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Scattering of dressed nucleons in nuclear matter

W. H. Dickhoff
Department of Physics, Washington University, St. Louis, Missouri 63130

~Received 29 June 1998!

The scattering of dressed nucleons in nuclear matter is studied. By casting the conventional asymptotic
analysis of scattering in free space in the language of the two-body propagator, it becomes possible to develop
modifications of this analysis due to the dressing of the scattering nucleons in the medium. While the scattering
energy singles out a unique~on-shell! momentum characterizing the relative wave function of free or mean-
field nucleons, this uniqueness is no longer maintained for dressed nucleons. The resulting distribution of
momenta in the relative wave function leads to a localization in coordinate space of the influence of the
scattering process which can be expressed as a healing of the wave function to the noninteracting one. An
analytic approximation to the noninteracting propagator of the dressed nucleons is utilized to illustrate these
points. The localization of the scattered wave implies that the particles no longer ‘‘remember’’ their scattering
event beyond some finite distance. This feature suggests that the strict notion of a cross section in the medium
is a tenuous concept. Approximate expressions are developed to characterize the strength of the interaction in
the medium in terms of phase shifts and cross sections to facilitate comparisons with results of calculations
involving mean-field nucleons.@S0556-2813~98!03811-4#

PACS number~s!: 21.30.Fe, 21.65.1f
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I. INTRODUCTION

Renewed interest in the study of the interaction betw
nucleons in the nuclear medium has been generated by
recent experimental developments involving the (e,e8pp)
reaction@1,2#. The potential selectivity of this reaction fo
the removal of1S0 proton pairs to certain final states and t
absence of large contributions from two-body currents
these transitions may allow the study of the interaction
tween protons in the medium at short relative distances@3#.
The continuing experimental study of heavy-ion reactions
the Fermi energy relies on analyses based on transport m
els which contain as input the cross section of nucleons s
tering in the nuclear medium. Recent theoretical work
determining these cross sections involves the scatterin
mean-field~mf! nucleons in nuclear matter. Some recent
sues that have emerged from this work include the enha
ment of the cross section at finite temperature due to
vicinity of a pairing instability@4#, the sensitivity of the cross
section to the choice of the single-particle~sp! spectrum at
zero temperature@5#, and the density and energy dependen
@6# and temperature dependence of the cross sections@7#.

From the careful analysis of the (e,e8p) reaction in recent
years, a picture has emerged which clearly invalidates on
the assumptions of the theoretical papers which determ
in-medium cross sections. This is the assumption that
scattering process in the medium takes place between n
ons which at most have a sp spectrum different from f
space but are otherwise unaffected by the presence of o
nucleons except for the Pauli principle. The assumption
all the sp strength is concentrated at a mf sp energy is ne
borne out by experiments on nuclei@8# or by many-body
calculations of the spectral function of nuclear matter@9,10#.
It is uncleara priori whether the dressing of nucleons w
have a substantial effect on the resulting cross sections
deed, there is no proper framework available to analyze
asymptotic behavior of the scattering wave function
PRC 580556-2813/98/58~5!/2807~14!/$15.00
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dressed particles in the medium. Indeed, it may not even
possible to develop a suitable definition of a cross section
the medium. These issues are explored in the present p

The conceptual understanding of strongly interact
nucleons yielding a mf shell-model~Fermi-gas! picture has
relied heavily on the concept of the healing of the relat
wave function to the noninteracting one as discussed in R
@11,12#. Experimental evidence based on the (e,e8p) reac-
tion @8# has demonstrated that nucleon sp motion must
understood in terms of Landau’s quasiparticle descript
@13#. In turn, this requires a substantial modification of t
simple shell-model or Fermi-gas picture. The conventio
Bethe-Goldstone propagator used to determine the effec
interaction in the medium is not sufficient to generate
nucleon self-energy which realistically describes the
strength distribution below the Fermi energy both in nucle
matter and finite nuclei. Inclusion of additional terms invol
ing hole-hole propagation as in a Galitski-Feynman propa
tor is necessary to achieve a realistic spectral funct
@14,15#. Inclusion of hole-hole propagation destroys the he
ing property of the relative function since it produces a no
vanishing phase shift for energies below twice the Fe
energy@16#. The resolution of this puzzle requires conside
ation of the consequences of the dressing of the nucleon
the description of the scattering process in the medium.
study of the self-consistent dressing of nucleons under
influence of short-range correlations~SRC! includes the
propagation of dressed particles in a ladder-diagram sum
tion for the two-body interaction or propagator@17#. The
present work is intended to provide a framework to interp
the results of such a ladder-diagram calculation of the tw
body propagator which employs fully dressed sp propa
tors. Some preliminary and incomplete results have been
cussed in Refs.@17–20#.

In Sec. II the relevant results for the two-body propaga
are collected which are subsequently used in Sec. III for
description of the asymptotic analysis of the scattering p
2807 ©1998 The American Physical Society



n
th
od
r

io
T
a
of
rl

ys
.
ite
p
n
co
nd
th
a
n

a
d
ro
v
d
c
an
ec

ca
o

ua
-

e
In
is
y
m
ile
a
a
s

to

an
d

o
e
uc

the
and

de-
the
q.

re
ral

in
lative

sec-

cu-
w.
at-
ion.
le

es

2808 PRC 58W. H. DICKHOFF
cess of free particles, mf particles in the medium, a
dressed particles. Although some results are standard,
are usually not presented in the language of the two-b
propagator. By employing this description for a standa
problem it becomes clear which features of this descript
are essentially altered by the dressing of the nucleons.
discussion includes an asymptotic analysis based on an
lytic approximation of the noninteracting propagator
dressed particles. This analytic approximation is particula
helpful in understanding the required changes for the ph
cal interpretation of the scattering process in the medium
simple example of the scattering by a hard core is explo
to demonstrate that phase shifts necessarily become com
for dressed particles even when their interaction does
include inelastic processes. The consequences for the
cept of a cross section in the medium are also explored a
set of useful expressions is introduced to characterize
scattering event of dressed particles which allows a comp
son with results for mf particles. A summary and conclusio
are given in Sec. IV.

II. GENERAL RESULTS FOR THE TWO-BODY
PROPAGATOR

The study of scattering in the medium by means of
asymptotic analysis in coordinate space requires knowle
of the two-body propagator. For practical reasons it is app
priate to calculate the effective interaction in a partial-wa
momentum representation. The present paper does not
with an actual solution of the integral equation for the effe
tive interaction. It will be assumed that this interaction c
be obtained from a numerical calculation. The main obj
tive of the present work is to study the consequences
propagating dressed particles for the description of the s
tering process. All subsequent discussion will be based
the solution of a Lippmann-Schwinger-type scattering eq
tion for the effective interaction which is equivalent to sum
ming the ladder diagrams for a particular choice of nonint
acting two-body propagator and two-body interaction.
order to clarify the difference between the conventional d
cussion of scattering in free space and the one necessar
the medium, it will be useful to cast the description co
pletely in the language of the two-body propagator. Wh
this is certainly not necessary for the scattering of free p
ticles, it will provide a simple way to clarify the changes th
are required to extend the description to dressed particle
the medium.

For the purpose of the present work it is sufficient
consider the two-time two-particle propagator

gII~k1k2 ;k3k4 ;t12t2!

52 i ^C0
AuT$ak2

~ t1!ak1
~ t1!ak3

† ~ t2!ak4

† ~ t2!%uC0
A&,

~1!

given here in the momentum representation, while spin
isospin indices are suppressed. Although this propagator
pends on the conserved total momentumK5k11k25k3
1k4 in the medium, it is more convenient to concentrate
the caseuKu50 in order to facilitate comparison with th
scattering of particles in free space which exhibits no s
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dependence. Extension of the present work to deal with
case of nonzero total momentum requires no new steps
will not be considered here. The remaining momentum
pendence of the propagator can now be associated with
relative momentum of the pair of removal operators in E
~1!, given byk5 1

2 @k12(2k1)#, and of the pair of addition
operators given byk85 1

2 @k32(2k3)#. Since only ladder
diagrams will be considered while employing a static ba
nucleon-nucleon interaction, the corresponding integ
equation for the propagator can be written as

gII~k,k8;V!5gf
II~k,k8;V!1gf

II~k;V!

3E d3q^kuVuq&gII~q,k8;V!

5gf
II~k,k8;V!1gf

II~k;V!

3^kuG~V!uk8&gf
II~k8;V!, ~2!

where

gf
II~k,k8;V!5d~k2k8!gf

II~k;V! ~3!

is the noninteracting two-particle propagator which both
homogeneous matter and free space conserves the re
momentum as expressed by thed function in Eq. ~3!. The
presence of exchange terms in Eqs.~2! and ~3! is hereby
acknowledged but suppressed in the presentation. The
ond equality in Eq.~2! links the two-particle propagator with
the vertex function or effective interactionG which contains
the summation of all ladder diagrams. This result is parti
larly useful for the asymptotic analysis to be explored belo

It is important to realize that the usual results from sc
tering theory are obtained in the coordinate representat
The relevant double Fourier transform of the two-partic
propagator is given by

gII~r,r8;V!5
1

~2p!3 E d3kE d3k8eik•rgII~k,k8;V!e2 ik8•r8.

~4!

The transform of the noninteracting propagator only involv
one integration due to the presence of thed function in Eq.
~3!:

gf
II~r,r8;V!5

1

~2p!3 E d3kE d3k8eik•rgf
II~k,k8;V!e2 ik8•r8

5
1

~2p!3 E d3keik•~r2r8!gf
II~k;V!. ~5!

The result for Eq.~2! can then be transformed to yield

gII~r,r8;V!5gf
II~r,r8;V!1E d3r 1E d3r 2gf

II~r,r1 ;V!

3^r1uVur2&g
II~r2 ,r8;V!

5gf
II~r,r8;V!1E d3r 1E d3r 2gf

II~r,r1 ;V!

3^r1uG~V!ur2&gf
II~r2 ,r8;V!. ~6!
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PRC 58 2809SCATTERING OF DRESSED NUCLEONS IN NUCLEAR MATTER
With this equation one can arrive at an asymptotic analy
and resulting definition of the cross section which is equi
lent to a standard analysis involving the equation for
wave function in the case of scattering in free space or
particles in the medium. Before this result is developed, i
useful to summarize the propagator equations in a par
wave representation. These allow the introduction of
phase shift which contains the relevant information to obt
the asymptotic propagator or wave function in this repres
tation.

A partial-wave decomposition of the two-body propaga
in Eq. ~2! yields the corresponding integral equation and
relation between the propagator and the vertex function:

gJST
II ~kl,k8l 8;V!

5
d~k2k8!

k2 d l ,l 8gf
II~k;V!1gf

II~k;V!

3(
l 9

E dqq2^kluVJSTuql9&gII~ql9,k8l 8;V!

5
d~k2k8!

k2 d l ,l 8gf
II~k;V!1gf

II~k;V!

3^kluGJST~V!uk8l 8&gf
II~k8;V!. ~7!

The appropriate notation for a partial-wave basis has b
introduced in Eq.~7! in terms ofl , S, J, andT representing
orbital, total spin, total angular momentum, and isosp
while k andk8 denote relative momentum quantum numbe
As before, only the case of zero total momentum is cons
ered here without loss of generality. The energyV is con-
served and must be viewed as a variable upon which
propagator depends~it also depends on the total momentu
in the case of the medium!. The noninteracting propagator
again denoted bygf

II and may include the dressing of th
individual particles when the scattering takes place in mat
The vertex function or effective interactionG can be ob-
tained from the numerical solution of the ladder equation
a partial-wave momentum representation

^kluGJST~V!uk8l 8&5^kluVJSTuk8l 8&

1(
l 9

E
0

`

dqq2^kluVJSTuql9&gf
II~q;V!

3^ql9uGJST~V!uk8l 8&. ~8!

This equation has only recently been solved using fu
dressed sp propagators in the medium@17,21#.

The coordinate space version of Eq.~7! is obtained by a
double Fourier-Bessel transform

gJST
II ~rl ,r 8l 8;V!

5
2

p E
0

`

dkk2E
0

`

dk8k82 j l~kr ! j l 8~k8r 8!gJST
II ~kl,k8l 8;V!.

~9!
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The corresponding result for the noninteracting part of
propagator, represented by the first term in Eq.~7!, reduces
to one integral on account of the delta function which co
serves relative momentum:

gf ,l
II ~r ,r 8;V!5

2

p E
0

`

dkk2 j l~kr ! j l~kr8!gf
II~k;V!. ~10!

The Fourier-Bessel transform of Eq.~7! has the form

gJST
II ~rl ,r 8l 8;V!5d l ,l 8gf ,l

II ~r ,r 8;V!

1(
l 9

E
0

`

dr1r 1
2E

0

`

dr2r 2
2gf ,l

II ~r ,r 1 ;V!

3^r 1l uVJSTur 2l 9&gJST
II ~r 2l 9,r 8l 8;V!

5d l ,l 8gf ,l
II ~r ,r 8;V!

1E
0

`

dr1r 1
2E

0

`

dr2r 2
2gf ,l

II ~r ,r 1 ;V!

3^r 1l uGJST~V!ur 2l 8&gf ,l 8
II

~r 2 ,r 8;V!.

~11!

When the bare two-body interactionV is local in the relative
coordinate, only one integral in the first equality remain
The second equality can be used to study the asymp
behavior of the propagator outside the range of the inte
tion.

III. PROPAGATOR DESCRIPTION OF SCATTERING

A. Scattering of free particles

The subsequent discussion for the scattering of dres
particles in the medium requires the consideration of
two-body propagator in the medium. For this reason it
advantageous to collect the conventional results for sca
ing in free space using this language. In the case of f
particles the noninteracting propagator in momentum sp
is given by

gf
II~k;V!5

1

V2\2k2/m1 ih
. ~12!

Defining the on-shell momentum by

V5
\2k0

2

m
, ~13!

one can perform the relevant Fourier-Bessel transform of
noninteracting propagator in Eq.~10! analytically ~see, e.g.,
@22#! with the well-known result

gf ,l
II ~r ,r 8;k0!52 ik0

m

\2 j l~k0r ,!hl~k0r .!. ~14!

The coordinate argument in the spherical Hankel funct
must be the larger ofr andr 8 and is denoted byr . while the
argument of the spherical Bessel function is the smaller
denoted byr , . For the current analysis it will be assume
that the interaction has a finite range,^r uVur 8&50 for r ,r 8
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2810 PRC 58W. H. DICKHOFF
larger than somer 0 . Substituting Eq.~14! in the second par
of Eq. ~11! in the case of an uncoupled channel forr 8.r and
r 8.r 0 yields

glJST
II ~r ,r 8;k0!52 ik0

m

\2 j l~k0r !hl~k0r 8!

1E
0

`

dr1r 1
2E

0

`

dr2r 2
2gf ,l

II ~r ,r 1 ;k0!

3^r 1uTl
JST~k0!ur 2&

3S 2 ik0

m

\2D j l~k0r 2!hl~k0r 8!

52 ik0

m

\2 c l
JST~r ;k0!hl~k0r 8!, ~15!

where

c l
JST~r ;k0!5 j l~k0r !1E

0

`

dr1r 1
2E

0

`

dr2r 2
2gf ,l

II ~r ,r 1 ;k0!

3^r 1uTl
JST~k0!ur 2& j l~k0r 2!, ~16!

and the conventional notationT instead ofG has been intro-
duced together with the replacement ofV by k0 . This result
demonstrates that under the given conditions the propag
separates as a product of a functionr and a function ofr 8.
ll
h
e

he
ing
on
tor

This result can be substituted into the first part of Eq.~11! to
obtain the relevant integral equation for the wave functionc
~under the condition thatr 8.r 0!:

c l
JST~r ;k0!5 j l~k0r !1E

0

`

dr1r 1
2E

0

`

dr2r 2
2gf ,l

II ~r ,r 1 ;k0!

3^r 1uVl
JSTur 2&c l

JST~r 2 ;k0!, ~17!

which can be found in standard textbooks~see, e.g.,@22# for
the case of a local potential!. It is derived here to demon
strate the relation between the propagator and the wave f
tion since for the case of dressed particles one has to
with the formulation in terms of propagators.

The asymptotic analysis of the propagator can be p
formed by using Eq.~14! in Eq. ~11! under the assumption
that the propagator will be considered forr ,r 8 while both
these coordinates are larger thanr 0 , the range of the inter-
action. Values ofr 1 andr 2 in Eq. ~11! larger thanr 0 yield no
contributions to the integral. As a result, the effective int
actionT has a range similar to the one of the bare interact
V. Using the relation between spherical Bessel and Han
functions,

j l~r!5
1

2
@hl~r!1hl* ~r!#, ~18!

one obtains the asymptotic behavior of the propagator for
case of an uncoupled partial wave channel from the sec
part of Eq.~11! in the form
gl ,JST
II ~r ,r 8;k0!→2 i S m

2\2D k0hl~k0r 8!

3H hl* ~k0r !1hl~k0r !F122i
m

\2 k0E
0

`

dr1r 1
2E

0

`

dr2r 2
2^r 1uTl

JST~k0!ur 2& j l~k0r 1! j l~k0r 2!G J
52 i

m

2\2 k0hl~k0r 8!H hl* ~k0r !1hl~k0r !F122p i S mk0

2\2 D ^k0uTl
JST~k0!uk0&G J . ~19!
ga-
of

By
c-
ic

on-

f

the
In the last step of Eq.~19! one can return to the on-she
matrix element of theT matrix in momentum space whic
completely determines the outcome of the scattering proc
The term in square brackets corresponds to theS-matrix el-
ement in terms of which one can define the phase shift

^k0uSl
JST~k0!uk0&5F122p i S mk0

2\2 D ^k0uTl
JST~k0!uk0&G

[e2id l
JST

. ~20!

This result can be represented by

tan d l
JST5

Im^k0uTl
JST~k0!uk0&

Rê k0uTl
JST~k0!uk0&

, ~21!

which explicitly shows that a nonzero imaginary part of t
effective interaction is required to obtain a nonvanish
phase shift. In turn, this imaginary part of the interacti
ss.

only appears for energies where the noninteracting propa
tor has a nonvanishing imaginary part. For the scattering
free particles this corresponds to all positive energies.
substituting the explicit form of the spherical Hankel fun
tions for l 50 in Eq. ~19! one can construct the asymptot
propagator for the1S0 channel explicitly:

gl ,1S0

II
~r ,r 8;k0!→2 i

m

2k0\2

1

rr 8
ei ~k0r 81d1S0

!sin~k0r 1d1S0
!.

~22!

The standard result for the asymptotic wave function is c
tained in this equation and the imaginary part of Eq.~22! is
simply the product of these wave functions as a function or
and r 8, respectively.

To obtain the relation between the cross section and
propagator it is necessary to return to Eq.~6! and perform the
Fourier transform of the noninteracting propagator@Eq. ~12!#
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PRC 58 2811SCATTERING OF DRESSED NUCLEONS IN NUCLEAR MATTER
in Eq. ~5!. This Fourier transform is given by the well-know
result~again replacing the energyV by the on-shell momen
tum k0!

gf
II~r,r8;k0!52

m

4p\2

eik0ur2r8u

ur2r8u
. ~23!

A similar procedure as used for the asymptotic analysis
the partial wave basis can be employed to obtain the co
sponding result for Eq.~6!. Whereas in the former analys
the separable form of the noninteracting propagator in
~14! is valid without constraint onr and r 8, this is not the
case here since Eq.~23! only becomes separable in the ca
r 8@r or vice versa. In the former case one can write Eq.~23!
as

gf
II~r,r8;k0!→2

m

4p\2

eik0r 8

r 8
e2 ik0r̂8•r. ~24!

Substituting this result in the second part of Eq.~6! for both
r 8@r and r 8@r 2 demonstrates thatgII is separable and ca
be written as

gII~r,r8;k0!52
m

4p\2

eik0r 8

r 8
c~r;k0! ~25!

in the asymptotic domain. By substituting this result in tu
in Eq. ~6! one obtains the standard integral equation for
wave function and the appropriate formulation for t
asymptotic wave function to obtain the scattering amplitu

c~r;k0!5e2 ik0r̂8•r1E d3r 1E d3r 2gf
II~r,r1 ;k0!

3^r1uVur2&c~r2 ;k0!

5e2 ik0r̂8•r1E d3r 1E d3r 2gf
II~r,r1 ;k0!

3^r1uT~k0!ur2&e
2 ik0r̂8•r2. ~26!

One may identify the origin of the motion in the direction
the negativez axis, meaning thatr̂8 points in that direction,
so thatk[2k0r̂8 points into the positivez direction. If one
assumes thatr is also much larger than the range of t
potential and, therefore much larger than any contribut
value ofr 1 , one can use Eq.~24! again in the second part o
Eq. ~26! to identify the coefficient multiplying the outgoin
spherical waveeik0r /r as the scattering amplitude~while
double Fourier transforming theT-matrix element back to
momentum space!:

f k0
~u,f!52

2mp2

\2 ^k8uT~k0!uk&, ~27!

whereu,f denote the angles associated with the direction
r̂ andk8[k0r̂ corresponds to the momentum of the detec
motion in the directionr̂ with the same absolute valuek0 as
the initial state. The differential cross section for the dire
tion ~u,f! is then simply the square of the scattering amp
tude as given by Eq.~27!:
n
e-

q.

e

:

g

f
d

-
-

ds

dV
5u f k0

~u,f!u2. ~28!

The present formulation is closely tailored to the conve
tional experimental situation where a collimated beam pro
gates along thez axis characterized by a given energy
momentum toward a target situated at the origin. Detect
then takes place in a particular direction away from the o
gin characterized by anglesu andf. The only difference is
that the present formulation is appropriate for the cor
sponding center-of-mass system (uKu50).

B. Scattering of mean-field particles in the medium

To obtain the phase shifts and cross sections for parti
propagating in the medium with mf sp energies one can p
ceed in similar fashion. A useful reference is the work
Bishop et al. @16# where the introduction of the phase sh
for the case of hole-hole propagation is discussed. The
responding mf propagator in the medium, also known as
Galitski-Feynman propagator, is given in momentum sp
by

gmf
II ~k;V!5

u~k2kF!

V22e~k!1 ih
2

u~kF2k!

V22e~k!2 ih
, ~29!

where, without essential loss of generality, the case of z
center-of-mass momentum is considered. The sp energye(k)
can deviate from the simple kinetic energy spectrum a
therefore yield a different relation between the energyV and
the on-shell momentumk0 :

V[2e~k0!. ~30!

Nevertheless, the uniqueness ofk0 for a given energy is still
preserved. Although one can no longer evaluate the no
teracting propagator in coordinate space completely ana
cally from Eq. ~10!, the separability of the propagator
maintained for the contribution of the pole term as in E
~14! ~with a different constant prefactor!, while the remain-
ing term vanishes asymptotically forr sufficiently different
from r 8. A discussion of a similar result for the Fourie
transform of the mf propagator given in Eq.~29! can be
found in Ref.@23# for the Bethe-Goldstone propagator. As
result, one preserves the integral equations for the w
function either in a partial wave basis as in Eq.~16! or for the
wave function in coordinate space as in Eq.~26! in the case
of mf propagators. The only difference with the free scatt
ing case involves the use of the mf equivalents of the n
interacting propagators in coordinate space in Eqs.~17! and
~26!. This result is due to the uniqueness of the on-sh
momentum at a given energy which guarantees that the n
interacting wave function is a plane wave or spherical Bes
function ~in a partial-wave basis!. One can therefore procee
with a similar asymptotic analysis as for free particles, yie
ing a corresponding definition of the phase shifts as in
~20! in terms of the on-shell scattering matrix. The result
Eq. ~21! also remains valid in this case. The presence o
nonvanishing phase shift therefore continues to be linked
the nonvanishing of the imaginary part of the noninteract
propagator. In the case of mf scattering the correspond
energy domain resides above 2e(k50) which corresponds
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2812 PRC 58W. H. DICKHOFF
to the lowest energy of two-hole states. As in the case
noninteracting particles, the presence of bound states
specific consequences for the behavior of the phase sh
the corresponding thresholds in the energy variable@16#.
While in free space this threshold corresponds to zero en
and the presence of a bound state is reflected in the p
shift going top when the scattering energy goes to zero,
corresponding threshold in the medium is 2eF . If the inter-
action is sufficiently attractive, the phase shift may appro
p on both sides of 2eF . This feature is intimately related t
the presence of a pairing instability in normal Fermi syste
with attractive effective interactions on the Fermi surfa
The phase shift can also approach2p when a bound state
below the hole-hole continuum@i.e., below 2e(k50)# ap-
pears due to a repulsive interaction. This possibility is re
ized in liquid 3He at sufficiently high density for mf particle
@16#. If the interaction is not sufficiently attractive to yiel
pairing, the phase shift close to twice the Fermi energy w
vanish. Finally, the result for the scattering amplitude is a
preserved in the form of Eq.~27!, yielding corresponding
results for the cross section@Eq. ~28!#.

All these modest modifications of the quantities that ch
acterize the scattering process, as compared to the ca
free-particle scattering, are related to the continued one
one relation of the energy with a unique relative moment
for which the noninteracting propagator has an imagin
part. This on-shell momentum emerges as the momen
that characterizes the plane-wave~or spherical Bessel func
tion! function describing the relative motion. The plan
wave character of the wave function allows for a conve
tional interpretation of the scattering process as in free sp

Since the correlated wave function does not heal to
uncorrelated one when hole-hole propagation is included,
usual discussion of healing must be modified. The stand
interpretation of the validity of the shell model is couched
terms of the healing of the relative wave function to t
noninteracting one. This interpretation was put forward
Ref. @11# and is based on the use of the Bethe-Goldst
propagator in describing the effective interaction. Since t
propagator excludes the propagation of two holes in Eq.~29!,
the correction to the relative wave function in Eq.~17! due to
the strong interaction potential heals within a characteri
healing distance to the spherical Bessel function provi
that the energy is less than twice the Fermi energy. In s
tering language this simply states that there is no phase
for energies less than 2eF when the Bethe-Goldstone prop
gator is employed since no corresponding imaginary par
the propagator exists@12#.

An apparent contradiction arises with this interpretat
when one realizes that it is not permitted to neglect
propagation of the hole-hole term in Eq.~29! since it is es-
sential for the understanding of the fragmentation of the
strength below the Fermi energy@24,25#. Inclusion of hole-
hole propagation yields a nonvanishing phase shift be
2eF @16# which is at odds with the healing interpretation
the relative wave function. On the other hand, this contri
tion to the effective interaction is responsible for the pr
ence of an imaginary part of the nucleon self-energy whic
required in order to describe the experimental situation
nuclei as obtained from the (e,e8p) reaction@8#. Evidently it
is not possible to propagate mf nucleons which can gene
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a realistic sp strength distribution and, at the same time,
tain the healing of the relative wave function to the non
teracting one which supposedly underlies the success o
mf picture.

While recent (e,e8p) experiments have sharpened t
range of the validity of the sp picture in terms of the mo
appropriate Landau quasiparticle description@13# which is
adequately described by microscopic theory@14,15#, the
paradox at the level of the relative wave function remains
clue to the solution of this puzzle is provided by noting t
inconsistency of the description of the sp strength in terms
a realistic spectral function and the construction of the eff
tive interaction by means of a mf propagator. Clearly, if t
dressing effect of the nucleon is substantial—and experim
@8# indicates it is—then one is forced to consider the co
struction of the effective interaction in terms of dress
nucleons. The consequences of this extension for the des
tion of the scattering process in matter and the resolution
the healing paradox will be taken up in the following.

C. Scattering of dressed particles in the medium

The propagation of dressed nucleons requires a diffe
treatment of the description of the scattering process.
main ingredient for this change is the form of the nonint
acting propagator which is given in the medium by

gf
II~k,k8;V!5E

eF

`

dvE
eF

`

dv8
Sp~k,v!Sp~k8,v8!

V2v2v81 ih

2E
2`

eF
dvE

2`

eF
dv8

Sh~k,v!Sh~k8,v8!

V2v2v82 ih
.

~31!

The particle and hole spectral functionsSp andSh , respec-
tively, describe the distribution of the sp strength for a giv
momentum over the energy. These distributions are cont
ous and have sizable peaks either above or below the F
energy, corresponding to a momentum state above or be
kF , at the so-called quasiparticle energy. ForkF
51.36 fm21, corresponding to normal density, the streng
contained in the peak for momenta close tokF is typically
only 70%@9,10#. From the rest of the strength about 10%
found below the Fermi energy, another 10% in the first 1
MeV above the Fermi energy, and the remaining 10%
spread thinly towards even higher energy as a result of
short-range and tensor correlations in the nuclear interac
@9#. First attempts to incorporate these features in the s
tion of the ladder equation have been explored in Refs.@17–
20#. A more complete presentation is in preparation@21#.
The details of such a calculation are not pursued here;
stead, the consequences for the interpretation of the sca
ing process in the medium for such medium-modified p
ticles are studied.

It should be noted that the noninteracting propagator
Eq. ~31! becomes the familiar mf Galitski-Feynman prop
gator @see Eq.~29!# when mf spectral functions are inserte
which are characterized by ad-function peak of strength 1 a
a sp energy either above the Fermi energy (k.kF) or below
(k,kF). The difference between the Galitski-Feynm
propagator and the dressed propagator is qualitatively dif
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PRC 58 2813SCATTERING OF DRESSED NUCLEONS IN NUCLEAR MATTER
ent for the imaginary part and quantitatively for the real pa
These features are demonstrated in Figs. 1 and 2. In F
both the real and imaginary parts of the dressed propag
@Eq. ~31!# are shown as a function of the relative momentu
for zero total momentum while the energy corresponds to
on-shell momentumk050.5 fm21 in the Galitski-Feynman
case using a sp spectrum from Ref.@24#. In the latter case the
imaginary part of the propagator contains ad function only
at one momentum corresponding to 0.5 fm21. It arises on
account of the vanishing of the denominator in the hole-h
term at the on-shell momentum. The solid curve in Fig
corresponds to the imaginary part of the dressed propag
shown here for momenta up tokF . The position of the peak
in the imaginary part of this propagator deviates sligh
from 0.5 fm21 ~see Ref.@21# for a more detailed discussion!
but, more importantly, there is a substantial spreading in
imaginary part containing even small high-momentum co
ponents~not shown in Fig. 1!. This spreading is a critica
feature which completely alters the conventional picture
the scattering process. In Fig. 2 the real parts of the dre
and mf propagator are compared for momenta belowkF for
an energy corresponding to an on-shell momentum
0.8 fm21. The dotted line corresponds to the mf propaga
and also indicates the pole present at 0.8 fm21. The dressed
propagator shows a less dramatic momentum depend
and is in general substantially reduced from the mf propa
tor except for high momenta where both coincide@21#.

FIG. 1. Real~dotted line! and imaginary part~solid line! of the
noninteracting two-particle propagator of dressed particles at an
ergy corresponding to an on-shell momentum of 0.5 fm21 for the
mf propagator.

FIG. 2. Comparison of the real part of the mf~dotted line! and
dressed~solid line! two-particle propagator at an on-shell mome
tum of 0.8 fm21 indicated by the vertical dotted line.
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In order to perform the analysis of the scattering proces
will be illustrative to use an analytical approximation to th
noninteracting propagator of dressed particles@Eq. ~31!#
which contains the essential new features. In addition, o
the case of zero total momentum of the propagating pair
be considered in the following. As a result, the nonintera
ing propagator contains equal and opposite momenta for
two particles~holes!. Since the spectral functions do not d
pend on the direction of the momentum, one can rewrite
~31! for the present purposes as

gf
II~k,V!5E

eF

`

dvE
eF

`

dv8
Sp~k,v!Sp~k,v8!

V2v2v81 ih

2E
2`

eF
dvE

2`

eF
dv8

Sh~k,v!Sh~k,v8!

V2v2v82 ih
.

~32!

The momentumk not only corresponds to the absolute val
of the sp momenta but also represents the relative mom
tum for the case of zero total momentum.

Introducing a two-body self-energy term for purely pra
tical reasons, one can attempt to write this noninteract
propagator as

gf
II~k,V!5

61

V2S II~k,V!
, ~33!

where the sign is determined by whether the energyV is
above~1! or below~2! 2eF . By assuming that thisad hoc
self-energyS II has a slowly varying imaginary part as
function of the relative momentumk one can expand the
self-energy at the momentumk0 for which

V[Re S II~k0 ,V!. ~34!

Noting that the expansion is in the square of the momen
one obtains a complex pole approximation~CPA! to the
propagator by only keeping the real and imaginary part ofS II

at k0
2 and the first derivative of the real part. The resulti

propagator has the form

gf ,CPA
II ~k,V!5

m

\2

6c

k0
22k26 ig

, ~35!

where the constantc is obtained from

c5
\2

m S ] Re S II

]k2 U
k

0
2D 21

~36!

andg from

g5uIm S II~k0 ,V!uS ] Re S II

]k2 U
k

0
2D 21

. ~37!

Typical values of c at low energies correspond to 0.
whereas it rises slowly to 1 for higher energies. This feat
is closely related to the pattern of the distribution of the
strength. The quasiparticle pole strength atkF51.36 fm21 is
about 0.7, and so for a two-particle propagator close to th
energies a factor of (0.7)2 is expected. For higher moment

n-
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2814 PRC 58W. H. DICKHOFF
the strength in the peak grows back to 1, yielding a pro
gator which is more of the mf or even free-particle kind. It
also apparent that this factor of about 0.5 can be identi
from Fig. 2. It should be noted that the CPA is obtained a
first numerically calculating the noninteracting propagator
the dressed particles@21#. In Fig. 3 the quality of this CPA to
the propagator can be judged by comparing it to the num
cally calculated result for the imaginary part of the propa
tor at an energy below 2eF corresponding to an on-she
momentum of 0.5 fm21 in the mf case. Also for the real pa
of the propagator one obtains a very satisfactory descrip
for momenta belowkF as shown in Fig. 4.

The CPA result for the propagator cannot be used to so
any of the integral equations@Eq. ~8! for the effective inter-
action, for example# since it is only a good approximation t
the noninteracting propagator close to the peak of the im
nary part. The full solution of Eq.~8! also requires an accu
rate representation of the high-momentum components o
propagator in order to properly include the effect of sho
range correlations in the interaction or wave function. T
CPA result does provide a reasonable representation o
long-range part of the propagator and therefore can be p

FIG. 3. Comparison for the imaginary part of the noninteract
two-particle propagator of dressed nucleons between the com
~numerical! result given by the solid line and the simple CPA@see
Eq. ~35!# given by the dotted line for momenta belowkF . This
result is obtained for an energy below 2eF corresponding to an
on-shell momentum of 0.5 fm21 in the mf case.

FIG. 4. Comparison for the real part of the noninteracting tw
particle propagator of dressed nucleons between the complete~nu-
merical! result given by the solid line and the simple CPA@see Eq.
~35!# given by the dotted line for momenta belowkF . This result is
obtained for an energy below 2eF corresponding to an on-she
momentum of 0.5 fm21 in the mf case.
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itably used to discuss the asymptotic analysis of the sca
ing process. Indeed, using the CPA to the dressed propag
one can repeat the steps involved in the Fourier-Bessel tr
form leading to Eq.~14!. For free or mf particles the integra
in Eq. ~10! yields the product of a spherical Bessel functi
and one of the spherical Hankel functions with as argum
the real on-shell momentumk0 @see Eqs.~13! and~30!#. This
on-shell momentum is real since the corresponding nonin
acting propagators@Eqs.~12! and~29!# can only have a van-
ishing denominator for a real momentum. Since Eq.~10! can
be calculated by a contour integral for Eqs.~12! and~29! ~at
least for the long-range part!, as well as for Eq.~35!, it is
clear that the presence of a nonvanishing imaginary part
the pole of Eq.~35!, due to the nonvanishing ofg, will lead
to a complex on-shell momentum which will be denoted
k0 . Using the CPA@Eq. ~35!# for V,2eF one obtains, from
Eq. ~10!,

gl ,CPA
II ~r ,r 8;V!52 ic

m

\2 k0 j l~k0r ,!hl* ~k0r .!. ~38!

The momentum argument of the spherical Bessel and Ha
functions,k0 , is now complex; its real and imaginary par
k0

R andk0
I , respectively, are easily obtained fromk0 andg

@see Eqs.~34! and ~37!# by determining the zeros of th
denominator of Eq.~35!. Equation~38! contains the Hanke
function hl* due to the different boundary condition asso
ated with hole-hole propagation for energies below 2eF .
This leads to a pole in the upper half of the complexk plane
in contrast to the case of particle-particle or free-parti
scattering. As a result,k0

I is negative forV,2eF and its
magnitude can become as large as 0.2– 0.3 fm21 @21#. The
resulting propagator forl 50 can be written as~for r ,r 8!

gl 50,CPA
II ~r ,r 8;V!5

2 icm

2\2~k0
R1 ik0

I !
S eik0

Rre2k0
I r

r

2
e2 ik0

Rrek0
I r

r
D e2 ik0

Rr 8ek0
I r 8

r 8
. ~39!

A comparison between this analytical result and the num
cal Fourier-Bessel transform of the dressed noninterac
propagator which it approximates is shown in Fig. 5 for t
imaginary part. For fixedr 8, corresponding to the location o
the maximum in Fig. 5, both propagators are shown a
function of r without the factor 1/rr 8. While confirming the
validity of the CPA result, Fig. 5 also demonstrates that
propagator for dressed particles is radically different fro
the noninteracting or mf one@see Eq.~14!# due to the pres-
ence of damping terms related to the nonzero value ofk0

I .
As noted before, there is no longer a unique on-shell mom
tum. Indeed, the complex pole atk0 in the CPA propagator
is just a simple~and approximate! representation of this fea
ture. As a consequence, the relative wave function of
dressed particles contains a spread in momentum st
This, in turn, must yield a localization of the correspondi
wave function in coordinate space. This is exhibited in t
propagator Eq.~39! which represents the probability ampl
tude for removing a pair with relative distancer 8 and adding
the pair after propagation atr ~without interaction between

te
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PRC 58 2815SCATTERING OF DRESSED NUCLEONS IN NUCLEAR MATTER
the pair included yet!. This amplitude peaks atr 5r 8 ~see
Fig. 5! and is exponentially damped with the decay const
uk0

I u. This feature has interesting physical consequen
since it means that if the separation distance between
scatterers is too large, there is little probability that they w
actually interact because this requires a small relative
tance. Indeed, takingr 8 to much larger values than in Fig.
yields a negligible contribution to the noninteracting prop
gator near smallr where the interaction will act to modify
the wave function. Clearly this effect is governed by the s
of k0

I , the imaginary part of the pole of the CPA. It shou
be noted that this value will only become very small wh
the scattering energy approaches 2eF . Just as in the case o
the sp motion, this means that the noninteracting wave fu
tion will tend to a plane wave again only in this limit. Th
corresponding result for Fig. 5 then yields a simple s
wave characterized byk0

R which approacheskF . For all
other energies damping does occur sufficiently rapidly

FIG. 5. Comparison between the analytical approximation
the complete numerical result for the dressed noninteracting t
particle propagator in coordinate space@Eq. ~10!# for a value ofr 8
for which both propagators have a maximum~around 11 fm!. In-
deed, forr 5r 8 the damping is least effective@see Eq.~39!#. Shown
is the imaginary part for an energy below 2eF ~also used in Fig. 3!
for the CPA propagator~dotted line! and the complete result~solid
line!. The corresponding propagators in momentum space
shown in Fig. 3.
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warrant the following observation: since only the part of t
wave which returns from the scattering can be affected
this part always decreases with increasingr , only that part of
the noninteracting wave can be influenced by the scatte
which is exponentially damped inr . This is illustrated in Fig.
6 where a decomposition of the CPA propagator shown
Fig. 5 is presented in terms of the incoming and outgo
waves. For values ofr 8 outside the range of the interactio
as in Fig. 6 this implies that even a substantial modificat
of the outgoing wave will hardly affect the total propagat
and the wave function must automatically heal, according
the value ofk0

I , to the noninteracting one.
It is possible to proceed with an asymptotic analysis of

scattering process using the CPA propagator. A procedur
deal with the analysis of the complete numerical propaga
will be outlined later. By following the steps leading to E
~19! in the case when the noninteracting propagator is gi
by the CPA result Eq.~38!, one obtains the asymptoti
propagator in the following form~for an uncoupled channe
and energyV above 2eF!

d
o-

re

FIG. 6. Decomposition of the two-particle CPA propagator
coordinate space into ingoing~dashed line! and outgoing wave~dot-
ted line! for the same value ofr 8 and energy as in Fig. 5. Also
shown is the sum of both contributions~solid line!. The result for
the total differs from the corresponding result in Fig. 5 by an ove
negative constant. The ingoing and outgoing waves correspon
the two terms in Eq.~38!.
gl ,JST
II ~r ,r 8;V!→2 i S mc

2\2Dk0hl~k0r 8!

3H hl* ~k0r !1hl~k0r !F122i
mc

\2 k0E
0

`

dr1r 1
2E

0

`

dr2r 2
2^r 1uG l

JST~V!ur 2& j l~k0r 1! j l~k0r 2!G J
52 i

mc

2\2 k0hl~k0r 8!$hl* ~k0r !1hl~k0r !e2id l
JST

%. ~40!
d
A simple example for a hard-core potential will be used
illustrate some features in more detail. The term in brack
in Eq. ~40! corresponds to the asymptotic wave function
cluding the effect of the potential in terms of a phase shift
in Eq. ~19! for free or mf particles. For a hard-core potent
ts
-
s
l

with hard-core radiusr 0 one must require this correlate
wave function to vanish atr 0 also in the case of~dropping
the JSTsubscript! Eq. ~40!:

05hl* ~k0r 0!1hl~k0r 0!e2id l. ~41!
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This boundary condition yields an expression for the ph
shifts given by

tan d l5
j l~k0r 0!

nl~k0r 0!
. ~42!

In the limit that k0
I vanishes, corresponding to free or m

particles, one recovers the usual result in terms of the rati
spherical Bessel and Neumann functions with real ar
ments. For thel 50 case one obtains

tan d052tan k0r 0 , ~43!

yielding a real part

d0
R52k0

Rr 0 ~44!

and an imaginary part

d0
I 52k0

I r 0 ~45!

of the phase shift. Somewhat surprisingly a complex ph
shift appears. Its role becomes clear when one consider
asymptotic propagator explicitly. For energiesV above 2eF

(k0
I .0) the corresponding result forl 50 in the CPA, insert-

ing the result for the real and imaginary parts of the ph
shift @Eqs.~44! and ~45!#, yields

gl 50
II ~r ,r 8;V!→ i

cm

2~k0
R1 ik0

I !\2

1

rr 8
eik0

Rr 8e2k0
I r 8

3$2e2 ik0
Rrek0

I r1eik0
R

~r 22r 0!ek0
I
~2r 02r !%.

~46!

It is clear that Eq.~46! vanishes forr 5r 0 . Note, however,
that this can only be achieved by the presence of a com
phase shift. The incoming wave given by the first term in
bracket needs to be exactly compensated by the outg
wave at r 0 . Only shifting the oscillatory character of th
wave function by the real part of the phase shift does
suffice; an additional enhancement provided by the ima
nary part of the phase shift is required to achieve cancella
at r 0 since the incoming wave has a larger amplitude than
outgoing part~without the phase shift!. The result is a shift
of the complete wave function as appropriate for a hard-c
potential. This is illustrated in Fig. 7 where the solid lin
represents the uncorrelated outgoing wave and the da
line includes the real and imaginary parts of the phase s
Results for values ofk050.6 fm21 and g50.2 fm21 @see
Eqs. ~34! and ~37!# yield phase shifts ofd0

R520.3 andd0
I

520.08 for a hard-core radius of 0.5 fm used in Fig. 7. T
results for the complete asymptotic propagator including
complex phase shift~dashed line! and the noninteracting
CPA propagator~solid line! are shown in Fig. 8. As in Fig. 6
the unaffected incoming wave dominates both propaga
~wave functions! while both outgoing waves~shown in Fig.
7! are damped exponentially. The dashed line vanishes a
hard-core radius of 0.5 fm as required. More importan
even though a phase shift will exist representing the effec
the scattering interaction, the asymptotic wave function n
ertheless heals to the noninteracting one as shown in F
This same feature is observed for the complete numer
calculation including a realistic interaction@21#.
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The above observations allow for the resolution of t
paradox related to the healing properties of wave function
the medium. This property has been considered the phys
justification of the mf-like properties observed in nuclei
the presence of strong short-range interactions. Ther
overwhelming experimental evidence@8# that sp motion in
nuclei must be described in terms of dressed nucleons
substantial fragmentation of the strength. The original d
cussion of the healing properties of the relative wave fu
tion of particles in the medium@11# used a Bethe-Goldston
propagator involving mf nucleons to arrive at the heali
property of the relative wave function. If the nucleons a
dressed particles, a Bethe-Goldstone propagator does
suffice to generate a self-energy that will describe the
strength distribution. Instead a Galitski-Feynman propaga
must be employed. This will generate quite a reasonable
scription of the sp strength including the quasiparticle fe
tures for nucleons at the Fermi surface@9#. The description
of the scattering process is, however, modified by employ
a Galitski-Feynman propagator. Whereas it was possible
obtain healing with a Bethe-Goldstone propagator due t
vanishing phase shift for scattering energies below 2eF , this
is no longer possible with a Galitski-Feynman propagator
nonvanishing phase shift is obtained@16# and the asymptotic
relative wave function of mf particles does not heal. T
present work discusses the consequences of scatte
dressed particles and demonstrates that this dressin
nucleons automatically leads to a localization of the relat
wave functions in coordinate space. The results for the C
propagator analysis for hard-core scattering indicate
even with sizable phase shifts the localization of the wa
function leads to the desired healing property of the wa
function since the part of the wave function affected by t
scattering event is exponentially damped. Also for the co
plete numerical propagator the same features are obse
@21#. Even in the presence of strong interaction processes
resulting picture of the nuclear medium is a tranquil one
which the dressed particles no longer remember their sca
ing event beyond some finite distance and their wave fu
tions heal to the corresponding noninteracting ones. This
pears to be a satisfactory picture of a correlated medium
which particles do not carry the information of their intera
tion indefinitely around unlike a description of scattering u
ing a mf Galitski-Feynman propagator.

FIG. 7. Comparison of the outgoing two-particle wave functi
with ~dotted line! and without~solid line! complex phase shift for a
hard-core radius of 0.5 fm corresponding to the second term in
~46! for values of the energy andr 8 used in Fig. 5.



a
ob
to
ro

n
ll b
e
s

th
in
h

d

ca
u
r

-
op
f
.
lin
va
ro
to
rg

in
nd-
he
ate
q.

s a

as-
to

ical

nal
he
in-

es
s
for

er-
that
of

ess
on-
n-
r-
r
om-

te,
he
ses
f
art
ea

er

e

a

PRC 58 2817SCATTERING OF DRESSED NUCLEONS IN NUCLEAR MATTER
The preceding discussion has focused on an analytic
solvable model. First, the CPA result was developed to
tain a sufficiently realistic approximation to the propaga
of two dressed particles. Second, a hard-core scattering p
lem for such a propagator was analyzed. A generalizatio
the discussion to the case of the complete propagator wi
outlined now but results for a realistic interaction will b
presented in detail in Ref.@21#. Results of such calculation
completely confirm the analysis given here. As in the case
the CPA result shown in Fig. 6, it is possible to separate
ingoing and outgoing parts of the numerical noninteract
propagator in coordinate space. This can be written sc
matically as

gf ,l
II 5gf ,l

II ~ in!1gf ,l
II ~out!. ~47!

The corresponding results are similar to those presente
Fig. 6. The equation for the propagator@Eq. ~11!# can be
written for an uncoupled channel as

gl ,JST
II 5gf ,l

II 1Dgl ,JST
II , ~48!

whereDgII contains the contribution due to the interactionG
which can only affect the outgoing wave. By using Eq.~47!
it is possible to identify a phase shift similar to Eq.~40!:

e2id l
JST

5
gf ,l

II ~out!1Dgl ,JST
II

gf ,l
II ~out!

. ~49!

Two remarks are in order here. First, because of the lo
ization of the propagator, this result for the phase shift m
be calculated forr 8 not too far away from the origin in orde
to generate a nonvanishing outgoing wave. Second, and
latedly, one must expect somer 8 dependence of this defini
tion of the phase shift since the dressed noninteracting pr
gator does not completely separate into a product o
function of r and a function ofr 8 as in the CPA result of Eq
~38!. More importantly, these observations and the hea
property of the propagator imply that a conventional deri
tion and definition of the cross section for the scattering p
cess is not possible. No outgoing wave reaches asymp
cally meaningful distances with damping constants as la

FIG. 8. Comparison of the imaginary part of the total nonint
acting two-particle propagator~solid line! with the asymptotic one
~dotted line! for a hard-core radius of 0.5 fm for values of th
energy andr 8 used in Fig. 5. The asymptotic wave function@Eq.
~46!# does not vanish inside the hard-core radius. The exact w
function vanishes of course forr ,r 0 .
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as tenths of a fermi. As for the definition of the phase shift
the partial-wave basis above, one may infer the correspo
ing result for the scattering amplitude by considering t
CPA result of the noninteracting propagator in coordin
space. Equation~5! can be calculated analytically using E
~35!. For V.2eF , Eq. ~5!, this yields

gf ,CPA
II ~r,r8;V!52

mc

4p\2

eik0ur2r8u

ur2r8u
. ~50!

For a derivation of the scattering amplitude one require
meaningful separability of this propagator as in Eq.~24! con-
tingent on the condition that eitherr 8 be much larger thanr
or vice versa. In the present case one cannot make this
sumption without running into a vanishing propagator due
the nonvanishing presence of the imaginary part ofk0 . This
observation does not change for the complete numer
propagator. As a result, there is no asymptotic~large dis-
tance! notion of a cross section as in the case of conventio
scattering experiments. Only a local modification of t
wave function is possible with a rapid healing to the non
teracting wave. Even for energies close to 2eF where the
imaginary part ofk0 becomes small, the phase shift vanish
~or approachesp @16#! and no asymptotically relevant cros
section can be identified. Similar conclusions are reached
the complete numerical propagator@21#.

The above discussion does not imply that the local int
action between dressed particles is small. It does mean
one has to be cautious with the notion of a cross section
particles in the medium. In order to provide a way to ass
the strength of the interaction of dressed particles it is c
venient to generate a quantity which will yield the conve
tional cross section in the limit of mf or free-particle scatte
ing. In addition, it is useful to provide a similar quantity fo
the phase shifts in order that one can make meaningful c
parisons for the results involving mf or free particles@26,27#.
Although the quantities introduced below are approxima
they do provide physically meaningful generalizations. T
first step involves the practical observation that in most ca
the imaginary part ofk0 which characterizes the damping o
the wave function is considerably smaller than its real p
@21#. Only for energies of two particles deep in the Fermi s
do the real and imaginary parts ofk0 become comparable
@21#. Considering the identity~for r ,r 8!

2 ik0 j l~k0r ! j l~k0r 8!

5
2 ik0

2
$ j l~k0r !hl~k0r 8!1 j l~k0r !hl* ~k0r 8!%

5
1

p E
0

`

dkk2
j l~kr ! j l~kr8!

k0
22k21 ih

2
1

p E
0

`

dkk2
j l~kr ! j l~kr8!

k0
22k22 ih

5 i
2

p E
0

`

dkk2 j l~kr ! j l~kr8!ImH 1

k0
22k21 ihJ

5 i
2\2

pm E
0

`

dkk2 j l~kr ! j l~kr8!Im$gf
II~k;V!%,

~51!

-

ve
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which is valid for vanishingh in the case of particles propa
gating in free space. Invoking the smallness of the imagin
part of k0 with respect to its real part, one may heuristica
approximate the product of the spherical Bessel functi
appearing in the first line of Eq.~40! using the identity given
in Eq. ~51!. This approximation is appropriate for a pole
the complex momentum plane not too far from the real a
(uk0

I u!k0
R for the CPA result! but also makes sense forr not

too different from r 8 since the damping effect is smalle
there. Since the integral in Eq.~51! contains real spherica
Bessel functions, one can use the transformation to mom
tum space for both integrals in the first line of Eq.~40!. The
resulting asymptotic propagator for the CPA result th
reads

gl ,JST
II ~r ,r 8;V!→2 i S mc

2\2Dk0hl~k0r 8!H hl* ~k0r !1hl~k0r !

3F112i E
0

`

dkk2Im$gf
II~k;V!%

3^kuG l
JST~V!uk&G J . ~52!

The S-matrix element~and phase shift! can then be written
for an uncoupled channel in the following way:

Sl~V!5112i E
0

`

dkk2Im$gf
II~k;V!%^kuG l

JSTuk&[e2id l
JST

.

~53!

This result reduces to Eq.~20! for free or mf particles. The
result of Eq.~53! can also be used to calculate phase sh
for the complete propagator. A consequence of the appr
mation contained in using Eq.~53! is that the phase shif
d l

JST remains real, a reasonable approximation at most e
gies @21# considering the smallness ofuk0

I u compared tok0
R

which determines the strength ofd l
I with respect tod l

R @see
Eqs. ~45! and ~44!#. As a result, the phase shifts can
fruitfully compared with results for mf or free particles. De
tailed results using Eq.~53! for a realistic interaction will be
presented in Ref.@21#. Equation~53! is exact for noninter-
acting particles and for dressed particles includes the ph
cally reasonable expectation that the distribution over
momenta as contained in the imaginary part of the propa
tor will feature in determining the scattering process. Wh
this approximation does not make sense at large dista
scales, it provides, locally, a very reasonable generaliza
of the phase shift and cross section. The correspond
‘‘short-distance’’ approximation to the scattering amplitu
yields the result

f m
s8ms

S
~u,f!54p(

l l 8J
(

mm8M

i l 8~2 i ! lYlml
~ r̂ !Yl 8m

l8
* ~ ẑ!

3~ lmlSmsuJM!

3~ l 8ml8Sms8uJM!E
0

`

dkk Im$gf
II~k;V!%

3^k~ lS!JuG~V!uk~ l 8S!J&, ~54!
ry

s

s

n-

n

s
i-

r-

i-
e
a-

ce
n
g

where a coupling to total spinS and projectionsms ,ms8 for
initial and final spin states has been included together w
the usual decomposition in partial waves. In the case of f
or mf particle scattering thed function of the imaginary part
of gf

II yields the conventional result. For the case of a cen
interaction and free particles Eq.~54! reduces to~suppressing
spin indices!

f ~u,f!5(
l

2l 11

k0
H 2mk0p

2\2 J ^k0uTl~k0!uk0&Pl~cosu!

5(
l

2l 11

k0
eid lsin d l Pl~cosu!, ~55!

where the addition theorem for spherical harmonics and thd
function of the imaginary part of the propagator have be
used to obtain the first equality and the second equality
Eq. ~20! to obtain the second equality of this result. For t
total cross section~in the neutron-proton case! one obtains

s tot5p (
Sll8J

~2J11!U E
0

`

dkk Im$gf
II~k;V!%

3^k~ lS!JuG~V!uk~ l 8S!J&U2

, ~56!

which for a central interaction and free particles reduces
the standard result

s tot5
4p

k0
2 (

l
~2l 11!sin2d l . ~57!

Equation~56! demonstrates that a sensible cross section
be obtained in the case of dressed particles at all energie
which a nonvanishing imaginary part of the propagator
ists. For two particles deep in the Fermi sea, for example,
~56! avoids the divergence associated with thek0

22 term in
Eq. ~57!. The formulation of the cross section in terms of E
~56! provides a reasonable way to assess the strength o
interaction between dressed particles in the medium in te
of the square of the relevant transition matrix element~G!
multiplied by an appropriate measure of the density of sta
represented by the imaginary part of the noninteract
propagator. Indeed one may anticipate that the cross sec
defined in Eq.~56! will be smaller than the correspondin
one for mf particles since the density of states

r~V!52
1

p E
0

`

dkk2Im$gf
II~k;V!% ~58!

for dressed particles is substantially smaller than for mf p
ticles for energies both below and above 2eF . This feature is
closely related to the distribution of the sp strength which
a given momentum contains only about 70% in the quasip
ticle peak while the admixture of other momentum states
the corresponding energies does not nearly compensat
this loss. The corresponding cross sections will therefore
reduced with respect to those for mf particles. In addition
considerable reduction of the effects of pairing, for exam
for the 3S1-3D1 , channel can be anticipated as a result
this reduction of the density of states@21#.
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IV. SUMMARY AND CONCLUSIONS

The main purpose of the present work is to provide so
conceptual understanding of the scattering process of nu
ons in nuclear matter when the dressing of the nucleon
taken into account. By employing the formulation of th
two-body propagator it is shown how the usual asympto
analysis of the free-particle scattering can be recovered. W
minor modifications one obtains similar results for the sc
tering of mf particles in the medium which employs th
Galitski-Feynman propagator in the ladder equation@16#.
Both for free particles and mf particles in the medium t
asymptotic wave function is characterized by a unique~on-
shell! momentum which is related to the scattering energy
both cases this results in plane-wave functions~or spherical
Bessel functions in a partial-wave basis!.

With the propagation of dressed nucleons one is force
abandon this feature completely. When nucleons are
scribed in terms of spectral functions, their relative wa
function at a given energy contains contributions from
momenta. Although there is a range of momenta close to
former on-shell momentum which is dominant at a giv
energy, this distribution is sufficiently broad to yield a loca
ized wave function in coordinate space. A simple comp
pole approximation to the noninteracting propagator
been introduced to clarify some of these features. Whil
provides a good approximation to the numerical propaga
for the dominant momenta at a given energy, it cannot
used to solve scattering equations since it lacks accurac
high momenta which are necessary for the description
short-range effects. It can be used, however, to illustrate
changes that are required in the asymptotic analysis of
scattering process. Since the wave function of the dres
particles is damped, the incoming wave part dominates
the outgoing wave can only be affected when propagatio
started at not too large relative distances. In addition to g
erating a complex phase shift, illustrated for the case o
hard-core potential, it is shown that the correlated wave fu
tion must heal to the noninteracting one. This feature is a
.
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recovered in a complete numerical calculation of the int
acting propagator@21#.

With this observation one completes the evolution of t
picture of the effect of correlations on the properties of
teracting nucleons. While it was originally thought that
Bethe-Goldstone propagator would suffice to generate
healing property~no phase shift for energies below 2eF! @11#
and explain the simple shell-model picture then availab
our current understanding of the sp properties of the nucl
in the medium coincides more with a Landau quasiparti
picture. As a consequence, one is required to include at l
hole-hole terms in the nucleon self-energy to describe the
strength distribution. In turn, this leads to a Galitsk
Feynman propagator for the scattering of nucleons an
phase shift below 2eF @16# indicating no healing. The picture
comes full circle when dressed nucleons are used to desc
the scattering in the medium, both allowing an understand
of the sp properties of correlated nucleons and maintain
the healing property of the relative wave function albeit in
updated form. Because of the localization of the relat
wave function of dressed particles, one can no longer a
ciate macroscopic distance scales with the scattering pro
in the medium and the strict concept of a cross section is
longer valid. Expressions are proposed to characterize
strength of the interaction in terms of quantities that w
yield the correct results for phase shifts and cross section
the limit of mf or free particles. These expressions invol
the weighting of the transition matrix element~effective in-
teraction! by the relevant measure of the density of sta
given by the imaginary part of the noninteracting propaga
A discussion of the results for phase shifts, cross sectio
and correlated wave functions will be presented in Ref.@21#
for a realistic interaction.
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