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Incompressibility of hot asymmetrical nuclear matter:
Lowest order constrained variational approach
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The isothermal and isentropic incompressibility of asymmetrical nuclear matter are investigated in the
framework of the lowest order constrained variational method. Various phenomenological nucleon-nucleon
interactions, namely, the Reid, theD-Reid, and the new Argonne potentials are used. It is found that the
temperature as well as the asymmetry parameter reduce the incompressibility of asymmetrical nuclear matter.
The pressure is calculated along isentropic paths. It is shown that the equation state is much harder than the one
usually assumed in the hydrodynamical simulations of supernova collapse. Various discussions are made in
connection with the problem of supernova explosions and other many-body model calculations.
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I. INTRODUCTION

After Landau introduced the concept of a neutron star
one of the possible end points of stellar evolution, the puls
were discovered in 1967 and were interpreted as neu
stars. Then during the last two decades, the developme
many-body theories and the understanding of gravitatio
collapse led to a better understanding of stellar evolut
than that of the simple neutron fluid model originally env
aged by Landau. At present the equation of state of
asymmetrical nuclear matter has a fundamental role in
understanding of heavy-ion collisions@1#, the physical
mechanism of the iron core collapse of a massive star wh
produces a type-II supernova@2#, and the rapid cooling of the
new born neutron star@2#.

In the last stage of type-II supernova@1#, because of
electron-capture processes, a highly asymmetric nuclear
ter is formed and the star reaches the proton-to-neutron
of Z/N. 1

2 . This value stays almost constant during the c
lapse time until the core bounces and the shock wav
formed. The density varies from nuclear matter dens
.0.17 fm23 up to four times this value. On the other han
while the temperatureT is typically about tens of MeV, the
entropy per particle is almost constant~about one in the units
of Boltzmann constantkB) @3#.

In order to describe such excited nucleonic matter o
needs a reliable many-body theory that is capable of giv
accurate values for various thermodynamics variables.
most of the recent many-body works have been confine
zero temperature or to finite temperature with unrealistic
teractions. So performing the calculation for hot asymme
cal nuclear matter at finite temperature in different therm
dynamic conditions such as isothermal and isentropic p
is crucial.

Recently we have investigated various properties of c
and hot asymmetrical nuclear matter using the lowest o
constrained variational~LOCV! method based on cluster ex
pansion theory. This approach has been further genera
PRC 580556-2813/98/58~5!/2781~6!/$15.00
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to include more sophisticated interactions such as theV14
@4#, theAV14, and the new ArgonneAV18 @5# potentials, but
for frozen calculations.

There are various reasons for choosing the LOC
method.~i! It is a fully self-consistent model which can us
realistic potentials such as the Reid@6#, the D-Reid @7#, the
V14 @8,9#, theAV18 @10#, etc.~ii ! The convergence of cluste
series have been tested by calculating the three-body clu
terms@11,4,5#. ~iii ! It predicts reasonably various propertie
of nuclear matter such as the saturation energy and den
the surface energy and the asymmetrical coefficient near
empirical values@11#. ~iv! Finally, as the three-body term
are very small@point ~2!#, the functional minimization pro-
cedure saves a large amount of computation time comp
with other variational methods, without lossing the contrib
tion of higher cluster terms.

In this work we intend to calculate the incompressibili
of asymmetrical nuclear matter along both isothermal a
isentropic paths with three different potentials such as
Reid, theD-Reid, and theAV18 potentials. So the plan of this
article is as follows. The lowest order constrained variatio
method is briefly described in Sec. II. In Sec. III the incom
pressibility of isothermal asymmetrical nuclear matter is c
culated. Section IV is devoted to pressure and incompre
ibility of isentropic asymmetrical nuclear matter. Ou
summary and conclusion are presented in Sec. V.

II. THE LOCV FORMALISM AT TÞ0

Let f i@ni(k)#, whereni(k) is the occupation number o
the single particle states, represent the ideal Fermi-gas-
wave function, i.e., the plane wave. Then using variatio
techniques, we can write the wave function of interacti
system as

c5FTfT, ~1!

where in asymmetrical nuclear matterFT is taken to be
2781 ©1998 The American Physical Society
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FT5S)
i . j

f ~ i j !. ~2!

f ( i j ) are operators that act on spin, isospin, and rela
position variables of particlesi andj andS is a symmetrizing
operator, which is necessary, because thef ( i j ) do not com-
mute. Because of the unitariness ofFT’s, one is usually faced
with the problem of nonorthogonality of different state
However, since at low temperatures only the one-qu
particle-type states are important and these states have
ferent total momentum, they are orthogonal.fT is the famil-
iar slater determinant of the single-particle wave function

The occupation probabilitynt(k,T,rt ,mt) is the Fermi-
Dirac distribution function and is written as

nt~k,T,rt ,mt!5
1

11e~kBT !21[ et~k,mt* !2mt~T,rt!]
~3!

with t52 1
2 and1 1

2 for neutrons and protons. In this equ
tion et(k,mt* ) are the single-particle energies andmt(T,rt)
are the chemical potentials associated with the neutrons
protons at a given temperature, density, and asymmetry
rameter.mt* stands for the effective masses.

Now, using the above trial wave function, we construc
cluster expansion for the expectation value of our Ham
tonian using the above trial wave function. We keep only
first two terms in the cluster expansion of the energy fu
tional:

E~@ f # !5
1

A

^cuHuc&

^cuc&
5E11E2 . ~4!

E1 is independent off ( i j ) and is simply the Fermi-gas ki
netic energy expression

E15 (
t511/2,21/2

et ~5!

with

et5(
ks

\2k2

2mt
nt~k,T,rt ,mt!, ~6!

while the two-body energyE2 is written as

E25
1

2A(
i j

^ i j uV~12!u i j &a , ~7!

where

V~12!52
\2

2mt
@ f ~12!,@¹12

2 , f ~12!##1 f ~12!V~12! f ~12!

~8!

and the two-body antisymmetrized matrix eleme
^ i j uV(12)u i j &a is taken with respect to the single-partic
wave functions composingfT.

Using projection operatorsOa
(k)( i j ), we write f ( i j )

~which can also convertNN to ND, in the case of the
D-Reid interaction! as
e

.
i-
if-

nd
a-

-
e
-

t

f ~ i j !5(
a

f a
~k!~ i j !Oa

~k!~ i j !, ~9!

wherea stands for$S,L,J,T,MT ;T %, k51,2,3,4, and

Oa
k51,2,3,451,S 2

3
1

1

6
S12

I D ,S 1

3
2

1

6
S12

I D ,S12
II . ~10!

The operatorS12
II is the analog of the usual tensor operat

S12
I , for the mixedND channels. The value ofk is set to

unity for LÞ0 and for the spin-triplet channels withLÞJ
61. But for L5J61 it takes values of 2 and 3. Finally w
have L50 channels which couple the1S0 channel to the
5D0 channel~for the D-Reid potential! where we setk51
and 4.

As in our previous calculations we require the correlati
functions f a

(1) , f a
(2) , and f a

(3)( f a
(4)) to heal to the Pauli func-

tion f p
MT(r ) ~zero!

f p
61~r !5F12

1

2S gt~r !

r D 2G21/2

, t56
1

2
, f p

0~r !51,

~11!

wherer is the nucleonic density, i.e.,

r5r11/21r21/2. ~12!

MT is the total isospin projection of two nucleon states

gt5
r

A(
k,s

nt~k,T,rt ,mt!e
ik•r ~13!

and

rt5
r

A(
k,s

nt~k,T,rt ,mt!. ~14!

Then using the definition

R5
r11/2

r21/2
5

rZ

rN

~proton to neutron ratio!, our asymmetry parameter can b
written as

b5
12R
11R . ~15!

The expressions for the two-body energies are given in R
@12# and @5#. In Ref. @5# instead of the two-body overlap
integral, i.e.,

I J,MT
~x!5E dqPMT

~q!JJ
2~xq! ~16!

which has been defined for a frozen calculation, one sho
use the following expression for the present case, i.e.,
finite temperature calculation:
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I J,MT
~r ,r,T!5~2p6r2!21E dk1dk2nt~k1 ,T,rt,mt!

3nt8~k2 ,T,rt8 ,mt8!JJ
2~ uk12k2ur !. ~17!

The normalization constraint that we impose on the chan
two-body correlation functionsf a

(k) , as well as the coupled
and uncoupled differential equations coming from the Eu
Lagrange equations are similar to those described
Modarres@12# and Bordbar and Modarres@5#. The procedure
for energy calculation has also been fully discussed in th
references@12,5#.

III. ISOTHERMAL INCOMPRESSIBILITY

At finite temperature, the isothermal incompressibility
defined as

KT~r,b,T !59r2S ]2F
]r2 D U

T

118rS ]F
]r D U

T
, ~18!

whereF is the Helmholtz free energy, i.e.,

F5E2TS, ~19!

with S the entropy per particle, being approximated by
noninteracting Fermi gas model of quasiparticles in
nuclear matter mean field@13#, i.e.,

S52
kB

A (
t

(
k

$@12nt~k,T,rt,mt!# ln@12nt~k,T,rt ,mt!#

1nt~k,T,rt ,mt!ln@nt~k,T,rt ,mt!#%. ~20!

In view of the work of Friedman and Pandharipande@14# and
our previous studies@15,12#, we approximate the effect o
mean field on the single-particle energies by introducing
effective massmt* (k,T,r,R),

ek
t~k,T,r,R!5

\2k2

2mt* ~k,T,r,R!
, ~21!

wheremt* (k,T,r,R) are treated as variational parameters
Obviously at saturation pointK 0

T , the saturation incom-
pressibility can be written according to Eq.~18! as follows:

K 0
T~b,T !59S r2

]2F
]r2 D U

r0~b,T!

. ~22!

In Fig. 1 we show the calculated isothermal incompressi
ity K 0

T as a function of proton to neutron ratioR at the
corresponding saturation density for various values of
temperature. It is seen that below some ratios and ab
some temperatures there is no minimum in free energy
we cannot have the saturation incompressibility. This,
example, happens forT510 MeV with R<0.4. It is seen
that the results of isothermal incompressibility calculati
with the D-Reid and theAV18 potentials are closer to eac
other compared with the similar calculations performed w
the Reid potential.
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In Fig. 2 the ratio of the isothermal incompressibili
K 0
T(b,T ) of hot asymmetric nuclear matter to the incom

pressibilityK 0
T(b,0) of cold asymmetric nuclear matter fo

R5 1
2 (b50.33) is plotted against different values of th

temperatureT. The results of Bombaciet al. @16,17# ~BKL !
and Vinaset al. @18# ~VBTS! are also given for comparison
BKL have done a preliminary investigation within a finit
temperature Brueckner-Bethe-Goldstone~BBG! theory with
the Paris two-nucleon potential in which the long range c
relations due to hole-hole~HH! propagation in the interme
diate states have been ignored. VBTS have performe
Hartree-Fock~HF! calculation using the phenomenologic
Skyrme SKM* interaction which yields a good fit to th
saturation properties of cold nuclear matter. ForT
<6 MeV, we get similar results to those of BKL an
VBTS. But for T>6 MeV our calculations show a weake

FIG. 1. Isothermal incompressibility versus the ratioR for dif-
ferent temperatures and potentials: Reid~full curves!, the D-Reid
~dashed curves!, and theAV18 ~dotted curves! potentials.

FIG. 2. The ratio of isothermal incompressibilityK 0
T calculation

at saturation point to the corresponding calculation at zero temp
tureK 0

0 for asymmetric nuclear matter:AV18 ~full curve! and the
D-Reid ~heavy curve! potentials. The results of Refs.@16# ~BKL !
~dotted curve! and @18# ~VBTS! ~dashed curve! are also plotted.
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2784 PRC 58M. MODARRES AND G. H. BORDBAR
temperature dependence than those of BKL and VBTS. T
is expected since~i! we use more realistic interactions su
as theD-Reid and theAV18 potentials in which a strong spi
dependence, especially via the tensor force in the3S1
23D1 and the1S025D0 channels has been built in. So w
get more attraction even when the temperature is as hig
10 MeV and this will cause a small but finite variation of th
incompressibility at these temperatures.~ii ! As stated before,
since BKL have not taken into account the HH terms a
VBTS have performed a simple HF calculation with the ze
range SKM* potential, their results should not be comp
rable with our calculation.

The calculated falloff of the incompressibility with tem
perature can be fitted with a parabolic equation as has b
used by BKL and Baronet al. @19# ~BCK!, i.e.,

K 0
T~b,T !5K 0

T~b,0!@12AT~b!T 2#. ~23!

At b50.33 we findAT(b)54.3831023 MeV22 which can
be compared with the value of 7.8731023 MeV22 of BKL.
A similar behavior has been found by other groups, such
Huanget al. @20# and Stocker@21#. We hope that an exac
calculation along the lines followed by BKL will yield re
sults close to what we report here, since at zero tempera
we get similar results to their full BBG calculation@4#.

IV. ISENTROPIC INCOMPRESSIBILITY

In the collapsing supernova core, the entropy per part
is very low, about the order of unity~in the kB units! and
nearly constant during all stages, until the shock wave st
to form @3#. So the properties of hot asymmetric nucle
matter along an isentropic path rules the collapsing proc
~the details of the above evolution have been discussed
Bethe et al. @3#!. This means that we should consider
adiabatic process of a highly ordered system during the
riod of collapse. In this situation there is no heat flow to
from the system.

In order to perform calculations at constant entropy,
vary the temperature until we get the required constant
tropy through Eqs.~14! and ~20!. Then we can evaluate th
energy per particle via Eq.~4! and the calculated tempera
ture.

The temperature of asymmetric nuclear matter as a fu
tion of density along three different constant entropy path
given in Fig. 3. As usual, the proton to neutron ratio is tak
to beR5 1

2 (b50.33). In this calculation we do not var
the effective masses (mt* ) in Eq. ~12!, since we found that
the internal energy does not change with these parame
The reason is obvious from Eq.~20!, in which we intend to
keep the entropy constant by the varying temperatureT and
effective massesmt* . This means thatnt(k) should remain
constant as well and henceT and mt* must vary such tha
their products remain constant. This is what one should
pect in the adiabatic processes for the single particle st
@22#. The results of Fig. 3 are relatively independent of p
tentials, since they are produced through Eqs.~12!, ~14! and
~20!.

In this figure we also present the result of BKL. Becau
of the above discussion, by changing the effective masse
can get their result (m* .0.6m). But this will not have any
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effect on the internal energy calculation~BKL reported the
same value for the effective mass!.

From the calculated binding energies we can findK 0
S, the

isentropic incompressibility at saturation density. The resu
are plotted in Fig. 4 against the proton to neutron ratioR for
three values of entropy. Unlike the isothermal case we
very similar results for two different types of potential. B
the ratio (R) dependence is the same as our isothermal
culation.

In Table I the isentropic incompressibilityK 0
S of asym-

metric nuclear matter atb50.33 for different values of tota
entropy per nucleon as well as its ratio respect to the co
sponding calculation for the cold asymmetric nuclear ma
are compared with those of BKL. We find an overall agre
ment with them especially for theD-Reid interaction. Look-
ing at Figs. 1 and 2 and Table I we can argue that the
compressibility for the isothermal paths are more sensitive
potentials and the many-body techniques than for isentro
paths.

BCK and BKL also calculated the pressure density of h
asymmetric nuclear matter at constant entropy (S51) with
b50.33, i.e.,

FIG. 3. Temperature versus density for isentropic calculation
asymmetric nuclear matter (b50.33) ~full curves!. The dashed
curve is the result of Ref.@16# ~BKL !.

FIG. 4. Isentropic incompressibility of asymmetric nuclear m
ter at saturation density versus ratioR at different entropies. Full
curve (AV18 potential! and dashed curve (D-Reid potential!.
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P~r,b50.33,S51!/r5r
]E

]r U
s

. ~24!

Our LOCV results with theAV18 and theD-Reid potentials
are plotted in Fig. 5 versus density. The BKL and BC
pressure density calculations are also given for compari
It is seen that we get much harder equation of state t
those of BCK and BKL. The BCK pressure has been cal
lated by adding@17# the thermal pressure of the two comp
nent degenerate free Fermi gas and using an effective m
m* .0.66m to the zero temperature phenomenologi
nuclear matter equations of state withK0(b50.33)
590 MeV and adiabatic index@19# g53.0, i.e.,

p~r!5
K0~b!

9g
r0~b!@ug21#, ~25!

whereu5r/r0(b).1. So neither our LOCV calculation no
those of BKL results can support the soft nuclear ma
equation of state which has been used in the hydrodynam
calculations of supernova explosions.

V. SUMMARY AND CONCLUSION

In this work we have computed the equation of state
asymmetrical nuclear matter at finite temperature along b
isothermal and isentropic paths. Three different nucle
nucleon potentials, namely, the Reid, theD-Reid, and the
new AV18 interactions were used. The density and tempe

TABLE I. The result of the isentropic incompressibility calcu
lation at the saturation point of asymmetrical nuclear ma
K 0

S(b,S) at b50.33 for different values of entropy and potentia
In the second column the ratio betweenK 0

S(b,S) and the incom-
pressibility of cold asymmetric nuclear matter is tabulated. The
sults of Ref.@16# ~BKL ! are given for comparison.

AV18 D-Reid BKL
S K 0

S K 0
S/K 0

0 K 0
S K 0

S/K 0
0 K 0

S K 0
S/K 0

0

0.5 225 0.872 206 0.936 134 0.93
1.0 132 0.511 124 0.563 99 0.68
1.5 38 0.147 34 0.154 34 0.23
y
,

r,
.

n.
n
-

ss
l

r
al

f
th
-

-

ture dependence of isothermal and isentropic incompress
ity of asymmetrical nuclear matter were calculated and
overall agreement was found between our results and th
of Bombaciet al. @16,17#. We have found that the tempera
ture as well as the asymmetry parameter could reduce
incompressibility of asymmetrical nuclear matter. It appe
that the equation of state that is currently being used in
supernova explosion models is much softer than what we
here. One can argue that there are still missing effects, s
as three-body forces, relativistic effects, etc., which have
been taken into account in our calculation, and can cha
our predictions. But considering these effects still we belie
that one should use harder equation of state than wha
given by Eq.~25! for the type-II supernova explosions.

r

-

FIG. 5. Pressure density of isentropic nuclear matter versus
sity ~in units of the saturation density atb50.33) for different
potentials. TheD-Reid ~dotted curve!, theAV18 ~full curve!, dashed
curve @Ref. @16#, ~BKL !# and heavy dashed curve@Ref. @19#
~BCK!#.
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