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Scattering of dressed nucleons in nuclear matter
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The scattering of dressed nucleons in nuclear matter is studied. By casting the conventional asymptotic
analysis of scattering in free space in the language of the two-body propagator, it becomes possible to develop
modifications of this analysis due to the dressing of the scattering nucleons in the medium. While the scattering
energy singles out a uniquen-shel) momentum characterizing the relative wave function of free or mean-
field nucleons, this uniqueness is no longer maintained for dressed nucleons. The resulting distribution of
momenta in the relative wave function leads to a localization in coordinate space of the influence of the
scattering process which can be expressed as a healing of the wave function to the noninteracting one. An
analytic approximation to the noninteracting propagator of the dressed nucleons is utilized to illustrate these
points. The localization of the scattered wave implies that the particles no longer “remember” their scattering
event beyond some finite distance. This feature suggests that the strict notion of a cross section in the medium
is a tenuous concept. Approximate expressions are developed to characterize the strength of the interaction in
the medium in terms of phase shifts and cross sections to facilitate comparisons with results of calculations
involving mean-field nucleon$S0556-28138)03811-4

PACS numbdps): 21.30.Fe, 21.65:f

[. INTRODUCTION dressed particles in the medium. Indeed, it may not even be
possible to develop a suitable definition of a cross section in
Renewed interest in the study of the interaction betweeithe medium. These issues are explored in the present paper.
nucleons in the nuclear medium has been generated by the The conceptual understanding of strongly interacting
recent experimental developments involving three(pp) nucleons yielding a mf shell-modéFermi-gasg picture has
reaction[1,2]. The potential selectivity of this reaction for relied heavily on the concept of the healing of the relative
the removal of'S, proton pairs to certain final states and the wave function to the noninteracting one as discussed in Refs.
absence of large contributions from two-body currents td11,12. Experimental evidence based on treg( p) reac-
these transitions may allow the study of the interaction betion [8] has demonstrated that nucleon sp motion must be
tween protons in the medium at short relative distariés understood in terms of Landau’s quasiparticle description
The continuing experimental study of heavy-ion reactions af13]. In turn, this requires a substantial modification of the
the Fermi energy relies on analyses based on transport modimple shell-model or Fermi-gas picture. The conventional
els which contain as input the cross section of nucleons scaBethe-Goldstone propagator used to determine the effective
tering in the nuclear medium. Recent theoretical work ininteraction in the medium is not sufficient to generate a
determining these cross sections involves the scattering afucleon self-energy which realistically describes the sp
mean-field(mf) nucleons in nuclear matter. Some recent is-strength distribution below the Fermi energy both in nuclear
sues that have emerged from this work include the enhancenatter and finite nuclei. Inclusion of additional terms involv-
ment of the cross section at finite temperature due to thag hole-hole propagation as in a Galitski-Feynman propaga-
vicinity of a pairing instability{4], the sensitivity of the cross tor is necessary to achieve a realistic spectral function
section to the choice of the single-parti¢i®) spectrum at [14,15. Inclusion of hole-hole propagation destroys the heal-
zero temperaturfs], and the density and energy dependenceng property of the relative function since it produces a non-
[6] and temperature dependence of the cross sedtifins vanishing phase shift for energies below twice the Fermi
From the careful analysis of the,g’p) reaction in recent energy[16]. The resolution of this puzzle requires consider-
years, a picture has emerged which clearly invalidates one aftion of the consequences of the dressing of the nucleons for
the assumptions of the theoretical papers which determinthe description of the scattering process in the medium. The
in-medium cross sections. This is the assumption that thetudy of the self-consistent dressing of nucleons under the
scattering process in the medium takes place between nuclefluence of short-range correlationSRQ includes the
ons which at most have a sp spectrum different from fregpropagation of dressed particles in a ladder-diagram summa-
space but are otherwise unaffected by the presence of othton for the two-body interaction or propagatpt7]. The
nucleons except for the Pauli principle. The assumption thapresent work is intended to provide a framework to interpret
all the sp strength is concentrated at a mf sp energy is neithéne results of such a ladder-diagram calculation of the two-
borne out by experiments on nuclg] or by many-body body propagator which employs fully dressed sp propaga-
calculations of the spectral function of nuclear mafd0].  tors. Some preliminary and incomplete results have been dis-
It is uncleara priori whether the dressing of nucleons will cussed in Refd.17-20.
have a substantial effect on the resulting cross sections. In- In Sec. |l the relevant results for the two-body propagator
deed, there is no proper framework available to analyze thare collected which are subsequently used in Sec. Il for the
asymptotic behavior of the scattering wave function ofdescription of the asymptotic analysis of the scattering pro-
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cess of free particles, mf particles in the medium, anddependence. Extension of the present work to deal with the
dressed particles. Although some results are standard, thegase of nonzero total momentum requires no new steps and
are usually not presented in the language of the two-bodwill not be considered here. The remaining momentum de-
propagator. By employing this description for a standardpendence of the propagator can now be associated with the
problem it becomes clear which features of this descriptiomrelative momentum of the pair of removal operators in Eq.
are essentially altered by the dressing of the nucleons. Thd), given byk=3[k,—(—k;)], and of the pair of addition
discussion includes an asymptotic analysis based on an anaperators given by’ =3[k;—(—k3)]. Since only ladder
lytic approximation of the noninteracting propagator of diagrams will be considered while employing a static bare
dressed particles. This analytic approximation is particularlynucleon-nucleon interaction, the corresponding integral
helpful in understanding the required changes for the physiequation for the propagator can be written as

cal interpretation of the scattering process in the medium. A

simple example of the scattering by a hard core is exploited g"(kk";Q)=g{(kk";Q)+g}(k;Q)

to demonstrate that phase shifts necessarily become complex

for dres_sed pe_lrtlcles even when their interaction does not XJ d3q(k|V|a)g"(a.k';Q)
include inelastic processes. The consequences for the con-

cept of a cross section in the medium are also explored and a

_ Al ’. /-
set of useful expressions is introduced to characterize the =01 (kk';02)+ g7 (k)

scattering event of dressed particles which allows a compari- X(k|T(Q)|K gl (k";Q), 2)
son with results for mf particles. A summary and conclusions
are given in Sec. IV. where
Il. GENERAL RESULTS FOR THE TWO-BODY g1 (k,k';Q) = 8(k—K')g{ (k; Q) (€
PROPAGATOR

is the noninteracting two-particle propagator which both in
The study of scattering in the medium by means of athomogeneous matter and free space conserves the relative
asymptotic analysis in coordinate space requires knowledg&iomentum as expressed by tAgunction in Eq.(3). The
of the two-body propagator. For practical reasons it is appropresence of exchange terms in E¢®) and (3) is hereby
priate to calculate the effective interaction in a partial-waveacknowledged but suppressed in the presentation. The sec-
momentum representation. The present paper does not desid equality in Eq(2) links the two-particle propagator with
with an actual solution of the integral equation for the effec-the vertex function or effective interactidhwhich contains
tive interaction. It will be assumed that this interaction canthe summation of all ladder diagrams. This result is particu-
be obtained from a numerical calculation. The main objeciarly useful for the asymptotic analysis to be explored below.
tive of the present work is to study the consequences of |t is important to realize that the usual results from scat-
propagating dressed particles for the description of the scatering theory are obtained in the coordinate representation.
tering process. All subsequent discussion will be based offhe relevant double Fourier transform of the two-particle
the solution of a Lippmann-Schwinger-type scattering equapropagator is given by
tion for the effective interaction which is equivalent to sum-
ming the ladder diagrams for a particular choice of noninter- o 1 3 3 ikerl , iy
acting two-body propagator and two-body interaction. In9 (F:F ?Q):W f d kf d>k’e™'g (kk";Q)e .
order to clarify the difference between the conventional dis- 4)
cussion of scattering in free space and the one necessary for
the medium, it will be useful to cast the description com-The transform of the noninteracting propagator only involves
pletely in the language of the two-body propagator. Whileone integration due to the presence of thiunction in Eq.
this is certainly not necessary for the scattering of free par¢3):
ticles, it will provide a simple way to clarify the changes that
are required to extend the description to dressed particlesin, 1 3 3 ket L or e vs ik p
the medium. gz (r,r ’Q)_W J d kJ d°k’'e™ "g; (k,k";Q)e
For the purpose of the present work it is sufficient to
consider the two-time two-particle propagator :(237) j ek gl Q). ®)
9" (kKo kgky ity —t)
= — (VoI T{a,(t)ay (t)a (to)ak (1)} ¥),
@ g”(r,r';n>=g'f'(r,r’;m+f dsrlf dr,g7(r.r1; Q)

given h_ere_ln the momentum representation, while spin and X(r1 V1) g (a1 Q)

isospin indices are suppressed. Although this propagator de-

pends on the conserved total momentugr k;+k,=ks . 3 3 I _

+k,4 in the medium, it is more convenient to concentrate on =g¢(r,r; Q)+ [ d7ry [ d7rogs(r,ry;Q)
the case/K|=0 in order to facilitate comparison with the . ,

scattering of particles in free space which exhibits no such X(r|T(Q)[r2)gs (r2,r";Q). (6)

The result for Eq(2) can then be transformed to yield
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With this equation one can arrive at an asymptotic analysiIhe corresponding result for the noninteracting part of the
and resulting definition of the cross section which is equivapropagator, represented by the first term in &), reduces
lent to a standard analysis involving the equation for theto one integral on account of the delta function which con-
wave function in the case of scattering in free space or mgerves relative momentum:
particles in the medium. Before this result is developed, it is 5
useful to summarize the propagator equations in a partial- I R * . . T
wave representation. These allow the introduction of the gri(r.r ’Q)_; J; dkiCji(knji(kr)gi (k). (10
phase shift which contains the relevant information to obtain
the asymptotic propagator or wave function in this represenThe Fourier-Bessel transform of E() has the form
tation.

A partial-wave decomposition of the two-body propagator 9st(rl.r'1;Q)=8.gf (r,r';Q)
in Eq. (2) yields the corresponding integral equation and the

relation between the propagator and the vertex function: +2 Omdflrff:dfzrgglf',|(r,fliﬂ)
|H
gysr(klk'1":0) X(ral VSTl ) ghsral".r'17:02)
S(k—k') =58,9¢,(r.r';Q)
= T5|,|f9'f'(k:ﬂ)+g'f'(k:9)

+f drlrff dror3gf (r,ry;Q)
XE dqq2<k||VJST|q|”>g”(q|”,k/|,;Q) 0 0
IH

X(rl TS |rol"yay | (.15 Q0).

S(k—k’
= %a,wg?(k;ﬂwg'f'(k;m (1)
ST o When the bare two-body interactidhis local in the relative
X(KITE Q) [k gi (K'5Q). (7)  coordinate, only one integral in the first equality remains.

The second equality can be used to study the asymptotic

The appropriate notation for a partia-wave basis has beeﬁehavior of the propagator outside the range of the interac-

introduced in Eq(7) in terms ofl, S, J, andT representing
orbital, total spin, total angular momentum, and isospin,
while k andk’ denote relative momentum quantum numbers. lll. PROPAGATOR DESCRIPTION OF SCATTERING

As before, only the case of zero total momentum is consid- A. Scattering of free particles

ered here without loss of generality. The enef@yis con- . . .

served and must be viewed as a variable upon which the The subsequent discussion for the scattering of dressed
propagator dependit also depends on the total momentum particles in the medium requires the consideration of the

in the case of the mediumThe noninteracting propagator is tv(\;o-bcidy prop?gawl: mt :Ee medlun;_. Folr thlsltre?son Itttls
again denoted byg!' and may include the dressing of the 3¢Vantageous to collect Ine conventiona’ resufts Tor scater-

individual particles when the scattering takes place in matter"9 " free space using this language. In the case of free

The vertex function or effective interactioil can be ob- particles the noninteracting propagator in momentum space

tained from the numerical solution of the ladder equation in> given by
a partial-wave momentum representation

9K = B M a2
(KITISTQ) k1)Y= (kI[VSTK'I) -
Defining the on-shell momentum by
+2 f daa?(kI[V’STql")gf (a; ) 712K2
" Jo 0=—2, (13
X<q|rl|FJST(Q)|k/Ir>. (8)

one can perform the relevant Fourier-Bessel transform of the

noninteracting propagator in E¢LO) analytically (see, e.q.,
This equation has only recently been solved using fuIIy[zz]l) with tr:egw%Il-in%wn r:asul'?l ) ytically g

dressed sp propagators in the medili#,21].
The coordinate space version of E@) is obtained by a m
double Fourier-Bessel transform gy (r,r';ko) = — ikoz211(Kor <)hi(kor~). (14)

g" {rlr'1:0) The coordinate argument in the spherical Hankel function
IS 2' ' must be the larger af andr’ and is denoted by~ while the
_c ksz KK 21 (ki (Kt ae( kLK Q). argument of the spherical Bessel func_tlo_n is the smaller and
™ fo d 0 d Bk (KT G55k € denoted byr _ . For the current analysis it will be assumed
(9)  that the interaction has a finite rande|V|r')=0 for r,r’
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larger than some,. Substituting Eq(14) in the second part This result can be substituted into the first part of 84) to
of Eg.(11) in the case of an uncoupled channelifér-r and  obtain the relevant integral equation for the wave funcijon
r'>r, yields (under the condition that’ >r):

m JST .. i ” * .
Giastr.r ' iko) = —ikozzji(kor)hi(kor ") i (r,ko)—n(kor)+fo drlrifo drar3gf (r.raiko)

X(ra VST g3 T(r ko), (17)

which can be found in standard textbodkee, e.g.[22] for
the case of a local potentjallt is derived here to demon-
strate the relation between the propagator and the wave func-
m tion since for the case of dressed particles one has to start
—ik0—2>j|(k0r2)hl(k0rr) with the formulation in terms of propagators.
fi The asymptotic analysis of the propagator can be per-
m formed by using Eq(14) in Eq. (11) under the assumption
= —ikgz7 45 T(r;ko)h (ot "), (15  that the propagator will be considered forr’ while both
h these coordinates are larger thay) the range of the inter-
action. Values of ; andr, in Eq. (11) larger tharr yield no
contributions to the integral. As a result, the effective inter-
- " actionT has a range similar to the one of the bare interaction
l/fﬁST(r;ko):h(kor)JrJ' drlrif dr2r§glfl,l(r:r1;k0) ]y U_sing the relation between spherical Bessel and Hankel
0 0 unctions,

+ [ Canrt [ “dradgli ko)
0 0 '
X(r 4 T{%T(ko)[r )

X

where

X(r 4| TP ko) |1 2)ii(Kor 2), (16)

and the conventional notatiohinstead ofl" has been intro-

duced together with the replacement(dfy ky. This result  one obtains the asymptotic behavior of the propagator for the
demonstrates that under the given conditions the propagatease of an uncoupled partial wave channel from the second
separates as a product of a functioand a function ofr’. part of Eq.(12) in the form

1
iip)=5hi(p) +hi (p)], (18

[ m ,
g:l,JST(ryr’§ko)—’_|<W)koh|(kor )

* Mmoot [T 2 ST, - -
< ko) 121 gt arrt e T ol o |

ke (kor | i (ko )+ (k)| 1~ 21| o2 (e T75 (ko) o) (19
= lop2%0hi o 1 (Ko 1\Ro T 52 \Fol 11 (Kol [Ko/ | (-

In the last step of Eq(19) one can return to the on-shell only appears for energies where the noninteracting propaga-

matrix element of thel matrix in momentum space which tor has a nonvanishing imaginary part. For the scattering of

completely determines the outcome of the scattering procesBee particles this corresponds to all positive energies. By

The term in square brackets corresponds toSheatrix el-  substituting the explicit form of the spherical Hankel func-

ement in terms of which one can define the phase shift  tions forl=0 in Eq. (19) one can construct the asymptotic
propagator for the'S, channel explicitly:

(Kol 73 T(ko) ko) =

[ Mk
1—2m(W)<kO|T,JST(kO)|kO>} o
1 ’. i = Ailkgr’ + 615 ) i
g,,lso(r,r Kg)— |2k0ﬁ2 rr,e 0 So S|n(kor+5130).

— 21857
=e9 | (20 22)
This result can be represented by
The standard result for the asymptotic wave function is con-
ST Im(Ko| T7 (ko) [Ko) tained in this equation and the imaginary part of E2p) is
tanop” = Re(ko| TP S (ko) | ko)’ (21) simply the product of these wave functions as a function of
andr’, respectively.
which explicitly shows that a nonzero imaginary part of the To obtain the relation between the cross section and the
effective interaction is required to obtain a nonvanishingpropagator it is necessary to return to Es).and perform the
phase shift. In turn, this imaginary part of the interactionFourier transform of the noninteracting propagateq. (12)]
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in Eq. (5). This Fourier transform is given by the well-known do
result(again replacing the enerdy by the on-shell momen- a0 =[f,(6, )] (28
tum ko)
, , The present formulation is closely tailored to the conven-
W m ek tional experimental situation where a collimated beam propa-
gf(r,r ,ko)——mﬁ. (23) . . .
ahs |[r—r’| gates along the axis characterized by a given energy or
momentum toward a target situated at the origin. Detection
A similar procedure as used for the asymptotic analysis inhen takes place in a particular direction away from the ori-
the partial wave basis can be employed to obtain the corregin characterized by anglesand ¢. The only difference is
sponding result for Eq(6). Whereas in the former analysis that the present formulation is appropriate for the corre-
the separable form of the noninteracting propagator in Egsponding center-of-mass systefK|=0).
(14) is valid without constraint om andr’, this is not the

case here since E(3) only becomes separable in the case B. Scattering of mean-field particles in the medium
r'>r or vice versa. In the former case one can write 8) . . ) .
as To obtain the phase shifts and cross sections for particles
propagating in the medium with mf sp energies one can pro-
m elkor’ ceed in similar fashion. A useful reference is the work of

e ko', (24)  Bishopet al. [16] where the introduction of the phase shift
for the case of hole-hole propagation is discussed. The cor-
responding mf propagator in the medium, also known as the
Galitski-Feynman propagator, is given in momentum space
by

1] .
9r(rr'iko)— = 72—
Substituting this result in the second part of Eg). for both
r'>r andr’>r, demonstrates tha" is separable and can
be written as

m eko” ol (k: )= — U Ke) bke—) 9

g”(r,r’;ko)=—mr—,¢(r;ko) (25) Q-2e(k)+in Q-2e(k)—in’

. . _ o _ _ where, without essential loss of generality, the case of zero
in the asymptotic domain. By substituting this result in turncenter-of-mass momentum is considered. The sp engigy
in Eq. (6) one obtains the standard integral equation for thesgn deviate from the simple kinetic energy spectrum and

wave function and the appropriate formulation for thetherefore yield a different relation between the enefiggind
asymptotic wave function to obtain the scattering amplitudeihe on-shell momenturky:

¢(r;k0)=e‘ikoF"r+j d3r1J dr 01 (r,rq ko) 1=2¢(ko). (20

Nevertheless, the uniquenesskgffor a given energy is still

X(ra|V[r2)#(ra;ko) preserved. Although one can no longer evaluate the nonin-
. teracting propagator in coordinate space completely analyti-
:e‘ikof"r+f d3r1f d3r,gf (r,r1:ko) cally from Eg. (10), the separability of the propagator is
maintained for the contribution of the pole term as in Eg.
X<r1|-|—(ko)|r2>efik0F’~r2_ (26) (14) (with a different constant prefactorwhile the remain-

ing term vanishes asymptotically forsufficiently different

One may identify the origin of the motion in the direction of from r’. A discussion of a similar result for the Fourier
the negativez axis, meaning that’ points in that direction, transform of the mf propagator given in E(R9) can be

Ay " - found in Ref.[23] for the Bethe-Goldstone propagator. As a
so thatk=—Kr’ points into the positive direction. If one g1t “one preserves the integral equations for the wave
assumes that is also much larger than the range of the qnion ejther in a partial wave basis as in Et) or for the
potential and, therefore much Iarg.er- than any contributing, -/ function in coordinate space as in E26) in the case
value ofr,, one can use Eq24) again in the second part of ¢ ¢ hronagators. The only difference with the free scatter-
Eq. (26) to identify the coefficient multiplying the outgoing g case involves the use of the mf equivalents of the non-

spherical wavee''/r as the scattering amplitudevhile interacting propagators in coordinate space in Efj and

double Fourier transforming th&-matrix element back to (26). This result is due to the uniqueness of the on-shell

momentum spage momentum at a given energy which guarantees that the non-

o2 intera}ctin.g wave function isa plane wave or spherical Bessel
—(K'|T(Ko)|K), (270  function(in a partial-wave basjsOne can therefore proceed

h with a similar asymptotic analysis as for free particles, yield-

fko(gid)): -

. . N ng a corresponding definition of the phase shifts as in Eq.
where6,¢ denote the angles associated with the direction OtZO) in terms of the on-shell scattering matrix. The result of
r andk’=kgr corresponds to the momentum of the detectedsq. (21) also remains valid in this case. The presence of a
motion in the directiorr with the same absolute vallkg as  nonvanishing phase shift therefore continues to be linked to
the initial state. The differential cross section for the direc-the nonvanishing of the imaginary part of the noninteracting
tion (6,¢) is then simply the square of the scattering ampli-propagator. In the case of mf scattering the corresponding
tude as given by Eq27): energy domain resides above(R=0) which corresponds
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to the lowest energy of two-hole states. As in the case o& realistic sp strength distribution and, at the same time, ob-
noninteracting particles, the presence of bound states hdgin the healing of the relative wave function to the nonin-
specific consequences for the behavior of the phase shift &racting one which supposedly underlies the success of the
the corresponding thresholds in the energy varigilgl.  mf picture.

While in free space this threshold corresponds to zero energy While recent g,e’p) experiments have sharpened the
and the presence of a bound state is reflected in the pha&nge of the validity of the sp picture in terms of the more
shift going to when the scattering energy goes to zero, theAPPropriate Landau quasiparticle descript{dr$] which is
corresponding threshold in the medium ie2 If the inter- ~ adequately described by microscopic thed, 15, the
action is sufficiently attractive, the phase shift may approacparadox at the level of the relative wave function remains. A
 on both sides of 2. This feature is intimately related to C/U€ to the solution of this puzzle is provided by noting the
the presence of a pairing instability in normal Fermi systemdnconsistency of the description of the sp strength in terms of
with attractive effective interactions on the Fermi surface  realistic spectral function and the construction of the effec-
The phase shift can also approaehr when a bound state tive in_teraction by means of a_mf propagator. Clearly, if_ the
below the hole-hole continuuti.e., below 2(k=0)] ap- dressmg effeqt (_)f the nucleon_ls substantlal—and experiment
pears due to a repulsive interaction. This possibility is reall8] indicates it is—then one is forced to consider the con-

ized in liquid ®He at sufficiently high density for mf particles struction of the effective interact_ion in terms of dressec_i
[16]. If the interaction is not sufficiently attractive to yield nucleons. The consequences of this extension for the descrip-

pairing, the phase shift close to twice the Fermi energy wi tion of the scattering process in matter and the re_solution of
vanish. Finally, the result for the scattering amplitude is alsgh® healing paradox will be taken up in the following.

preserved in the form of Eq27), yielding corresponding
results for the cross sectigig. (28)]. C. Scattering of dressed particles in the medium

All these modest modifications of the quantities that char- e propagation of dressed nucleons requires a different
acterize the scattering process, as compared to the case ffaiment of the description of the scattering process. The
free-particle scattering, are related to the continued one-tqy5in ingredient for this change is the form of the noninter-
one relation of the energy with a unique relative momentumacting propagator which is given in the medium by
for which the noninteracting propagator has an imaginary

part. This on-shell momentum emerges as the momentum 0 o o
that characterizes the plane-walg spherical Bessel func- gf(k,k’;Q)ZJ de’ dw
tion) function describing the relative motion. The plane- F €F
wave character of the wave function allows for a conven-
tional interpretation of the scattering process as in free space. - f
Since the correlated wave function does not heal to an
uncorrelated one when hole-hole propagation is included, the (32
usual discussion of healing must be modified. The standard
interpretation of the validity of the shell model is couched inThe particle and hole spectral functioBs and S;,, respec-
terms of the healing of the relative wave function to thetively, describe the distribution of the sp strength for a given
noninteracting one. This interpretation was put forward inmomentum over the energy. These distributions are continu-
Ref. [11] and is based on the use of the Bethe-Goldston®@us and have sizable peaks either above or below the Fermi
propagator in describing the effective interaction. Since thignergy, corresponding to a momentum state above or below
propagator excludes the propagation of two holes in(Z9j, ke, at the so-called quasiparticle energy. Fdi
the correction to the relative wave function in Efj7) dueto  =1.36 fm %, corresponding to normal density, the strength
the strong interaction potential heals within a characteristicontained in the peak for momenta closektois typically
healing distance to the spherical Bessel function provideanly 70%[9,10]. From the rest of the strength about 10% is
that the energy is less than twice the Fermi energy. In scafound below the Fermi energy, another 10% in the first 100
tering language this simply states that there is no phase shifleV above the Fermi energy, and the remaining 10% is
for energies less thane when the Bethe-Goldstone propa- spread thinly towards even higher energy as a result of the
gator is employed since no corresponding imaginary part oghort-range and tensor correlations in the nuclear interaction
the propagator existsl2]. [9]. First attempts to incorporate these features in the solu-
An apparent contradiction arises with this interpretationtion of the ladder equation have been explored in Réfg—
when one realizes that it is not permitted to neglect the20]. A more complete presentation is in preparat(@i].
propagation of the hole-hole term in E@9) since it is es- The details of such a calculation are not pursued here; in-
sential for the understanding of the fragmentation of the sgtead, the consequences for the interpretation of the scatter-
strength below the Fermi ener24,25. Inclusion of hole- ing process in the medium for such medium-modified par-
hole propagation yields a nonvanishing phase shift belowicles are studied.
2¢€r [16] which is at odds with the healing interpretation of It should be noted that the noninteracting propagator in
the relative wave function. On the other hand, this contribuEq. (31) becomes the familiar mf Galitski-Feynman propa-
tion to the effective interaction is responsible for the pres-gator[see Eq(29)] when mf spectral functions are inserted
ence of an imaginary part of the nucleon self-energy which isvhich are characterized by&function peak of strength 1 at
required in order to describe the experimental situation ira sp energy either above the Fermi enerky kg) or below
nuclei as obtained from the(e’ p) reaction[8]. Evidentlyit  (k<kg). The difference between the Galitski-Feynman
is not possible to propagate mf nucleons which can generatgopagator and the dressed propagator is qualitatively differ-

, Sp(k,w)Sp(k',w’)
Q—-w—ow'+iy

F
do

—o0

_wdw Q-w—w'—-ig '

JEF , Sulk@)Sh(K',0')
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0.04 In order to perform the analysis of the scattering process it
will be illustrative to use an analytical approximation to the
0.021 noninteracting propagator of dressed particl&s). (31)]
0 which contains the essential new features. In addition, only

the case of zero total momentum of the propagating pair will
be considered in the following. As a result, the noninteract-
ing propagator contains equal and opposite momenta for the
two particles(holeg. Since the spectral functions do not de-
pend on the direction of the momentum, one can rewrite Eq.
(31) for the present purposes as

002,

-0.04]

Propagator (Arbitrary units)

-0.06

0 02040608 1 12
So(k,0)Sp(k, @)
O—w—w'+in

k (fm™")

g'f'(k,Q):f dwf do’
FIG. 1. Real(dotted ling and imaginary partsolid line) of the °F °F
noninteracting two-particle propagator of dressed particles at an en- feF . fEF o Sk, ©)Sh(k, )
- w w

ergy corresponding to an on-shell momentum of 0.5%rfor the —.

mf propagator. Q-w-w'~iy
(32

ent for the imaginary part and quantitatively for the real part.

These features are demonstrated in Figs. 1 and 2. In Fig.

both the real and imaginary parts of the dressed propagat

[Eq. (31)] are shown as a function of the relative momentumtum for the case of zero total momentum.

for zero total momentum while the energy corresponds to an Introducing a two-body self-energy term for pur.ely prac-

on-shell momentunk,=0.5 fm* in the Galitski-Feynman tical reasons, one can attempt to write this noninteracting

case using a sp spectrum from R&]. In the latter case the propagator as

imaginary part of the propagator containssdunction only +1

at one momentum corresponding to 0.5fmIt arises on g'f'(k,Q)= —

account of the vanishing of the denominator in the hole-hole Q-2(kQ)

term at the on-shell momentum. The solid curve in Fig. 1,1 4(e the sign is determined by whether the enefigys
corresponds to the imaginary part of the dressed propagatgbove(ﬂ or below(—) 2er . By assuming that thiad hoc

§hown here .for momenta up.ka. The position c.)f the pgak self-energy>"" has a slowly varying imaginary part as a
in the |mag_|1n ary part of this propagator _dewa_tes SI'_ghtlyfunction of the relative momenturk one can expand the
from 0.5 fm (see Ref[21] fqr a more det{:uled d|scg55|pn self-energy at the momentuky for which

but, more importantly, there is a substantial spreading in the

imaginary part containing even small high-momentum com- Q=Re3"(ky,0). (34)
ponents(not shown in Fig. L This spreading is a critical

feature which completely alters the conventional picture ofNoting that the expansion is in the square of the momentum
the scattering process. In Fig. 2 the real parts of the dressathe obtains a complex pole approximati6BPA) to the
and mf propagator are compared for momenta betavior propagator by only keeping the real and imaginary pakt'of

an energy corresponding to an on-shell momentum oft kg and the first derivative of the real part. The resulting
0.8 fm 1. The dotted line corresponds to the mf propagatompropagator has the form

and also indicates the pole present at 0.8%nThe dressed
propagator shows a less dramatic momentum dependence
and is in general substantially reduced from the mf propaga-
tor except for high momenta where both coincj@é].

'Ehe momentunk not only corresponds to the absolute value
&f the sp momenta but also represents the relative momen-

(33

*c

9t cra(k, Q)= I K=y (35

where the constart is obtained from

B 2 1] -1

& 0.04] o ﬁ_ J ReX 36
5 m k> |2
£ and y from
< -0.04
5 Re3"| |
.0.08- y=[Im 2 (kg, Q|| —7— : (37)
o 5 ak 2
< E ko
* 042 :

0 02040608 1 12 Typical values ofc at low energies correspond to 0.5

whereas it rises slowly to 1 for higher energies. This feature
is closely related to the pattern of the distribution of the sp
FIG. 2. Comparison of the real part of the fafotted ling and  strength. The quasiparticle pole strengttkat 1.36 fmtis
dressedsolid line) two-particle propagator at an on-shell momen- about 0.7, and so for a two-particle propagator close to these
tum of 0.8 fm ! indicated by the vertical dotted line. energies a factor of (0.7)is expected. For higher momenta

k (fm™")
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FIG. 3. Comparison for the imaginary part of the noninteracting
two-particle propagator of dressed nucleons between the comple
(numerica) result given by the solid line and the simple CPPgee
Eq. (35)] given by the dotted line for momenta beldw . This
result is obtained for an energy beloweg2 corresponding to an
on-shell momentum of 0.5 fat in the mf case.
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itably used to discuss the asymptotic analysis of the scatter-
ing process. Indeed, using the CPA to the dressed propagator
one can repeat the steps involved in the Fourier-Bessel trans-
form leading to Eq(14). For free or mf particles the integral

in Eq. (10) yields the product of a spherical Bessel function
and one of the spherical Hankel functions with as argument
the real on-shell momentuky, [see Eqs(13) and(30)]. This
on-shell momentum is real since the corresponding noninter-
acting propagatorfEgs.(12) and(29)] can only have a van-
ishing denominator for a real momentum. Since @) can

be calculated by a contour integral for E¢§2) and(29) (at

least for the long-range paytas well as for Eq(35), it is
clear that the presence of a nonvanishing imaginary part for
the pole of Eq(35), due to the nonvanishing of, will lead

8 a complex on-shell momentum which will be denoted by
ko. Using the CPAEQ. (35)] for (<2 one obtains, from

Eq. (10),

. m -
gI“,CPA(rvr,;Q): _lcﬁKoll(Kor<)hr(Kor>)- (39

the strength in the peak grows back to 1, yielding a propa-

gator which is more of the mf or even free-particle kind. It is
also apparent that this factor of about 0.5 can be identifie

from Fig. 2. It should be noted that the CPA is obtained afterK
f o

first numerically calculating the noninteracting propagator o
the dressed particl¢&1]. In Fig. 3 the quality of this CPA to

the propagator can be judged by comparing it to the numeri

cally calculated result for the imaginary part of the propaga
tor at an energy below & corresponding to an on-shell
momentum of 0.5 fm?* in the mf case. Also for the real part
of the propagator one obtains a very satisfactory descriptio
for momenta belovkg as shown in Fig. 4.

The CPA result for the propagator cannot be used to solv
any of the integral equatiorifq. (8) for the effective inter-
action, for examplsince it is only a good approximation to
the noninteracting propagator close to the peak of the imag
nary part. The full solution of Eq:8) also requires an accu-

he momentum argument of the spherical Bessel and Hankel
nctions, g, is now complex; its real and imaginary parts
R and kl, respectively, are easily obtained frdmg and y
[see Egs.(34) and (37)] by determining the zeros of the
denominator of Eq(35). Equation(38) contains the Hankel
function h{" due to the different boundary condition associ-
ated with hole-hole propagation for energies beloe 2
This leads to a pole in the upper half of the compleplane

ip contrast to the case of particle-particle or free-particle
scattering. As a result;;{) is negative forQ<2er and its
gnagnitude can become as large as 0.2-0.3'ff21]. The
resulting propagator for=0 can be written agfor r<r')

rate representation of the high-momentum components of the

propagator in order to properly include the effect of short-

range correlations in the interaction or wave function. The
CPA result does provide a reasonable representation of the

long-range part of the propagator and therefore can be pro

0.04

0.02-

-0.02

Propagator (Arbitrary units)

-0.04

0 02040608 1 12

k (fm™

FIG. 4. Comparison for the real part of the noninteracting two-
particle propagator of dressed nucleons between the complete
merica) result given by the solid line and the simple CPs®e Eqg.
(35)] given by the dotted line for momenta beldw. This result is
obtained for an energy beloweg corresponding to an on-shell
momentum of 0.5 fm! in the mf case.

: i iKRr —Klr
I- I ( , Q) Icm e"oe "o
— r,r, = "
Ji=o.ced 2h7(kEring | T
e—iKgreKlof e—iKgr/eK‘laf'

(39

r r’

]:& comparison between this analytical result and the numeri-
cal Fourier-Bessel transform of the dressed noninteracting
propagator which it approximates is shown in Fig. 5 for the
imaginary part. For fixed’, corresponding to the location of
the maximum in Fig. 5, both propagators are shown as a
function ofr without the factor Ir '. While confirming the
validity of the CPA result, Fig. 5 also demonstrates that the
propagator for dressed particles is radically different from
the noninteracting or mf onsee Eq.(14)] due to the pres-
ence of damping terms related to the nonzero value'oof

As noted before, there is no longer a unique on-shell momen-
tum. Indeed, the complex pole af in the CPA propagator

is just a simplgland approximaterepresentation of this fea-
ture. As a consequence, the relative wave function of the
dressed particles contains a spread in momentum states.
This, in turn, must yield a localization of the corresponding
wave function in coordinate space. This is exhibited in the
propagator Eq(39) which represents the probability ampli-
tude for removing a pair with relative distanceand adding

the pair after propagation at(without interaction between
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FIG. 5. Comparison between the analytical approximation and  F|G. 6. Decomposition of the two-particle CPA propagator in
the complete numerical result for the dressed noninteracting twoggordinate space into ingoirigashed lingand outgoing wavédot-
particle propagator in coordinate spdésy. (10)] for a value ofr’ ted line for the same value of’ and energy as in Fig. 5. Also
for which both propagators have a maximgaround 11 fm. In- shown is the sum of both contributiottsolid line). The result for
deed, forr =1’ the damping is least effectiyeee Eq(39)]. Shown  he total differs from the corresponding result in Fig. 5 by an overall

is the imaginary part for an energy belowg2(also used in Fig. B negative constant. The ingoing and outgoing waves correspond to
for the CPA propagatofdotted ling and the complete resulsolid  the two terms in Eq(39).

line). The corresponding propagators in momentum space are

h in Fig. 3. . . .
shown in Fig. 3 warrant the following observation: since only the part of the

wave which returns from the scattering can be affected and
the pair included y¢t This amplitude peaks at=r’ (see  this part always decreases with increagingnly that part of
Flg 5 and is exponentially damped with the decay constanthe noninteracting wave can be influenced by the scattering
|kol. This feature has interesting physical consequencewhich is exponentially damped in This is illustrated in Fig.
since it means that if the separation distance between th& where a decomposition of the CPA propagator shown in
scatterers is too large, there is little probability that they will Fig. 5 is presented in terms of the incoming and outgoing
actually interact because this requires a small relative diswaves. For values af’ outside the range of the interaction
tance. Indeed, taking’ to much larger values than in Fig. 5 as in Fig. 6 this implies that even a substantial modification
yields a negligible contribution to the noninteracting propa-of the outgoing wave will hardly affect the total propagator
gator near smalf where the interaction will act to modify and the wave function must automatically heal, according to
the Wave function. Clearly this effect is governed by the sizethe value OfKO, to the noninteracting one.
of KO, the imaginary part of the pole of the CPA. It should It is possible to proceed with an asymptotic analysis of the
be noted that this value will only become very small whenscattering process using the CPA propagator. A procedure to
the scattering energy approaches 2 Just as in the case of deal with the analysis of the complete numerical propagator
the sp motion, this means that the noninteracting wave funowill be outlined later. By following the steps leading to Eq.
tion will tend to a plane wave again only in this limit. The (19) in the case when the noninteracting propagator is given
corresponding result for Fig. 5 then yields a simple sineby the CPA result Eq(38), one obtains the asymptotic
wave characterized bytff which approachekg. For all  propagator in the following forntfor an uncoupled channel
other energies damping does occur sufficiently rapidly toand energy) above %)

al'ys7(r,r’;Q)—— (mZ)K0h|(KOI‘ )
' 2h

|

me b 210157
'WKohl(Kor O (kor) +hy(kor)e e }. (40)

.mc * * . .
X[hr(Kor)+h|(Kor) 1-2i ?Kofo drlrifo dror5(ra|TPST Q) r o) (kof 1)j1( Kol 2)

A simple example for a hard-core potential will be used towith hard-core radiug, one must require this correlated
illustrate some features in more detail. The term in bracketsvave function to vanish at, also in the case ofdropping
in Eq. (40) corresponds to the asymptotic wave function in-the JST subscript Eq. (40):
cluding the effect of the potential in terms of a phase shift as .
in Eq. (19) for free or mf particles. For a hard-core potential 0=h" (xor o) +hy (ror )€, (42)
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This boundary condition yields an expression for the phase 031
shifts given by (N Y
j (Kol o) 5§ 024\
tan §=——22" (42) >
i (Kol o) % 0.1
In the limit that K'O vanishes, corresponding to free or mf < 1\ Y
particles, one recovers the usual result in terms of the ratio of 5 04 S
spherical Bessel and Neumann functions with real argu- =S
ments. For thé =0 case one obtains §-0-1 ]
o
tan §p= —tan xqrg, (43 -0.2 . . . .

0 3 6 9 12 15
yielding a real part r (fm)

FIG. 7. Comparison of the outgoing two-particle wave function

R_ R
6= —Kolo (44) with (dotted ling and without(solid line) complex phase shift for a
. . hard-core radius of 0.5 fm corresponding to the second term in Eq.
and an imaginary part (46) for values of the energy and used in Fig. 5.
I .
0= ~ Kol'o (45) The above observations allow for the resolution of the

Iﬁzradox related to the healing properties of wave functions in

of the phase shift. Somewhat surprisingly a complex phas . . . .
shift appears. Its role becomes clear when one considers tk e medium. This property has been considered the physical

asymptotic propagator explicitly. For energi@sabove justification of the mf-like properties observed in nuclei in

i : . . the presence of strong short-range interactions. There is
.(K°>0) the corresponding resu_lt be.O in the CPA, insert- overwhelming experimental eviden¢8] that sp motion in
ing the result for the real and imaginary parts of the pha

) . Sfuclei must be described in terms of dressed nucleons with
shift [Egs. (44) and (45)], yields substantial fragmentation of the strength. The original dis-
cm 1m0 cussion of the healing properties of the relative wave func-
gl o(r,r';Q)—i ——g—71—5 — e e« tion of particles in the mediurfil1] used a Bethe-Goldstone
2(kgtikg)h=rr propagator involving mf nucleons to arrive at the healing
property of the relative wave function. If the nucleons are
dressed particles, a Bethe-Goldstone propagator does not
(46) suffice to generate a self-energy that will describe the sp
strength distribution. Instead a Galitski-Feynman propagator
It is clear that Eq(46) vanishes for =r,. Note, however, must be employed. This will generate quite a reasonable de-
that this can only be achieved by the presence of a complexcription of the sp strength including the quasiparticle fea-
phase shift. The incoming wave given by the first term in thetures for nucleons at the Fermi surfd@. The description
bracket needs to be exactly compensated by the outgoingf the scattering process is, however, modified by employing
wave atrq. Only shifting the oscillatory character of the a Galitski-Feynman propagator. Whereas it was possible to
wave function by the real part of the phase shift does nobbtain healing with a Bethe-Goldstone propagator due to a
suffice; an additional enhancement provided by the imagivanishing phase shift for scattering energies belaw,2this
nary part of the phase shift is required to achieve cancellatiofs no longer possible with a Galitski-Feynman propagator. A
atrg since the incoming wave has a larger amplitude than th@onvanishing phase shift is obtaingib] and the asymptotic
outgoing part(without the phase shjit The result is a shift relative wave function of mf particles does not heal. The
of the complete wave function as appropriate for a hard-corgresent work discusses the consequences of scattering
potential. This is illustrated in Fig. 7 where the solid line dressed particles and demonstrates that this dressing of
represents the uncorrelated outgoing wave and the dasheg@cleons automatically leads to a localization of the relative
line includes the real and imaginary parts of the phase shifiyave functions in coordinate space. The results for the CPA
Results for values ok,=0.6 fm™* and y=0.2fm™* [see  propagator analysis for hard-core scattering indicate that
Egs. (34) and (37)] yield phase shifts oB}=—0.3 andé,  even with sizable phase shifts the localization of the wave
= —0.08 for a hard-core radius of 0.5 fm used in Fig. 7. Thefunction leads to the desired healing property of the wave
results for the complete asymptotic propagator including théunction since the part of the wave function affected by the
complex phase shiftdashed ling and the noninteracting scattering event is exponentially damped. Also for the com-
CPA propagatofsolid line) are shown in Fig. 8. Asin Fig. 6 plete numerical propagator the same features are observed
the unaffected incoming wave dominates both propagatorf21]. Even in the presence of strong interaction processes the
(wave functiony while both outgoing wavesshown in Fig.  resulting picture of the nuclear medium is a tranquil one in
7) are damped exponentially. The dashed line vanishes at thehich the dressed particles no longer remember their scatter-
hard-core radius of 0.5 fm as required. More importantly,ing event beyond some finite distance and their wave func-
even though a phase shift will exist representing the effect ofions heal to the corresponding noninteracting ones. This ap-
the scattering interaction, the asymptotic wave function nevpears to be a satisfactory picture of a correlated medium in
ertheless heals to the noninteracting one as shown in Fig 8vhich particles do not carry the information of their interac-
This same feature is observed for the complete numericdlon indefinitely around unlike a description of scattering us-
calculation including a realistic interactigg1]. ing a mf Galitski-Feynman propagator.

X{— e‘i"gre"gr + ei Kg(r—2r0)e;<|0(2r0—r)}_
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e

as tenths of a fermi. As for the definition of the phase shift in

o ] the partial-wave basis above, one may infer the correspond-

5 059 ing result for the scattering amplitude by considering the

2 i CPA result of the noninteracting propagator in coordinate

Z 1IN space. Equatiofb) can be calculated analytically using Eq.

< -0.5 (35). ForQ>2e¢, Eq.(5), this yields

% 1 1 ’ mc eiKO‘r_rll

g 15 Greed ="z - (0

o -2: For a derivation of the scattering amplitude one requires a
0 3 6 9 12 15 meaningful separability of this propagator as in E2f}) con-

r (fm) tingent on the condition that eithef be much larger than
or vice versa. In the present case one cannot make this as-

FIG. 8. Comparison of the imaginary part of the total noninter- ; . e o
pan maginary b ' sumption without running into a vanishing propagator due to

acting two-particle propagatdsolid line) with the asymptotic one L . . .
(dotted ling for a hard-core radius of 0.5 fm for values of the the nonv_an'Sh'ng presence of the imaginary parkf This .
energy and'’ used in Fig. 5. The asymptotic wave functifq. observation does not change for the complete numerical

(46)] does not vanish inside the hard-core radius. The exact wavBropagator. As a result, there is no asymptdtarge dis-
function vanishes of course for<r . tance notion of a cross section as in the case of conventional
scattering experiments. Only a local modification of the

The preceding discussion has focused on an analyticallave function is possible with a rapid healing to the nonin-
solvable model. First, the CPA result was developed to obteracting wave. Even for energies close te-2vhere the
tain a sufficiently realistic approximation to the propagatorimaginary part ofc, becomes small, the phase shift vanishes
of two dressed particles. Second, a hard-core scattering prokr approachesr [16]) and no asymptotically relevant cross
lem for such a propagator was analyzed. A generalization o$ection can be identified. Similar conclusions are reached for
the discussion to the case of the complete propagator will bihe complete numerical propagaf@d].
outlined now but results for a realistic interaction will be ~ The above discussion does not imply that the local inter-
presented in detail in Ref21]. Results of such calculations action between dressed particles is small. It does mean that
completely confirm the analysis given here. As in the case ofne has to be cautious with the notion of a cross section of
the CPA result shown in Fig. 6, it is possible to separate th@articles in the medium. In order to provide a way to assess
ingoing and outgoing parts of the numerical noninteractingthe strength of the interaction of dressed particles it is con-

propagator in coordinate space. This can be written schéenient to generate a quantity which will yield the conven-
matically as tional cross section in the limit of mf or free-particle scatter-

ing. In addition, it is useful to provide a similar quantity for
af =97 ,(in)+gf (out). (47)  the phase shifts in order that one can make meaningful com-
o ’ parisons for the results involving mf or free particl@$,27).
The corresponding results are similar to those presented iAlthough the quantities introduced below are approximate,
Fig. 6. The equation for the propagatidEq. (11)] can be they do provide physically meaningful generalizations. The

written for an uncoupled channel as first step involves the practical observation that in most cases
' the imaginary part ok, which characterizes the damping of
955701+ Ag/ 357, (48)  the wave function is considerably smaller than its real part

[21]. Only for energies of two particles deep in the Fermi sea
whereAg" contains the contribution due to the interactidn do the real and imaginary parts af, become comparable

which can only affect the outgoing wave. By using E4j7)  [21]. Considering the identityfor r<r’)
it is possible to identify a phase shift similar to E40): iKoj (Ko )1 (Kor ")
—1RoJ1(Ro 1RO

Q25T gri(ouh+Ag) s —ikg _

| o (ouD 49 :T{J|(kor)h|(kor')+1|(kor)h|*(kor')}
Two remarks are in order here. First, because of the local- _ J|(kr)1|(kr )
ization of the propagator, this result for the phase shift must - k2+|

be calculated for’ not too far away from the origin in order

to generate a nonvanishing outgoing wave. Second, and re- j|(kl’)j|(kl’ )

latedly, one must expect somé dependence of this defini- - f

tion of the phase shift since the dressed noninteracting propa-

gator does not completely separate into a product of a 2 (= ) ) , 1
function ofr and a function of ’ as in the CPA result of Eq. =l fo dkij (kr)j(kr )|m[m
(38). More importantly, these observations and the healing 0
property of the propagator imply that a conventional deriva- ) o ) _ ) "

tion and definition of the cross section for the scattering pro- =l— Jo dkij (kr)ji(kr")Im{gf (k; )},
cess is not possible. No outgoing wave reaches asymptoti-

cally meaningful distances with damping constants as large (51
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which is valid for vanishingy in the case of particles propa- where a coupling to total spi& and projectionsng,m; for
gating in free space. Invoking the smallness of the imaginarynitial and final spin states has been included together with
part of ko with respect to its real part, one may heuristically the usual decomposition in partial waves. In the case of free
approximate the product of the spherical Bessel functiongr mf particle scattering thé function of the imaginary part
appearing in the first line of E¢40) using the identity given of g} yields the conventional result. For the case of a central

in Eq. (51). This approximation is appropriate for a pole in interaction and free particles EG4) reduces tdsuppressing
the complex momentum plane not too far from the real axisspin indice$

(| ko< «§ for the CPA resultbut also makes sense fonot

too different fromr’ since the damping effect is smallest f _2 21+1
there. Since the integral in E¢51) contains real spherical (6.4)= | Ko
Bessel functions, one can use the transformation to momen-
tum space for both integrals in the first line of E40). The
resulting asymptotic propagator for the CPA result then
reads

—mkym
72_]<ko|T|(ko)|ko>P|(C03 6)

21+1 .
=§|: K e'9sin 5,P,(cos 0), (55)

where the addition theorem for spherical harmonics andthe

function of the imaginary part of the propagator have been
used to obtain the first equality and the second equality of
Eq. (20) to obtain the second equality of this result. For the

total cross sectiofin the neutron-proton casene obtains

I} ' H mc ’ *
gy 957l r' Q) ——i 272 rohy (Kol )¢ Ay (ol ) +hy(kor)

X 1+2ifxdkkzlm{g'f'(k;ﬂ)}
0

To=T Y (204 1)’ dekk Im{gf(k;Q)}
><<|<|F|JST(Q)||<>”. (52 s’y 0
2

X(k(1S)J|T(Q)|k(1"S)I)| , (56)

The S-matrix elementand phase shiftcan then be written

for an uncoupled channel in the following way: ] ) . ]
which for a central interaction and free particles reduces to

* A the standard result
S(Q)=1+2i J dkik’Im{g} (k; Q) }(k|T}ST| k>Ee2|5,JST_
0

(53) atmzi—f Z (214 1)sir?s, . (57)
0

This result reduces to Eq20) for free or mf particles. The i . . .
result of Eq.(53) can also be used to calculate phase shiftsEquatlon(SG) demonstrates that a sensible cross section will
for the complete propagator. A consequence of the approx hbe obtained in the case of dressed patrticles at all energies for

mation contained in using Eq53) is that the phase shift Which a nonvanishing imaginary part of the propagator ex-

é\IJST remains real, a reasonable approximation at most enelsts- For two particles deep in the Fermi sea, for example, Eq.

gies[21] considering the smallness bflo| compared tnge (56) avoids the divergence associated w?th t«_tgez term in
which determines the strength 6? with respect t06|R [see Eq.(57). 1_'he formulation of the cross section in terms of Eq.
Egs. (45) and (44)]. As a result, the phase shifts can be _(56) pro_wdes a reasonable way to assess the st_reng_th of the
fruitfully compared with results for mf or free particles. De- interaction between dressed partlcles_ in the med|um In terms
tailed results using Ed53) for a realistic interaction will be of the square of the relevant transition matrix elem@t
presented in Rei[gl]. Equation(53) is exact for noninter- multiplied by an appropriate measure of the density of states

. . - . represented by the imaginary part of the noninteracting
acting particles and for dressed particles includes the phyS|—rO agator. Indeed one mav anticipate that the cross section
cally reasonable expectation that the distribution over the) opagator. ' y b .

: ) . . defined in Eq.(56) will be smaller than the corresponding
momenta as contained in the imaginary part of the propagas . <o i varticles since the density of states
tor will feature in determining the scattering process. While P

this approximation does not make sense at large distance 1 (o

scales, it provides, locally, a very reasonable generalization p(Q)=—— J dkkzlm{gL'(k;Q)} (58
of the phase shift and cross section. The corresponding mJo

“short-distance” approximation to the scattering amplitude

yields the result for dressed particles is substantially smaller than for mf par-

ticles for energies both below and aboveg:-2 This feature is
closely related to the distribution of the sp strength which for

2, (0,¢)=4m>, > i (=) (DY} (2) a given momentum contains only about 70% in the quasipar-
ss '3 mm'™M ! ticle peak while the admixture of other momentum states at
X(Im,Sm|IM) the corresponding energies does not nearly compensate for

this loss. The corresponding cross sections will therefore be
o, o 0 reduced with respect to those for mf particles. In addition, a
X(1"'m, SnﬂJM)L dkk Im{gs (k; )} considerable reduction of the effects of pairing, for example
for the 3S,;-D;, channel can be anticipated as a result of
x(k(1S)J|T(Q)|k(lI"S)J), (54)  this reduction of the density of statE21].
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IV. SUMMARY AND CONCLUSIONS recovered in a complete numerical calculation of the inter-

. . . acting propagatof21].
The main purpose of the present work is to provide some With this observation one completes the evolution of the

conc'eptual understanding of the scatte_:rlng process of nucl' icture of the effect of correlations on the properties of in-
ons in nuclear matter when the dressing of the nucleons i

taken into account. By emploving the formulation of the eracting nucleons. While it was originally thought that a
- By employing - Bethe-Goldstone propagator would suffice to generate this
two-body propagator it is shown how the usual asymptoti

analysis of the free-particle scattering can be recovered. Wit ealing prqpert;(nq phase shift for energies belove) [1%]
. e . oS and explain the simple shell-model picture then available,
minor modifications one obtains similar results for the scat-

tering of mf particles in the medium which emplovs the 4" current understanding of the sp properties of the nucleon
Galit%ki-Feynr%an propagator in the ladder equgt[gﬁ]. ir! the medium coincides more V.Vith a I__andau. quasiparticle
Both for free particles and mf particles in the medium theplcture. As a consequence, one is required to include at least

asymptotic wave function is characterized by a uni¢ hole-hole terms in the nucleon self-energy to describe the sp

o ; strength distribution. In turn, this leads to a Galitski-
shel) momentum which is related to the scattering energy. Ir“:e nman propagator for the scattering of nucleons and a
both cases this results in plane-wave functiémsspherical y propag 9

Bessel functions in a partial-wave basis phase shift below & [16] indicating no healing. The picture
With the propagatioew of dressed nucleons one is forced t omes full circle when dressed nucleons are used to describe

abandon this feature completely. When nucleons are der e scattering in the medium, both allowing an understanding

scribed in terms of spectral functions, their relative WaveOf the sp properties of correlated nucleons and maintaining

function at a given energy contains contributions from a”the healing property of the relative wave function albeit in an

momenta. Although there is a range of momenta close to thgpdated form. Because of the localization of the relative

former on-shell momentum which is dominant at a given 2y 0 e B e e process
energy, this distribution is sufficiently broad to yield a local- P gp

. L . . in the medium and the strict concept of a cross section is no
ized wave function in coordinate space. A simple comple . ; .
L . ; onger valid. Expressions are proposed to characterize the
pole approximation to the noninteracting propagator has : 2 » .
; . . .strength of the interaction in terms of quantities that will
been introduced to clarify some of these features. While if. : . .
. )" . ield the correct results for phase shifts and cross sections in
provides a good approximation to the numerical propagato

. : . he limit of mf or free particles. These expressions involve
for the dominant momenta at a given energy, it cannot b(%he weighting of the transition matrix eleme(ffective in-

used to solve scattering equations since it lacks accuracy tractior) by the relevant measure of the density of states

high momenta which are necessary for the description o iven by the imaginary part of the noninteracting propagator
short-range effects. It can be used, however, to illustrate th y ginary p g propagator.

: . . . discussion of the results for phase shifts, cross sections,
changes that are required in the asymptotic analysis of thg d correlated wave functions will be presented in Raf]
scattering process. Since the wave function of the dressercf1 g : P

. . : . ; r a realistic interaction.
particles is damped, the incoming wave part dominates an
the outgoing wave can only be affected when propagation is
started at not too large relative distances. In addition to gen- ACKNOWLEDGMENT
erating a complex phase shift, illustrated for the case of a
hard-core potential, it is shown that the correlated wave func- This work was supported by the U.S. National Science
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