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One-body dissipation and chaotic dynamics in a classical simulation of a nuclear gas
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In order to understand the origin of one-body dissipation in nuclei, we analyze the behavior of a gas of
classical particles moving in a two-dimensional cavity with nuclear dimensions. This ‘‘nuclear’’ billiard has
multipole-deformed walls which undergo periodic shape oscillations. We demonstrate that a single-particle
Hamiltonian containing coupling terms between the particle motion and the collective coordinate induces a
chaotic dynamics for any multipolarity, independently of the geometry of the billiard. If the coupling terms are
switched off, the ‘‘wall formula’’ predictions are recovered. We discuss the dissipative behavior of the wall
motion and its relation to the order-to-chaos transition in the dynamics of the microscopic degrees of freedom.
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I. INTRODUCTION

In the last 20 years the dissipation of collective motion
nuclei has been widely observed@1# in low energy particle
and heavy ion collisions and it still represents a theoretic
unsolved problem. It is commonly believed that both on
body processes, i.e., collisions of nucleons with the nuc
wall generated by the common self-consistent mean fi
and two-body collisions produce dissipation, although th
interplay is not well known@2,3#.

The theory of damping and the approach to the equi
rium of a collective ~usually slow! degree of freedom
coupled to noncollective~usually fast! degrees of freedom is
a quite general one, both at classical and quantal levels
the last decades several papers have been published o
subject; see, for example, Refs.@4–16#. The most studied
case is the extreme adiabatic limit, namely, when the r
between the characteristic times of the fast degrees of f
dom and of the slow one is considered arbitrary small. Un
the further assumption that the fast degrees of freedom h
an ergodic dynamics for a fixed value of the collective va
able, a description of the damping and approach to qu
equilibrium can be given in terms of generalized diffusi
equations@4,5#. The theoretical framework for the treatme
of this limiting case, at least at the classical level, seem
be well established, despite some questions appearing t
still open@6#. Unfortunately, in the majority of realistic case
the adiabatic condition is only partly satisfied and the ergo
condition is not often fulfilled. The damping, however,
still necessarily connected to some degree of chaoticity
the overall dynamics of the system. The connection betw
chaotic dynamics and dissipation in this more general si
tion has been studied by different authors but still lack
general theoretical framework. In particular Wilkinson@4#
presented some evidence which indicates that the occurr
of an integrable or nearly integrable motion of the fast d
grees of freedom strongly suppresses both the fluctuat
and the speed of relaxation towards equilibrium. Rela
PRC 580556-2813/98/58~5!/2821~10!/$15.00
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studies have been developed in Ref.@17#, where a coexist-
ence of chaoticity and slow relaxation to equilibrium in
Hamiltonian mean field~HMF! model has been found, and i
Ref. @18#, where the relation between chaoticity and the a
proach to equilibrium in a hard sphere gas and a Lorentz
has been analyzed.

In this context, Blockiet al. @11# analyzed the behavior o
a gas of classical noninteracting particles enclosed in
multipole-deformed container which undergoes perio
shape oscillations. Particles move on linear trajectories
collide elastically against the walls. In this model the w
and particle motions are uncoupled and therefore the w
keeps oscillating at the same frequency pumping energy
the gas. For this system, the authors study the increase o
particle kinetic energy as a function of time. They find th
for octupole and higher modes the gas kinetic energy
creases with time, in agreement with the ‘‘wall formula
predictions@10#. They attribute the different behavior to th
fact that for low multipolarity deformation the particle mo
tion is regular and corresponds to an integrable situat
whereas for higher multipolarities shape irregularities lead
a divergence between trajectories and therefore to cha
motion. Although their results look very interesting, the
application to nuclear or similar cases is not straightforw
because~i! the self-consistent mean field is absent and~ii !
the total energy is not conserved.

A step forward in this direction has been performed
Baueret al. in Ref. @15#. In this work the authors study th
damping of collective motion in nuclei within the semicla
sical Vlasov equation. Here self-consistency is taken i
account and the total energy is conserved. A multipo
multipole interaction of the Bohr-Mottelson type is adopt
for quadrupole and octupole deformation. In both cases
namical evolution shows a regular undamped collective m
tion which coexists with a weakly chaotic single-particle d
namics.

In Ref. @16# we introduced a simple model which ca
shed light on the correlation between chaoticity and dissi
2821 ©1998 The American Physical Society
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2822 PRC 58M. BALDO, G. F. BURGIO, A. RAPISARDA, AND P. SCHUCK
tion. We considered a gas of classical noninteracting p
ticles moving in a two-dimensional billiard with nuclear d
mensions. Particles collide with the oscillating walls a
transfer energy to it, but the container can give back t
energy, heating the gas. We considered the gas1 billiard as
a Hamiltonian system; therefore the total energy is conser
with a good accuracy. Though no explicit dissipative term
considered, the main effect of the coupling of the wall w
the particles is a damping of the collective motion. T
particle-wall coupling considered in our model is relevant
at least two other reasons:~i! the coupling can enhance th
collectivity of the motion, since the particles are indirec
coupled among each other through the wall, and~ii ! only
with coupling included can the motion of the particles
driven to equilibrium at large time scales. In fact, it has be
shown@12# that without the coupling the asymptotic partic
velocity distribution is non-Maxwellian.

In Ref. @16# only the monopole case was considered
gether with a small number of particles, namely, 1 and
Here we extend the previous study by considering more
ticles (N530) andL52,3 multipolarities. For a fixed value
of the wall deformation, the motion of the particles is regu
in the case of the monopole,L50, partly chaotic for large
deformation in the quadrupole caseL52, and essentially
chaotic in the octupole caseL53. In this way we are explor-
ing a set of physical conditions for which the motion of t
fast degrees of freedom ranges from nearly ergodic to i
grable ~for a fixed value of the slow variable!. The param-
eters of the model are chosen as typical at nuclear sc
However, the considered set of dynamical systems shoul
generic enough to be representative of the physical prob
under study, namely, the damping process of a slow deg
of freedom in a bath of many fast degrees of freedom,
enough from adiabaticity and for different degrees of erg
icity. We therefore expect that the results we have obtai
are generic enough to be qualitatively valid for a wide cla
of physical systems.

The most important findings of our study are that~a!
chaos shows up in the single-particle motion for any surf
deformation for long time scales,~b! the different geometry
influences only the time scale for the onset of chaotic
which is faster for the higher multipolarities,~c! the different
time scales for the onset of chaoticity are in any case eq
within a factor of 2,~d! the dissipation of the collective mo
tion is sensitive only to this time scale and thus it depe
only slightly on the geometry of the billiard forL52 and
L53, and~e! though no explicit dissipative term is consid
ered in our model, the damping of the collective motion is
practice irreversible due to the large Poincare´ time.

The present paper is organized as follows. We summa
the details of the model in Sec. II. The numerical results
illustrated in Sec. III. Conclusions are drawn in Sec. IV.

II. MODEL

In Ref. @16# we considered a classical version of the
brating potential model~see, e.g., Ref.@19#!. In this model
several noninteracting classical particles move in a tw
dimensional deep potential well and hit the oscillating s
face. Using polar coordinates, the Hamiltonian depends o
set of $r i ,u i% variables, describing the motion of the pa
r-
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ticles, and the collective coordinatea. The Hamiltonian
reads

H~r i ,u i ,a!5(
i 51

N S pr i

2

2m
1

pu i

2

2mri
2

1V„r i ,R~u i !…D 1
pa

2

2M

1
1

2
MV2a2, ~1!

where$pr i
,pu i

,pa% are the conjugate momenta of$r i ,u i ,a%.

m5938 MeV is the nucleon mass, andM5hmNR0
2 is the

Inglis mass, chosen proportional to the total number of p
ticles N and to the square of the circular billiard radiusR0 .
The value of the factorh is fixed in such a way to minimize
the equilibrium fluctuations. In our caseh51 for the mono-
pole oscillation, whereash510 for quadrupole and octupole
Therefore, in theL50 case, collisions of particles again
the walls are more inelastic.V is the oscillation frequency o
the collective variablea. The potentialV„r ,R(u)… is zero
inside the billiard and a very steeply rising function on t
surface,

V„r ,R~u!…5
V0

11exp$@R~u!2r #/a#%
,

with V051500 MeV anda50.01 fm. Such a small value
of the diffuseness was chosen in order to simulate close
billiard system. Larger values ofa should not affect qualita-
tively the results. The surface is described byR(u)5R0@1
1a cos(Lu)#. Therefore this potential couples the collectiv
variable motion to the particle dynamics and prevents p
ticles from escaping. The numerical simulation is based
the Hamilton’s equations

ṙ i5
pr i

m
, ṗr i

5
pu i

2

mri
3

2
]V

]r i
, ~2!

u̇ i5
pu i

mri
2

, ṗu i
52

]V

]R

]R

]u i
, ~3!

ȧ5
pa

M
, ṗa52MV2a2(

i
S ]V

]Ri

]Ri

]a D . ~4!

Note that dropping theV term in the equation forpa , the
wall motion becomes purely harmonic and decoupled by
particle motion, as assumed in the model proposed by
authors of Refs.@11,10#.

We solve Hamilton’s equations with an algorithm
fourth-order Runge-Kutta type with typical time step sizes
1 fm/c. If not otherwise stated, the calculations were p
formed with the number of particlesN530. The total energy
was conserved with relative errorDE/E<1024. For runs
with the longest time duration or with the largest number
particles a fourth-order symplectic integrator@20# was used,
since it turns out to be more efficient with comparable deg
of accuracy.

As far as the initial conditions are concerned, we ass
random positions to the particles inside the billiard and r
dom initial momenta according to a two-dimension



de
e

ca
f
re

fa
n

.

he
r-

ac
o

lly
s

r-
nd
nu

e
-
on
a
c
th

m
ay
th
m
th
e
e

o
ilib

e
qu

ed
dy-

to
rees
tic
lay

e-

ient

s
at

ill
d by
ve,
note
e
to
n.

ties
ar-

rts

use
As

nce
-

s a

PRC 58 2823ONE-BODY DISSIPATION AND CHAOTIC DYNAMICS . . .
Maxwell-Boltzmann distribution with a temperatureT
536 MeV. This value of the temperature is chosen in or
to mimic the Fermi motion of the particles. In this way th
average velocity of the particles is close to the typi
nuclear Fermi velocity. In a classical description the use o
Maxwellian distribution ensures that the initial conditions a
not too far from equilibrium for the whole system.

We consider the wall oscillations taking place not too
from adiabaticity. For this purpose we follow the definitio
of the adiabaticity parameterk given by the authors of Ref
@11#, i.e.,

k5
a0VR0

v
, ~5!

v being the most probable particle speed,v5AT/m, a0 the
initial amplitude of the oscillation, andR0 the radius of the
circular billiard. We chooseR056 fm andV50.05 s21 so
that

k51.53a0 . ~6!

With our choice ofa0 ~see below!, the adiabaticity pa-
rameter k might be not as small as assumed in t
asymptotic theory of Ref.@4,5#. The adopted value can co
respond more to realistic situations.

Since in realistic cases the collective motion takes pl
around equilibrium, the initial wall coordinate has been ch
sen equal toa05ā1da, whereā is the equilibrium value
andda the deviation. The equilibrium valueā corresponds
of course to the thermodynamic limit, which is actua
reached when considering an ensemble of copies of the
tem, all of them with an initial valuea5ā and differing
from each other in the initial microscopic distribution of pa
ticle positions and momenta. The equilibrium value depe
on the considered multipolarity. In all cases we checked
merically that starting from the thermodynamical valuea

5ā and a Maxwell-Boltzmann distribution, the collectiv
variablea oscillates in time aroundā. Furthermore, we con
sidered an ensemble of this type of run, each one corresp
ing to different particle initial conditions, consistent with
space uniform distribution and a Maxwell-Boltzmann velo
ity distribution. We then checked that the average over
runs of the value of collective variablea(t), at any given
time t, was converging indeed to the constant equilibriu
value ā for a reasonably large number of runs. In this w
one can also estimate the fluctuations around equilibrium
variablea undergoes in a typical run. Also the average a
plitude of the fluctuations turns out to be consistent with
thermodynamical estimate for a harmonic oscillator in a th
mal bath. More details on the procedure can be found in R
@16#. After we checked that the numerical simulation pr
duces good equilibrium properties, we perturbed the equ
rium collective coordinateā by an amountda50.3, and let
both the billiard and the particles evolve in time. The chos
value is larger by about a factor of 3 than the average e
librium fluctuations. Moreover, at timet50 we putpa50,
the wall having only potential energy.
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III. NUMERICAL RESULTS

A. Scatter plots

One possible way in order to investigate the role play
by the coupling and see whether it can induce chaotic
namics is drawing Poincare´’s surface of sections for the
single-particle coordinate. However, this is impossible
perform in our case because of the large number of deg
of freedom. Then an alternative way to visualize a chao
behavior is to draw scatter plots; see Fig. 1. There we disp
the final radial coordinate at a timet of one particle vs the
one att50 for the monopole, quadrupole, and octupole d
formation. The chosen times aret50.4t, 1.6t, 2.4t, and
4t, t being the period of the oscillation,t52p/V. These
plots are very useful and are commonly used in trans
irregular situations like chaotic scattering@21# and nuclear
multifragmentation@22#. The idea is that if the dynamics i
regular, two initially close points in space stay close even
later times, but if the dynamics is chaotic, the two points w
soon separate due to the exponential divergence induce
chaos. In the first case this plot will show a regular cur
whereas in the other one a diffused pattern appears. We
that for all multipolarities the initially regular curves chang
into scattered dots, which clearly show that the coupling
the wall oscillation randomizes the single-particle motio
This is at variance with what was discussed in Ref.@11#,
where chaos is supposed to appear only for multipolari
L.2. In our model the coupling between the wall and p
ticle motions produces a chaotic dynamics even forL<2. In
addition, the higher the multipolarity, the earlier chaos sta
because of the increased shape irregularity.

A more quantitative analysis can be performed beca
scatter plots of Fig. 1 have a typical fractal structure.
already done in Ref.@22#, a fractal correlation dimensionD2
can be calculated from the correlation integralC(r ) @23#.
One first counts how many points have a smaller dista
than some given distancer. As r varies, so does the correla
tion integralC(r ), defined as

C~r ! 5
1

M2(
i , j

M

Q~r 2uzi2zj u!, ~7!

FIG. 1. The final radial coordinate for one particle is drawn a
function of the initial one at different times t5 0.4t, 1.6t, 2.4t,
and 4t. Calculations are performed for multipolaritiesL
50, 2, 3. Here 1000 initial conditions are considered.
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2824 PRC 58M. BALDO, G. F. BURGIO, A. RAPISARDA, AND P. SCHUCK
whereQ is the Heaviside step function andzi a vector whose
two components (xi ,yi) are the points coordinates.M is the
total number of points. The fractal correlation dimensionD2
is then defined by

D25 lim
r→0

ln C~r !

ln r
. ~8!

Therefore by plotting the logarithms it is possible to e
tractD2 by fitting the linear slope for sufficiently smallr. We
considered as a good interval satisfying Eq.~8! the one be-
tweenr min51.8331022 andr max51. An ensemble of 1000
points was considered. In Fig. 2 we displayD2 vs time for
each multipolarity. At the very beginningD2 is equal to 1,
showing that the motion is regular. As time goes on, re
larity is lost and the motion becomes chaotic until a compl
randomness is reached, in which caseD252 as expected for
a completely random distribution on the plane@22#. This
result confirms the one published in Ref.@16#, where a dif-
ferent method of calculation was, however, employed.

B. Lyapunov exponents

A more common quantitative way to characterize the
namics in a chaotic regime is by means of the larg
Lyapunov exponentl1 , which gives the average rate of e
ponential divergence of two trajectories with nearly identi
initial conditions. In general, if we denote byd(t) the dis-
tance between two phase space trajectories andd05d(0), l1
characterizes the average growth of the distanced(t) with
time

^d~ t !&5d0 exp~l1t !. ~9!

We have calculated this largest Lyapunov exponentl1 by
the method of Benettinet al. @24#. This method consists o
evolving two close trajectories originally separated in ph
space byd0 , for a given time intervalt, after which the
magnitude of their separationd(t) is rescaled back tod0 .
The procedure is then repeatedk times. It can be shown tha
l1 is given by the following limiting procedure:

FIG. 2. The time evolution of the fractal correlation dimensi
D2 is plotted for the multipolaritiesL50, 2, 3. The lines are a
guide to the eye. The dashed line is the fully random limit
scattered points on a plane.
-
e

-
t

l

e

l15 lim
k→`

lim
d0→0

1

kt (
i 51

k

ln
di~t!

d0
. ~10!

The result turns out to be essentially independent ofd0 .
We considered the following metric in phase space:

d~ t !5A(
j 51

N

~dxj
21dpxj

2 1du j
21dpu j

2 !, ~11!

where the infinitesimal distances were normalized to
mean values and therefore are dimensionless quantitie
our case the length of the time intervalt was 200 fm/c and
d0.231026. Using the above method, a large number
trajectories~of the order of 40! was sampled for each multi
polarity. Each trajectory was followed for a timet
53500 fm/c, thus allowing for a safe determination of th
largest Lyapunov exponent.

In Fig. 3 we display for each multipolarity a distributio
of l1 for a number of trajectories and for 1 and 30 partic
~respectively, thin and thick histograms!. The most probable
values do not depend strongly on the multipolarity, at va
ance with the results found in Ref.@11#, and lie within a
factor of 2 one from each other, the caseL50 being inter-
mediate betweenL52 andL53. This is probably due to the
different choice of the wall mass. In the caseN51, l1 is
always smaller than the value obtained withN530, thus
showing that~a! chaos starts earlier when a higher number
particles is present and~b! for long time scales the degree o
chaoticity is more dependent on the number of particles t
on the multipolarity. Therefore a Hamiltonian with couplin
terms gives rise to a dynamics weakly dependent on the
ometry of the billiard. It has to be noticed that the avera
number of particle-wall collisions per oscillation period
only about 2 forN51 and about 60 forN530.

FIG. 3. For the casesL50, 2, 3 we show the frequency distr
butions of the largest Lyapunov exponentl1 for 1 ~thin histogram!
and 30 particles~thick histogram!. An ensemble of about 40 event
was considered in each case.
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C. Chaos and dissipation

1. Analysis of the single event

In this section we will mainly discuss the interplay b
tween chaoticity of the single-particle dynamics and dissi
tion of the collective motion. For this purpose, we follow
the same time the dynamics of the wall and the particles

First we analyze the behavior of one single event, keep
in mind that a correct statistical description can be perform
only for an ensemble of events, as already pointed ou
@16#. On the left-hand side of Fig. 4 we plot the evolution
the square of the collective variablea2 vs time for one single
event. Each panel corresponds to a fixed multipolarity.
note that the amplitude of the collective motion shows
irregular oscillation, at variance with the results found
Ref. @15#. We note also that a slight damping can be o
served, in contrast with the results published in Ref.@16#,
where calculations with a smaller number of particles w
performed. Please note thata keeps on oscillating around th
equilibrium valueā which for the monopole case depends
the gas temperature and on the wall frequency@16#. For the
other multipolaritiesa oscillates around zero anda2 de-
creases more rapidly for increasingL, indicating a faster dis-
sipation for a larger irregularity of the billiard.

On the right-hand side of Fig. 4 we plot the time evoluti
of the excitation energy of the gas, defined as the rela
variation of the total energy of the gasE with respect to its
initial value E0 , DE/E0 . In all three cases the gas is heat
up, but with a different time dependence according to
multipolarity. Except for small irregular fluctuations, an i
creasing trend shows up for the quadrupole and octup
modes. An oscillating pattern, slightly irregular, is visible f
the monopole case. Moreover, in theL50 oscillation the
energy gained by the gas is lower than in theL52,3 cases.
Therefore some dissipation is present for all multipolarit
and is larger for increasingL. Of course these are only gen
eral features of the events for different multipolarities, t
details being different from one event to the other.

In order to better understand the mechanism of diss
tion, we display in Fig. 5 the square of the ratioa/a0 , being
a05a(t50). The plot is as function of time, for differen
multipolarities L and particle numberN. In our model the

FIG. 4. On the left-hand side the time evolution of the collect
variable is shown for the multipolaritiesL50, 2, 3 and on the
right-hand side the corresponding excitation energy of the gas,
malized to the initial energyE0 .
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total energy is conserved so that the damping of the w
motion corresponds to the heating of the gas. This proces
in principle reversible, but the high number of degrees
freedom involved makes in practice this process irreversi
One should wait a very long time, i.e., the Poincare´ time, to
see the system again close to the initial conditions. We n
that the dissipation is stronger when bothL andN increase.
In particular, the increased number of particles makes
available phase space bigger and the Poincare´ time longer.
The latter can therefore be a limitation, in the sense tha
short Poincare´ time would weaken dissipation.

2. Analysis of an ensemble of events

In order to have a global picture of the macroscopic s
tem, many events are needed and average values of the
ferent observables should be considered. In Fig. 6 we dis
the time evolution ofa2 averaged over an ensemble of 10
different events, each obtained by assigning random in

r-

FIG. 5. The square of the ratioa/a0 is plotted vs the number o
oscillations for different multipolarities and number of particles.

FIG. 6. The square of the collective variablea, averaged over
an ensemble of 1000 events, is displayed vs the number of osc
tions for the three multipolarities considered.
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2826 PRC 58M. BALDO, G. F. BURGIO, A. RAPISARDA, AND P. SCHUCK
conditions to the particles both in coordinate and momen
space but consistent with a Maxwellian. We note that
motion of the collective variablêa2& is completely damped
out for times which depend on the multipolarity and dev
ops around equilibrium, as we checked explicitly. The rea
should keep in mind that forL50 collisions of the particles
with the wall are more inelastic~see Sec. II! due to the
lighter mass of the wall; therefore the monopole oscillat
damps out in a time comparable with the one of theL52
mode. The same mass was used in the calculations publi
in Ref. @16#. If we put h510 even forL50, the damping
time is longer.

The damping of the oscillations, which is apparent in F
6 for all the three multipolarities, can have two distinct o
gins. On the one hand, each individual event can ind
display a damping of the oscillation amplitude. In this ca
the effect of the average is only of a smoothing the fluct
tions. The observed damping time is then simply the aver
damping time of a generic set of events. On the other ha
each event has a different time evolution, and after a pe
of time the phaseof the oscillation can be quite differen
from one event to another. If the phase becomes essen
random as the time proceeds, when taking the averagea
over different events strong cancellations can occur an
damping of the oscillations can appear, even in the c
where no average energy damping is present. It is wo
noticing that this damping mechanism disappears if the r
between the single-particle mass and the wall mass is
ishing small, and therefore it is ineffective at the mac
scopic level, where event-to-event fluctuations can be
glected. In order to estimate the contribution of each one
the two mechanisms to the damping displayed in Fig. 6,
plot on the left-hand side of Fig. 7 the energy of the w
divided by its initial value, averaged over the same sets
events. As a function of time, this quantity should be ins
sitive to phase randomization because it is proportiona
^a2& and corresponds to the average energy damping of
oscillations.

For comparison, on the right-hand side we plot a
Da25(^a&2a`)2, a quantity which, on the contrary, shou
be sensitive to phase cancellations. For the monopole c

FIG. 7. On the left-hand side the wall energy, averaged ove
ensemble of 1000 events and normalized by its initial value
reported vs the number of oscillations for different multipolaritie
On the right-hand side the observableDa2 is drawn ~see text for
further details!.
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the decay time of the wall energy to its asymptotic valuea`

is substantially longer than the one forDa2, which indicates
that for the monopole case the dephasing mechanism is q
important. The asymptotic value of^a& is consistent with the
equilibrium valueā for a gas at the final temperature, whic
from energy conservation, turns out to beT543 MeV. We
checked that indeed the velocity distribution, averaged o
the events, is very close to a Maxwellian with that tempe
ture. Furthermore, the average amplitude of the fluctuati
around the equilibrium value was checked to be consis
with a harmonic oscillator in equilibrium with a thermal ba
at T543 MeV.

On the contrary, for the higher multipolarities the dec
times of the wall energy andDa2 appear to be very close
and therefore the dephasing mechanism seems to be in
cases ineffective. The damping is mainly an energy damp
and is characteristic of a generic event.

These considerations are confirmed if one calculates
excitation energy of the gas, displayed in Fig. 8. We n
that the characteristic times for the energy growing follo
closely in all cases the decay times of the wall energy. Mo
over, for L52,3 we note the presence of two different r
gimes: a first one lasting for about one to two oscillatio
characterized by a sharp rise in the excitation energy, an
second one at successive times where a slower approa
equilibrium is apparent. As can be deduced from Fig. 1,
first stage may have some relation with the onset of chao
the single-particle motion. After chaos has fully develope
and an appreciable part of the total energy has been pum
into the gas, a certain degree of randomization is reached
a slower dissipation rate shows up. A similar behavior in
relaxation was observed for the HMF model@17# and the
hard sphere gas and the Lorentz gas studied in Ref.@18#. In
the latter cases the time evolution of the Boltzmann entro
was studied.

This behavior is completely absent in the monopole ca
Therefore it seems that different kinds of dissipation c
originate from the same underlying chaotic single-parti
motion. It should be stressed that, within the time of cha

n
s
.

FIG. 8. The excitation energy of the gas, averaged over an
semble of 1000 events, is reported vs the number of oscillations
different multipolarities.
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development, the wall has dissipated only a fraction of
energy, as is clearly seen in Fig. 7. In the monopole case
apparent that the flow of energy from the collective varia
a to the particle gas is not completely ‘‘irreversible,’’ an
the wall receives back part of its energy from the gas fo
number of oscillations.

3. Comparison with the wall formula

Let us now try to make some connection to one-bo
dissipation and the wall formula introduced and studied
tensively in the past by Blockiet al. @11,10#. We limit our-
selves to the analysis of the octupole mode, because for
~and for higher multipolarities! the model of Blockiet al.
predicts dissipation. Of course a comparison between
situation studied here and in@11# may be biased because
the model studied in@11# there is no energy conservatio
Therefore the phase space of the gas is conserved in the
model but not in the case considered here. In spite of that
model should be able to recover the limit of Bockiet al.And
actually it does. This happens when in our model the mas
the wall becomes very large as, for example, in Fig. 9 wh
we chooseh5100 anda050.09 with N530 andV50.05
as before. In this case the particle-wall collisions are m
elastic and the time evolution is slower for all observables
particular in panels~c!, ~d! of Fig. 9 the dots are our numer
cal simulation and the solid and dashed lines are two v
sions of the wall formula to be explained in the Appendix.
particular, the dashed line represents the results of the
formula which contains only terms linear in time. The incl
sion of terms quadratic in time, which take into account
increased average speed of the gas for large times, prod
a new dissipation formula represented in Figs. 9 and 10 b
solid line. Now, if every thing is consistent we should get t
same result as the one shown in Fig. 9 in switching off

FIG. 9. Coupled octupole motion of the wall and gas partic
with a very large inertia of the wall (h5100). The adiabaticity
parameter isk50.14. Shown are the time evolutions of the colle
tive variable@panel~a!# and the wall energy@panel~b!# according to
our model~solid line!. The relative increase of the gas energy
shown as dots in comparison with two different versions of the w
formula ~solid and dashed lines! as explained in the text@panel~c!#.
Panel~d! is a blow-up of panel~c!.
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coupling. That this is actually the case is shown in Fig.
where the time evolution of the different quantities is pra
tically the same as in Fig. 9.

A particular feature of the case shown in Figs. 9 and 10
the fact that the wall formula results follow the exact evo
tion only during the first period. We should emphasize th
we applied here the wall formula adapted to the tw
dimensional case, as derived in the Appendix. In Fig. 11
show a repetition of the calculation in Ref.@11# where the
wall formula follows the exact result for the heating of th
particles gas over several periods. The only difference w
the calculation in@11# is that here we use again for the g
particles our Maxwell-Boltzmann distribution withT
536 MeV, whereas in@11# a sharp Fermi-Dirac distribution
was employed. The fact that the wall formula for this pa
ticular case of the parameters is well reproduced indica
that this feature is independent of Maxwell-Boltzmann
Fermi-Dirac statistics. This must be expected, since in
wall formula the dissipation rate depends only on the aver
velocity of the particles. Therefore, the dissipation must

s

ll

FIG. 10. Same as Fig. 9 but without coupling. The frequency
the wall is kept fixed to the initial one, i.e.,V50.05 s21.

FIG. 11. Repetition of the calculation of Blockiet al. @11#, but
with a Maxwellian distribution for the gas particles. The obse
ables displayed are the same as in Figs. 9 and 10. The adiaba
parameter isk50.04. See the text for more details.
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the same as long as the average velocity of the particles is
same. The only variance with the case shown in Figs. 9
10 is that the parameters are slightly different, for instan
the adiabaticity parameterk defined in Eq.~6! is by almost a
factor of 4 smaller in Fig. 11 than in Figs. 9 and 10, that
k50.04 instead ofk50.14. However, both values ofk are
sufficiently small in order to verify the adiabaticity criterio
~for the validity of the wall formula! established by Blocki
et al., namely, thatk!1. According to our findings here,k
must really be extremely small so that the wall formula ho
during several periods; otherwise it may be valid only dur
the first instances of the dynamics.

Let us now come back to a more detailed analysis of
present results obtained including the coupling terms in
Hamiltonian. In Fig. 12 we show as a function of time t
evolution of the elongation@panel ~a!#, the wall energy
@panel ~b!#, and the gain in energy of the gas@panel ~c!#
together with a blowup of~c! @panel~d!#. In panels~c! and
~d! are also shown the results of the standard wall form
~dashed line!, which is linear in time@11#, and the new ver-
sion including a quadratic term~solid line! @12#. We should
stress that we applied here generalized wall formulas, tak
account of the fact that the wall motion is actually damp
This implies that we have to use a time-dependent versio
the wall formula~TDWF! as derived in the Appendix.

Again we see that the wall formula only agrees with t
exact solution during the first period. For longer times t
wall formulas give rise to much more energy dissipation th
in the exact evolution, the new formula more than the st
dard one.

From the above investigations it seems therefore that
wall formula can only simulate the dissipation of energy
the first instances of the dynamics when the adiabaticity
rameterk @Eq. ~6!# is extremely small~of the order of 1/
100!.

IV. CONCLUSIONS

In conclusion, we have presented a dynamical appro
based on the solution of the Hamilton’s equations for sev

FIG. 12. Same as Fig. 9 with coupling. In panels~c! and ~d!
time-dependent wall formulas have been used, taking into acco
respectively, terms linear in time~dashed line! with quadratic ones
~solid line!. The dots are our numerical results.
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particles moving in a classical billiard having nuclearlik
dimensions, in order to explain dissipation of the collecti
motion. We found that the presence of a coupling term in
single-particle Hamiltonian induces chaotic motion at the m
croscopic level.

As far as the monopole mode is concerned, we fou
irregular behavior together with damping in single even
The damping observed when an average is taken over a
of events is a consequence also of the irregular time dep
dence of the oscillations. This incoherence is produced
the chaotic single-particle dynamics, which makes all eve
belonging to the same ensemble different one from e
other, and therefore substantial cancellations occur once
average is taken. For the higher multipolarities this mec
nism seems to be ineffective, and the damping coinci
with a real energy damping of the oscillations due to t
large Poincare´ time. The dissipative process for the quadr
pole and octupole modes looks different also in another
spect. In fact, while the single-event properties are simila
the monopole case, an ensemble of events shows that
different regimes appear:~a! an initial fast dissipative evolu-
tion corresponding to the onset of chaos in the single-part
motion and~b! a slower dissipative trend towards equilib
rium.

All these results should be qualitatively independent
the particular nuclear dimensions we have used in the mo

In order to be closer to equilibrium we have used for t
initialization of the gas particles a Maxwell-Boltzmann di
tribution with a temperature ofT536 MeV to have a mean
kinetic energy characteristic of nuclear systems. We a
checked that the use of a Maxwell-Boltzmann distributi
versus a Fermi-Dirac step is apparently of no conseque
on the damping rate. Indeed in switching off the particle w
coupling and periodically octupole-deforming the wall und
the same condition, as was done some time ago by Blo
et al. @11# using a Fermi-Dirac step, we find with a Maxwel
Boltzmann distribution an identical rate of feeding of ener
into the particle gas. Moreover, we also checked that the w
formula prediction for energy dissipation agrees with the n
merical simulation over several periods in time. This sho
that our model is able to mock up real nuclear dynam
together with its damping mechanisms.

When we increase the adiabaticity parameterk by almost
a factor of 4 attainingk50.14, which should still be consid
erable as small, the agreement of the numerical result w
the wall formula was reduced to only the first period of t
oscillation. In view of what we said above about Maxwe
Boltzmann versus Fermi-Dirac distributions, we assume t
this is a generic result. Also when reducing the inertia of
wall by a factor of 10 and thus increasing the particle w
coupling ~once reestablished! the heating rate of the particl
gas agrees with the wall formula only during the first perio
This happens in spite of the fact that we used a tim
dependent version of the wall formula where the continuo
slowing down of the wall motion has been taken into a
count. Indeed the wall formula considerably overestima
the damping rate at longer times.

One should realize that our model implies real partic
wall collisions with global energy conservation. Such col
sions are absent in pure Hartree-Fock or Vlasov calculatio
In fact our model in what concerns the particle wall col

nt,
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sions should come quite close to the situation conside
e.g., in@3# where the collision term is based on the partic
vibration coupling model. Also in that model the dampin
rate strongly differs between low and high multipolarities
the collective motion. However, in Ref.@3#, contrary to the
spirit of the present work, fast~diabatic! motion ~the giant
resonances! was considered, which makes a detailed co
parison inadequate. In the future, in order to simulate a p
mean field dynamics based on our model, we plan to ca
late the evolution with the so-called parallel ensemble te
nique and ensemble average at each instant of time the
tion of the wall. We anticipate that this very much w
suppress the particle wall damping mechanism so that
collective oscillation will be mostly undamped, a featu
which should bring the present study in closer contact w
the one performed in Ref.@15#.

Our model certainly has implications beyond nucle
physics. It should be generic for all situations where a he
particle ~here the wall! is moving in a Knudsen gas of ligh
particles. For example the motion of a pendulum of massM
in a very rarefied gas of particles with massm!M should
show features similar to the ones studied within the pres
model. If the big particle can be approximated by a sph
suspended on a spring and the gas is enclosed in a box
whole system can be considered as some sort of dyna
generalization of a Sinai billiard. The study of the dampi
of the heavy particle in such a situation would be particula
interesting.
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APPENDIX

Here we give some details about the two-dimensio
wall formula. Starting from the original formulation given b
Blocki et al. in Ref. @10#, after rescaling in two dimensions
we get the following result:

dE

dt
5

4

p
r v̄ R q̇2dl1•••~ terms of higher order inq̇3!.

~A1!

r and v̄ are, respectively, the density and the average sp
of the gas,q̇ is the speed of the wall, anddl is the line
element. By integration of Eq.~A1!, and neglecting correc
tions of ordera2 or higher, we easily get

dE

dt
54r v̄R0

3@ȧ~ t !#2, ~A2!
n
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where ȧ(t) can be calculated either without or with cou
pling. In the former casea(t)5a0 cos(Vt) and Eq.~A2!
will read

1

E0

dE

dt
5

2R0

v̄
V2a0

2 sin2~Vt !. ~A3!

E0 and a0 are the initial energy of the gas and the initi
elongation. After more algebra we get the excitation ene
of the gas,DE/E0 :

DE

E0
5

R0

v̄
V a0

2FVt2
sin~2Vt !

2 G no coupling .

~A4!

In the case with couplingȧ(t) comes directly from our
numerical simulation. In fact, since the wall energy is

Ew5
1

2
M ȧ21

1

2
MV2a2, ~A5!

we easily getȧ and substitute in Eq.~A2! obtaining

1

E0

dE

dt
5

R0

v̄
F 2

M
Ew2V2a2G with coupling. ~A6!

By integration on time we get again the excitation ener
of the gasDE/E0 . The last equation is the TDWF.

In Ref. @12#, a generalized wall formula has been studie
which takes into account for the increased average spee
the gas for large times. The new dissipation formula conta
an additional term quadratic in time, besides the linear te
@Eq. ~A4!#. We have performed similar calculations in tw
dimensions, both without and with coupling. The new fo
mula for the excitation energy of the gas reads

DE

E0
52I ~ t !1

3

p
I 2~ t !, ~A7!

I (t) being, respectively,

I ~ t !5
a2VR0

2v FVt2
sin~2Vt !

2 G no coupling , ~A8!

I ~ t !5
R0

v̄
E

0

t

dtF 2

M
Ew2V2a2G with coupling. ~A9!
A
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