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Incompressibility and density distributions in asymmetric nuclear systems
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The incompressibility of asymmetric nuclear matier is studied analytically within the framework of the
relativistic mean field theory and the nonrelativistic Skyrme Hartree-Fock model. We investigate also the
relation betweerK,, of asymmetric nuclear matter and the surface diffuseness by using the extended Thomas
Fermi approximation. The self-consistent relativistic and nonrelativistic mean field calculations are performed
for Sn isotopes, taking into account the pairing correlation, in order to extract the asymmetry parameter (
—Z)/A dependences of the surface diffusereeasd the central density(r =0). Clear correlations are found
between the incompressibilitg.,, of asymmetric nuclear matter and the extracted surface diffusenessd
also betweerK,, and the extracted central densjtyr =0). [S0556-281@8)03511-0

PACS numbgs): 21.10.Ft, 21.10.Gv, 21.66n, 21.65:+f

I. INTRODUCTION Ka(A,Z)=K,+ KSA—1/3+ K,sl 2 KCZZA—4/3+ )

The incompressibilityK.,, of nuclear matter is one of the where | is the asymmetry parameter defined by (N

most important ingredients for the nuclear equation of state’ Z)IA andK,, K., K,e, andK,, are the coefficients of

(EOS, which influences both ground and excited state prOpK/olume, surface, volume symmetry, and Coulomb terms, re-

erties of nuclei, frz_;\gmentanons of heavy ion collisions andS ectively. The coefficients of several terms in E2). have
several astrophysical phenomena, for example, superno

explosion. The incompressibilit{., of nuclear matter is de- en determined so as to reproduce empirkal values
P : P e measured in many nucl¢l,2]. Other terms like curvature

fined by the second derivative of the energy density pe( nd deformation terms have also been included in the analy-

nucleon with respect to the density at the saturation point Oiis [3]. Then, the coefficient of volume terid, has been
nuclear matter,
2
zﬂ_(ﬂ)
p 2
ap

identified as the incompressibility of nuclear mattey, in
the limit of A—oo. Experimental data of ISGMR led the
, (1) value of incompressibility of nuclear matter #©,~(210
p +30) MeV in the early 1980§1,2,4,9. However the value
K.~ (300+25) MeV was claimed by new experiments us-

wherepg is the saturation density arfd is the energy den- ing i;otopic chains'of Snand Sm nuc[éﬂ. A serious prop—
Po y arid 9y Hem in the calculation of the value &, is that the coeffi-

sity of nuclear matter. Effective nuclear forces used in bot s of Lt dqi " letel
nonrelativistic and relativistic mean field calculations are de'€NtS 0! S€veral terms used in E@)_ are not compietely
dependent and cannot be determined uniquely from the

manded to reproduce empirical values of the binding ener ; i
b b 9 g xperimental data. It was shown in Ref8,7] that the sta-

and the density at the saturation point of nuclear matter. It' tical bar of th fficients found i . ith
has been known that the incompressibility is ill-determined IStical error bar ot the Coetlicients found in comparison wi
xperimental data were so large as to make the result mean-

showing a large variety among the adopted interactions, af . : ;
though the mean field calculations reproduce reasonably We'mgless' It was also pplnted .OUt. that there is a correlation
the binding energies and the rms radii of many nuclei in abetweenKU and the t_h|rd dgrlvatlvg of EOS C.)f the nuclear
wide range of mass table. The nuclear breathing modénatter at t_he satura_tlon po'ﬁ.ﬂ' Th's correlation sugg_ests
namely isoscalar giant monopole resonafk@GMR), can that there_ is an ambiguity to |de.nt|fy the vol_upje teldp in

be used as experimental information to determine the incomEd: (3) With the nuclear matter incompressibilitg.., even
pressibility of nuclear matteK.. . The incompressibility of in the limit of A—<. Thus it might be concluded that reli-

finite nucleusK 4 is related with the breathing mode energy at?'e incompressibility O.f nuclear matt_er cannot be dgter-
E, as[1,2] mined from the expansion formul@) with the systematic

data of ISGMR.
m(rZ)EZ Recently, r_nicroscopic random phas_e approximation
:_b, ) (RPA) calculations were performed by using both nonrela-
72 tivistic Skyrme forceg8] and relativistic nonlineas model
[9] in order to study the relation between the incompressibil-
where (r?) is the mean square radius. By analogy of theity and the excitation energy of ISGMR, in heavy nuclei like
semi-empirical mass formula, one can make an expansion ofZr and 2°%Pb. However, the two models give still contro-
K, with proton numberZ, neutron numbeN and nucleon versial results for the incompressibility; the Skyrme RPA
numberA as results agree well with the experimental data of ISGMR in

Ke=9

P=Pg

A
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208pp with the interaction which has the incompressib”itydensity distributions with the relativistic and the Skyrme
K..~220 MeV, while the results of relativistic RPA prefer a self-consistent calculations. A summary is given in Sec. V.
higher value forK_,~(270—-300) MeV.

It was pointed out that the saturation density of nuclear
matter is very sensitive to the value Kf, and the model
[10]. In this paper, we study the relation between incom- The incompressibilityk., of nuclear matter is defined by
pressibility K., of nuclear matter and properties of the Eq. (1) as the second derivative of energy density with re-
nuclear density, especially the central density and the surfacgpect to the density at the saturation point. The content of the
diffuseness. In Sec. Il, the incompressibility and the saturaenergy densityH depends on the theoretical model. In this
tion density of symmetric and asymmetric nuclear matter argpaper, we adopt two models. One is the nonrelativistic
discussed based on the relativistic mean field theory and thekyrme Hartree-Fock model and the other is the relativistic
Skyrme Hartree-Fock model. In Sec. Ill, we show the correimean field theory.
lation between the incompressibility and the surface diffuse- At first, we show the formulation of the Skyrme Hartree-
ness analytically by adding the derivative terms to theFock model[11,12. The Skyrme forceVsy, is an effective
nuclear matter Hamiltonian density. Section 1V is devoted tozero-range force with density and momentum dependent
study the relation among the incompressibility of nuclearterms, which simulates the G matrix for nuclear Hartree-
matter, the surface diffuseness and the central density of tHeock calculations:

II. SYMMETRIC AND ASYMMETRIC NUCLEAR
MATTER AND NUCLEAR INCOMPRESSIBILITY

. - IR 1 _ . I _ . -
VSk)(rlrr2):t0(1+X0P(r)5(r1_r2)+Etl(1+xlpa){k,26(rl_r2)+5(rl_r2)k2}+t2(1+x2pv)k"5(rl_r2)k
1 afv g g : e > M g N
+€t3(1+x3Pg)p (N 8(ri—ry)+iW(o1+03)-K' X 8(rq—ry)k (4)

wherek=(V;—V,)/(2i) acting on the right anli’ = — (V,— V,)/(2i) acting on the left are the relative momentupn, is the

space exchange operatar, is the Pauli spin matrix ang is the density atr=2%(r,+r,). The interaction parameters
to.Xg,t1,X1,15,X0,13,X3, @ are determined so as to reproduce nuclear matter saturation propertiesMgives the spin-orbit
splitting.

The energy density for the Skyrme Hartree-Fock calculation is given by

2
1 1
H(pn:pp) = 5 (Tat 7o)+ Zto(1=X0) (pi+pp) + 1o 5+Xs

1
1+_X0 2

2

1 1 a+2 1 ay 2 2
pppt Hls| 1+ 5X3|p "= 5t p“(prtpp)

1
tl 1+ Exl +t2 (pnTp+pan)

1
1+ EXZ

1 1
+ g[tl(l_xl) +3t(1+x2) J(pn T+ Ppr) + 4

1
1+ =X,

1+ L

3ty| 1+ 5

-1 (pnvzpp+ppvzpn)

3 1
- 3—2['[1(1—X1)—t2(1+X2)](an2pn+ppvzpp)— 16
1 . . -
- EW(PVJ+PnVJn+PpVJp)+HC0uIr 5

wherem is the nucleon mass, (pp) is the density of neutronfprotons andp=p,+p,, while 7, (7,) andjn (jp) are
the kinetic energy and the spin densities of neutri@metons, respectively.

In the following, we neglect the spin-orbit terd and the Coulomb terrft{c,,, for nuclear matter since they do not play
important roles in the following discussion of this section. We use the extended Thomas Fermi approXitr&tion the
kinetic energy density,

3 7 (Vpnp)? 1
_ 2\2/3 5/3 n(p) 2
7'n(p)_g(?’ﬂ' ) pn(p)+ 3_6 o) + §V Pn(p) (6)

where the second and the third terms on the right-hand(BiHkS) are called Weizszker terms. Only nonderivative terms in
Egs.(5) and(6) are kept for calculations of the incompressibility of nuclear matter. The valugisftaken commonly to be
n=1~2 to obtain realistic surface energy coefficient for semi-infinite matter.

Next we discuss the formulation of the relativistic mean field theory. The following relativistic Lagrangian dénsity

adopted for the interacting many-body system consisting of nucleons, scaland vectorw-, andﬁ- mesons, and photons
[14-19,
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3 > 1_7'3
E=J(I'y“(9M—M—ggo'—gwy“wlu—gpyﬂrb#—e'y“ 5 A,y

1 2 2 1 2 1 v 1 2Kk R, 1. R v 1 v
+§((9ﬂz9“0'—m00' )—U(o)+§mwwﬂw"—ZFWF" +§mpbﬂb“—ZGWGﬂ _ZHMVHM , @)
|
wherey, o, w,, b,, andA, are the nucleong,w, p me- m2o=—g,ps— 910°—g,0°
son fields and the electromagnetic field, respectively. Jhe )
is the Dirac matrix, is the isospin matrixF ,,=d, o, m,®=4,ps (12
—d,0,, Gwzo?#bv—ﬁ,,l_)#, H,=d,A,—dA,. Theg,, m2b=g )
d., andg, are the coupling constants between nucleons and P L

o, o, and p mesons, respectively, while?/4r=1/137 is
the finestructure constant. The,, m,, m,, andM are the
masses ofr-, w-, p- mesons and nucleons, respectively. The
U(o) is a nonlinear potential ofr mesond20]: ps=

where the scalar densipy in the nuclear matter is given by

ijn+ kop
0 0

1 1
U(O‘)259103+ 29204: (8)  We neglected the Coulomb term similarly to the case of
Skyrme Hartree-Fock calculations.
where theg, and g, are parameters of the potential. The For the symmetric nuclear matti=Z, the neutron den-
Dirac equation for nucleons and the Klein-Gordon equation$ity pn and the proton density, are taken as a half of the
for mesons are derived by the classical variational principldotal densityp. In the case of the asymmetric nuclear matter,
with the time reversal symmetry and the charge conservahe ratio between the neutron density and the proton density
tion: is determined to be the same as that of the neutron and pro-
ton numbers. Figures(d) and Xb) show the change of the
- - incompressibilityK ., and the saturation densipy of nuclear
2 Ar) | #i(r) matter as a function of asymmetry parameterespectively.
The parameter sets used are NI¥] and NLSH[21] in the
=& (1) (9) relativistic mean field calculations, and SGR2] and SliI
[23] in the Skyrme Hartree-Fock calculations. The incom-
U202 () — o\ 27— 300 pressibilities of the NL1 and NLSH ark_,=211 andK,,
(ZVo+my)otr) 90ps(1) = G107(1) = 9207(1) =355 MeV, respectively, while the SGII and SlII hate,
X(=V2+m2)w(r)=g,pg(r) =217 andK..=356 MeV, respectively. The results for the
NL1, NLSH, SGIl, and Slll parameters are shown by the
X(—V2+ mﬁ)b(F)=gpp3(F) solid, dashed, dotted, and dot-dashed lines, respectively. It is
R R interesting to notice in Fig.(&) that thel dependence of the
—V2A(r)=epy(r), (100 incompressibility for SGII and NL1, which have almost the
. same smalK,, values atl =0.0, is rather weak, while the
wherea and 8 are defined bﬁ=(?; o) and,8=('0 ,O,) with other two interactions Slll and NLSH have strongelepen-
the Pauli matricesr and the 2 unit matrix|, respectively. dence. A similai dependence to those of SGII and NL1 is

M*
3
(k2+ M*2)1/2d k. (13)

2
(2m)°

1_7'3

—iaV+BM* +g,0(r)+g,msb(r)+e

ps and p are the baryon and the scalar densities, respedound in the asymmetric nuclear matter calculations with re-
tively, while ps=p,—p,, . The effective masM* is defined  alistic nucleon-nucleon interactiof24].
by M*=M+g,0. By using Egs.(9) and (10), the static The | dependence of the central density shown in Fig.
Hamiltonian density in the nuclear matter can be obtained a$(b) is somewhat different from that &€.. in Fig. 1(a). The
saturation densitiepg of NL1, NLSH, and SGIlI forces de-
2 ke, K, crease rather rapidly as the asymmetry paranidtareases,
3 f +f (K®+M*3)Y2d%k+g,wpg but that of SlII stays almost constant.
(2m)*[Jo 0 Figures 2a) and 2b) show the correlation between the
1 1 1 incompressibilityK.. and the saturation density, for 16
- zmiw2+ U(o)+ Em,z,aer g,bps— Emibz, different interactions in the cases lo£0.0 andl =0.6. The
results for the Skyrme Hartree-Fock model and relativistic
(11 mean field theory are shown by filled circles and open
_ circles, respectively.
wherekg andkg_ are the Fermi momenta for neutrons and At |=0.0, there is a tendency that the parameter set with
protons, respectively. Furthermore, the baryon densitys  larger incompressibility gives smaller saturation density. The
given bypB=2k§/(37r2) using the Thomas Fermi approxi- interactions Skb and Skivishown in the brackets in Fig(@
mation. The static Klein-Gordon equations in the nucleathave the same results with those for the Ska and SkM, re-
matter become spectively. Atl=0.6, the correlation between the incom-
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00 01 02 03 04 05 0.6 FIG. 2. Correlation between the incompressibiliy, and the

I saturation densityp,: (a) is the case of = 0.0 and(b) is the case of
I=0.6. Filled circles are the results with the parameter sets of
FIG. 1. () Asymmetry parametelr=(N—Z)/A dependence of Skyrme forces and the opened circles are those with the parameter
the incompressibilitK., . (b) | dependence of the saturation density sets of relativistic mean field theory.
po of asymmetric nuclear matter. The solid and dashed lines are
calculated by NL1 and NLSH interactions in the relativistic mean
field theory, respectively, while the dotted and dot-dashed lines argl. INCOMPRESSIBILITY IN SEMI-INFINITE MATTER
obtained by SGII and SllI parameter sets of Skyrme forces, respec-

tively. We now discuss the relation between the incompressibil-

ity K,, of nuclear matter and the surface diffuseness of the
density distribution in semi-infinite nuclear matter. At first,
. - . we derive analytic formulas by using the Thomas Fermi ap-
pressibility and the central density is opposite; the param(atergroximation for the kinetic energy density. The Hamiltonian
set with larger incompressibility gives larger saturation den'density of nuclear matter near the saturation densithas
sity. The correlation between the incompressibilty and  joqn parametrized in Refd1,13 as

the saturation densityy of nuclear matter is shown in Fig. 3
where the asymmetry parametés changed from 0.0 to 0.6.
The change oK., is largest for Slll as a function df, while
the saturation density changes only sligtti4]. The oppo-
site extreme is the NL1 set, for which the saturation densitywhereE, is the energy at the saturation dengityandE; is
drastically changes fronpy=0.152 to py=0.076 as| a coefficient proportional to the incompressibility. Namely,
changes from 0.0 to 0.6, while the incompressibilKy, E,=K./18 can be derived by the relation between the
changes only moderately from 211 MeV to 99 MeV. Hamiltonian densityH and the incompressibilitK.. in Eg.

2

—Eop, (14)

H=Eqp

P
Po
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FIG. 3. Correlation between the incompressibili€y, and the
saturation densitypy. The solid, dashed, dotted, and dot-dashed
lines are calculated by NL1, NLSH, SGIl, and SllI interactions,
respectively. The asymmetry parameltés changed fromi=0.0 to
1=0.6, continuously.

(1). Using the extended Thomas Fermi approximat{6)
the Hamiltonian density5) is then given by

2

+Bp3(Vy)?,
(15)

Ko (Vy)
H= EPOY(]-_Y)Z_ Eopoy +Apo

wherey=p/p,. The constanf is determined by the coeffi-
cients of Weizseker terms of Eq(6), while constantB is
given by the Skyrme force parameters:

(16)

1
B= 5—76[{3( 7+ 15t +(n—2Dt,(5+4x%,)}

+{=(p+15)t,(1+2x1) + (57— 2D)to(1+ 2x,) M 2.

Notice that the coefficier contains the asymmetry param-

, AND N. TAKIGAWA PRC 58

400 _"'I""I"'I""I T T T T Frr
: O 1=0.0 ]
I0E 5 0 =06 (™D 1
[T -
AR r oe (n=2)
L} \ e
300 L Y ]
NN
% A l‘- -\-
E 250 |- VN ]
\ \ 4
3 200 [ ]
v I
150 [ ]
100 [ ]
50 -....|....|.‘..|..‘| ot Taeaal 1 i
040 050 0.60 070 0.80 0.90

Surface diffuseness ( fm )

FIG. 4. Correlation between the incompressibilky, and the
surface diffusenesa with SGIl (the dotted ling, Slll (the dot-
dashed ling and SkM (the solid line forces. The asymmetry pa-
rameter! is changed from =0.0 tol=0.6, continuously. The re-
sults for two different values of the multiplication factor to the
Weizsa@ker term, =1 and 2, are shown with the open and the
closed symbols, respectively.

to one dimensional differentiationd]y—dy/dx and V2y
—d?y/dx?. Equation(17) can then be rewritten as

Koc
=" Niagpgyra) YY)

In order to relate the incompressibilik,, and the surface
diffuseness, we assume a Fermi-type functigs (1
+ex~R2)~1 for the density distribution. In order to deter-
mine the surface diffuseness, Hd.8) is integrated ovex
from — to +o and, correspondinglyy from 1 to 0. Using
the integration formulas,

dy

ax (18

eterl. The Hartree-Fock condition for the saturation density

is given by the Euler-Lagrange equation,

(Vy)?
y2

Koc
1—8P0(3y2_ 4y+1)—Egpo+Apo

V2y=x. (17)

Z(B +A
Po Poy

The Lagrange multiplieh becomes—Egp, in the limit of
nuclear matter, i.ey—1 andVy=V?y=0. In the model of
semi-infinite system, the derivatives in E4.7) are reduced

f dxy(l-y)=a (19
and
1 2
f dyVy+a=[(1+ )%= a®?] (20)
0
we obtain
2 2B A 3/2 A 3/2
= % K_Co p0+ E) - E) . (21)

Equation (21) shows that the surface diffuseneasis in-
versely proportional to the square root of the incompressibil-
ity K.

Figure 4 shows the correlation between the incompress-
ibility K, and the surface diffusenessfor the SGII (the
dotted ling, Sl (the dot-dashed lineand SkM [25] (the
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TABLE I. Root mean square radii of Sn isotopes calculated by using the relativistic mean field theory
with two parameter sets, NU1L7] and NLSH[21].r,,, r, andr,, are the root mean square neutron, charge,
and matter radii, respectively, white —r, is the difference between the neutron and proton radii. Experi-
mental data are taken from R¢29]. All values are given in units of fm.

NL1 NLSH
Nuclei M re (Expt) rp—ry Mm " re (Expt)  rp—rp Mm
1005 4311 4.455 —0.072 4.347 4.314 4.460 -0.074 4.351
1045 4455 4504 0.023 4.444 4433 4.500 0.004 4.431
108gpy 4581 4.545 0.107 4.531 4529 4537 0.063  4.500

1125 4682 4581 4.586 0.171 4.606 4.627 4.569 4.586 0.129 4.570
1165 4778 4614 4619 0.234 4679 4716 4598 4.619 0.188 4.636
1205 4.860 4.643  4.646 0.287 4.743 4.791 4.626 4.646 0.235 4.695
1245 4934 4669 4.670 0.334 4.802 4.858 4.652 4.670 0.275 4.749

128gn 5.007 4.695 0.380 4.862 4.917 4.678 0.308 4.799
1825 5.094 4.722 0.440 4.932 4964 4.703 0.330 4.842
136gn 5.227 4.759 0.536 5.036 5.121 4.737 0.452 4.959
14050 5.340 4.793 0.614 5.129 5221 4.769 0.520 5.042
15050 5.563 4.881 0.748 5.326 5.426 4.851 0.642 5.221
1605 5.788 4.967 0.886 5.527 5592 4.928 0.729 5.375

solid line) forces, respectively, in which the asymmetry pa-these results to discuss the relation among the incompress-
rameterl is changed from 0.0 to 0.6. The in Eq. (16) is ibility of nuclear matter, the surface diffuseness, and the cen-
taken to beny=1 and »=2. The results withp=1 and tral density of finite nuclei. To this end, we fit the calculated
n=2 in Fig. 4 show qualitatively the san€,, dependence, density distribution by the Fermi-type density function.

but qualitatively the surface diffuseness wig+2 is about

10% larger than that fop=1 for all interactions. There is a

clear difference in the surface diffusenasgiven by the Sll|

and SGII forces reflecting the incompressibility dependence A. Radii and density profile

of ain Eq. (21). It is also interesting to notice that the SKM .
force givqes a larger surface diffugeness than the SGII force Tables | and Il show the results of relativistic and nonrel-

despite the fact that they have almost the sdevalue ativistic calculations of the radii for various Sn isotopes

Experimental data of electron scattering and the x-ray mear_anging from neutron deficient to neutron rich regions. The
surements ofu-onic atoms are consistent with the surfaceNL-1 @nd NLSH, and the SGIl and Slii parameter sets have

diffusenessa=0.54 fm for all stable nucleh>16[26]. The Peen used for the relativistic and nonrelativistic calculations,
calculated value of SGII withy=1 at1=0 is close to the respectively. The, andr are the root mean square radii of
empirical value, but somewhat largerlat0. neutrons and protons, respectively, while theis the root
mean matter radius. The charge radihas been obtained by
convoluting the Gaussian proton charge distribution with the
root mean square radius 0.8 fm to the proton density. Figure
5 shows the root mean square charge radiuss a function

of the asymmetry parametefor the NL1 (the open circles

In this section, we present the results of relativistic andNLSH (the open squargsSGlI (the filled circleg, and Sl
nonrelativistic mean field calculations supplemented by théthe filled squargsparameter sets. Qualitatively, the increase
BCS theory for the pairing correlation for Sn isotopes. Weof the empirical radius . with 1 [29] is well reproduced by
use the original Hamiltonian densit$) for the nonrelativis-  all four interactions. Among them, NL1, NLSH, and SGII
tic Skyrme Hartree Fock calculations without introducing thegive satisfactory results quantitatively as well, while the SllI
extended Thomas Fermi approximation, while E@.and  parameter set gives systematically larger charge radius by
(10) are adopted for the relativistic mean field calculations.0.07 fm on average than the experimental value. All the four
In both calculations, the pairing correlation is then taken intocalculations predict a kink in the change of the charge radius
account in the BCS theory by solving the gap equations fowith | at the doubly closed nucleus?Sn. This is similar to
the neutrons and protons taking the strengths of the pairinthat observed in the isotope shift of Pb nud28]. It will be
interactionsG, and G, from [27,28. See Ref[28] for de- interesting to experimentally confirm this kink &t%sn.
tails of the numerical calculations concerning the BCS ap- Figures §a) and Gb) show the charge density distribu-
proximation. tions of 112116120128 ca|culated with the NL1 and NLSH,

In subsection A, we discuss the isotope dependence of thend SGII and SlII interactions, respectively. The dotted and
radii of the neutron and the proton distributions, and of thedashed lines are the calculated results, while the solid line is
density profile for various parameter sets in the relativisticche experimental data. The central density distribution is
and nonrelativistic calculations. In subsection B, we usesmooth in experimental data for all isotopes, while the cal-

IV. INCOMPRESSIBILITY OF Sn ISOTOPES
IN THE RELATIVISTIC AND NONRELATIVISTIC
MEAN FIELD PLUS BCS CALCULATIONS
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TABLE Il. Root mean square radii of Sn isotopes calculated by using Skyrme Hartree-Fock model with
two parameter sets, SGi22] and SllI[23]. r,, r., andr,, are the root mean square neutron, charge, and
matter radii, respectively, whilg,—r is the difference between the neutron and proton radii. Experimental
data are taken from Ref29]. All values are given in units of fm.

SGll S
Nuclei M re (Expt) rp—ry Mm " re (Expt)  rp—rp Mm
1005 4330 4.496 —0.086 4.374 4388 4.544 -0.076 4.426
1045 4421 4533 —0.033 4.437 4476 4.583 —0.028 4.490
108gpy 4499 4567 0.010 4.495 4554 4.620 0.012 4.548

1125 4571 4.600 4.586 0.048 4550 4.625 4.654 4.586 0.047 4.604
1165 4639 4.632 4.619 0.083 4.603 4691 4.685 4.619 0.080 4.657
1205 4704 4660  4.646 0.118 4.656 4.753 4.713  4.646 0.110 4.707
1245 4.764 4.685 4.670 0.149 4.704 4.810 4.739 4.670 0.137 4.755

1285 4819 4.708 0.176 4.751 4.863 4.764 0.161 4.801
1825 4870 4.730 0.200 4.795 4913 4.788 0.184 4.844
136gn 4.956 4.765 0.249 4.866 4.992 4.819 0.228 4.910
14050 5.032 4.799 0.289 4.930 5.063 4.851 0.265 4.970
15050 5.198 4.884 0.367 5.079 5.214 4.929 0.334 5.105
16050 5.347 4.959 0.436 5.214 5.345 4.997 0.392 5.226

culated one shows fluctuations. The surface part of the exrig. 7(a), we compare the results obtained by the NL1 and
perimental density is well reproduced by the NL1 and SGIISGII interactions which have relatively small incompress-
interactions, while the other two interactions show some disibilities, while the results of the NLSH and SlII, which have
crepancies. larger incompressibilities, are compared in Fig)7

Figures Ta) and qb) show the neutron and proton density  As seen in Tables | and II, both the neutron and proton
distributions of 10012014018 calculated with the NL1, radii increase with the neutron number. The central density
NLSH, SG“, and SllI forceS, reSpeCtiVer. In each ﬁgure, Weof neutrons increases frod=100 to A= 1207 and stays
compare the results of relativistic and nonrelativistic CalCU'a|m05t constant for heavier isotopesl while the neutron skin
lations using forces with a similar incompressibility, i.e., in grows fromA=120 to A=160. The central proton density
decreases with the neutron number, because the strong
neutron-proton interaction extends the proton distribution
outward. If one compares Figs(af and 7b), one notices
that the interactions with the smaller incompressibilities, i.e.,
those shown in Fig. (), lead to a larger surface diffuseness.
This is consistent with what we discussed in the previous
section using Eq(21). However, if one sees more closely,
there are noticeable differences between the relativistic and
nonrelativistic calculations in each figure, especially for the
14%n and%%n isotopes. For example, the neutron surface
thickness given by the SGII force is smaller than that given
by the NL1 set and this difference becomes larger for heavier
isotopes. A similar trend can be seen in Fifh)7where one
sees that the neutron surface thickness given by the non-
relativistic calculations using the Slll force is systematically
smaller than that given by the relativistic calculations using
the NLSH set.

5.0 LIRMRALA SLAMRAGE LRSI ML AL B "l".—'_

P 2512 (fm)

<

B. Correlations among the incompressibility, central density,
1 and surface diffuseness

FIG. 5. Asymmetry parametérdependence of the charge radii We now discuss the correlations among the incompress-

of Sn isotopes. The open circles and squares are calculated by tHlity, the surface diffuseness and the central density of fi-
relativistic mean field theory with NL1 and NLSH interactions, re- Nit€ nuclei. To this end, we fit the calculated density distri-
spectively, while the filled circles and squares are calculated by thBution p(r) = p,(r)+p(r) for each isotope with the Fermi-
Skyrme Hartree-Fock model with SGII and SlII interactions, re-type functionp(r)=po/(1+e"~R/@) We use the equation
spectively. Experimental dafilled triangles are taken from Ref. A= (4m/3) poR3{1+ 7?(a/R)?} to guarantee the mass num-
[29]. ber A conservation and considef times the density instead
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FIG. 6. Charge density distributions ¢f>116:120.128n- (@) with NL1 and NLSH, andb) with SGII and SllI interactions. The dotted,
dashed, and solid lines show calculated results and experimental data, respectively. Experimental data are taker{28m Ref.

of the density itself in order to extract the surface diffuseness Figures &) and 8b) show the correlation between the
without being suffered from the fluctuations in the theoreti-obtained central density and the incompressibity and
cal density distribution near=0. that between the surface diffuseness and the incompressibil-
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FIG. 7. Neutron and proton density distributions '8f120:14%.18: (a) with NL1 and SGII, andb) with NLSH and SlII, respectively.
The solid and dashe@ashed and dot-dashelthes show densities of neutrofigrotons, respectively.

ity K., , respectively, wher& ., has been determined for each NL1 (the open circlesand NLSH(the open squargparam-
isotope from Fig. (& at the correspondingvalue. The re- eter sets, and by the nonrelativistic calculations with the
sults are obtained by the relativistic calculations with theSGlI (the filled circles and Slll (the filled squaresforces.
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Surface diffuseness (fm )

shown in Fig. 3. In general, a stronger isotope dependence of
the central density(0) is predicted in relativistic calcula-
tions than that in nonrelativistic Skyrme Hartree-Fock calcu-
lations.

Figure &b) shows the correlation between the surface dif-
fusenessa andK.,. The surface diffuseness monotonically
increases with the neutron number except for the isotopes in
the vicinity of the double magic nucleus$%Sn, while the
incompressibilityK,, decreases. Therefore, there is a clear
correlation betweem andK,, irrespective of the relativistic
or non-relativistic calculations, and of the details of the pa-
rameter sets within each approach.

Moreover, the figure shows that the NL1 set and the SGII
force which have almost the same snt@ll value have very
similar correlation betweeK,, anda not only qualitatively,
but also quantitatively for the isotopes betwees 100 and
132, though the relativistic calculations predict much larger
surface diffuseness for heavier isotopes. A similar situation
holds for the NLSH set and the SllI force which have almost
the same larg& ., value. The dependence of the central den-
sity and the surface diffuseness on the asymmetry parameter
I shown in Figs. 89 and 8b) will be useful to distinguish
various theoretical models through a systematic experimental
study of the density distributions of Sn-isotopes.

V. SUMMARY

We studied the incompressibility of asymmetric nuclear
matter in relation to the saturation density and the surface
diffuseness. First, the analytic expressions of the Hamil-
tonian density in the relativistic mean field theory and in the
Skyrme Hartree-Fock theory have been used to discuss the
asymmetry parametérdependence of the saturation density
and its connection with the incompressibility, . We found
that the saturation density is smaller for the interaction with
larger incompressibility in the case b6£0.0. On the other
hand, atl=0.6, the correlation is opposite; the saturation
density is larger for the interaction with larger incompress-
ibility. These results for the saturation density hold irrespec-
tively of the relativistic or nonrelativistic models. We studied
also the relation between the incompressibility of asymmet-
ric nuclear matter and the surface diffuseness of the density
distribution by using the extended Thomas Fermi approxima-

compressibilityK.. of asymmetric nuclear matter and the surfacetion. We obtained the analytic relation in which the surface
diffuseness in Sn isotopes. The open circles and squares are caldiffuseness is inversely proportional to the root of the incom-
lated by the relativistic mean field theory with NL1 and NLSH pressibility K., and also depends on the asymmetry param-
interactions, respectively, while the filled circles and squares areterl. Next we showed the correlations between the incom-
calculated by the Skyrme Hartree-Fock model with SGII and Sllipressibility of asymmetric nuclear matter and the surface
interactions, respectively. The results of 13 Sn isotopes are showgliffuseness, and between the incompressibility and the cen-

by changing 4 neutrons in succession betwéenl100 and A
=140 and 10 neutrons in succession between140 and A

=160.

tral density in the relativistic mean field calculations with
NL1 and NLSH interactions and also in the Skyrme Hartree-
Fock calculations with SGII and SlllI interactions. We ex-
tracted the surface diffuseness and the central densities by

The 13 Sn isotopes are studied by changing 4 neutrons fifitting the calculated nuclear densities of 13 Sn isotopes with

succession betweeh=100 andA=140 and 10 neutrons in

succession betweefi=140 andA=160. The incompress-

ibility K., is the largest for®sSn and the smallest fof*%Sn.
The correlation between the incompressibilty and the

the Fermi-type function. In these analyses, we found that the
correlation between the incompressibility of asymmetric nu-
clei and the central density of nuclei is similar to that be-
tween the incompressibility and the saturation density of

central density in Fig. @) is found to be very analogous to asymmetric nuclear matter. It was also found that there is a
that betweerK ., and the saturation density for nuclear matterclear model dependence of the correlation between the in-
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