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Fermion-boson interactions in a solvable model

Osvaldo Civitarese and Marta Reboiro
Department of Physics, University of La Plata, C.C.67, 1900-La Plata, Argentina

~Received 2 December 1997!

The interplay between fermionic and bosonic degrees of freedom, in the context of many-body systems and
with reference to applications in nuclear and elementary particle physics, is revisited. Starting from the for-
mulation due to Geyer, Hahne, and co-workers, bifermion operators which obey bosonic transformation rules
are introduced. Fermion-boson coupling terms are included in the original Hamiltonian. Exact solutions to this
Hamiltonian are compared to approximate ones. The occurrence of fermion and boson condensates is dis-
cussed.@S0556-2813~98!03411-6#

PACS number~s!: 21.60.Fw, 11.30.2j, 21.60.Jz
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I. INTRODUCTION

The study of nuclear many body systems, i.e. finite nuc
its constituents and the interactions between them at
baryon-meson scale as well as at the quark scale, is curre
the subject of theoretical efforts@1–3#.

The starting point in the treatment of these systems
closely related to the identification of effective degrees
freedom@4#. The advantages posed by this approach are
vious, since it manages to handle in a simplified form
otherwise unaffordable complexity of the interactions b
tween constituents.

The identification of elementary excitations in highly d
generate fermionic systems, like the atomic nucleus, lead
the description of effective bosonic excitations@5–7#.

In practice, the effective boson degrees of freedom re
senting fermionic interactions can be labeled by their fer
onic contents or by the number of fermions which are int
acting with them at lowest order in their couplings@6#.

Among the models which have been proposed to desc
fermion-fermion and fermion-boson interactions as well
the transformations between pairs of fermions and bos
the model of Geyer and Hahne@4# features a system wher
fermions can be mapped onto a boson representation w
includes three different bosons. The model has been
lyzed in a series of papers by Geyer and co-workers@8–14#.

The basic elements of the model are the interacti
among fermions and the transformation of pairs of fermio
~bi-fermions! onto particle-hole bosons~phonons!, particle-
particle bosons~pairons! and hole-hole bosons~holons!. The
parameters of the model are the strengths of the interactio
the particle-hole, particle-particle, and hole-hole chann
and the fermion unperturbed energies. The Hamiltonian
Ref. @4# has been solved by applying group theoretical me
ods@15# and boson mapping techniques@6#. In the following
we shall comment briefly on these results.

The Dyson-Maleev boson expansion method, extende
transform the generators of the Sp~4! algebra, has been ap
plied in the work of@4#. As shown in Ref.@4# physical ex-
citations can be described by ideal bosons representing
fermion operators. In principle, bosons can be assigne
each class of bi-fermion operators~particle-hole, particle-
particle, and hole-hole!.

The relationship between the ideal boson mapping of
fermions and seniority representations, of the model of@4#,
PRC 580556-2813/98/58~5!/2787~9!/$15.00
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was discussed in@8# in connection with the collectivity as
sociated to the bosons. Coupling terms between bosons
fermions were not considered in@8#.

Besides purely algebraic aspects of the model, physic
interesting scenarios have been devised to accommo
bosons which can carry bi-fermion numbers. Representat
of this sort have been used to treat quadrupole interact
@12#, generalized Hamiltonians belonging to the SO~8! rep-
resentation@9,10# and realizations of physical bosons@14#.
The appearance of spurious states, which originates in
transformation of bi-fermions onto bosons, was studied
@11,13#.

The interest in physical situations represented by a Ham
tonian which is linear in bi-fermion operators, like th
Hamiltonian of @4#, has been renewed by the use of the
degrees of freedom in nonperturbative QCD@1–3,16,17#. In
a fashion similar to the one of standard nuclear struct
models @18#, the authors of@2# have introduced diquarks
which can evolve into a Bose-condensate of pairs. As a
model it has similarities with the bi-fermion model of@4#. In
Ref. @1# similar considerations are raised in the discussion
diquarks correlations. There, scalar~particle-hole! and vector
~particle-particle! pairs of quarks are treated as the eleme
tary degrees of freedom of the approximation. The physic
diquarks-condensates, as pointed out in@1,2,19#, may be the
link between QCD inspired models@16,17# and models
based on nucleons and mesons. In this context the mod
Geyer and Hahne may be very useful@16,17#.

In the present work we have extended the original Ham
tonian of @4# to accommodate the couplings between
fermions and bosons, at lowest order in the interactions,
we have used the methods of@20# to construct algebraic so
lutions. The solutions obtained in this way can be charac
ized by the structure of different condensates which m
result from the dominance of a given channel among
class of particle-hole, particle-particle, and hole-hole exc
tions. In this respect the already known solutions of t
model due to Schu¨tte and Da Providencia@21#, which con-
tains a single external boson interacting with particle-h
bi-fermion excitations, will be taken as the natural limit
the present model. To illustrate the utility of the algebra
approach we have performed the comparison between e
and approximate results which, as for the case of Ref.@21#,
have been obtained by using the random phase approx
tion ~RPA! @5#. In presenting numerical results we have d
2787 ©1998 The American Physical Society
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2788 PRC 58OSVALDO CIVITARESE AND MARTA REBOIRO
cussed the structure of the effective excitations in the sp
of bi-fermion and boson configurations in order to establis
correspondence between these configurations and the o
rence of fermion or boson condensates. In the present
proach we shall also treat bi-fermion and fermion-boson c
figurations, which are the proper degrees of freedom in
formalism of Geyer and Hahne@4# and Schu¨tte and Da
Providencia@21#, respectively. Concerning bi-fermions, w
shall investigate the permanence of the fermion and bo
condensates@21# in presence of fermion couplings as in th
model of @4#. By extending the treatment of bi-fermion ex
citations, as in the model of Ref.@4#, we shall investigate
BCS type of solutions to the present Hamiltonian.

In the following section, Sec. II, we shall introduce th
basic elements of the formalism by presenting the Ham
tonian and the supporting algebra. The applications of
formalism, mainly to determine the dominance of fermion
boson condensates, will be shown in Sec. III, where the c
parison between exact~algebraic! and approximate~RPA!
solutions of the Hamiltonian will be discussed. Conclusio
are drawn in Sec. IV. Details of the algebra are presente
the Appendix.

II. FORMALISM

We have considered a system ofN fermions moving in
two levels ~hereafter denoted by the subindexes 1 and!.
Each level has 2V substates which are labeled by the qua
tum numberk. The energy-difference between the energy
the lower level~level 1! and the upper one~level 2! is fixed
by the scalev f . The creation and annihilation operators
particles belonging to level 2 are denoted bya2k

† and a2k ,
respectively, while for holes in level 1 the creation and a
nihilation operators are denoted byb1k

† andb1k . The fermi-
ons are coupled to three different bosons. These three i
pendent bosons are created by the operatorsB†, Bp

† , andBh
†

and their energies arevb , vp , and vh , respectively. The
Hamiltonian is defined by

H5H01Hph1Hpp1Hhh , ~1!

where

H05H0 f1H0b ,

H0 f5
v f

2
~n1 n̄ !,

H0b5vbB†B1vpBp
†Bp1vhBh

†Bh , ~2!

are the terms defined in@4#. To this Hamiltonian we have
added the couplings between fermions and bosons

Hph5G1~T1B†1T2B!,

Hpp5G2~L1Bh
†1L2Bh!,

Hhh5G3~K1Bp
†1K2Bp!. ~3!

G1 , G2 , and G3 are the strengths of the interactions
the particle-hole, particle-particle, and hole-hole chann
respectively. The operators
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k

a2k
† a2k , n̄5(

k
b1k

† b1k , ~4!

are the particle- and hole-number operators, respectively,
the operatorsT6 , L6 , K6 , S6 , L0 , andK0 are the genera-
tors of the algebra of the simplectic group Sp~4! @20#. In
terms of bi-linear combinations of fermion operators the
generators read

L15 (
k.0

a2k
† a22k

† , L25~L1!†,

L05
1

2
~n2V!,

K15 (
k.0

b1k
† b12k

† , K25~K1!†,

K05
1

2
~ n̄2V!,

T15(
k

a2k
† b1k

† , T25~T1!†,

T05L01K0 ,

S15(
k

sg~k!a22k
† b1k , S25~S1!†,

S05L02K0 . ~5!

Each of the four subgroups, consisting of the operatorsT,
L, K, andS, belongs to a representation of the SU~2! quasi-
spin algebra. The commutation rules of the Sp~4! and SU~2!
groups are listed in@15#. In the above equations we hav
used a notation which is slightly different from the one us
in @4# but it will allow us to compare the present formalis
with the one of Ref.@21#, where fermions are interactin
with a single external boson. The results of@21# are particu-
larly useful, for such a comparison, because they exhib
phase transition of the type of a Bose condensate. This c
densate is described in@21# as a superposition of particle
hole pairs. This particle-hole condensate~fermion conden-
sate! can evolve into a condensate of bosons if the energyvb
is comparable to the energy spacing between fermions.
shall see, by performing a similar analysis, that these feat
persist for the case of Hamiltonian~1!.

The Hilbert space of the model is defined by the vecto

uklmnpq&5Bp
1qK1

p Bh
1nL1

mB1 lO1
k uf&. ~6!

The operatorO1 has the form

O15K1„L1T21S1~2L021!…

1„L1S22T1~2L021!…~2K021!, ~7!

the values ofk, m, andp are given by

0<k<V, l>0, 0<m<V2k,

n>0, 0<p<V2k, q>0. ~8!
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uf& is a pure fermion state of minimum weight which obe
L2uf&50, K2uf&50, L0uf&52 1

2 Vuf&, and K0uf&
52 1

2 Vuf&. Both the definition of the basis and the relatio
ship between the exponents of the operators in Eq.~6! have
been taken from the work of Hecht@20#, where the elements
of the algebra of the Sp~4! group and its representations a
given. The reader is kindly referred to@20# for further details.

The HamiltonianH of Eq. ~1! commutes with the symme
try operators

P5B†B1Bp
†Bp1Bh

†Bh2
1

2
~n1 n̄ !, ~9!

and

R5Bh
†Bh2Bp

†Bp2
1

2
~n2 n̄ !. ~10!

At this point we shall mention that these operators can
used to label the states, in a way which is similar to the o
of @21#. For a single external boson, the symmetry operatoP
reduces toP5B†B21/2(n1 n̄) and the eigenstates are l
beled by the symmetry numberL @21#. When three externa
bosons are considered the eigenvalues ofP andR are defined
by

Puklmnpq&5auklmnpq&, ~11!

with a5 l 2k1n2m1q2p and

Ruklmnpq&5buklmnpq&, ~12!

with b5n2m2(q2p). Therefore we can construct a bas
of states labeled bya andb

uFNLkm
ab &5NNLkm

ab

3uk,k1L;m,m1~a1b2L !/2;

V2
N

2
1m,V2

N

2
1m1~a2b2L !/2&, ~13!

with the normalization constantNNLkm
ab

~NNLkm
ab !25

1

~k1L !! S m1
a1b2L

2 D !

3
1

S V2
N

2
1m1

a2b2L

2 D !

3
~V2k2m!!

m! ~V2k!!

S N

2
2k2mD !

S V2
N

2
1mD ! ~V2k!!

3
~V2k!!

V!k!

~2V2k12!!

~2V12!! S ~V2k11!!

~V11!! D 3

.

~14!

The states are specified by the following combinations
indexes: ~i! N<2V, 0<k<N/2, 0<m<N/22k, and ~ii !
N.2V, 0<k<2V2N/2, N/22V<m<V2k, with 2V
e
e

f

<a, 2(N/21a)<b<(a12V2N/2), and2k<L<min$a
1b12m,a2b12m12V2N%.

In this basisH has the nonvanishing matrix elemen
given in the Appendix. After diagonalization the eigenve
tors Cn

ab are written as linear combinations

uCn
ab&5 (

NLkm
Cn,NLkm

ab uFN,L,k,m
ab &, ~15!

of the states of the basis Eq.~13!, with eigenvaluesEab
n . As

a consequence of the symmetries represented byP andR the
spectrum ofH can be ordered into bands with energiesEab

n .
The structure of the minima can change, as a function of
adopted values of the coupling constants, since the ac
values ofa andb are affected by changes inGi . A similar
dependence of the ground state wave function is observe
the model of Ref.@21#.

III. RESULTS AND DISCUSSION

In analogy with the numerical search of minima pe
formed in Ref.@21# the dependence of the ground-state e
ergy, for the system described byH @Eq. ~1!# can be explored
as a function of the symmetry numbersa and b and for
different values of the scaled coupling constantsxi( i
5b,p,h). Following the notation of@21# these parameter
are defined byxb5G1A2V/v fvb, xp5G2AV/v fvh, and
xh5G3AV/v fvp.

We shall consider two extreme cases for the ratios
tween the energies of the bosons, namely~a! vp5vh5vb
and ~b! vb.vp5vh or vb,vp5vh . These values will be
given in units ofv f . By setting the couplingsxp5xh , fixing
the scalev f51 and varyingxb the evolution of the ground
state energy, as a function ofa and b, can be determined
Results corresponding to this search of minima are show
Fig. 1 and they are equivalent to the results shown in@21#.
Figure 1~a! shows the result of case~a! (vp5vh5vb) for a
purely boson condensate and the insets~b!, ~c!, and ~d! of
Fig. 1 show cases where the structure of the conden
changes from a fermionic to a bosonic structure, a fact wh
is demonstrated by the position of the minima arounda50
~the normal phase of@21#! and arounda564 ~the deformed
phase of Ref.@21#!. The normal phase is attained by valu
of the coupling constantsxi,1. The correlated ground-stat
corresponds toa50 ~which has the meaning of the quanti
L of @21#! and it shows the same symmetry as the unp
turbed ground state.

For xi.1 the absolute ground state corresponds to val
of a.0 ~boson-condensate!. The values ofEab

0 , in this re-
gime, are shown in Fig. 1~a!. In this region the ground-stat
wave function is mainly given by the states (B†)Lf,
(Bp

†)(a2L)/2f and (Bh
†)(a2L)/2f, wheref is the ground-state

of the fermion sector in the absence of bosons.
For larger values ofv (b,p,h).v f and forxi.1 it exists a

regime for which the absolute ground state yields values
a,0. We shall call this regime the phase of fermionic co
densation. Results corresponding to this phase are show
Figs. 1~b!, 1~c!, and 1~d!, as mentioned before. The corre
sponding wave function is dominated by one of the follo
ing configurations: (T†)2Lf, (K1)2(a2L)/2f or
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2790 PRC 58OSVALDO CIVITARESE AND MARTA REBOIRO
(L1)2(a2L)/2f. For larger values ofxi the position of the
minima indicates a boson condensate.

In these calculations the number of particle-particle pa
and hole-hole pairs in the ground state, at the minima, is
same, i.e.,b50.

The normal phase

As it is shown in the previous section, the Hamiltonian
Eq. ~1! can be solved exactly and from the analysis of
solutions it becomes evident that the correlations descr
by them belong to different phases. In the so-called norm
phase the fermionic excitations and the external bosons
coupled and from these couplings one can define effec
bosonic degrees of freedom. The RPA@5# is a suitable
method to describe, at leading order, these effective deg
of freedom. In the following we shall compare the structu
of the exact solution of the model with the one obtained
using the RPA method.

In analogy with@21#, one can define three sets of RP
bosons, namely:

Gph
† 5Xt12Yt21ZB†2WB,

Ga
†5Xal 12Yak21ZaBp

†2WaBh ,

G r
†5Xrk12Yrl 21ZrBh

†2WrBp , ~16!

with t15T1 /A2V, l 15L1 /AV andk15K1 /AV.
The phonon operatorGph

† describes the particle-hole exc
tations of the system,Ga

† corresponds to the additio
~particle-particle! mode andG r

† corresponds to the remova
~hole-hole! mode. The treatment ofH @Eq. ~1!# in the har-
monic approximation leads to the commutators

@H,Gph
† #5vphGph

† , @H,Ga
†#5vaGa

† , @H,G r
†#5v rG r

† .
~17!

The RPA eigenvaluesvph , va , andv r are determined by
solving dispersion relations and they are written as

vph52
1

2
~vb2v f !6

1

2
~vb1v f !A12S 2G1A2V

~vb1v f !
D 2

,

va152
1

2
~vp2v f !6

1

2
~vp1v f !A12S 2G2AV

~vp1v f !
D 2

,

va252
1

2
~v f2vh!6

1

2
~vh1v f !A12S 2G2AV

~vh1v f !
D 2

,

v r152
1

2
~vp2v f !6

1

2
~vp1v f !A12S 2G3AV

~vp1v f !
D 2

,

v r252
1

2
~v f2vh!6

1

2
~vh1v f !A12S 2G3AV

~vh1v f !
D 2

.

~18!

The comparison with the exact solutions shows that
RPA treatment yields good results for small values of
coupling constants. It also shows that the RPA becomes c
cal and that it breaks-down when the particle-particle~pp!
s
e

f
e
d
l-
re
e

es

y

e
e
ti-

and hole-hole~hh! channels are weighted by renormalize
coupling constants of the order of unity. However, t
particle-hole~ph! channel of the RPA solution also becom
critical and the comparison with the exact result gets wo
beyondxb50.75. A compilation of RPA results, for the en
ergy of the first excited state in the normal phase, is show
Fig. 2. The first case, Fig. 2~a!, shows results which coincide
naturally, with the ones of Ref.@21#. As seen from these
results, the renormalization of the pp and hh channels d
not have much influence upon the RPA energy but the c
cal behavior is dominated by the coupling in the ph chan
@Fig. 2~b!#. The same is true for the RPA solutions obtain
by the renormalization of the ph channel@Figs. 2~c! and
2~d!#. Exact and RPA results tend to differ for values ofxi

larger than 0.75, however, the RPA does a good job in
producing the exact solution for small values ofxi even in
the presence of pp and hh channels. In conclusion, the a
tion of the two extra bosons does not affect the RPA res
and it does not prevent the collapse of the first RPA eig
value.

The deformed phase

To describe the deformed phase we can introduce the
siparticle transformation

FIG. 1. ~a! Exact ground-state energiesEab
0 for v f5vb5vp

5vh51 andN58, V54. The reduced couplings are fixed at th
valuesxb50.5, andxp5xh50, 1, 2, and 3~long-dashed lines, from
top to bottom! and xb52 andxp5xh50, 1, 2, and 3~solid lines,
from top to bottom!. ~b! Exact ground state energy with the sam
parametrization of~a! but with vb510. ~c! Exact ground-state en
ergies forv f5vb51 andvp5vh510. The curves correspond t
xb50.5, andxp5xh50, 1, 2, 3, 4, and 5~long-dashed lines, from
top to bottom! and xb52 andxp5xh50, 1, 2, 3, 4, and 5~solid
lines, from top to bottom!. ~d! Same as~c! for vb510.
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S a1m
†

a2m
†

a12m

a22m

D 5S u11* u12* v11 v12

u21* u22* v21 v22

2v11* 2v12* u11 u12

2v21* 2v22* u21 u22

D S a1m
†

a2m
†

a12m

a22m

D
~19!

for fermions and shift the boson operators

b†5B†2A2Vb0 , bh
†5Bh

†2AVb0h ,

bp
†5Bp

†2AVb0p . ~20!

The amplitudesu andv of Eq. ~19! are determined from
the anticommutation and normalization conditions applied
the fermion operatorsakm andakm

† .
The quasiparticle energy-spectrumEi is determined by

the commutator

@H,a i
†#5Eia i

† , ~21!

which leads to the matrix equation

FIG. 2. Comparison between the RPA~long-dashed lines! and
the exact solution~solid lines! for the excitations of the system i
the normal phase. The RPA values of the particle-hole and part
particle~hole-hole! correlated energies are compared with the ex
resultsE1,0

0 2E0,0
0 @~a! and~b!# andE1,61

0 2E0,0
0 @~c! and~d!#, respec-

tively. The parameters of the Hamiltonian are defined in the cap
to Fig. 1~a!. The actual values of the reduced coupling constants
indicated in each inset of the figure.
o

S e1 g1 2g3 0

g1* e2 0 g2*

2g3* 0 2e1 2g1*

0 g2 2g1 2e2

D S ui1

ui2

v i1

v i2

D 5EiS ui1

ui2

v i1

v i2

D
~22!

with g15G1b0A2V, g25G2b0hAV andg35G3b0pAV.
The RPA commutators, for shifted boson operators, yi

the additional conditions

@H,b†#5vbb†→vbb01g1~v11v12* 1v21v22* !50,

@H,bh
†#5vhbh

†→vhb0h2g2~u12* v12* 1u22* v22* !50,

@H,bp
†#5vpbp

†→vpb0p1g3~u21* v21* 1u11* v11* !50.
~23!

The Hamiltonian@Eq. ~1!# can be written in terms of thes
quasiparticle and boson operators by using the definition

n15(
m

a1m
† a1m , n25(

m
a2m

† a2m ,

L15 (
m.0

a2m
† a22m

† , K15 (
m.0

a1m
† a12m

† ,

T15 (
m.0

~a2m
† a12m

† 1a1m
† a22m

† !,

S15 (
m.0

~a2m
† a1m1a22m

† a12m!. ~24!

Next, the generators~5! are transformed accordingly. Af
ter a cumbersome but otherwise straightforward calcula
one gets forH the expression

H85H2lN,

5H001H111H201Hres ,

Hres5H401H221H31. ~25!

The notation used to indicate the number of creation a
annihilation quasiparticle operators appearing at each ter
the standard one. The explicit expression of each term of
~25! is rather lengthy and it will be omitted, for convenienc
The conditionsH2050 and^N&52V(uv11u21uv12u21uv21u2
1uv22u2) determine the values ofb0 , b0h , b0p , andl.

In terms of these parameters the expectation values oP
andR are given by

^P&5V~2ub0u21ub0hu21ub0pu2

212uv12u22uv22u21uv11u21uv21u2!

^R&5V~ ub0hu22ub0pu2

112uv11u22uv21u22uv12u22uv22u2!. ~26!

e-
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As in the case of the normal regime we shall use the R
formalism to describe the excited states of the system.
RPA Hamiltonian is given by the terms

HRPA5H111H221H40 ~27!

and the RPA bosons are defined by

G†5Xt12Yt21Zb†2Wb

1Xpl 12Ypl 21Zpbp
†2Wpbp

1Xhk12Yhk21Zhbh
†2Whbh

1X1s12Y1s2 ~28!

with

t15T1 /A2V, s15S1 /A2V,

l 15L1 /AV, k15K1 /AV. ~29!

The amplitudesX, Y, Z, andW are obtained from the RPA
commutator

@HRPA,G†#5vG†. ~30!

As an example of the ability of the RPA to reprodu
exact results in the deformed region we show, in Fig. 3,
fragmentation of the first RPA-energy induced by increas
values of the particle-particle and hole-hole couplings. Fr
the results shown in this figure one can also see that
spreading of the RPA eigenvalues is very small compa
with the exact one.

Residual bifermion interactions

As said above, the present model is a natural extensio
the fermion-boson coupling model of@21#. The study of@21#
shows that a condensate, either of fermionic or bosonic ty
can be obtained depending upon the values of the coup
constants and for a given symmetry. The permanence of
feature upon the inclusion of bi-fermion interactions may
relevant for the study of the mechanism leading to fermio
condensates in hadronic physics@1–3#. In the context of the
present discussion this question can be answered by ad
bi-fermion interactions to the fermion-boson couplin
Hamiltonian. For the sake of convenience we shall limit t
discussion to the case of fermions interacting with a partic
hole like boson, as in the model of@21#. To the correspond-
ing Hamiltonian, which is a limit of Hamiltonian~1! for only
one type of bosons, we have added a bi-fermion interac
of the Lipkin type@6#, with an arbitrary couplingV,

H52V~T1
2 1T2

2 !. ~31!

Then, we have searched for the minimum of the ener
as a function of the bi-fermion coupling. The results of th
search are shown in Fig. 4. It is evident from the resu
shown in this figure that the inclusion of bi-fermion intera
tions can change the structure of the minima and produce
breaking of a given symmetry~L-value!, either of the
bosonic or fermionic type. The general trend shown by
curves of Fig. 4 is consistent with the breakdown of t
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boson condensate and with the appearance of a fermion
densate for larger values of the bi-fermion couplings.

The present model has several points of contact with
bi-fermion model of Geyer and Hahne@4#. To illustrate this
aspect of the present formalism we shall show, in the follo
ing, the interplay between bi-fermion excitations a
particle-particle~hole-hole! type of bosons. To show it we
shall perform first a mean field treatment of the mod
Hamiltonian~1! enlarged to include bi-fermion interaction
The result of such a treatment will be expressed in ter
quasiparticle degrees of freedom. Then, we shall const
the excitation spectrum by applying the random phase
proximation to the remaining part of the Hamiltonian.

The bi-fermion interactions introduced in@4# can be writ-
ten

Hbi2 f52lL1L22kK1K2 , ~32!

in the notation of Sec. II. We have added these terms to
Hamiltonian ~1! and applied the transformations given b
Eqs.~19! and~20! of Sec. III. The transformed Hamiltonia
can be written

H5H001H111H221H40, ~33!

FIG. 3. Distribution of exact~solid lines! and RPA ~long-
dashed! energies in the deformed phase of the system. The va
used for the reduced couplingsxi are given in each inset. The pa
rameters ofH are given in the caption to Fig. 1~a!.
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where

H00522Ve112V~e1v11
2 1e2v22

2 !

2V
D2

2

g2
2/vh1lV

2V
D1

2

g3
2/vp1kV

,

H115vpbp
†bp1vhbh

†bh1E1n11E2n2 ,

H2252g2v22
2 ~ l 1bh1bh

†l 2!2g3u11
2 ~k1bp1bp

†k2!

2lV~u22
4 1v22

4 !l 1l 22kV~u11
4 1v11

4 !k1k2 ,

H405g2u22
2 ~ l 1bh

†1bh
†l 1!1g3v11

2 ~k1bp
†1bp

†k1!

1lVu22
2 v22

2 ~ l 1
2 1 l 2

2 !1kVu11
2 v11

2 ~k1
2 1k2

2 !.

~34!

In the above equations we have defined

e152v f /22lF , e25v f /22lF . ~35!

The quasiparticle spectrum corresponding to this Ham
tonian has the values

E15Ae1
21D1

2, E25Ae2
21D2

2, ~36!

for the quasiparticle energies, with pairing gaps given by

D15~g3
2/vp1kV!u11v11, D25~g2

2/vh1lV!u22v22.
~37!

FIG. 4. Ground state energyEL
0 as a function of the symmetry

numberL for different values of the adimensional coupling co
stantsxb ~fermion-boson coupling! and x254VV/v f ~bifermion
coupling!. Insets~a! and ~b! show results forv f5vb51 and N
520. Insets~c! and ~d! correspond tov f51, vb55, for the same
number of particles.
l-

These quantities show the interplay between fermi
boson interactions, with couplingsg2 andg3 , and bi-fermion
interactions, with couplingsl,k @Eq. ~32!#.

The Lagrange multiplierlF is given by

lF5
wf

2

E12E2

E11E2
, ~38!

and it enforces the constraintN52V. The occupanciesu
andv, of Eq. ~22!, satisfy the conditions

u115v22, v115u22, ~39!

in correspondence with the gap equation

15
1

4 S g3
2

vp
1kV D 1

E1
1

1

4 S g2
2

vh
1lV D 1

E2
. ~40!

These equations show that the model can display a su
conductive behavior which can be due both to bi-fermi
excitations and to fermion-boson interactions. The cond
sate can, therefore, be produced by boson-fermion inte
tions, as in the model of@21# or by bi-fermion interactions,
an aspect of the model introduced in@4#.

The quasiparticle excitations can now be used to de
collective excitations~one-phonon states! of the system. One
can, therefore, apply the random phase approximation
scribed in Sec. III to construct the phonon creation opera

G†5X1k12Y1k21W1bp
†2Z1bp

1X2l 12Y2l 21W2bh
†2Z2bh , ~41!

which are the solutions of the equation of motion

@H,G†#5vG†. ~42!

The eigenfrequenciesv, which are solutions of this equa
tion, are given by the expression

v15A g3
4

2vp
2 1

vp
2

2
1g3

2S kV

2vp
~2u11v11!

21~u11
2 2v11

2 ! D ,

v25A g2
4

2vh
2 1

vh
2

2
1g2

2S lV

2vh
~2u22v22!

22~u22
2 2v22

2 ! D ,

~43!

and they are degenerate ifg25g3 , vp5vh andl5k. These
solutions represent the energies of collective excitations
sociated to the addition~removal! of a pair of fermions. Both
the coexistence of a bi-fermion and boson condensate
the collective structure of bi-fermion excitations indicate th
the present model exhibits a variety of modes which cor
spond to the conditions imposed in the fermion-boson-@21#
and bi-fermion-@4# coupling models.

IV. CONCLUSIONS

In this work we have presented an extension of the mo
of Ref. @4# which includes the coupling of fermions t
bosons. We have obtained exact solutions of this model
we have also compared them with the solutions given by
RPA method. The limit of the proposed model correspond
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to a single external boson was demonstrated. From the an
sis of the results it is concluded that~i! the bosonic conden
sate, found in@21#, persists after the inclusion of the pp an
hh bosons. The coupling of fermions to these bosons aff
the structure of the condensate but for some cases, which
characterized by the values of the coupling constantsxi , the
bosonic contributions prevail;~ii ! the model can describ
purely fermionic and bosonic ‘‘phases’’ and also shows
regime of permanent deformation, meaning that one of th
degrees of freedom dominates;~iii ! the RPA results agree
rather well with the exact solution, but the approximati
fails for some ‘‘critical’’ values of the coupling constants.

The bosons which we have introduced can represen
fermionic level, correlated bi-fermion excitations. The r
sults of Sec. II and Sec. III show that the extension of Ge
and Hahne’s model, to include the fermion-boson couplin
does preserve the algebra of the Sp~4! group thus allowing
for the determination of exact solutions. This group struct
is very rich and it can be used in other scenarios of phys
interest, as for example in QCD-inspired models@22#. The
translation of the present formalism at the fermion level in
elementary quark degrees of freedom would allow for
algebraic interpretation of the diquark Bose condensate
@2#. Other applications of the present formalism are found
the treatment of quasiparticle-pair excitations in open s
nuclei @18#, where the complexity of the correlations mak
the use of the RPA mandatory.

ACKNOWLEDGMENTS

This work is part of the project PMT-PICT0079 of th
ANPCYT ~Argentina!, and was partially supported by th
CONICET~Argentina!. We thank Professor P. Hess and P
fessor H. Geyer for useful comments and discussions.

APPENDIX

In the following a list of the matrix elements ofH in the
basis~13! is given. The complete set of nonzero matrix e
ments is obtained by observing the selection rulesN,k,m
→N62, k61, m61.

^FN,L,k,m
ab uHuFN,L,k,m

ab &

5v f~m1V2N/21m1k!1vb~L1k!

1vp„V2N/21m1~a2b2L !/2…

1vh„M1~a1b2L !/2…,

^FN12,L,k,m11
ab uHuFN,L,k,m

ab &

5G2A~m11!S m111
a1b2L

2 D ~V2k2m!,
1.
y,
ly-

ts
are

a
se

at

r
s,

e
al

e
of
n
ll

-

-

^FN22,L,k,m21
ab uHuFN,L,k,m

ab &

5G2AmS m1
a1b2L

2 D ~V2k2m11!,

^FN12,L,k,m
ab uHuFN,L,k,m

ab &

5G3AS V2
N

2
1m11D

3AS V2
N

2
1m111

a2b2L

2 D S N

2
2k2mD ,

^FN22,L,k,m
ab uHuFN,L,k,m

ab &

5G3AS V2
N

2
1mD

3AS V2
N

2
1m1

a2b2L

2 D S N

2
2k2m11D ,

^FN,L,k11,m
ab uHuFN,L,k,m

ab &

52G1A~k11!~k111L !

3
A~2V122k!~V2m2k!S N

2
2m2kD

~V112k!~V2k!
,

^FN,L,k21,m
ab uHuFN,L,k,m

ab &

52G1Ak~k1L !

3
A~2V132k!~V2m2k11!S N

2
2m2k11D

~V122k!~V112k!
,

^FN,L12,k21,m11
ab uHuFN,L,k,m

ab &

5G1Ak~m11!

3A~V2N/21m11!~L1k11!~2V132k!

~V2k11!~V122k!
,

^FN,L22,k11,m21
ab uHuFN,L,k,m

ab &

5G1A~k11!m

3A~V2N/21m!~L1k!~2V122k!

~V2k!~V112k!
.
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