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Fermion-boson interactions in a solvable model
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The interplay between fermionic and bosonic degrees of freedom, in the context of many-body systems and
with reference to applications in nuclear and elementary particle physics, is revisited. Starting from the for-
mulation due to Geyer, Hahne, and co-workers, bifermion operators which obey bosonic transformation rules
are introduced. Fermion-boson coupling terms are included in the original Hamiltonian. Exact solutions to this
Hamiltonian are compared to approximate ones. The occurrence of fermion and boson condensates is dis-
cussed[S0556-28138)03411-9

PACS numbgs): 21.60.Fw, 11.30-j, 21.60.Jz

[. INTRODUCTION was discussed i8] in connection with the collectivity as-
sociated to the bosons. Coupling terms between bosons and

The study of nuclear many body systems, i.e. finite nucleifermions were not considered |8].
its constituents and the interactions between them at the Besides purely algebraic aspects of the model, physically
baryon-meson scale as well as at the quark scale, is currentigteresting scenarios have been devised to accommodate
the subject of theoretical efforfd—3]. bosons which can carry bi-fermion numbers. Representations

The starting point in the treatment of these systems i®f this sort have been used to treat quadrupole interactions
closely related to the identification of effective degrees of{12], generalized Hamiltonians belonging to the (80rep-
freedom[4]. The advantages posed by this approach are olresentatior9,10] and realizations of physical bosof#4].
vious, since it manages to handle in a simplified form theThe appearance of spurious states, which originates in the
otherwise unaffordable complexity of the interactions be-transformation of bi-fermions onto bosons, was studied in
tween constituents. [11,13.

The identification of elementary excitations in highly de-  The interest in physical situations represented by a Hamil-
generate fermionic systems, like the atomic nucleus, leads tionian which is linear in bi-fermion operators, like the
the description of effective bosonic excitatidris-7]. Hamiltonian of[4], has been renewed by the use of these

In practice, the effective boson degrees of freedom repredegrees of freedom in nonperturbative QCDB-3,16,17. In
senting fermionic interactions can be labeled by their fermi-a fashion similar to the one of standard nuclear structure
onic contents or by the number of fermions which are inter-models[18], the authors off2] have introduced diquarks
acting with them at lowest order in their coupling. which can evolve into a Bose-condensate of pairs. As a toy

Among the models which have been proposed to describmodel it has similarities with the bi-fermion model [¢f]. In
fermion-fermion and fermion-boson interactions as well asRef.[1] similar considerations are raised in the discussion of
the transformations between pairs of fermions and bosonsliquarks correlations. There, scalparticle-holg and vector
the model of Geyer and Hahnd] features a system where (particle-particle pairs of quarks are treated as the elemen-
fermions can be mapped onto a boson representation whidary degrees of freedom of the approximation. The physics of
includes three different bosons. The model has been analiquarks-condensates, as pointed outliji2,19, may be the
lyzed in a series of papers by Geyer and co-work8tsl4].  link between QCD inspired modelgl6,17 and models

The basic elements of the model are the interactiondased on nucleons and mesons. In this context the model of
among fermions and the transformation of pairs of fermionsGeyer and Hahne may be very usefiib,17).

(bi-fermiong onto particle-hole bosonghonong, particle- In the present work we have extended the original Hamil-
particle bosongpairong and hole-hole bosonolong. The  tonian of [4] to accommodate the couplings between bi-
parameters of the model are the strengths of the interaction ii@rmions and bosons, at lowest order in the interactions, and
the particle-hole, particle-particle, and hole-hole channelsve have used the methods [@0] to construct algebraic so-
and the fermion unperturbed energies. The Hamiltonian ofutions. The solutions obtained in this way can be character-
Ref.[4] has been solved by applying group theoretical methized by the structure of different condensates which may
ods[15] and boson mapping technigués. In the following  result from the dominance of a given channel among the
we shall comment briefly on these results. class of particle-hole, particle-particle, and hole-hole excita-

The Dyson-Maleev boson expansion method, extended ttions. In this respect the already known solutions of the
transform the generators of the (8palgebra, has been ap- model due to Schte and Da Providencif21], which con-
plied in the work of{4]. As shown in Ref[4] physical ex- tains a single external boson interacting with particle-hole
citations can be described by ideal bosons representing bii-fermion excitations, will be taken as the natural limit of
fermion operators. In principle, bosons can be assigned tthe present model. To illustrate the utility of the algebraic
each class of bi-fermion operatofparticle-hole, particle- approach we have performed the comparison between exact
particle, and hole-ho)e and approximate results which, as for the case of R,

The relationship between the ideal boson mapping of bihave been obtained by using the random phase approxima-
fermions and seniority representations, of the moddldf tion (RPA) [5]. In presenting numerical results we have dis-
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cussed the structure of the effective excitations in the space . _ .

of bi-fermion and boson configurations in order to establish a V= ; @k, V= Ek b1b1k, (4)
correspondence between these configurations and the occur-

rence of fermion or boson condensates. In the present apge the particle- and hole-number operators, respectively, and
proach we shall also treat bi-fermion and fermion-boson cong, operatord . , L., K-, S. , Lo, andK, are the genera-
figurations, which are the proper degrees of freedom in the, . o the aléebr:i of the §implectic group (8p[20]. In

formalism of Geyer and Hahnp4] and Schtte and Da  yo1mg of bi-linear combinations of fermion operators these
Providencia[21], respectively. Concerning bi-fermions, we %enerators read

shall investigate the permanence of the fermion and boso
condensateR21] in presence of fermion coupll_ngs as in the L= 2 alal . L =(L)"
model of[4]. By extending the treatment of bi-fermion ex- T &y K2k +
citations, as in the model of Ref4], we shall investigate
BCS type of solutions to the present Hamiltonian.

In the following section, Sec. Il, we shall introduce the Lo=5 (v=9Q),
basic elements of the formalism by presenting the Hamil-
tonian and the supporting algebra. The applications of the ot +
formalism, mainly to determine the dominance of fermion or Ky= Z bibi_, K-=(Ky)',
boson condensates, will be shown in Sec. IIl, where the com-
parison between exadalgebrai¢ and approximatgRPA) 1 _
solutions of the Hamiltonian will be discussed. Conclusions Ko=5 (v=0Q),
are drawn in Sec. IV. Details of the algebra are presented in
the Appendix.

o

]
o

T+:Ek aZkak' T—:(T+)T:

Il. FORMALISM
. . . . TOZ L0+ Ko,
We have considered a system Mffermions moving in

two levels (hereafter denoted by the subindexes 1 apd 2
Each level has @ substates which are labeled by the quan- S+=2 sg(k)a;kblk, S_=(sy)T,
tum numberk. The energy-difference between the energy of k
the lower level(level 1) and the upper onéevel 2) is fixed Sy=Lo—K (5)
by the scalew;. The creation and annihilation operators of o o
particles belonging to level 2 are denoted oy, and ay, Each of the four subgroups, consisting of the operafors

respectively, while for holes in level 1 the creation and an-_ K, andS, belongs to a representation of the (8Uquasi-
nihilation operators are denoted by, andby. The fermi- spin algebra. The commutation rules of the®8mnd SU2)
ons are coupled to three different bosons. These three indgroups are listed i15]. In the above equations we have
pendent bosons are created by the oper@dr8!, andB!  used a notation which is slightly different from the one used
and their energies are,, w,, and wy,, respectively. The in [4] but it will allow us to compare the present formalism

Hamiltonian is defined by with the one of Ref[21], where fermions are interacting
with a single external boson. The results[21] are particu-
H=Ho+Hpn+Hpp+Hpp, (D) Jarly useful, for such a comparison, because they exhibit a

phase transition of the type of a Bose condensate. This con-

densate is described {21] as a superposition of particle-

hole pairs. This particle-hole condensdfermion conden-

satg can evolve into a condensate of bosons if the energy

o; - is comparable to the energy spacing between fermions. We

H0f=7 (v+v), shall see, by performing a similar analysis, that these features
persist for the case of Hamiltonid).

The Hilbert space of the model is defined by the vectors

where

Ho=Ho+Hop,

Hob= BB+ w,BIB,+ wnBlBy, )
—_ptdgpP ptn mp+l~k
are the terms defined if]. To this Hamiltonian we have [kimnpg =B, °KE B, "LIBTO%| ). C)

added the couplings between fermions and bosons The operatoO, has the form

— T
Hpn=Ga(T,B+T-B), 0, =K, (L, T_+8,(2Lp—1)

Hpp=Ga(L Bl +L_By), +(L,S —T.(2Lo—1))(2Ko—1), @
Hhn=Ga(K, B} +K_B). (3)  the values ok, m, andp are given by
G, G,, andG; are the strengths of the interactions in O0=k=Q, =0, O0=m=s0O-Kk,

the particle-hole, particle-particle, and hole-hole channels,
respectively. The operators n=0, Osp<Q-k, g=0. (8)
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|#) is a pure fermion state of minimum weight which obeys <q, — (N/2+ )< B<(a+20—N/2), and—k<L<min{a
L [¢)=0, K_[$)=0, Lol¢)=—30[¢), and Kol$) 1 ptoma—pg+om+20-NL.
=—30|¢). Both the definition of the basis and the relation- |5 this basisH has the nonvanishing matrix elements

ship between the exponents of the operators in(Bghave  gjven in the Appendix. After diagonalization the eigenvec-
been taken from the work of Hec[20], where the elements {5,y 28 gre written as linear combinations
n

of the algebra of the $§) group and its representations are
given. The reader is kindly referred [tB0] for further details.

The HamiltoniarH of Eq. (1) commutes with the symme- |TPy= > CH L PR ) (15)
try operators NLkm

P=B'B+ BngJr BB, — ; (v+7), (9)  of the states of the basis E@.S),_With eigenvalues, ;. As

a consequence of the symmetries representdd &nydR the

and spectrum oH can be ordered into bands with energfé;%.
1 . The structure of the minima can change, as a function of the
R=B/B,—B/B,— 5 (v=). (100 adopted values of the coupling constants, since the actual

values ofa and B are affected by changes (B, . A similar
At this point we shall mention that these operators can b&lependence of the ground state wave function is observed in
used to label the states, in a way which is similar to the onéhe model of Ref[21].
of [21]. For a single external boson, the symmetry operBtor

reduces toP=B'B—1/2(v+v) and the eigenstates are la- IIl. RESULTS AND DISCUSSION
beled by the symmetry numbér[21]. When three external . ) o
bosons are considered the eigenvalueB ahdR are defined In analogy with the numerical search of minima per-
by formed in Ref.[21] the dependence of the ground-state en-
_ ergy, for the system described by{Eq. (1)] can be explored
Plkimnpg =a|kimnpg, (19) as a function of the symmetry numbesisand 8 and for
with a=1—k+n—m+qg—p and different values of the scaled coupling constagi
=b,p,h). Following the notation of21] these parameters
RkImnpg=glkimnpg, (12)  are defined byx,=G;y2Q0/wiwp, X,=G,VQ/wiwy, and

Xh:G3\/Q/0)f0)p.
We shall consider two extreme cases for the ratios be-
tween the energies of the bosons, nam@ly w,= w,= wy,

with B=n—m—(g—p). Therefore we can construct a basis
of states labeled by and 8

|pap m>:NaB and(b) wp>w,= wy, or wy<w,=wy. These values will be
NLk NLkm given in units ofw( . By setting the couplings,= Xy, fixing
X|k,k+L;mm+(a+B-L)/2; the scalew;=1 and varyingx, the evolution of the ground

state energy, as a function ef and 8, can be determined.
N N Results corresponding to this search of minima are shown in
Q=5 +m Q- +m+(a—p-L)2), (13 Fig. 1 and they are equivalent to the results showf2i.
Figure 1a) shows the result of cade) (w,= w,=wy) for a
with the normalization constaNg?, purely boson condensate and the ing®fs (c), and (d) of
Fig. 1 show cases where the structure of the condensate
1 changes from a fermionic to a bosonic structure, a fact which
+B-L is demonstrated by the position of the minima around0
T)' (the normal phase ¢21]) and aroundv= * 4 (the deformed
phase of Ref[21]). The normal phase is attained by values
1 of the coupling constants <1. The correlated ground-state
w—B— L) corresponds tee=0 (which has the meaning of the quantity
|

(NREkm*=

(k+L)!{ m+

Q- E+m+ - h L of [21]) and it shows the same symmetry as the unper-
2 turbed ground state.
Forx;>1 the absolute ground state corresponds to values
— k—m)! of >0 (boson-condensateThe values oEgﬁ, in this re-
gime, are shown in Fig.(&). In this region the ground-state
H(Q—K)! wave function is mainly given by the stateB™)‘¢,
' ' (B)(@~Y2¢% and B])(“"12¢$, whered is the ground-state
of the fermion sector in the absence of bosons.
For larger values o, , ny> ¢ and forx;>1 it exists a
regime for which the absolute ground state yields values of
(14) a<0. We shall call this regime the phase of fermionic con-
densation. Results corresponding to this phase are shown in
The states are specified by the following combinations ofFigs. 1b), 1(c), and Xd), as mentioned before. The corre-
indexes: (i) N<2Q, 0<k=N/2, 0=sm=<N/2—k, and (ii) sponding wave function is dominated by one of the follow-
N>2Q0, 0<sk=2Q-N/2, N2-Q=m=<Q-k, with —Q ing configurations: T') ‘¢, (K,) (@ Y2s or

N
(Q—k—m)! 2
XM —K)! ( N

Q—§+m

(Q—Kk)! (2Q—k+2)! ((Q—k+l)!)3
Qlkl (2Q+2)! (Q+1)!
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minima indicates a boson condensate.

In these calculations the number of particle-particle pairs 5
and hole-hole pairs in the ground state, at the minima, is the

same, i.e.3=0.

As it is shown in the previous section, the Hamiltonian of
Eqg. (1) can be solved exactly and from the analysis of the 10 . PP I
solutions it becomes evident that the correlations describec -8 -

The normal phase

10

$
o or
(2]

4 0 4 8 12 18 20 -8 -4 0 4 8 12 16 20

by them belong to different phases. In the so-called normal- a a
phase the fermionic excitations and the external bosons ar¢

coupled and from these couplings one can define effective
bosonic degrees of freedom. The RRA| is a suitable
method to describe, at leading order, these effective degree

of freedom. In the following we shall compare the structure "
of the exact solution of the model with the one obtained by ,_.,::

using the RPA method.

In analogy with[21], one can define three sets of RPA

bosons, namely:

The phonon operatd?:,h describes the particle-hole exci-
tations of the systeml“; corresponds to the addition
(particle-particleé mode andl": corresponds to the removal
(hole-hole mode. The treatment dfl [Eq. (1)] in the har-

I'l=Xt,—Yt +ZB'-WB,

TI=Xal = Yok +Z,B]—W,Bj,

IT=Xk, =Y/ _+2Bl-W,B,, (16)

with t, =T, /y2Q, | . =L, /{JQ andk, =K, /{/Q.

monic approximation leads to the commutators

[HIld=wpl by, [HI=wll, [HI1=0l].

The RPA eigenvalues,, w,, andw, are determined by

7

solving dispersion relations and they are written as

wph: -

Wa1= —

Wa2= —

Wr1=—

W= —

The comparison with the exact solutions shows that the
RPA treatment yields good results for small values of the

1

5(
2
1

5(
1
2

2

1
‘Ub_wf)iz (wp+ oy)
1
(wp— wf)iz (wp+ wy)
1
wf_wh)i§ (wp+oy)
1
(wp—wf)ti (wp+ wy)

1
(wf—wh)ii(wh+wf)

2

2G,Y

N
-
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o
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L
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FIG. 1. (8 Exact ground-state energié’éc’zﬂ for wi=wp=wp
=w,=1 andN=8, )=4. The reduced couplings are fixed at the
valuesx,=0.5, andx,=x,=0, 1, 2, and 3long-dashed lines, from
top to bottom andx,=2 andx,=x,=0, 1, 2, and Jsolid lines,
from top to bottom. (b) Exact ground state energy with the same
parametrization ofa) but with w,=10. (c) Exact ground-state en-
ergies forws=w,=1 andw,=w,=10. The curves correspond to
Xp=0.5, andx,=x,=0, 1, 2, 3, 4, and §long-dashed lines, from
top to bottom andx,=2 andx,=x,=0, 1, 2, 3, 4, and Fsolid
lines, from top to bottorn (d) Same agc) for w,=10.

and hole-hole(hh) channels are weighted by renormalized
coupling constants of the order of unity. However, the
particle-hole(ph) channel of the RPA solution also becomes
critical and the comparison with the exact result gets worse
beyondx,=0.75. A compilation of RPA results, for the en-
ergy of the first excited state in the normal phase, is shown in
Fig. 2. The first case, Fig(&), shows results which coincide,
naturally, with the ones of Ref21]. As seen from these
results, the renormalization of the pp and hh channels does
not have much influence upon the RPA energy but the criti-
cal behavior is dominated by the coupling in the ph channel
[Fig. 2(b)]. The same is true for the RPA solutions obtained
by the renormalization of the ph channdtigs. 2c) and
2(d)]. Exact and RPA results tend to differ for valuesxpf
larger than 0.75, however, the RPA does a good job in re-
producing the exact solution for small valuesxpfeven in

the presence of pp and hh channels. In conclusion, the addi-
tion of the two extra bosons does not affect the RPA results
and it does not prevent the collapse of the first RPA eigen-
value.

The deformed phase

coupling constants. It also shows that the RPA becomes criti- To describe the deformed phase we can introduce the qua-
cal and that it breaks-down when the particle-partigp)

siparticle transformation
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(b)
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FIG. 2. Comparison between the RRiNng-dashed lingsand
the exact solutiorisolid lineg for the excitations of the system in
the normal phase. The RPA values of the particle-hole and particle-
particle (hole-holg correlated energies are compared with the exact
resultsE} — E9 o [(a) and(b)] andE] . ; — EJ »[(c) and(d)], respec-
tively. The parameters of the Hamiltonian are defined in the caption
to Fig. 1(a@). The actual values of the reduced coupling constants are
indicated in each inset of the figure.
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(22

\‘ with gj_:Glbo\/ZQ, gZZGZbOh\/ﬁ andg3:G3b0p\/§.
The RPA commutators, for shifted boson operators, yield
\ the additional conditions

[H,8"= wpB"— wpbo+01(v110 o+ v2103) =0,
[H,B11= wnBl— wnbon—ga(Ufv 1o+ U3, =0,

(H "8;] = “’pﬂg_’ wpbop+ gs(Uz w3+ Ui i) =0. 23
23

The HamiltoniafEg. (1)] can be written in terms of these
. quasiparticle and boson operators by using the definitions

_ T _ T
nl—Em: A 1m®1m> nz—; Aom2m,

2 alna] .

— t T —
L= 2 Wom@y m, Ki=
m>0 m>0

_ T T T T
T, = 2 (aom@1—mT @ima_m),
m>0

2 (a’;ma’lm_" a’;—malfm)- (24

m>0

S+:

Next, the generator) are transformed accordingly. Af-

ter a cumbersome but otherwise straightforward calculation

* *
al U U2 Vu Dig) oot one gets foH the expression
u; us, vy U I
a 21 22 21 22 a
2m _ . ) 2m H ' =H-\N,
a1-m —U1; —Ugp Upp U | &1-m
_ a,_
@2-m —v3 —U3 Uy Up 2=m =Hgot+Hi11tHaoot Hies,
(19
. _ Hres=Haot HootHay. (25
for fermions and shift the boson operators
The notation used to indicate the number of creation and
BT=BT—\2Qb,, ,BE= Bﬁ— JQbgy,, annihilation quasiparticle operators appearing at each term is
the standard one. The explicit expression of each term of Eq.
_at_ (25) is rather lengthy and it will be omitted, for convenience.
Bp=By Vbg,. 20 The conditionsH =0 and(N)=2Q(|v11|?+ |v19%+ |v24?

The amplitudess andv of Eq. (19) are determined from

+|v29?) determine the values dfy, bo,, bgp, andx.
In terms of these parameters the expectation valud® of

the anticommutation and normalization conditions applied taandR are given by

the fermion operatorg,,, and aﬁm.

The quasiparticle energy-spectrui is determined by

the commutator
[H,a{1=Eia],

which leads to the matrix equation

(21)

(P)=Q(2|bg|?+ bon|>+ [bop|?
—1—|v1d?= v ?+ v 112+ [v2l?)
<R>:Q(|b0h|2_|b0p|2

+1-[v1 v al®— v 12—~ [v2d?). (26)
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As in the case of the normal regime we shall use the RPA £ = x =0.0
formalism to describe the excited states of the system. The P b (=)
RPA Hamiltonian is given by the terms x, =2.0

Hrpa=H11+HoptHyg (27)

and the RPA bosons are defined by L1 1 1
3.0 4.5 6.0 7.5 9.0

rf=Xt, - Yt_+28"'-Wg E' _E
o
+Xpl = Ypl -+ Zp,B =W, 8, £ ek
+th+—th,+Zh,3;—Whﬂh =x, =1.0 (b)

) 4
+ X]_S+ - Yls_ (28) xb =2.0
with 1

t,=7./y2Q, s,.=8,/\2Q, " ! !
3.0 4.5 6.0 7.5 9.0

l,=L,INQ, k,=K./1JQ. (29) . 0

The amplitudes, Y, Z, andW are obtained from the RPA
commutator

P
[Hrpa,IT]= ol (30) x, =2.0

As an example of the ability of the RPA to reproduce
exact results in the deformed region we show, in Fig. 3, the
fragmentation of the first RPA-energy induced by increasing 1 1 1
values of the particle-particle and hole-hole couplings. From 3.0 4.5 6.0 7.5 9.0
the results shown in this figure one can also see that the n 0
spreading of the RPA eigenvalues is very small compared E aﬂ‘E ap
with the exact one.

FIG. 3. Distribution of exact(solid lines and RPA (long-
Residual bifermion interactions dashed energies in the deformed phase of the system. The values

) ) ) used for the reduced couplings are given in each inset. The pa-
As said above, the present model is a natural extension @hmeters oH are given in the caption to Fig(d.

the fermion-boson coupling model (21]. The study of21]

shows that a condensate, either of fermionic or bosonic typg,nson condensate and with the appearance of a fermion con-
can be obtained depending upon the values of the couplingensate for larger values of the bi-fermion couplings.
constants and for a given symmetry. The permanence of this The present model has several points of contact with the
feature upon the inclusion of bi-fermion interactions may bey;_fermion model of Geyer and Hahiid]. To illustrate this
relevant for the study of the mechanism leading to fermionicaspect of the present formalism we shall show, in the follow-
condensates in hadronic phys[ds-3]. In the context of the 5 the interplay between bi-fermion excitations and
present discussion this question can be answered by addipgticle-particle(hole-hole type of bosons. To show it we

bi-fermion interactions to the fermion-boson coupling sha| perform first a mean field treatment of the model
Hamiltonian. For the sake of convenience we shall limit thepamiltonian (1) enlarged to include bi-fermion interactions.

discussion to the case of fermions interacting with a particleThe result of such a treatment will be expressed in terms

hole like boson, as in the model [#1]. To the correspond- quasiparticle degrees of freedom. Then, we shall construct

ing Hamiltonian, which is a limit of Hamiltoniafll) for only  he excitation spectrum by applying the random phase ap-

one type of bosons, we have added a bi-fermion interactioproximation to the remaining part of the Hamiltonian.

of the Lipkin type[6], with an arbitrary coupling/, The bi-fermion interactions introduced 4] can be writ-

H=—V(T2+T2). @y "

Then, we have searched for the minimum of the energy, Hpi-r=—AL L —xK K-, (32

as a function of the bi-fermion coupling. The results of this

search are shown in F|g 4. |t is evident from the resu|t§n the notation of Sec. Il. We have added these terms to the

shown in this figure that the inclusion of bi-fermion interac- Hamiltonian (1) and applied the transformations given by

tions can change the structure of the minima and produce tHeds. (19) and(20) of Sec. lll. The transformed Hamiltonian

breaking of a given symmetryfL-valug, either of the can be written

bosonic or fermionic type. The general trend shown by the

curves of Fig. 4 is consistent with the breakdown of the H=Hgo+H1+Ho+Hyg, (33
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FIG. 4. Ground state energ&ﬁ as a function of the symmetry

numberL for different values of the adimensional coupling con-

stantsx,, (fermion-boson couplingand x,=4QV/w; (bifermion

coupling. Insets(a) and (b) show results foroi=w,=1 andN

=20. Insets(c) and (d) correspond tav;=1, w,=5, for the same
number of particles.

where
Hoo= —2Q€;+2Q(e07,+ €205)

A3 A7

95lop+ A g5l wpt+kQ

_ T T
H11= wpBpBpt onBrBnt E1n+ Eony,

Hao= —9ou 31+ Bt BHl ) — gauiy(k By+ BiK-)

~NQ (U3t vl | — QU+ ok k,

Hao=0oU5(1 B+ BHl ) + GavTu(k. B+ Bik-)
FAQUEL (12 +12) + k QU3 3, (K2 +K2).
(39
In the above equations we have defined
(35

61=—wf/2—)\,:, 62:(1)1:/2_)\':.
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These quantities show the interplay between fermion-
boson interactions, with couplings andgs, and bi-fermion
interactions, with couplings,« [Eq. (32)].

The Lagrange multipliek g is given by

N :Vﬁ Ei—E;
F7 2 E;+E,’

(38)

and it enforces the constraift=2(). The occupancies
andv, of Eq. (22), satisfy the conditions

Uj=vg, U11=Upp, (39
in correspondence with the gap equation
195 1(d5
=—|=+ —+— | =+ —.
=2 w, ) E; " 4\ Y B (40

These equations show that the model can display a super-
conductive behavior which can be due both to bi-fermion
excitations and to fermion-boson interactions. The conden-
sate can, therefore, be produced by boson-fermion interac-
tions, as in the model d21] or by bi-fermion interactions,
an aspect of the model introduced[i.

The quasiparticle excitations can now be used to define
collective excitationgone-phonon statgsf the system. One
can, therefore, apply the random phase approximation de-
scribed in Sec. Il to construct the phonon creation operators

FT:X1k+ _Ylk_ +Wlﬁg_ Zlﬁp

+Xol = Yol _+W,o B~ Z,8n, (42)
which are the solutions of the equation of motion
[H I =wl". (42)

The eigenfrequencies, which are solutions of this equa-
tion, are given by the expression

4 2
93 @ xf)
W= \/z—ws-l- 74‘9% Z_wp (2U11011)2+(U§1_U%1)> '

4 2
g5 o, AQ
2= \/z_wﬁ+7+g§<2_wh !
(43

and they are degenerategf=gs, w,= w, and\ = k. These
solutions represent the energies of collective excitations as-
sociated to the additioftemova) of a pair of fermions. Both

the coexistence of a bi-fermion and boson condensate and
the collective structure of bi-fermion excitations indicate that
the present model exhibits a variety of modes which corre-
spond to the conditions imposed in the fermion-boqd@i]

The quasiparticle spectrum corresponding to this Hamilgng bi-fermion{4] coupling models.

tonian has the values
E,= \/e§+ AZ, E,= \/eg-l— Az,

for the quasiparticle energies, with pairing gaps given by

(36)

A1:(9\%/(0p+ kQ)U101q, A2=(g§/wh+)\ﬂ)u22v2%. )
3

IV. CONCLUSIONS

In this work we have presented an extension of the model
of Ref. [4] which includes the coupling of fermions to
bosons. We have obtained exact solutions of this model and
we have also compared them with the solutions given by the
RPA method. The limit of the proposed model corresponding
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to a single external boson was demonstrated. From the analy- <q>N 2t km1l H|<I> o e

sis of the results it is concluded th@j the bosonic conden-

sate, found if21], persists after the inclusion of the pp and \/

hh bosons. The coupling of fermions to these bosons affects =G

the structure of the condensate but for some cases, which are

characterized by the values of the coupling constantshe B B

bosonic contributions prevail(ii) the model can describe <q)N+2v'-v'<vm|H|q)N"-’k’m>

purely fermionic and bosonic “phases” and also shows a N
—G3\/<Q——+m+1

at+pB—L
m m+T (Q—k—m+1),

regime of permanent deformation, meaning that one of these
degrees of freedom dominate@iji) the RPA results agree
rather well with the exact solution, but the approximation \/

fails for some “critical” values of the coupling constants.
The bosons which we have introduced can represent, at

fermionic level, correlated bi-fermion excitations. The re-

sults of Sec. Il and Sec. Il show that the extension of Geyer — (PRf 5, | W[HIPRA )

and Hahne’s model, to include the fermion-boson couplings,

does preserve the algebra of the(@pgroup thus allowing -G /(Q_ E+m

for the determination of exact solutions. This group structure 8 2

is very rich and it can be used in other scenarios of physical

interest, as for example in QCD-inspired modg2g]. The % \/

translation of the present formalism at the fermion level into

elementary quark degrees of freedom would allow for the

algebraic interpretation of the diquark Bose condensates of <¢a3 |H| D2k )

[2]. Other applications of the present formalism are found in N.L k+1m N.Lkm

q N L @ BL N
-5 Ml ——— || 5—k-m|,

L apL|N_
E+m+T E m-+

the treatment of quasiparticle-pair excitations in open shell =—G\(k+1)(k+1+L)
nuclei[18], where the complexity of the correlations makes
the use of the RPA mandatory. N
y \/(29+2—k)(9—m—k)(§—m—k)
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APPENDIX \/(29+3—k)(9—m—k+ 1| 5-m—k+1
In the following a list of the matrix elements &f in the X

basis(13) is given. The complete set of nonzero matrix ele- (Q+2=k)(Q+1-k)

ments is obtained by observing the selection rllg&,m

—N=*+2, k=1, m*1. <(D N,L+2k— lm+1|H|q) Lkm>
(PR kmHIPRA k) =Gyvk(m+1)
=wi(m+Q—N/2+ m+Kk)+ w,(L+Kk) y (Q—N/2+m+1)(L+k+1)(2Q+3—Kk)

+ wp(Q— N2+ m+(a—B—L)/2) (Q=k+1)(Q+2-k) ’

+on(M+(a+B-L)/2), (P~ 2k 11l HIPRA ko)
<(DN+2Lkm+1|H|(D Lkm> =G1V(k+1)m
+B_ (Q—N/2+m)(L+k)(2Q+2—-k)
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