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One-body dissipation and chaotic dynamics in a classical simulation of a nuclear gas
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In order to understand the origin of one-body dissipation in nuclei, we analyze the behavior of a gas of
classical particles moving in a two-dimensional cavity with nuclear dimensions. This “nuclear” billiard has
multipole-deformed walls which undergo periodic shape oscillations. We demonstrate that a single-particle
Hamiltonian containing coupling terms between the particle motion and the collective coordinate induces a
chaotic dynamics for any multipolarity, independently of the geometry of the billiard. If the coupling terms are
switched off, the “wall formula” predictions are recovered. We discuss the dissipative behavior of the wall
motion and its relation to the order-to-chaos transition in the dynamics of the microscopic degrees of freedom.
[S0556-28188)03911-9

PACS numbdps): 24.60.Lz, 21.10.Re

I. INTRODUCTION studies have been developed in Rdf7], where a coexist-
ence of chaoticity and slow relaxation to equilibrium in a

In the last 20 years the dissipation of collective motion inHamiltonian mean fieldHMF) model has been found, and in
nuclei has been widely observétl] in low energy particle  Ref. [18], where the relation between chaoticity and the ap-
and heavy ion collisions and it still represents a theoreticallyproach to equilibrium in a hard sphere gas and a Lorentz gas
unsolved problem. It is commonly believed that both one-has been analyzed.
body processes, i.e., collisions of nucleons with the nuclear In this context, Blockiet al.[11] analyzed the behavior of
wall generated by the common self-consistent mean fielda gas of classical noninteracting particles enclosed in a
and two-body collisions produce dissipation, although theimultipole-deformed container which undergoes periodic
interplay is not well knowr2,3]. shape oscillations. Particles move on linear trajectories and

The theory of damping and the approach to the equilib-collide elastically against the walls. In this model the wall
rium of a collective (usually slow degree of freedom and particle motions are uncoupled and therefore the wall
coupled to noncollectivéusually fast degrees of freedom is keeps oscillating at the same frequency pumping energy into
a quite general one, both at classical and quantal levels. lthe gas. For this system, the authors study the increase of the
the last decades several papers have been published on tharticle kinetic energy as a function of time. They find that
subject; see, for example, Refgl-16]. The most studied for octupole and higher modes the gas kinetic energy in-
case is the extreme adiabatic limit, namely, when the rati@reases with time, in agreement with the “wall formula”
between the characteristic times of the fast degrees of fregredictions[10]. They attribute the different behavior to the
dom and of the slow one is considered arbitrary small. Undefact that for low multipolarity deformation the particle mo-
the further assumption that the fast degrees of freedom hauwen is regular and corresponds to an integrable situation,
an ergodic dynamics for a fixed value of the collective vari-whereas for higher multipolarities shape irregularities lead to
able, a description of the damping and approach to quasia divergence between trajectories and therefore to chaotic
equilibrium can be given in terms of generalized diffusionmotion. Although their results look very interesting, their
equationg4,5]. The theoretical framework for the treatment application to nuclear or similar cases is not straightforward
of this limiting case, at least at the classical level, seems tbecause(i) the self-consistent mean field is absent dimnd
be well established, despite some questions appearing to liiee total energy is not conserved.
still open[6]. Unfortunately, in the majority of realistic cases A step forward in this direction has been performed by
the adiabatic condition is only partly satisfied and the ergodiBaueret al. in Ref. [15]. In this work the authors study the
condition is not often fulfilled. The damping, however, is damping of collective motion in nuclei within the semiclas-
still necessarily connected to some degree of chaoticity o$ical Vlasov equation. Here self-consistency is taken into
the overall dynamics of the system. The connection betweeaccount and the total energy is conserved. A multipole-
chaotic dynamics and dissipation in this more general situamultipole interaction of the Bohr-Mottelson type is adopted
tion has been studied by different authors but still lacks &or quadrupole and octupole deformation. In both cases dy-
general theoretical framework. In particular Wilkinspl  namical evolution shows a regular undamped collective mo-
presented some evidence which indicates that the occurrentien which coexists with a weakly chaotic single-particle dy-
of an integrable or nearly integrable motion of the fast de-namics.
grees of freedom strongly suppresses both the fluctuations In Ref. [16] we introduced a simple model which can
and the speed of relaxation towards equilibrium. Relateghed light on the correlation between chaoticity and dissipa-
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tion. We considered a gas of classical noninteracting particles, and the collective coordinate. The Hamiltonian
ticles moving in a two-dimensional billiard with nuclear di- reads
mensions. Particles collide with the oscillating walls and

transfer energy to it, but the container can give back this N przi p?,i pi
energy, heating the gas. We considered the-gdulliard as H(ri 6,0)=2, om T o3 tVILRG)) | + 50
i=1 m 2m I 2M

a Hamiltonian system; therefore the total energy is conserved
with a good accuracy. Though no explicit dissipative term is 1
considered, the main effect of the coupling of the wall with +-MQ2%a?, (1)
the particles is a damping of the collective motion. The 2
particle-wall coupling considered in our model is relevant for ;
at least two other reasong) the coupling can enhance the where{pri,pgi,pa} are the conjugate momenta (s ’H_i at
collectivity of the motion, since the particles are indirectly M=938 MeV is the nucleon mass, anii= 7mNR is the
coupled among each other through the wall, &g only I_nglls mass, chosen proportional tp the tot_al_ numbe_r of par-
with coupling included can the motion of the particles belicles N and to the square of the circular billiard radiig.
driven to equilibrium at large time scales. In fact, it has been! n€ value of the factoy, is fixed in such a way to minimize
shown[12] that without the coupling the asymptotic particle the equilibrium fluctuations. In our casg=1 for the mono-
velocity distribution is non-Maxwellian. pole oscillation, whereag= 10 for quadrupole and octupole.
In Ref.[16] only the monopole case was considered to-Therefore, in theL=0 case, collisions of particles against
gether with a small number of partideS, name|y, 1 and ]_Othe walls are more inelasti€) is the oscillation frequency of
Here we extend the previous study by considering more pathe collective variablex. The potentialV(r,R(6)) is zero
ticles (N=30) andL = 2,3 multipolarities. For a fixed value inside the billiard and a very steeply rising function on the
of the wall deformation, the motion of the particles is regularsurface,
in the case of the monopolé,=0, partly chaotic for large v
deformation in the quadrupole case=2, and essentially V(r,R(6))= 0
chaotic in the octupole cage= 3. In this way we are explor- ' 1+exp{[R(0)—r]/al}’
ing a set of physical conditions for which the motion of thewith V,=1500 MeV anda=0.01 fm. Such a small value

fast degrees of freedom ranges from nearly ergodic to inte-f the diff h " order to simulate closel
grable (for a fixed value of the slow variableThe param- ol the diffuseness was chosen In orderto simulate closely a

eters of the model are chosen as typical at nuclear scaleQ!iard system. Larger values af should not affect qualita-

However, the considered set of dynamical systems should btévely the results. The surface is described R{) = Ro[ 1

generic enough to be representative of the physical problerﬁ a.COS(L 0)]: Therefore thi; potential c_ouples the collective
under study, namely, the damping process of a slow degreé@“able motion to the particle dynamics and prevents par-

of freedom in a bath of many fast degrees of freedom, fapcles from escaping. The numerical simulation is based on

enough from adiabaticity and for different degrees of ergod:[he Hamilton’s equations

icity. We therefore expect that the results we have obtained 2

are generic enough to be qualitatively valid for a wide class . Pr, - Po, oV 5

of physical systems. e Pt 3 @
The most important findings of our study are tHaj '

chaos shows up in the single-particle motion for any surface

deformation for long time scalefh) the different geometry 9:ﬁ Py=— ﬂ ﬁ 3)
influences only the time scale for the onset of chaoticity ! mriz’ b IR 36;’

which is faster for the higher multipolaritie&) the different

time scales for the onset of chaoticity are in any case equal R 5 dV IR,

within a factor of 2,(d) the dissipation of the collective mo- VA MQ“a— Z (a_R’, $>- 4

tion is sensitive only to this time scale and thus it depends
only slightly on the geometry of the billiard fdr=2 and  Ngte that dropping the/ term in the equation fop,,, the

L=3, and(e) though no explicit dissipative term is consid- wa|l motion becomes purely harmonic and decoupled by the

ered in our model, the damping of the collective motion is inparticle motion, as assumed in the model proposed by the
practice irreversible due to the large Poinctnee. authors of Refs[11,10.

The present paper is organized as follows. We summarize e solve Hamilton's equations with an algorithm of
Fhe detalls_of the model in Sep. Il. The numer'lcal results ar@qyrth-order Runge-Kutta type with typical time step sizes of
illustrated in Sec. Ill. Conclusions are drawn in Sec. IV. 1 fm/c. If not otherwise stated, the calculations were per-
formed with the number of particléé= 30. The total energy
was conserved with relative errdfE/E<10 “. For runs
with the longest time duration or with the largest number of

In Ref.[16] we considered a classical version of the vi- particles a fourth-order symplectic integraf@0] was used,
brating potential mode(see, e.g., Ref.19]). In this model since it turns out to be more efficient with comparable degree
several noninteracting classical particles move in a twoof accuracy.
dimensional deep potential well and hit the oscillating sur- As far as the initial conditions are concerned, we assign
face. Using polar coordinates, the Hamiltonian depends on sandom positions to the particles inside the billiard and ran-
set of {r;,6,} variables, describing the motion of the par- dom initial momenta according to a two-dimensional

1. MODEL
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Maxwell-Boltzmann distribution with a temperatur@ L=0 L=2 L=3
=36 MeV. This value of the temperature is chosen in order 15F aooar AF i ear A T Toas
to mimic the Fermi motion of the particles. In this way the 10f
average velocity of the particles is close to the typical 5¢ e | \/\/
nuclear Fermi velocity. In a classical description the use of a BT acrer qF Titres AP TS
Maxwellian distribution ensures that the initial conditions are ”g o L 1t 1T
not too far from equilibrium for the whole system. I 2 Aa
We consider the wall oscillations taking place not too far ~_ 15} t-z24x

from adiabaticity. For this purpose we follow the definiton & °f . . *
of the adiabaticity parameter given by the authors of Ref. 2
[11], i.e., 15¢

10

st

K= aOQRO (5) 01.5 20 25 3.0 1.5 20 25 30 15 20 25 30 35
v
r; (fm)

v being the most probable particle speees; yT/m, aq the FIG. 1. The final radial coordinate for one particle is drawn as a

initial amplitude of the oscillation, anR, the radius of the  function of the initial one at different times= 0.47, 1.6r, 2.4r,
circular billiard. We choos®,=6 fm and2=0.05 S*so and 4r. Calculations are performed for multipolarities
that =0, 2, 3. Here 1000 initial conditions are considered.

IIl. NUMERICAL RESULTS
A. Scatter plots

With our choice ofa, (see below; the adiabaticity pa- One possi_ble way in order to inyestiga_lte the role p!ayed
rameter « might be not as small as assumed in theby the coupling and see whether it can induce chaotic dy-

asymptotic theory of Ref4,5]. The adopted value can cor- Namics is drawing Poincage surface of sections for the
respond more to realistic situations single-particle coordinate. However, this is impossible to

Since in realistic cases the collective motion takes plac@€HO"M in our case because of the large number of degrees
around equilibrium, the initial wall coordinate has been cho-Of fregdom. Then an alternative way to visualize a ch_aot|c
- - o behavior is to draw scatter plots; see Fig. 1. There we display
sen equal taxg=a+ da, wherea is the equilibrium value the final radial coordinate at a tinteof one particle vs the
and Sa the deviation. The equilibrium value corresponds one att=0 for the monopole, quadrupole, and octupole de-
of course to the thermodynamic limit, which is actually formation. The chosen times ate=0.47, 1.6r, 2.4r, and
reached when considering an ensemble of copies of the sy, 7 being the period of the oscillatiom=2/Q). These
tem, all of them with an initial valuer=a and differing  PlOts are very useful and are commonly used in transient
from each other in the initial microscopic distribution of par- Tégular situations like chaotic scatterifgl] and nuclear

ticle positions and momenta. The equilibrium value dependénultifragmentatior[22]. The idea is that if the dynamics is

on the considered multipolarity. In all cases we checked nu[egular, two initially close points in space stay close even at

merically that starting from the thermodynamical valae later times, but if the dynamics is chaotic, the two points will

o _ soon separate due to the exponential divergence induced by
=a and a Maxwell-Boltzmann distribution, the collective cpaos. In the first case this plot will show a regular curve,

variablea oscillates in time around. Furthermore, we con- whereas in the other one a diffused pattern appears. We note
sidered an ensemble of this type of run, each one corresponthat for all multipolarities the initially regular curves change
ing to different particle initial conditions, consistent with a into scattered dots, which clearly show that the coupling to
space uniform distribution and a Maxwell-Boltzmann veloc-the wall oscillation randomizes the single-particle motion.
ity distribution. We then checked that the average over therhis is at variance with what was discussed in Réfl],
runs of the value of collective variable(t), at any given where chaos is supposed to appear only for multipolarities
time t, was converging indeed to the constant equilibriumL>2. In our model the coupling between the wall and par-
value « for a reasonably large number of runs. In this wayticle motions produces a chaotic dynamics evenlfer2. In

one can also estimate the fluctuations around equilibrium thaddition, the higher the multipolarity, the earlier chaos starts
variablea undergoes in a typical run. Also the average am-because of the increased shape irregularity.

plitude of the fluctuations turns out to be consistent with the A more quantitative analysis can be performed because
thermodynamical estimate for a harmonic oscillator in a therscatter plots of Fig. 1 have a typical fractal structure. As
mal bath. More details on the procedure can be found in Reflready done in Ref22], a fractal correlation dimensidn,

[16]. After we checked that the numerical simulation pro-can be calculated from the correlation integ@(r) [23].
duces good equilibrium properties, we perturbed the equilibOne first counts how many points have a smaller distance
rium collective coordinater by an amoun®a=0.3, and let than some given distance As r varies, so does the correla-
both the billiard and the particles evolve in time. The chosertion integralC(r), defined as

value is larger by about a factor of 3 than the average equi- M

librium fluctuations. Moreover, at time=0 we putp,=0, _ N

the wall having only potential energy. ) M22 O(r=lz-zD. ™
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FIG. 2. The time evolution of the fractal correlation dimension o2 [ r|_|J_|_‘ ]
D, is plotted for the multipolaritied =0, 2, 3. The lines are a i H ,_I;_P
guide to the eye. The dashed line is the fully random limit for 00 L | g o .hL"ﬂ-.—1 .
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where® is the Heaviside step function aada vector whose FIG. 3. For the caseéls=0, 2, 3 we show the frequency distri-

two componentsx; ,y;) are the points coordinatell is the  p iong of the largest Lyapunov exponantfor 1 (thin histogram
total number of points. The fractal correlation dimensidn  ang 30 particlesthick histogran. An ensemble of about 40 events

is then defined by was considered in each case.
InC(r) k
D,=lim : 8 1 di(7
2= M0y ® A=l lim =S 2 (10)
k—o dg—0 kri=1 do

Therefore by plotting the logarithms it is possible to ex- , )
tractD,, by fitting the linear slope for sufficiently small We The result turns out to be essentially independendof
considered as a good interval satisfying ). the one be- We considered the following metric in phase space:
tweenr ,i,=1.83x 10 2 andr .= 1. An ensemble of 1000 .
points was considered. In Fig. 2 we displBy vs time for 2 " > "
each multipolarity. At the very beginning, is equal to 1, d(t)= 121 (OXj +0p5, + 06+ 5p), (1D
showing that the motion is regular. As time goes on, regu-

larity is lost and the motion becomes chaotic until a completg, o he infinitesimal distances were normalized to the
randomness is reached, in which case=2 as expected for mean values and therefore are dimensionless quantities. In

a complete_zly random distripution on the plafie2]. Thi_s our case the length of the time intervawas 200 fm¢ and
result confirms the one published in REL6], where a dif- do=2x10"®. Using the above method, a large number of

ferent method of calculation was, however, employed. trajectories(of the order of 4D was sampled for each multi-
polarity. Each trajectory was followed for a timeé
B. Lyapunov exponents =3500 fmk, thus allowing for a safe determination of the
A more common quantitative way to characterize the dy-largest Lyapunov exponent.
namics in a chaotic regime is by means of the largest In Fig. 3 we display for each multipolarity a distribution
Lyapunov exponenk,, which gives the average rate of ex- Of A1 for a number of trajectories and for 1 and 30 particles
ponential divergence of two trajectories with nearly identical(respectively, thin and thick histograjdhe most probable
initial conditions. In general, if we denote ty(t) the dis- Vvalues do not depend strongly on the multipolarity, at vari-
tance between two phase space trajectoriegjaﬁ;dj(o), )\1 ance with the results found in Rd_fll], and lie within a

characterizes the average growth of the distatit¢ with ~ factor of 2 one from each other, the cédse 0 being inter-
time mediate betweeh=2 andL = 3. This is probably due to the

different choice of the wall mass. In the cae=1, A\, is
(d(t))=dgexp(\qt). (99 always smaller than the value obtained with=30, thus
showing thafa) chaos starts earlier when a higher number of
We have calculated this largest Lyapunov expongrity  particles is present an) for long time scales the degree of

the method of Benettiet al. [24]. This method consists of chaoticity is more dependent on the number of particles than
evolving two close trajectories originally separated in phasen the multipolarity. Therefore a Hamiltonian with coupling
space byd,, for a given time intervalr, after which the terms gives rise to a dynamics weakly dependent on the ge-
magnitude of their separatioth(7) is rescaled back ta. ometry of the billiard. It has to be noticed that the average
The procedure is then repeatietimes. It can be shown that number of particle-wall collisions per oscillation period is
A1 is given by the following limiting procedure: only about 2 forN=1 and about 60 foN= 30.
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FIG. 4. On the left-hand side the time evolution of the collective 0.0, ;g “;5

variable is shown for the multipolaritiets=0, 2, 3 and on the
right-hand side the corresponding excitation energy of the gas, nor:
malized to the initial energ¥,.

FIG. 5. The square of the rati®/ « is plotted vs the number of
C. Chaos and dissipation oscillations for different multipolarities and number of particles.

1. Analysis of the single event total energy is conserved so that the damping of the wall

In this section we will mainly discuss the interplay be- _motiqn (_:orrespond_s to the heating of the gas. This process is
tween chaoticity of the single-particle dynamics and dissipaln Principle reversible, but the high number of degrees of
tion of the collective motion. For this purpose, we follow at freedom mvolvgd makes in prgctlcg this process |.rreverS|bIe.
the same time the dynamics of the wall and the particles. One should wait a very long time, i.e., the Poinctinee, to

First we analyze the behavior of one single event, keepin§€€ the system again close to the initial conditions. We note
in mind that a correct statistical description can be performedhat the dissipation is stronger when batrandN increase.
only for an ensemble of events, as already pointed out ifh partlcular, the mcreas.ed number of pa{rtlples makes the
[16]. On the left-hand side of Fig. 4 we plot the evolution of 8vailable phase space bigger and the Poindare longer.
the square of the collective variabié vs time for one single ~ The latter can therefore be a limitation, in the sense that a
event. Each panel corresponds to a fixed multipolarity. Weshort Poincardéime would weaken dissipation.
note that the amplitude of the collective motion shows an
irregular oscillation, at variance with the results found in 2. Analysis of an ensemble of events
Ref. [15]. We note also that a slight damping can be ob- |n order to have a global picture of the macroscopic sys-
served, in contrast with the results published in R&6],  tem, many events are needed and average values of the dif-
where calculations with a smaller number of particles wereerent observables should be considered. In Fig. 6 we display
performed. Please note thakeeps on oscillating around the the time evolution ofx? averaged over an ensemble of 1000
equilibrium valuex which for the monopole case depends ondifferent events, each obtained by assigning random initial
the gas temperature and on the wall frequefi®|. For the
other multipolaritiese oscillates around zero ana? de- ' ' '
creases more rapidly for increasihgindicating a faster dis- 1of L=0 ]
sipation for a larger irregularity of the billiard.

On the right-hand side of Fig. 4 we plot the time evolution 0.5 W\/\/\/\/\/\/V\/V\AMM
of the excitation energy of the gas, defined as the relative 0.0 , , ,
variation of the total energy of the g&swith respect to its ‘ ' ' '
initial value Ey, AE/E,. In all three cases the gas is heated

up, but with a different time dependence according to the 0.05 ]
multipolarity. Except for small irregular fluctuations, an in-
creasing trend shows up for the quadrupole and octupole

0.00 } } }
modes. An oscillating pattern, slightly irregular, is visible for L=3

the monopole case. Moreover, in the=0 oscillation the 0.05 1
energy gained by the gas is lower than in the 2,3 cases. ’
Therefore some dissipation is present for all multipolarities

0.00

and is larger for increasing. Of course these are only gen-

<o*>

eral features of the events for different multipolarities, the 0 ° 1o 18
details being different from one event to the other. t/T
In order to better understand the mechanism of dissipa-
tion, we display in Fig. 5 the square of the ratita,, being FIG. 6. The square of the collective variakle averaged over

ag=a(t=0). The plot is as function of time, for different an ensemble of 1000 events, is displayed vs the number of oscilla-
multipolaritiesL and particle numbeN. In our model the tions for the three multipolarities considered.
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FIG. 7. On the left-hand side the wall energy, averaged over an

ensemble of 1000 events and normalized by its initial value, is © 5 10 15

reported vs the number of oscillations for different multipolarities. t/‘r

On the right-hand side the observalfie? is drawn(see text for

further detaily FIG. 8. The excitation energy of the gas, averaged over an en-

semble of 1000 events, is reported vs the number of oscillations for
conditions to the particles both in coordinate and momentundifferent multipolarities.
space but consistent with a Maxwellian. We note that the
motion of the collective variabléa?) is completely damped the decay time of the wall energy to its asymptotic vadue
out for times which depend on the multipolarity and devel-iS substantially longer than the one fbr?, which indicates
ops around equilibrium, as we checked explicitly. The readefhat for the monopole case the dephasing mechanism is quite
should keep in mind that fdr =0 collisions of the particles important. The asymptotic value o) is consistent with the
with the wall are more inelasti¢see Sec. )l due to the equilibrium valuea for a gas at the final temperature, which,
lighter mass of the wall; therefore the monopole oscillationfrom energy conservation, turns out to Be43 MeV. We
damps out in a time comparable with the one of the2  checked that indeed the velocity distribution, averaged over
mode. The same mass was used in the calculations publishéite events, is very close to a Maxwellian with that tempera-
in Ref. [16]. If we put =10 even forL=0, the damping ture. Furthermore, the average amplitude of the fluctuations
time is longer. around the equilibrium value was checked to be consistent
The damping of the oscillations, which is apparent in Fig.with a harmonic oscillator in equilibrium with a thermal bath
6 for all the three multipolarities, can have two distinct ori- at T=43 MeV.
gins. On the one hand, each individual event can indeed On the contrary, for the higher multipolarities the decay
display a damping of the oscillation amplitude. In this casetimes of the wall energy and a? appear to be very close,
the effect of the average is only of a smoothing the fluctuaand therefore the dephasing mechanism seems to be in these
tions. The observed damping time is then simply the averageases ineffective. The damping is mainly an energy damping
damping time of a generic set of events. On the other handind is characteristic of a generic event.
each event has a different time evolution, and after a period These considerations are confirmed if one calculates the
of time the phaseof the oscillation can be quite different excitation energy of the gas, displayed in Fig. 8. We note
from one event to another. If the phase becomes essentialthat the characteristic times for the energy growing follow
random as the time proceeds, when taking the average of closely in all cases the decay times of the wall energy. More-
over different events strong cancellations can occur and aver, forL=2,3 we note the presence of two different re-
damping of the oscillations can appear, even in the casgimes: a first one lasting for about one to two oscillations
where no average energy damping is present. It is wortlcharacterized by a sharp rise in the excitation energy, and a
noticing that this damping mechanism disappears if the ratidecond one at successive times where a slower approach to
between the single-particle mass and the wall mass is varequilibrium is apparent. As can be deduced from Fig. 1, the
ishing small, and therefore it is ineffective at the macro-first stage may have some relation with the onset of chaos in
scopic level, where event-to-event fluctuations can be nethe single-particle motion. After chaos has fully developed,
glected. In order to estimate the contribution of each one o&nd an appreciable part of the total energy has been pumped
the two mechanisms to the damping displayed in Fig. 6, wénto the gas, a certain degree of randomization is reached and
plot on the left-hand side of Fig. 7 the energy of the walla slower dissipation rate shows up. A similar behavior in the
divided by its initial value, averaged over the same sets ofelaxation was observed for the HMF modédl7] and the
events. As a function of time, this quantity should be insen-hard sphere gas and the Lorentz gas studied in [R8f. In
sitive to phase randomization because it is proportional tdhe latter cases the time evolution of the Boltzmann entropy
{a?) and corresponds to the average energy damping of theas studied.
oscillations. This behavior is completely absent in the monopole case.
For comparison, on the right-hand side we plot alsoTherefore it seems that different kinds of dissipation can
Aa?=({a)— a.,)?, aquantity which, on the contrary, should originate from the same underlying chaotic single-particle
be sensitive to phase cancellations. For the monopole casepotion. It should be stressed that, within the time of chaos
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FIG. 9. Coupled octupole motion of the wall and gas particles FIG. 10. Same as Fig. 9 but without coupling. The frequency of
with a very large inertia of the wall =100). The adiabaticity the wall is kept fixed to the initial one, i.eQ)=0.05 s*.
parameter isc=0.14. Shown are the time evolutions of the collec-
tive variable[panel(a)] and the wall energjpanel(b)] accordingto  coupling. That this is actually the case is shown in Fig. 10
our model(solid line). The relative increase of the gas energy is where the time evolution of the different quantities is prac-
shown as dpts in comparispn with two _differ_ent versions of the Wa”tically the same as in Fig. 9.
formula(golld and dashed lingsis explained in the texpanel(c)]. A particular feature of the case shown in Figs. 9 and 10 is
Panel(d) is a blow-up of paneic). the fact that the wall formula results follow the exact evolu-
tion only during the first period. We should emphasize that
development, the wall has dissipated only a fraction of itswe applied here the wall formula adapted to the two-
energy, as is clearly seen in Fig. 7. In the monopole case it idimensional case, as derived in the Appendix. In Fig. 11 we
apparent that the flow of energy from the collective variableshow a repetition of the calculation in R¢lL1] where the
a to the partide gas is not Comp|ete|y “irreversib|e’” and wall formula follows the exact result for the heating of the
the wall receives back part of its energy from the gas for darticles gas over several periods. The only difference with
number of oscillations. the _calcula'uon in11] is that here we use again for t_he gas
particles our Maxwell-Boltzmann distribution  withT
=36 MeV, whereas ifil1l] a sharp Fermi-Dirac distribution
3. Comparison with the wall formula was employed. The fact that the wall formula for this par-

Let us now try to make some connection to one-bodyticular case of the parameters is well reproduced indicates
dissipation and the wall formula introduced and studied exthat this feature is independent of Maxwell-Boltzmann or
tensively in the past by Blocket al. [11,10. We limit our- ~ Fermi-Dirac statistics. This must be expected, since in the

selves to the analysis of the octupole mode, because for th¥f2ll formula the dissipation rate depends only on the average
(and for higher multipolaritiesthe model of Blockiet al. velocity of the particles. Therefore, the dissipation must be

predicts dissipation. Of course a comparison between the

situation studied here and [i11] may be biased because in 15 (a) ' Lo
the model studied ifi11] there is no energy conservation. A LoLkd =02
Therefore the phase space of the gas is conserved in the latte ™
model but not in the case considered here. In spite of thatou S |
model should be able to recover the limit of Boeiial. And 53 '
actually it does. This happens when in our model the masso . 05 ‘
the wall becomes very large as, for example, in Fig. 9 where 0 2 4 0 2 4
we chooser=100 anday=0.09 with N=30 andQ =0.05 ' ‘
as before. In this case the particle-wall collisions are more 0.
elastic and the time evolution is slower for all observables. In .3
particular in panelgc), (d) of Fig. 9 the dots are our numeri-
cal simulation and the solid and dashed lines are two ver-v
sions of the wall formula to be explained in the Appendix. In
particular, the dashed line represents the results of the wal 0 2 4 0 1 2
formula which contains only terms linear in time. The inclu- t/r e

sion of terms quadratic in time, which take into account the
increased average speed of the gas for large times, producesF|G. 11. Repetition of the calculation of Blockt al. [11], but

a new dissipation formula represented in Figs. 9 and 10 by @ith a Maxwellian distribution for the gas particles. The observ-
solid line. Now, if every thing is consistent we should get theables displayed are the same as in Figs. 9 and 10. The adiabaticity
same result as the one shown in Fig. 9 in switching off theparameter isc=0.04. See the text for more details.

(b)

1.0

E,/E,(t=0)

<AE/Ey>
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1.5 @ T 1.5 ) T pgrticle; moying in a classic_al t.)illifard.having nuclearlike
1o3 n=10 @y=0.3 = dimensions, in order to explain dissipation of the collective
1.0p 1§ 10 ] motion. We found that the presence of a coupling term in the
“? ‘;1 single-particle Hamiltonian induces chaotic motion at the mi-
N ] 3 051 ] croscopic level.

As far as the monopole mode is concerned, we found
irregular behavior together with damping in single events.
The damping observed when an average is taken over a set
of events is a consequence also of the irregular time depen-
dence of the oscillations. This incoherence is produced by
the chaotic single-particle dynamics, which makes all events
belonging to the same ensemble different one from each
other, and therefore substantial cancellations occur once the
average is taken. For the higher multipolarities this mecha-
nism seems to be ineffective, and the damping coincides

t/T t/T with a real energy damping of the oscillations due to the

FIG. 12. Same as Fig. 9 with coupling. In panéts and (d) large Poincargime. The dissipativg process for. the quadru-

time-dependent wall formulas have been used, taking into accounPCl€ and octupole modes looks different also in another re-

respectively, terms linear in tim@ashed lingwith quadratic ones ~ SPect. In fact, while the single-event properties are similar to
(solid line). The dots are our numerical results. the monopole case, an ensemble of events shows that two

different regimes appeafa) an initial fast dissipative evolu-
the same as long as the average velocity of the particles is tH#®n corresponding to the onset of chaos in the single-particle
same. The only variance with the case shown in Figs. 9 anghotion and(b) a slower dissipative trend towards equilib-
10 is that the parameters are slightly different, for instanceflum.

the ad|abat|c|ty parametm’defined in Eq(6) is by almost a All these results should be qualitatively independent of
factor of 4 smaller in Fig. 11 than in Figs. 9 and 10, that is,the particular nuclear dimensions we have used in the model.
x=0.04 instead ofc=0.14. However, both values af are In order to be closer to equilibrium we have used for the

sufficiently small in order to verify the adiabaticity criterion initialization of the gas particles a Maxwell-Boltzmann dis-
(for the validity of the wall formula established by Blocki tribution with a temperature of =36 MeV to have a mean
et al, namely, that<1. According to our findings herex kinetic energy characteristic of nuclear systems. We also
must really be extremely small so that the wall formula holdschecked that the use of a Maxwell-Boltzmann distribution
during several periods; otherwise it may be valid only duringversus a Fermi-Dirac step is apparently of no consequence
the first instances of the dynamics. on the damping rate. Indeed in switching off the particle wall
Let us now come back to a more detailed analysis of oufoupling and periodically octupole-deforming the wall under
present results obtained including the coupling terms in théhe same condition, as was done some time ago by Blocki
Hamiltonian. In Fig. 12 we show as a function of time the et al-[11] using a Fermi-Dirac step, we find with a Maxwell-
evolution of the elongatiorfpanel (a)], the wall energy Boltzmann distribution an identical rate of feeding of energy
[panel (b)], and the gain in energy of the gésanel(c)] into the particle gas. Moreover, we also checked that the walll
together with a blowup ofc) [panel(d)]. In panels(c) and formula prediction for energy dissipation agrees with the nu-
(d) are also shown the results of the standard wall formuldnerical simulation over several periods in time. This shows
(dashed ling which is linear in timg[11], and the new ver- that our model is able to mock up real nuclear dynamics
sion including a quadratic terigsolid line) [12]. We should ~ together with its damping mechanisms.
stress that we applied here generalized wall formulas, taking When we increase the adiabaticity parametday almost
account of the fact that the wall motion is actually damped  factor of 4 attainingc=0.14, which should still be consid-
This implies that we have to use a time-dependent version girable as small, the agreement of the numerical result with
the wall formula(TDWF) as derived in the Appendix. the wall formula was reduced to only the first period of the
Again we see that the wall formula only agrees with theoscillation. In view of what we said above about Maxwell-
exact solution during the first period. For longer times theBoltzmann versus Fermi-Dirac distributions, we assume that
wall formulas give rise to much more energy dissipation tharfhis is a generic result. Also when reducing the inertia of the
in the exact evolution, the new formula more than the stanwall by a factor of 10 and thus increasing the particle wall
dard one. coupling (once reestablishg¢dhe heating rate of the particle
From the above investigations it seems therefore that thgas agrees with the wall formula only during the first period.
wall formula can only simulate the dissipation of energy in This happens in spite of the fact that we used a time-
the first instances of the dynamics when the adiabaticity padependent version of the wall formula where the continuous

rameterx [Eq (6)] is extreme|y sma"(of the order of 1/ SIOWing down of the wall motion haS been taken in‘fo ac-
100). count. Indeed the wall formula considerably overestimates

the damping rate at longer times.
One should realize that our model implies real particle-
wall collisions with global energy conservation. Such colli-
In conclusion, we have presented a dynamical approachkions are absent in pure Hartree-Fock or Vlasov calculations.
based on the solution of the Hamilton's equations for severaln fact our model in what concerns the particle wall colli-

IV. CONCLUSIONS
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sions should come quite close to the situation consideredyhere «(t) can be calculated either without or with cou-

e.g., in[3] where the collision term is based on the particlepjing. In the former caser(t) = aycos(t) and Eg.(A2)
vibration coupling model. Also in that model the damping wi|| read

rate strongly differs between low and high multipolarities of
the collective motion. However, in R€f3], contrary to the
spirit of the present work, fagtiabatio motion (the giant —
resonanceswas considered, which makes a detailed com- Eo dt
parison inadequate. In the future, in order to simulate a pure

mean field dynamics based on our model, we plan to calcug, and «, are the initial energy of the gas and the initial
late the evolution with the so-called parallel ensemble techelongation. After more algebra we get the excitation energy
nique and ensemble average at each instant of time the mef the gas AE/E,:

tion of the wall. We anticipate that this very much will
suppress the particle wall damping mechanism so that the

1 dE 2R
= 20242 sirR(O1). (A3)
v

. Y ) R in(2Qt
collective oscillation will be mostly undamped, a feature —_29 aé Qt—M no coupling .
which should bring the present study in closer contact with S 2
the one performed in Ref15]. (A4)

Our model certainly has implications beyond nuclear _
physics. It should be generic for all situations where a heavy In the case with coupling(t) comes directly from our
particle (here the wall is moving in a Knudsen gas of light numerical simulation. In fact, since the wall energy is
particles. For example the motion of a pendulum of nidss
in a very rarefied gas of particles with mass<M should 1 . 1
show features similar to the ones studied within the present Ew=5Ma®+ EMQZOKZ, (AS)
model. If the big particle can be approximated by a sphere
suspended on a spring and the gas is enclosed in a box, the ) . ) . o
whole system can be considered as some sort of dynami¥e €asily getr and substitute in EqA2) obtaining
generalization of a Sinai billiard. The study of the damping
of the heavy particle in such a situation would be particularly 1 dE Ry
interesting. E, dt = 7

2

MEW—QZa2 with coupling.  (A6)

ACKNOWLEDGMENTS . . . . oL
By integration on time we get again the excitation energy

One of us(A.R.) would like to thank Vito Latora, Stefano of the gasAE/E,. The last equation is the TDWF.

Ruffo, and Allan Lichtenberg for fruitful discussions. In Ref.[12], a generalized wall formula has been studied,
which takes into account for the increased average speed of
APPENDIX the gas for large times. The new dissipation formula contains

an additional term quadratic in time, besides the linear term
Here we give some details about the two-dimensionalEq. (A4)]. We have performed similar calculations in two
wall formula. Starting from the original formulation given by dimensions, both without and with coupling. The new for-
Blocki et al. in Ref.[10], after rescaling in two dimensions, mula for the excitation energy of the gas reads
we get the following result:

de_4 — . : A—E=2I(t)+ilz(t) (A7)
G P 3& g?dl+ - - - (terms of higher order in®). Eo T ’
(A1) : .

- I(t) being, respectively,
p andv are, respectively, the density and the average speed
of the gas,q is the speed of the wall, and! is the line (1) = aZQRO[m_ sin(2Qt)
element. By integration of EqA1), and neglecting correc- v | 2
tions of ordera? or higher, we easily get

no coupling, (A8)

dE_  — s 112 I(t)=&ftdt{£E —02%a?| with coupling. (A9)
a—4pvRo[a(t)] , (A2) 5 ot IM v .
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