d1

2

3
G.

~3.17!

The contribution of the twist-2 spin-2 condensates to
current-current correlator~2.1! can be written as

Pmn
d54,t52~q!

54E
ukW u<kF

d3k

~2p!3 2Ek
S 1

2D 2

(
c5u,d

Tmn
~c!s52,t52~q,k!

~3.18!

with the twist-2 spin-2 contribution to the forward scatterin
amplitude between a nucleon and a quark current,
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Tmn
~c!s52,t52~q,k!

ª i E d4xeiqx

3^N~kW !uTc̄~x!gmc~x!c̄~0!gnc~0!uN~kW !&s52,t52 .

~3.19!

The latter quantity is calculated in Ref.@35# for the DIS case.
Note that the factor 1/2 in the definition of the curre
~2.2!—which enters Eq.~2.1! quadratically—is not contained
in the definition of the forward scattering amplitude, but
given in Eq.~3.18! explicitly.

The strategy to utilize the DIS results for the forwa
scattering amplitude~3.19! is the following: We make a gen
eral ansatz for this amplitude, specify it to the DIS ca
match it with the calculations of Ref.@35#, and determine in
this way the unknown quantities of the general ansatz.

The Lorentz structure of the forward scattering amplitu
~3.19! must be built up from the tensorgmn , the four-
momentumq of the quark current, and the tensorSmn(k),
defined in Eq.~3.13!. In addition, the amplitude has to obe
current conservation. Finally, it must be symmetric with
spect to an exchange of the Lorentz indices. A general an
which fulfills all requirements is

Tmn
~c!s52,t52~q,k!5B1@q4Smn~k!2q2qmqaSna~k!

2q2qnqaSma~k!1gmnq2qaqbSab~k!#

1B2~qmqn2gmnq2!qaqbSab~k! ~3.20!

with so far arbitrary coefficientsB1 and B2 which might
depend onq2 andq•k.

The kinematical situation of DIS is such that bo
2q2 and q•k are large with the Bjorken variablex52q2/
(2q•k) fixed. In this limit only thekmkn term ofSmn(k) has
to be taken into account.2 We get

Tmn
~c!s52,t52DIS~q,k!52q2~q•k!2~B1dmn1B2emn!

~3.21!

with the tensors@35#

emn5gmn2
qmqn

q2 ~3.22!

and

dmn52
kmkn

~q•k!2 1
kmqn1knqm

q•k
2gmn . ~3.23!

By comparison of Eq.~3.21! with Eq. ~2.4! of Ref. @35# we
find

2Note that this is not true for the case we are actually intereste

Because the three-momentumqW might be small, we also have t
take into account thegmn term. However, for the determination o
the coefficientsB1 andB2 this does not matter.
t

,

e

-
tz

B152
4

q6 (
i

C2,2
i A2

i ~3.24!

and

B252
4

q6 (
i

CL,2
i A2

i , ~3.25!

with the process independent coefficient functionCr ,n
i and

the (n21)th momentAn
i of the distribution of the partoni in

the nucleon. Expressions for the former can be found, e.g
Ref. @36# including as corrections.3 The latter is given by
@30#

An
c52E

0

1

dxxn21@c~x,m2!1c̄~x,m2!# ~3.26!

for quarks and

An
G52E

0

1

dxxn21G~x,m2! ~3.27!

for gluons. The parton distributionsc, c̄, andG at the renor-
malization scalem2 are parametrized in Ref.@37#.

Now we collect all the obtained information to get th
contribution of the twist-2 spin-2 condensates to the curre
current correlator:

Pmn
d54,t52~q!5E

ukW u<kF

d3k

~2p!3 2Ek
Tmn

~u1d!s52,t52~q,k!

~3.28!

with

n.

3Note that our notation~basically adopted from Ref.@35#! is
somewhat different from the one of Ref.@36#: Our coefficient func-
tion C2,n

j is identical toC2,j
N of Ref. @36# with n5N. The longitudi-

nal coefficient functions differ by a factor 2:CL,n
j 52CL, j

N , where
again the former is our coefficient function and the latter the one
Ref. @36#.

TABLE II. Relevant coefficient functionsCi ,n
j taken from Ref.

@36# and moments of parton distributionsAn
j calculated from Ref.

@37# for m251 GeV2.

C2,2
q 1.013 C2,4

q 1.171 C2,6
q 1.316

CL,2
q 0.050 CL,4

q 0.030 CL,6
q 0.022

C2,2
G 20.042 C2,4

G 20.063 C2,6
G 20.060

CL,2
G 0.057 CL,4

G 0.023 CL,6
G 0.012

A2
u1d 1.12 A4

u1d 0.11 A6
u1d 0.03

A2
G 0.83 A4

G 0.04 A6
G 0.01
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Tmn
~u1d!s52,t52~q,k!

52
4

q4 @q2Smn~k!2qmqaSna~k!2qnqaSma~k!

1gmnqaqbSab~k!#S C2,2
q A2

u1d1
2

3
C2,2

G A2
GD

2
4

q6 ~qmqn2gmnq2!qaqbSab~k!

3S CL,2
q A2

u1d1
2

3
CL,2

G A2
GD , ~3.29!

where we have taken into account that the gluonic contri
tion enters with a factor 2/3 according to Eq.~3.17!. The
coefficient functions and the moments of the parton distri
tions are listed in Table II. We note in passing that the m
mentum integrations in Eq.~3.28! can be performed analyti
cally. Since it is not illuminating to present the lengthy res
of these integrations we stick to the compact form given
Eqs.~3.28! and ~3.29!.

C. Twist-2 spin-4 condensates

The twist-2 spin-4 condensates can be treated in the s
way as the twist-2 spin-2 condensates. We use the app
mation ~3.7! to find

^Omnkl&'4E
ukW u<kF

d3k

~2p!3 2Ek
^N~kW !uOmnkluN~kW !&.

~3.30!

For the expectation value with respect to a single nucl
state we get the decomposition

^N~kW !uOmnkluN~kW !&;kmknkkkl

2
1

8
~kmkngklmN

2 15 permutations!

1
1

48
~gmngklmN

4 12 permutations!

5:Smnkl~k!. ~3.31!

The relevant operators are

ST i ~ ūgmDnDk Dlu1d̄gmDn Dk Dld! ~3.32!

and

ST Gm
aDn DkGal . ~3.33!

By comparison with the DIS calculations we find

Pmn
d56,t52~q!5E

ukW u<kF

d3k

~2p!3 2Ek
Tmn

~u1d!s54,t52~q,k!

~3.34!

with
-

-
-

t
y

e
xi-

n

Tmn
~u1d!s54,t52~q,k!

52
16

q10~qmqn qaqb2gm
aq2qnqb2gn

aq2qmqb

1gm
agn

bq4!qgqdSabgd~k!S C2,4
q A4

u1d1
2

3
C2,4

G A4
GD

2
16

q10~qmqn2gmnq2!qaqbqgqdSabgd~k!

3S ~CL,4
q 2C2,4

q !A4
u1d1

2

3
~CL,4

G 2C2,4
G !A4

GD , ~3.35!

where the tensorSabgd(k) is defined in Eq.~3.31! and the
coefficient functions and parton distribution moments a
listed in Table II.

D. Twist-4 spin-2 condensates

Finally we turn to the higher twist condensates. For o
calculation up to dimensionalityd56 we need condensate
with twist t54 and spins52 ~besides the higher twist con
densates which are scalar and have already been discuss
Sec. III A!. These condensates are@39–42#

O mn
1
ªST g2

1

4
~ ūgmg5lau7d̄gmg5lad!

3~ ūgng5lau7d̄gng5lad!, ~3.36!

O mn
2
ªST g2

1

4
~ ūgmlau1d̄gmlad! (

q5u,d,s
q̄gnlaq,

~3.37!

O mn
g
ªST ig

1

4
~ ū$Dm ,G̃na%gag5u1d̄$Dm ,G̃na%gag5d!,

~3.38!

ST g
1

4
~ ū@Dm ,Gna#gau1d̄@Dm ,Gna#gad!, ~3.39!

and

ST
1

4
~muūDmDnu1mdd̄DmDnd!, ~3.40!

where the minus sign in Eq.~3.36! corresponds to ther and
the plus sign to thev meson. For an unknown reason th
condensate given in Eq.~3.39! actually does not contribute to
the current-current correlator@40#; we have listed it here for
the sake of completeness, only. In the following we w
neglect the condensate~3.40!, since it is proportional to the
very small light quark masses and therefore suppressed.
ditionally, we will neglect the contribution of the strang
quarks to the nucleon expectation values of the opera
given above@41#.

As in the previous subsections we use the Fermi gas
proximation which for the case of spin-2 condensates
have already given in Eq.~3.12!. We can also use the Lor
entz decomposition from Eq.~3.13!:
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^N~kW !uO mn
j uN~kW !&5:AjSmn~k!, ~3.41!

where the indexj 51,2,g denotes the twist-4 operators spe
fied in Eqs.~3.36!–~3.38!.4

In Ref. @41# it is thoroughly discussed how the expect
tion values of these condensates with respect to sin
nucleon states can be extracted from DIS experiments
determine the contribution of these condensates to
current-current correlator we follow the same strategy as
scribed in Sec. III B, i.e.,

Pmn
d56,t54~q!54E

ukW u<kF

d3k

~2p!3 2Ek
Tmn

s52,t54~q,k!

~3.42!

with the twist-4 spin-2 contribution to the forward scatteri
amplitude between a nucleon and the respective isospin
rent ~2.2!

Tmn
s52,t54~q,k!

ª i E d4xeiqx^N~kW !uT jm~x! j n~0!uN~kW !&s52,t54 .

~3.43!

With the general ansatz@see Eq.~3.20!#

Tmn
s52,t54~q,k!5B̃1@q4Smn~k!2q2qmqaSna~k!

2q2qnqaSma~k!1gmnq2qaqbSab~k!#

1B̃2~qmqn2gmnq2!qaqbSab~k! ~3.44!

we get for the kinematical situation of DIS

Tmn
~c!s52,t52 DIS~q,k!52q2~q•k!2~B̃1dmn1B̃2emn!

~3.45!

which has to be compared with Eq.~2! from Ref. @41#. We
end up with

B̃15
4

q8 S A11
5

8
A21

1

16
AgD ~3.46!

and

B̃25
4

q8 S 1

4
A22

3

8
AgD . ~3.47!

Based on a flavor decomposition new parametersKc
j are

introduced in Ref.@41# in terms of which the coefficientsAj

can be expressed. We refer to Ref.@41# for details and only
give the final result for our isospin averaged coefficientsAj :

A15
1

4
@Ku

11Kd
12~161!Kud

1 #, ~3.48!

4The coefficientsAj should not be confused with the parton di
tribution momentsAn

i .
le
o
e

e-

r-

A25
1

4
~Ku

21Kd
2!, ~3.49!

Ag5
1

4
~Ku

g1Kd
g!, ~3.50!

where the plus sign in Eq.~3.48! corresponds to ther and the
minus sign to thev meson. The parametersKc

j are given by
the expectation values of the twist-4 condensates~3.36!–
~3.38! with respect to a single proton statep @see Eqs.
~3.36!–~3.38!, ~3.41!#:

^p~k!uSTg2ūgmg5lau~ ūgng5lau1d̄gng5lad!up~k!&

5:Ku
1Smn~k!, ~3.51!

^p~k!uSTg2ūgmlau~ ūgnlau1d̄gnlad!up~k!&

5:Ku
2Smn~k!, ~3.52!

^p~k!uSTigū$Dm ,G̃na%gag5uup~k!&5:Ku
gSmn~k!

~3.53!

and respective definitions forKd
j , j 51,2,g. Furthermore,

^p~k!uSTg2ūgmg5laud̄gng5ladup~k!&5:Kud
1 Smn~k!.

~3.54!

Since the flavor structure ofKd
1,2,g andKu

1,2,g are governed by
the d quark and theu quark, respectively, it seems reaso
able to assume that the ratio is always the same@41#:

Kd
1

Ku
1 5

Kd
2

Ku
2 5

Kd
g

Ku
g 5:b. ~3.55!

Within that assumption, the ratiob and the quantitiesB̃1 and
B̃2 for r and v can be determined from the DIS data. A
expected from the valence quark decomposition of the p
ton one finds

b'0.5 ~3.56!

within a small error. Furthermore we get

B̃15
1

q8 @18~c12c2!2~161!Kud
1 # ~3.57!

and

B̃25
1

q8 6c3 , ~3.58!

where the constantsci , i 51,2,3, as well asKud
1 can be found

in Table I.
In total, the contribution of the twist-4 spin-2 operators

given by Eqs.~3.42!, ~3.44!, ~3.57!, ~3.58!. We note that a
difference between ther and thev meson within the OPE up
to dimensionalityd56 only shows up for the twist-4 con
densates and is expressed here in terms of the quantityKud

1 .
To summarize, we have presented in this section the

erator product expansion of the current-current correla
~2.1! including condensates up to dimensionalityd56. The
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general form for the transverse and longitudinal part of
current-current correlator which enter Eq.~2.15! is given by

PT,L
OPE~Q2,qW 2!5Q2F2

1

8p2 S 11
as

p D lnS Q2

m2D
1(

n

cT,L
n ~qW 2!

Q2n G , ~3.59!

where the coefficientscT,L
n have to be deduced from the var

ous contributions discussed in this section. We note that c
trary to the vacuum case@21,23# and to the in-medium cas
with vanishing three-momentumqW @26,24,43,27,29,15,31#
for the general caseqW Þ0 there are not only 1/Q4 and 1/Q6

terms in Eq.~3.59! but also higher order terms, even whe
we restrict the OPE tod<6 condensates. Appropriate pow
ers ofqW in the numerator serve to achieve the correct ove
dimension. We will come back to that point in Sec. V.

IV. QCD SUM RULE

In the last section we have calculated the LHS of E
~2.15! within the operator product expansion and some ad
tional assumptions. We postpone the discussion of these
sumptions to Sec. VI and present here some general i
about the calculation of the RHS of Eq.~2.15! and about the
use of this equation.

If one has a model at hand which yields the curre
current correlator for arbitrary positive energy and arbitra
three-momentum, one could directly use Eq.~2.15! to judge
the reliability of this model. In practice, however, the situ
tion is such that one might have a model for the low
hadronic resonance in the respective isospin channel, i.e
r and v, respectively, but one usually has no model wh
remains valid for arbitrary high energies. In the dispers
integral of Eq.~2.15! higher lying resonances are suppress
but only by a factor 1/s3. Clearly, it is desirable to achieve
larger suppression of the part of the hadronic spectral fu
tion on which one has less access. With this goal, a B
transformation@21,38# can be applied to Eq.~2.15!. For an
arbitrary functionf (Q2) the Borel transformation is define
as

f ~Q2!→
B̂

f̃ ~M2! ~4.1!

with

B̂ª lim
Q2→`,N→`

Q2/N5:M25fixed

1

G~N!
~2Q2!NS d

dQ2D N

, ~4.2!

whereM is the so-called Borel mass.
We will apply the Borel transformation to@see Eqs.

~2.15!, ~3.59!#
e

n-

ll

.
i-
as-
as

-
y

-
t
for

n
,

c-
el

2
1

8p2 S 11
as

p D lnS Q2

m2D1(
n

cT,L
n ~qW 2!

Q2n

5
PT,L

had~0,qW 2!

Q2 2cT,L~qW 2!

1
Q2

p E
2qW 2

`

ds
Im PT,L

had~s,qW 2!

~s1Q22 i e!~s1 i e8!2 . ~4.3!

Therefore we need to know the Borel transforms off (Q2)
5(Q21s)2b and f (Q2)5 ln Q2. From the definition~4.2! it
is easy to derive@38#

f ~Q2!5~Q21s!2b⇒ f̃ ~M2!5
1

G~b!

1

M2b e2s/M2

~4.4!

and

f ~Q2!5 ln Q2⇒ f̃ ~M2!521. ~4.5!

Applying the Borel transformation to Eq.~4.3! we get

1

8p2 S 11
as

p D1(
n

1

G~n!

cT,L
n ~qW 2!

M2n

5
PT,L

had~0,qW 2!

M2

2
1

pM2 E
2qW 2

`

ds
Im PT,L

had~s,qW 2!

s1 i e
e2s/M2

.

~4.6!

It is useful to write the RHS of the last equation in a form
where it is more obvious that this expression is actually r
valued. To this aim we split 1/(s1 i e) into a principal value
and ad function:

1

s1 i e
5

s

s21e2 2 ipd~s!. ~4.7!

Using this decomposition we find the QCD sum rule

1

8p2 S 11
as

p D1(
n

1

G~n!

cT,L
n ~qW 2!

M2n

5
Re PT,L

HAD~0,qW 2!

M2

2
1

pM2 E
2qW 2

`

ds Im PT,L
had~s,qW 2!

s

s21e2 e2s/M2
.

~4.8!

We observe that higher resonance states are now expo
tially suppressed. Additionally we find a 1/s suppression.
The latter is due to the fact that we have applied the Bo
transformation to 1/Q2 times Eq.~2.15! instead of directly
applying it to Eq.~2.15!. On the one hand, such an addition
suppression factor is desirable. On the other hand, we hav
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pay a price for this, namely, that the subtraction const
PT,L

had(0,qW 2) has not dropped out in contrast to the other s

traction constantcT,L(qW 2). Had we applied the Borel trans
formation to 1/Q4 times Eq. ~2.15!, the latter would also
have survived. This is of course easy to understand from
point of view of subtracted dispersion relations: the suppr
sion of high-energy contributions has to be compensated
by a more detailed knowledge of the function at the subtr
tion point. We note that it is easy to get from Eq.~4.8! also
the direct Borel transformation of Eq.~2.15! without the
1/Q2 factor. We simply have to multiply Eq.~4.8! by
(2M2) and differentiate with respect toM2 afterwards. Us-
ing this recipe the subtraction constantPT,L

had(0,qW 2) obviously
would drop out. Also the 1/s suppression in the integral o
Eq. ~4.8! would disappear.

Having achieved a reasonable suppression of the en
region above the lowest lying resonance the integral in
~4.8! is no longer sensitive to the details of the hadro
spectral function in that region. For high energies the qu
structure of the current-current correlator is resolved. Q
perturbation theory becomes applicable yielding

Im PT,L
had~s,qW 2!52

s

8p S 11
as

p D for large s. ~4.9!

These considerations suggest the ansatz

Im PT,L
had~s,qW 2!5Q~s02s!Im PT,L

res ~s,qW 2!

1Q~s2s0!
2s

8p S 11
as

p D , ~4.10!

wheres0 denotes the threshold between the low energy
gion described by a spectral function for the lowest lyi
resonance ImPres and the high-energy region described by
continuum calculated from perturbative QCD. Of course,
high-energy behavior given in Eq.~4.10! is only an approxi-
mation on the true spectral function for the current-curr
correlator. Also the rapid crossover in Eq.~4.10! from the
resonance to the continuum region is not realistic. Howe
exactly here the suppression factors discussed above sh
become effective making a more detailed description of
cross-over and the high-energy region insignificant.

The price we have to pay for the simple decomposit
~4.10! is the appearance of a new parameters0 , the con-
tinuum threshold, which in general depends on the thr
momentumqW and on the nuclear density. We will elabora
later on the determination ofs0 .

Inserting Eq.~4.10! into Eq. ~4.8! yields

1

8p2 S 11
as

p D ~12e2s0~qW 2!/M2
!1(

n

1

G~n!

cT,L
n ~qW 2!

M2n

5
Re PT,L

res ~0,qW 2!

M2

2
1

pM2 E
2qW 2

s0~qW 2!
ds Im PT,L

res ~s,qW 2!
s

s21e2 e2s/M2
.

~4.11!
t
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Obviously, the exponential suppression in Eq.~4.11! works
only if the Borel massM is not too large. On the other hand
the OPE expression on the LHS of Eq.~4.11! gives a reliable
prescription, ifM is not too small, since we have neglecte
higher order condensates which are accompanied by hi
orders in 1/M2. At best, the sum rule~4.11! is valid inside of
a Borel window

Mmin
2 <M2<Mmax

2 , ~4.12!

where Mmin
2 has to be determined such that the neglec

condensates do not spoil the validity of the LHS of E
~4.11!, while Mmax

2 has to be determined such that the su
pression of the details in the high-energy structure of
current-current correlator becomes effective. Of course,
not cleara priori, if such a Borel window exists at all. I
might happen thatMmin

2 is larger thanMmax
2 . In this worst

case, the sum rule~4.11! would be useless.
The strategy to determine the Borel window is as follo

@23#.
~i! For Mmin

2 we require that for this Borel mass the abs
lute value of the contribution of thed56 condensates is a
certain percentagep of the total absolute value of the LHS o
Eq. ~4.8!. Since thed56 condensates have the highest ord
in mass which is taken into account, one might expect t
the relative contribution of the neglected condensates
much less thanp. Following Ref.@23# we takep510%, i.e.,

U(
n

1

G~n!

cT,L
n,d56~qW 2!

~Mmin
2 !n U

50.1U 1

8p2 S 11
as

p D1(
n

1

G~n!

cT,L
n ~qW 2!

~Mmin
2 !nU .

~4.13!

~ii ! For Mmax
2 we require that for this Borel mass the a

solute value of the continuum contribution to the integral
Eq. ~4.8! is a certain percentagep8 of the total absolute value
of the integral. Again we follow Ref.@23# and takep8
550%, i.e.,

FIG. 1. Transverse part of the LHS of Eq.~4.8! as a function of

the Borel mass squaredM2 for three-momentauqW u50, 0.5, 1 GeV
~top to bottom! and forr ~full lines! andv mesons~dashed lines!.
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U E
2qW 2

`

dsQ~s2s0!Im PT,L
had~s,qW 2!

s

s21e2 e2s/Mmax
2 U

50.5U E
2qW 2

`

ds Im PT,L
had~s,qW 2!

s

s21e2 e2s/Mmax
2 U.

~4.14!

By insertion of the decomposition~4.10! we get

1

8p S 11
as

p De2s0~qW 2!/Mmax
2

52E
2qW 2

s0~qW 2!
ds Im PT,L

res ~s,qW 2!
s

s21e2 e2s/Mmax
2

.

~4.15!

We note in passing that the sign of ImPT,L
had and therefore

also the sign of ImPT,L
res is always negative@see Eqs.~4.9!,

~2.12!#.
Obviously, the lower limit of the Borel window depend

only on the condensates calculated in Sec. III. In contras
that, the upper limit depends on the choice for the continu
thresholds0 and on the hadronic model which yieldsPT,L

res .
In general, both limits may depend on the three-momen
qW and on the nuclear density.

Figure 1 shows the transverse component of the LHS
Eq. ~4.8! as a function of the Borel mass squared,M2, for
various values of three-momentum squared,qW 2, and for r
and v meson. For the nuclear density we have chosen
nuclear saturation density of 0.17 fm23. Figure 2 shows the
same for the longitudinal component. On the left hand s
both figures start withM25Mmin

2 as deduced from Eq
~4.13!. Obviously, the difference betweenr andv meson is
only very small and vanishes with risingM2. The latter ob-
servation can be easily understood recalling that the o
difference in the OPE’s forr andv comes from the twist-4
spin-2 condensates which are suppressed at least by a f
1/M6. Hence, the suppression becomes more effective w
rising M2. Note that the small difference betweenr and v

FIG. 2. Longitudinal part of the LHS of Eq.~4.8! as a function

of the Borel mass squaredM2 for three-momentauqW u50, 0.5, 1
GeV ~bottom to top! and for r ~full lines! and v mesons~dashed
lines!.
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does not necessarily mean that there is not much differe
in their spectral functions. It only means that the integra
quantity given in Eq.~4.11! ~to be rigorous, the RHS of tha
equation! is nearly the same for both mesons. Nonethele
the fact that the sum rule~4.8! is nearly insensitive to the
choice for the meson provides a strong constraint on a h
ronic model which aims at a description ofr and v on the
same footing, like, e.g., Ref.@15#.

We also observe that the dependence of the LHS of
sum rule~4.8! on the three-momentumqW is rather weak. This
also constrains the hadronic model. Again, we stress that
does not mean that the dependence of the spectral func
on the three-momentum is weak.

Suppose now that one has a hadronic model at h
which yields at least the imaginary part ImPT,L

res(s,qW 2) for the
respective isospin channel at finite nuclear density. Exam
can be found in Refs.@9–15,17#. Then, for given nuclear
density and three-momentumqW one can utilize the sum rule
~4.11! and the results shown in Figs. 1 and 2 as a consiste
check for the hadronic model in the following way~see also
Ref. @31#!.

~i! Choose a continuum thresholds0 and a subtraction
constant RePT,L

res(0,qW 2).
~ii ! Calculate the limits of the Borel window according

Eqs.~4.13! and ~4.15!.
~iii ! Calculate the relative deviationr of the RHS from the

LHS of the sum rule~4.11!, averaged over the Borel win
dow, i.e., schematically

r 5E
Mmin

2

Mmax
2

d~M2!u12RHS/LHSu/DM2 ~4.16!

with

DM25Mmax
2 2Mmin

2 . ~4.17!

The LHS function can be taken from Figs. 1 and 2.
~iv! Tune the ‘‘fit parameters’’s0 and RePT,L

res(0,qW 2) such
that the deviationr becomes minimal.

If this optimal r is reasonably small and the Borel win
dow not too small, one might conclude that the conside
hadronic model is in agreement with the QCD sum rule
the chosen nuclear density and three-momentumqW .

We close this section with some remarks on the respec
size of the ‘‘fit parameters’’s0 and RePT,L

res(0,qW 2). Clearly,
the more fit parameters we have the less restrictive is the
rule for the hadronic model which should be checked.
least, it is therefore important to get an idea about the s
and the possible influence of the fit parameters.

In vacuum the continuum thresholds0 turns out to be
about 1 – 1.6 GeV2 @31,15,23#. At least it has to be below the
exited states ofr andv. Model calculations suggest that th
threshold decreases with increasing density@26,29,15,31#.

Concerning the subtraction constant RePT,L
res(0,qW 2) it is

important to note that within the Fermi gas approximation
can be rigorously calculated for vanishing three-moment
@27,15#. Here it turned out that it is so small that it would n
change the results drastically, if it is simply neglected. U
fortunately, the expectation that it could be neglected also
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finite three-momentum is presumably not justified. If we u
the full electromagnetic current in Eq.~2.2! instead of a part
of it with well-defined isospin, then within the Fermi ga
approximation the transverse part of the subtraction cons
would simply be the real part of the forward scattering a
plitude T(qW ,kW ) of a ~real! photon with momentumqW on a
nucleon with momentumkW averaged over the Fermi spher
i.e.,

Re PT
em~0,qW 2!54E

ukW u<kF

d3k

~2p!3 2Ek
Re T~qW ,kW !

'
rN

2mN
Re T~qW ,0!, ~4.18!

where we have used the linear density approximation~cf.
next section! to obtain the last expression. It is reasonable
assume that RePT

res(0,qW 2) is of the same order of magnitud

as RePT
em(0,qW 2). Thus, to get an idea about the size of t

corresponding quantity in the sum rule~4.11! we have plot-
ted in Fig. 3 the quantity

1

M2

rN

2mN
Re T~qW ,0! ~4.19!

as a function of the photon energyEg5uqW u for nuclear satu-
ration density and a typical value for the Borel mass,M
51 GeV. We have used the model for photoproduction p
sented in Ref.@44# to obtain the real part of the isospi
averaged photon-nucleon forward scattering amplitu
Comparing the absolute sizes in Figs. 1 and 3 we find ind
that the subtraction constant might be negligible forqW 50,
but not for arbitrary three-momentum. Especially, if we a
interested in the dependence on the three-momentum
have to take the subtraction constant into account, since
variation of the curves in Fig. 1 with three-momentum is
the same order of magnitude as the quantity plotted in Fig
Concerning the longitudinal part of the subtraction const
we cannot compare with photon-nucleon scattering, si
there are no real longitudinal photons. Therefore, we refr
from presenting any estimates for this case.

FIG. 3. Real part of isospin averagedgN forward scattering
amplitude as a function of the photon energy in the rest frame of
nucleon@rescaled withrN /(2mNM2), see text for details#.
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Of course, the most fortunate situation would be if t
considered hadronic model already provides a value
RePT,L

res(0,qW 2). Then, only the continuum thresholds0 would
remain as a fit parameter.

V. LINEAR DENSITY APPROXIMATION

Obviously, the contributions of the OPE presented in S
III are quite unillustrative, simply due to its complexity. T
get more insight in the various contributions we restrict o
selves in this section to the parts which are at most linea
the nuclear density, i.e., cubic in the Fermi momentum. R
calling that we have evaluated all in-medium condensa
using the Fermi gas approximation~3.7! we have neglected
nucleon-nucleon correlations anyway which are quadratic
the density. Thus, the results presented in Sec. III are at
correct up to Fermi momentum to the power of 5, i.e., up
o(rN

5/3). Therefore, we do not lose too much information,
we restrict ourselves here to the linear density approxim
tion. To put it in physical terms, what we neglect further
is the Fermi motion of the nucleons. Anyway, for concre
calculations we can use the full results presented above.
note in passing that actually all the required integrals o
the Fermi sphere can be calculated analytically. The res
however, are lengthy and unillustrative. Thus, for pedago
cal reasons it is useful to discuss the linear density case

4E
ukW u<kF

d3k

~2p!3 2Ek
^N~kW !uOuN~kW !&

→
rN

2mN
^N~0!uOuN~0!&. ~5.1!

In this case, the coefficientscT,L
n (qW 2) introduced in Eq.

~3.59! are given by

cT,L
n ~qW 2!5cT,L

n,d54~qW 2!1cT,L
n,d56~qW 2! ~5.2!

with the contributions from thed54 condensates to th
transverse part

cT
n52,d545

1

24 K as

p
G2L

0

1mq^q̄q&0

1rNH 2
mN

~0!

27
1

sN

2
1

mN

4 FA2
u1dS C2,2

q 2
3

2
CL,2

q D
1

2

3
A2

GS C2,2
G 2

3

2
CL,2

G D G J , ~5.3!

cT
n53,d54~qW 2!

52rNqW 2
mN

2 FA2
u1d~C2,2

q 2CL,2
q !1

2

3
A2

G~C2,2
G 2CL,2

G !G ,
~5.4!

and to the longitudinal part

cL
n52,d545cT

n52,d54, ~5.5!

e
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cL
n53,d54~qW 2!5rNqW 2

mN

2 FA2
u1dCL,2

q 1
2

3
A2

GCL,2
G G ,

~5.6!

and the corresponding contributions from thed56 conden-
sates,

cT
n53,d5652

112

81
kasp^q̄q&0

21rNH 2
112

81

sN

mq
kasp^q̄q&0

2
5mN

3

12 FA4
u1dS C2,4

q 2
3

2
CL,4

q D
1

2

3
A4

GS C2,4
G 2

3

2
CL,4

G D G
1

9mN

2 Fc12c22
1

2
c32

1

18
~161!Kud

1 G J ,
~5.7!

cT
n54,d56~qW 2!5rNqW 2H 9mN

3

4 FA4
u1dS C2,4

q 2
10

9
CL,4

q D
1

2

3
A4

GS C2,4
G 2

10

9
CL,4

G D G
29mNFc12c22

1

3
c32

1

18
~161!Kud

1 G J ,

~5.8!

cT
n55,d56~qW 2!

522rNqW 4mN
3 FA4

u1d~C2,4
q 2CL,4

q !1
2

3
A4

G~C2,4
G 2CL,4

G !G ,
~5.9!

and

cL
n53,d565cT

n53,d56, ~5.10!

cL
n54,d56~qW 2!

5rNqW 2H mN
3

2 FA4
u1d~C2,4

q 25CL,4
q !1

2

3
A4

G~C2,4
G 25CL,4

G !G
13mNc3J , ~5.11!

cL
n55,d56~qW 2!52rNqW 4mN

3 FA4
u1dCL,4

q 1
2

3
A4

GCL,4
G G .

~5.12!

All coefficients which are not given explicitly above vanis
As always, the6 sign which accompanies theKud

1 term cor-
responds tor andv.

We immediately observe that the scalar condensates
tribute only to the three-momentum independent coefficie
cT,L

n52,d54 and cT,L
n53,d56 . These coefficients are identical fo

transverse and longitudinal part, since atqW 50 we cannot
distinguish between transverse and longitudinal directi
@24#.
n-
ts

s

Obviously, there are contributions from numerous co
densates to each of the coefficients presented above. O
spection of the parameters given in Tables I and II we c
work out which condensates dominate which coefficient. N
glecting less important condensates we find

cT
n52,d545cL

n52,d54'
1

24 K as

p
G2L

0

1rN

mN

4
A2

u1d ,

~5.13!

cT
n53,d54~qW 2!'2rNqW 2

mN

2
A2

u1d , ~5.14!

ucL
n53,d54~qW 2!u!ucT

n53,d54~qW 2!u, ~5.15!

cT
n53,d565cL

n53,d56'2
112

81
kasp^q̄q&0

2

2rN

112

81

sN

mq
kasp^q̄q&0 , ~5.16!

cT
n54,d56~qW 2!'rNqW 2H 9mN

3

4
A4

u1d29mNFc12c22
1

3
c3

2
1

18
~161!Kud

1 G J , ~5.17!

cT
n55,d56~qW 2!'22rNqW 4mN

3 A4
u1d , ~5.18!

cL
n54,d56~qW 2!'rNqW 2S mN

3

2
A4

u1d13mNc3D , ~5.19!

ucL
n55,d56~qW 2!u!ucT

n55,d56~qW 2!u. ~5.20!

Especially we have neglected allas corrections to the twist-2
condensates, i.e., we have approximatedC2,n

q by 1 and ne-
glected all otherCr ,n

i ~see Ref.@36#!. For vanishing three-

momentumqW the density dependent terms are dominated
the twist-2 spin-2 quark condensate and the scalar four-qu
condensate. Concerning theqW 2-terms it is remarkable that th
twist-4 condensates are equally important as the twis
spin-4 quark condensates. Of course, both are suppresse
large Borel masses as compared to the (d54) terms. Thus,
for the transverse part the twist-2 spin-2 quark condens
governs theqW 2-terms. For the longitudinal direction the situ
ation is more involved, since the (d54) coefficient given in
Eq. ~5.6! is quite small. Therefore, we have competing co
tributions from Eqs.~5.6! and ~5.19!.

We stress that in principle it is not necessary to perfo
the approximations which have led from Eqs.~5.3!–~5.12! to
~5.13!–~5.20!. Of course, one can use the exact expressi
for the coefficients. The purpose here was only to figure
the condensates which have the most influence on the c
ficients.

Since we have nonvanishing coefficients up ton55 we
find contributions up too(1/Q10). One may suspect that it i
inconsistent to keep terms of ordero(1/Q8) and higher, since
we have neglected (d58) condensates which would contrib
ute ato(1/Q8). However, this is misleading, since the d
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pendence on the three-momentumqW is different in both
cases. Schematically the neglected higher order conden
would contribute as

~d58! condensate

Q8 S #1#
qW 2

Q2 1#
qW 4

Q4 1¯ D , ~5.21!

where # denotes arbitrary dimensionless numbers which
not depend onq. Thus, e.g., theqW 2 terms of the neglected
condensates are actuallyo(1/Q10), while the corresponding
terms of the condensates taken into account areo(1/Q8).

To work out the dependence of the current-current c
relator on the three-momentumqW more explicitly we study
Eq. ~4.8! in the vicinity of qW 50. For vanishing three-
momentum we find

1

8p2 S 11
as

p D1
cn52,d54

M4 1
cn53,d56

2M6

5
Re Phad~0,0!

M2

2
1

pM2 E
0

`

ds Im Phad~s,0!
s

s21e2 e2s/M2
.

~5.22!

We have skipped the labelT,L, since there are no distinc
directions at vanishing three-momentum. Next we differen
ate Eq.~4.8! with respect toqW 2 and putqW 50 afterwards.
This yields

dT,L
n53,d54

2M6 1
dT,L

n54,d56

6M8

5
d

d~qW 2!
S Re PT,L

had~0,qW 2!

M2

2
1

pM2 E
2qW 2

`

ds Im PT,L
had~s,qW 2!

s

s21e2 e2s/M2D U
qW 50

~5.23!

with

dT,L
n53,d545

cT,L
n53,d54~qW 2!

qW 2
, dT,L

n54,d565
cT,L

n54,d56~qW 2!

qW 2
.

~5.24!

In the same way we find by differentiating twice

dT,L
n55,d56

24M10

5
d2

d~qW 2!2 S Re PT,L
had~0,qW 2!

M2

2
1

pM2 E
2qW 2

`

ds Im PT,L
had~s,qW 2!

s

s21e2 e2s/M2D U
qW 50

~5.25!
tes

o

r-

i-

with

dT,L
n55,d565

cT,L
n55,d56~qW 2!

qW 4
. ~5.26!

Let us discuss now the range of validity for the new su
rules~5.23! and~5.25!. As pointed out in Sec. III it is crucia
to find a non-vanishing Borel window where the validity
the sum rule is guaranteed inside of this window. To find
lower limit of this window we have compared the contrib
tion of the highest order condensates to the LHS of Eq.~4.8!
with the total result@see Eq.~4.13!#. In Eq. ~5.22! we have
four different orders in 1/M2, namely zeroth to third order.5

Thus, it is no problem to compare the third order contrib
tion to the total result. In Eq.~5.23! we are left with third and
fourth order in 1/M2, only. Thus, the number of orders w
have access on is already diminished. This leads to a lo
limit of the Borel window of Mmin

2 '3 GeV2 for the trans-
verse component of sum rule~5.23! which is already much
higher than the one for sum rule~5.22!: Mmin

2 '0.6 GeV2.
For the longitudinal component of sum rule~5.23! we even
find Mmin

2 '10 GeV2. As already discussed above theqW 2 part
of the (d54) contribution to the longitudinal part~5.6! is
quite small. Therefore, only for very large values of t
Borel mass the (d54) contribution can overwhelm the (d
56) contribution. Both for the longitudinal and the tran
verse part we find that the respective lower limit of the Bo
window for sum rule~5.23! is much higher than the one fo
Eq. ~5.22!. If the upper limit of the Borel window does no
rise in the same way, the sum rule~5.23! would not be as
useful as Eq.~5.22!. To determine the upper limit of the
Borel window we would need, of course, a hadronic mod
For the most simple case, the approximation of the spec
function by ad function, it was found in Ref.@30# that the
upper limit of the Borel window also rises. Thus, also t
sum rule~5.23! might be useful as a consistency check f
hadronic models. We note, however, that the definition of
Borel window in Ref.@30# differs from ours. For Eq.~5.25!
the situation is even worse. There we have only access
one order in 1/M2. Thus, we cannot determine a lower lim
for the Borel window. The sum rule~5.25! is therefore use-
less.

We stress again that the approximations performed in
section are not mandatory. The purpose of these approx
tions was to obtain more qualitative insight in the importan
of the various contributions and in the dependence on
three-momentumqW . To check the consistency of a hadron
model with the QCD sum rule~4.11! the OPE coefficients
should be deduced from the formulas presented in Sec.
Only if the hadronic model is also restricted to the line
density case, would a direct comparison with the simplifi
expressions be appropriate.

5Note that the first order term vanishes. Strictly speaking it
proportional to the light current quark mass squared which is n
ligibly small.
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VI. DISCUSSION OF THE ASSUMPTIONS

In this section we will discuss the various assumptio
that have led to the condensate contributions calculate
Sec. III. The basic assumption we have made for the ev
ation of in-medium condensates is the Fermi gas approxi
tion ~3.7!. Clearly, this approximation is only valid for no
too high densities. Of course, it would be of interest to qu
tify this statement. Unfortunately this is hard to do within t
OPE approach, since it is not clear how to calculate exp
tation values with respect to multinucleon states for arbitr
nuclear densities. An idea about the importance of mu
nucleon states might be obtained from a comparison of
moments of parton distributions~3.26!, ~3.27! as deduced
from DIS experiments with nucleons on the one hand s
and with nuclei on the other. This might be a direction
future studies. Concerning the parton distributions in nuc
we refer to Ref.@45#, and references therein.

Within the framework of a hadronic model it is tediou
but possible to approximately take into account interacti
of the vector meson with more than one nucleon@9–14,17#.
In Ref. @17# it was found that already at nuclear saturati
density it is important to account for such processes. On
other hand, presumably in every hadronic model one
distinguish between single and multinucleon interactio
Therefore, it should be possible to compare the OPE ca
lation with the hadronic model treated in a ‘‘single nucle
mode.’’ This comparison was, e.g., performed in Ref.@15#

for vanishing three-momentumqW . If in the framework of a
hadronic model it turns out that interactions with more th
one nucleon are important for the nuclear density under c
sideration, then the QCD sum rule cannot serve to check
consistency of the whole hadronic model but only of its
striction to scattering processes of the vector meson with
nucleon from the Fermi sphere.

After these general considerations about the validity
the calculation of in-medium condensates we turn now to
discussion of the accuracy in the determination of the diff
ent types of condensates. Concerning the scalar conden
of Sec. III A we have neglected there terms which are q
dratic in the light current quark massesmq as well as pos-
sible differences in the condensates of up and down qua
In view of the fact that the light current quark masses
about 6 MeV, while the Borel window for the QCD sum ru
~4.8! starts at aboutMmin

2 '0.6 GeV2 ~see Figs. 1,2!, the ne-
glect of mq

2 terms is very well justified. Also, a possibl
difference between up and down quark condensate is
sumably small and anyway hard to disentangle in view of
uncertainties in the determination of the~average! light
quark condensate~see, e.g., discussions in Refs.@31,23#!. In
addition, the contribution from the two-quark condensate
Eq. ~3.6! is much smaller than the one from the gluon co
densate. The largest uncertainty lies in the evaluation of
four-quark condensate, i.e., in the value fork. First, even the
vacuum value is still under discussion. Second, it might v
well be that the value fork varies with nuclear density. Con
cerning the first problem, it is useful to choose a hadro
model which describes the data fore1e2→hadrons reason
ably well and utilize the sum rule~4.11! for the vacuum case
to determinek. This was performed in Ref.@15# and we
therefore have taken the condensate values given there
s
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the second problem we have no solution to offer so f
Without any better knowledge we use the vacuum value
k also at finite density. To get rid of this uncertainty one c
differentiate the sum rule~4.8! with respect to the three

momentum squaredqW 2. In this way, all scalar condensate

drop out, since they do not yieldqW 2-dependent contributions
to the OPE side of the sum rule. As already discussed in S
V this differentiated sum rule results in a lower limit for th
Borel window which is much higher than the one for th
original sum rule. This might diminish or even close th
Borel window, i.e., the thus obtained sum rule might be le
reliable or even useless. This clearly depends on the exp
hadronic model under consideration.

A second possibility to deal with the uncertainty in th
density dependence of the four-quark condensate would
to usek as a free ‘‘fit parameter’’ in the same way as the ‘‘
parameters’’s0 and RePT,L

res(0,qW 2) as discussed after Eq
~4.17!. In contrast to the latter,k does not depend on th
three-momentumqW . Therefore, oncek is determined from a
fit of the OPE side to the hadronic model under consid
ation, e.g., atqW 50, thenk is fixed for arbitraryqW . Nonethe-
less, one might be afraid that one now has too many
parameters’’ so that effectively there remains no constra
on the hadronic model under consideration. Fortunately
situation is not that bad. To see this one can count the n
ber of orders in 1/M2 one has on the OPE side of a sum ru
This can be seen as the number of constraints.6 If the number
of ‘‘fit parameters’’ is larger than the number of constrain
one cannot learn anything from the sum rule. If the situat
is the other way around one gets constraints on the hadr
model under consideration. To be more specific let us d
cuss as an example Eq.~5.22!. For ImPhad we use the de-
composition~4.10!. On the LHS of Eq.~5.22! we find four
orders in 1/M2. However, the size of the purely perturbativ
contribution, i.e., the constant term, has already been use
determine the high-energy behavior in Eq.~4.10!. Therefore,
we have three constraints from the remaining three power
1/M2. This has to be compared with the number of ‘‘
parameters.’’ As already mentioned in Sec. IV for vanishi
three-momentumqW the quantity RePT,L

had(0,qW 2) can be calcu-
lated rigorously within the Fermi gas approximation@27,15#.
Thus, even if one usess0 andk as ‘‘fit parameters’’ one is
still in the situation that the number of constraints~3! is
higher than the number of ‘‘fit parameters’’~2!. In addition,
if a hadronic model is suggested to be reasonable by this
rule analysis it might yield a prediction for the~possibly
density dependent! value ofk. This, of course, is an interest
ing perspective.

The twist-2 condensates discussed in Secs. III B, III C
the best known contributions, as soon as one accepts
Fermi gas approximation discussed above. We even can
the results of DIS to get an idea about the neglected hig
order condensates~see below!.

The twist-4 spin-2 condensates can in principle also
deduced from DIS data. The uncertainties in their extract
are, however, quite large. We have adopted the analysi

6A similar analysis was performed in Ref.@27#.
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Ref. @41#. There, condensates depending on the light cur
quark masses, strange quark contributions, and depende
on the renormalization scale were neglected. These error
presumably smaller than the uncertainties in the extractio
these condensates from DIS data. In general, the contr
tions of the twist-4 spin-2 condensates are small as comp
to the twist-2 spin-2 contributions. For theqW 2-contributions
to the longitudinal direction, however, the twist-2 spin
contribution is suppressed byas . There, the twist-4 spin-2
condensates cannot be disregarded@30#.

Of course, one is forced to somewhere cut off the O
used here as an expansion in the dimensionality of the c
densates. We have neglected all condensates of dimen
ality 8 or higher. To get an idea about the size of the
glected condensates we calculate now the twist-2 sp
contribution to the current-current correlator, since we ha
access on that quantity utilizing the DIS results. The cal
lation proceeds along the lines described in Secs. III B, III
We use the Fermi gas approximation

^Omnkljx&'4E
ukW u<kF

d3k

~2p!3 2Ek
^N~kW !uOmnkljxuN~kW !&

~6.1!

and the decomposition

^N~kW !uOmnkljxuN~kW !&

;kmknkkklkjkx

2
1

12
~kmknkkklgjxmN

2 114 permutations!

1
1

120
~kmkngklgjxmN

4 144 permutations!

2
1

960
~gmngklgjxmN

6 114 permutations!

5:Smnkljx~k!. ~6.2!

The relevant operators are

ST i ~ ūgmDnDkDlDjDxu1d̄gmDnDkDlDjDxd!
~6.3!

and

ST Gm
aDnDkDlDjGax . ~6.4!

From the DIS calculations we can deduce the following c
tribution to the current-current correlator~2.1! which was
neglected in Eq.~3.3!:

Pmn
d58,t52~q!5E

ukW u<kF

d3k

~2p!3 2Ek
Tmn

~u1d!s56,t52~q,k!

~6.5!

with the forward scattering amplitude
nt
ces
are
of
u-
ed

E
n-
on-
-
-6
e
-
.

-

Tmn
~u1d!s56,t52~q,k!

52
64

q14~qmqnqaqb2gm
aq2qn qb2gn

aq2qmqb

1gm
agn

bq4!qgqdqeqzSabgdez~k!

3S C2,6
q A4

u1d1
2

3
C2,6

G A4
GD

2
64

q14~qmqn2gmnq2!qaqbqgqdqeqzSabgdez~k!

3S ~CL,6
q 2C2,6

q !A4
u1d1

2

3
~CL,6

G 2C2,6
G !A4

GD . ~6.6!

With this at hand we can calculate the ratio between
twist-2 spin-6 contribution to the LHS of the sum rule~4.8!
and the total value for this LHS as calculated in Sec. III. W

FIG. 4. Relative error made by the neglect of twist-2 spin
condensates in the calculation of the transverse part of the LH
Eq. ~4.8! as a function of the Borel mass squaredM2 for three-

momentauqW u50 ~upper line!, 0.5 ~lower line!, 1 GeV~middle line!,
and forr ~full lines! andv mesons~dashed lines!. The only notice-
able difference betweenr andv meson appears in the slightly dif
ferent lower limits of the Borel window, i.e., in the starting poin
of the curves on the left-hand side.

FIG. 5. Same as Fig. 4 for longitudinal part. The curves refer

uqW u50, 0.5, 1 GeV~top to bottom!.
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have calculated that ratio in Figs. 4,5 for transverse and
gitudinal directions and forr andv mesons. Obviously, the
obtained ratios are very small justifying at least the neg
of twist-2 spin-6 condensates and suggesting that all hig
dimensional condensates are reasonably suppressed
course, for a thorough discussion of the error made by
glecting higher-dimensional condensates we also would n
to know the other condensates beside the twist-2 spin-6
densates. Since we do not know, e.g., the scalar (d58) con-
densates, etc., the error analysis presented here is only a
guess.

As long as we do not know the actual values of the
glected condensates~or at least an upper limit for them! we
cannot present a rigorous proof that the OPE appro
works, i.e., that the truncated series yields a reliable value
the current-current correlator in the region of interest.
deed, in Ref.@16# it was doubted that the QCD sum ru
approach provides any reliable information about
medium modifications of vector mesons~see also Refs
@46,47#!. Two arguments were given there to support the
doubts: The first qualitative argument concerns the conn
tion between the mass shift of a vector meson and the
ward scattering amplitude of this vector meson with
nucleon. It was argued there that the forward scattering
plitude and hence also the mass shift is a long distance p
erty, while the OPE is only capable of short distance pr
erties. We think that this argument is misleading, since
OPE always concerns the interplay of long and short dista
properties, as already pointed out in Sec. III. Actually, in t
same oversimplifying way one might argue just the oth
way round: The in-mediumr mass is still large, i.e., a sho
distance property, and therefore can be described by the
approach. This shows that one needs more quantitative a
ments to check the validity of the sum rule approach.
useful self-consistency check within the Borel sum ru
method is the Borel stability analysis described in Sec. IV
breakdown of the sum rule might be observed in a smal
even vanishing Borel window. Indeed, this stability analy
was the key point to resolve the question, whether mass
and/or forward scattering amplitude can be extracted wit
the traditional sum rule approach utilizing the narrow wid
approximation. We refer to Refs.@48,27,29,49# for details. In
general, the Borel window can only be determined af
specifying a hadronic model. Therefore, we do not disc
this point here any further. The preceding discussion
clearly emphasized the necessity to perform a Borel stab
analysis.

A second, formal argument has been raised in Ref.@16#
against the applicability of the OPE approach to vector m
sons in nuclear medium: It was claimed there that the O
turns out to be an expansion in the nucleon massmN over the
invariant massAQ2. After Borelization this would turn into
an expansion inmN over the Borel massM . If the latter is
assumed to be of the order of ther meson mass, one woul
get an expansion parametermN /mr which is obviously not
small. Therefore, it was argued in Ref.@16# that the trunca-
tion of the OPE at thed56 condensates is not appropriat
Indeed, concerning the twist-2 condensates the stateme
true that the used OPE is an expansion inmN /M . This can
most easily be discussed within the linear density appro
mation of Sec. V. For example, for vanishing thre
n-
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momentum the twist-2 spin-2 condensates contribute wit
term proportional torNmN /M4 @see Eq. ~5.3!# and the
twist-2 spin-4 condensates with a term proportional
rNmN

3 /M6 @see Eq.~5.7!#. In general, the twist-2 spin-s con-
densates yield a contribution;rNmN

s21/Ms12. Since the
nucleon massmN is large this expansion might break dow
for the Borel masses of interest~typically of the order of 1
GeV!. However, one should not discuss the convergence
series without looking at its coefficients. The twist-2 spins
contribution is accompanied by thesth moment of the parton
distributions. Inspecting the last two lines of Table II we fin
that these moments become very small with increasings.
Indeed, we have already discussed above that the tw
spin-6 condensates do not spoil the truncation of the OPE
spite of the fact that they are proportional torNmN

5 /M8. This
shows that also the second argument raised in Ref.@16#
against the QCD sum rule approach is oversimplified.

VII. SUMMARY

This work was motivated by the finding that the QC
sum rule approach provides no model-independent pre
tion about a possible mass shift of vector mesons in nuc
medium@15,31#. In Ref. @31# we discussed at length that th
sum rule restricts ther meson only to a rather wide area
the ~mass, width! plane without making any further state
ments about the specific properties of ther meson. Only
within additional model assumptions can the behavior of
r meson in nuclear matter be further specified. For exam
if one assumesthat the width of ther meson is not increased
then the sum rule predicts ar mass which decreases wit
increasing nuclear density. However, it is also possible
assumeinstead that ther mass is not shifted. In this case th
sum rule suggests an increasing width of the spectral fu
tion of ther meson.

This, however, does not mean that the sum rule appro
is useless: We have presented here a QCD sum rule forr and
v mesons propagating with arbitrary three-moment
through nuclear matter at vanishing temperature. This s
rule provides a nontrivial consistency check for hadro
models which describe that propagation. At least as long
different hadronic models cannot be judged unambiguou
by experiments such consistency checks are importan
confirm or rule out hadronic models.

The main formula was given in Eq.~4.11!. The OPE co-
efficientscT,L

n which appear on the LHS of this formula ar
defined viaPT,L

OPE in Eq. ~3.59!. In view of their complexity
we have not given the explicit formulas forcT,L

n . However,
they can be easily deduced in the following way from t
equations presented in Sec. III: The transverse and long
dinal parts ofPT,L

OPE are obtained from the respective la
expressions of Eqs.~2.7! and ~2.8!. The current-current cor-
relator with the full Lorentz structurePmn

OPE is decomposed in
Eq. ~3.3!.

The scalar contribution is given in Eq.~3.4! whereRscalar

can be read off from Eq.~3.6!. The expectation values show
ing up there are decomposed in vacuum and mediu
dependent expectation values in Eq.~3.9! using the Fermi
gas approximation. The vacuum expectation values are li
in Table I. Finally, the medium-dependent parts of the sca
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condensates are connected in Eqs.~3.10!, ~3.11! with param-
eters also listed in Table I.

The contribution from the twist-2 spin-2 condensates
given in Eqs.~3.28!, ~3.29! with the traceless tensorSab
defined in Eq.~3.13!. In the same way the contribution from
the twist-2 spin-4 condensates is given in Eqs.~3.34!, ~3.35!
with the traceless tensorSabgd defined in Eq.~3.31!. The
required values for the moments of the parton distributio
An

i and the coefficientsCr ,n
i are collected in Table II.

The contribution from the twist-4 spin-2 condensates
given in Eqs.~3.42!, ~3.44! where the coefficientsB̃1,2 are
connected in Eqs.~3.57!, ~3.58! to quantities listed in Table
I.

In this way, the OPE coefficients can be easily calculat
As discussed in the last section the QCD sum rule~4.11! can
be used to check the consistency of a hadronic model,
vided that in the latter the medium is also described by
Fermi gas approximation. Going one step further by negle
ing the Fermi motion of the nucleons both in the hadro
model under consideration and in the calculation of the O
coefficients one might also utilize the sum rule in this line
density approximation. For this case the OPE coefficie
cT,L

n are explicitly given in Eqs.~5.2!–~5.12!.
By inspecting the QCD sum rule~4.11! we observe that

the hadronic model which should be checked has to yield
current-current correlator for invariant masses in the reg
(2qW 2) to s0 . The lower limit refers to vanishing energy. Fo
nonvanishing three-momentumqW this means that we nee
information not only about the timelike region, but als
about the spacelike region. For small three-momenta
spacelike region is dominated by the coupling of the resp
tive vector meson to nucleon-hole states@27#. For higher
three-momenta also resonance-hole loops come into pla
the spacelike region~see Fig. 3 in Ref.@17#!. Thus, at finite
lei
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ts
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nuclear density there are important structures in the spe
function of the vector mesons also in the spacelike regi
This is in contrast to the vacuum case where there is
structure below the two-pion~three-pion! threshold for ther
~v! meson.

Qualitatively, we have found that our sum rules are n
very sensitive to the difference betweenr and v meson as
well as to a variation in the three-momentum of the vec
meson with respect to the nuclear medium. This, howev
does nota priori mean that the current-current correlator f
different isospin channels and for different three-mome
should be more or less the same. In the sum rule only
integral over this correlator enters which might be the sam
e.g., forr and v mesons, even if the respective correlato
themselves are different. Thus, on this qualitative level
sum rule approach does not rule out hadronic models wh
predict a different behavior of vector mesons with differe
three-momenta, such as, e.g., Refs.@13,14,16–18#. A quan-
titative analysis of these models is beyond the scope of
paper.

We believe that the QCD sum rule presented here p
vides an interesting and nontrivial consistency check for h
ronic models which describe vector mesons in nuclear m
ter. We have tried to present the derivation of the sum rule
great detail to make it possible for nonexperts in OPE
utilize the sum rule for a consistency check of their hadro
models also.
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