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Incompressibility of hot asymmetrical nuclear matter:
Lowest order constrained variational approach
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The isothermal and isentropic incompressibility of asymmetrical nuclear matter are investigated in the
framework of the lowest order constrained variational method. Various phenomenological nucleon-nucleon
interactions, namely, the Reid, the-Reid, and the new Argonne potentials are used. It is found that the
temperature as well as the asymmetry parameter reduce the incompressibility of asymmetrical nuclear matter.
The pressure is calculated along isentropic paths. It is shown that the equation state is much harder than the one
usually assumed in the hydrodynamical simulations of supernova collapse. Various discussions are made in
connection with the problem of supernova explosions and other many-body model calculations.
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PACS numbdrs): 21.65:+f, 26.60+c, 64.70-p

I. INTRODUCTION to include more sophisticated interactions such as\the
[4], theAV,,, and the new ArgonnAV;g[5] potentials, but
After Landau introduced the concept of a neutron star afor frozen calculations.

one of the possible end points of stellar evolution, the pulsars There are various reasons for choosing the LOCV
were discovered in 1967 and were interpreted as neutrofethod.(i) It is a fully self-consistent model which can use
stars. Then during the last two decades, the development &alistic potentials such as the Ré&l, the A-Reid [7], the
many-body theories and the understanding of gravitationa¥14 [8,9], the AVy5[10], etc.(ii) The convergence of cluster
collapse led to a better understanding of stellar evolutiors€ries have been tested by calculating the three-body cluster
than that of the simple neutron fluid model originally envis- trms[11,4.9. (iii) It predicts reasonably various properties
aged by Landau. At present the equation of state of hof nuclear matter such as the saturatllon energ_y_and density,
asymmetrical nuclear matter has a fundamental role in th&'e surface energy and the asymmetrical coefficient near the
understanding of heavy-ion collisiongl], the physical empirical valueq11]. (iv) Finally, as the three-body terms

mechanism of the iron core collapse of a massive star which'c V€Y smalfpoint (2)], the functional minimization pro-
. . cedure saves a large amount of computation time compared
produces a type-Il supernoya], and the rapid cooling of the

with other variational methods, without lossing the contribu-
new born neutron std2].

In the last st ¢t " 41l b f tion of higher cluster terms.
n the last stage of type-Il supernoya], because o In this work we intend to calculate the incompressibility

electron-capture processes, a highly asymmetric nuclear mafy asymmetrical nuclear matter along both isothermal and
ter is formed and the star reaches the proton-to-neutron ratii‘%entropic paths with three different potentials such as the
of Z/IN=1%. This value stays almost constant during the CO"Reid, theA-Reid, and theAV; g potentials. So the plan of this
lapse time until the core bounces and the shock wave igrticle is as follows. The lowest order constrained variational
formed. The density varies from nuclear matter densitymethod is briefly described in Sec. Il. In Sec. Ill the incom-
=0.17 fm 2 up to four times this value. On the other hand, pressibility of isothermal asymmetrical nuclear matter is cal-
while the temperatur@ is typically about tens of MeV, the culated. Section IV is devoted to pressure and incompress-
entropy per particle is almost constdabout one in the units jbility of isentropic asymmetrical nuclear matter. Our
of Boltzmann constarig) [3]. summary and conclusion are presented in Sec. V.

In order to describe such excited nucleonic matter one
needs a reliable many-body theory that is capable of giving
accurate values for various thermodynamics variables. But IIl. THE LOCY FORMALISM AT 7#0
most of the recent many-body works have been confined to | ot #[ni(K)], wheren,(k) is the occupation number of
zero temperature or to finite temperature with unrealistic iny,e single particle states, represent the ideal Fermi-gas-type
teractions. So performing the calculation for hot asymmetriyyave function, i.e., the plane wave. Then using variational

cal nuclear matter at finite temperature in different thermo’[echniques, we can write the wave function of interacting
dynamic conditions such as isothermal and isentropic pathéystem as

is crucial.
Recently we ha_ve investigated various properties of cold Y=FrdT 0
and hot asymmetrical nuclear matter using the lowest order T%
constrained variationdLOCV) method based on cluster ex-
pansion theory. This approach has been further generalizeghere in asymmetrical nuclear mattesis taken to be
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F=8IT fij).

i>]

f(ij) are operators that act on spin, isospin, and relativgyherea stands foS,L,J,T,M+; T},

position variables of particldsandj andS is a symmetrizing
operator, which is necessary, becausefitig) do not com-
mute. Because of the unitarinessFofs, one is usually faced
with the problem of nonorthogonality of different states.
However, since at low temperatures only the one-quasi
particle-type states are important and these states have d
ferent total momentum, they are orthogonaf.is the famil-
iar slater determinant of the single-particle wave functions.
The occupation probability (k,Z,p,,u,) is the Fermi-
Dirac distribution function and is written as

nAkTp,,pm,)= ()

1+ eke?) e km) = (Tp,)]

with 7= — and+ 3 for neutrons and protons. In this equa-
tion €,(k,m*) are the single-particle energies and(7,p,)

are the chemical potentials associated with the neutrons and f*1(y)=
protons at a given temperature, density, and asymmetry pa-

rameter.m’ stands for the effective masses.

Now, using the above trial wave function, we construct a

cluster expansion for the expectation value of our Hami

tonian using the above trial wave function. We keep only the
first two terms in the cluster expansion of the energy func-

tional:

1 (ylHly)
A (lv)

E, is independent of (ij) and is simply the Fermi-gas ki-

E([fD)= =B tE;. (4)

netic energy expression
E1: €, (5)
T=+1/2,-1/2
with
h2k?
€= 2 o kLo us), (6)
while the two-body energ¥, is written as
£ 1 S il 7
2=ga2 (i112]i})a, @)
where
hZ
V(12)=— 5 —[(12),[VE,.F(12)]]+ (12 V(12f(12)
8
and the two-body antisymmetrized matrix element

(ij[V(12)]ij ), is taken with respect to the single-particle
wave functions composing”.

Using projection operatorO®M(ij), we write f(ij)
(which can also converNN to NA, in the case of the
A-Reid interaction as
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2 f(i)=2 fei)HO), 9

k=1,2,3,4, and
o229 ) (2 d ao

he operatoiS}, is the analog of the usual tensor operator,
1., for the mixedNA channels. The value df is set to
unity for L#0 and for the spin-triplet channels with#J
+1. But forL=J=*1 it takes values of 2 and 3. Finally we
have L=0 channels which couple théS, channel to the
5D, channel(for the A-Reid potential where we sek=1
and 4.

As in our previous calculations we require the correlation
functionsf, £@ andf®(¥) to heal to the Pauli func-

tion f;"T(r) (zero

1 ,yT(r) 21-1/2 1 o
[ R, =+ — =
{1 2( p ) , oT=%5, fn=1,
11
|-wherep is the nucleonic density, i.e.,
pP=p+12tpP-1p2- 12

M+ is the total isospin projection of two nucleon states

P ik-
%=Kk2 Nk Tp, p)ek T (13)
and
p
pszE n(KTp,10)- (14

Then using the definition

R= P+1/2 22
P-1/2 PN

(proton to neutron ratip our asymmetry parameter can be
written as

_1-R 15
P=17w (15
The expressions for the two-body energies are given in Refs.
[12] and [5]. In Ref. [5] instead of the two-body overlap
integral, i.e.,

IJ,MT(X)ZJ dqPy.(a)J3(xq) (16)

which has been defined for a frozen calculation, one should
use the following expression for the present case, i.e., the
finite temperature calculation:
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o (1p, )= (20%%) f dkydkon,(Ky, T, it) 520

XnT’(k217:pT'1/“(‘7’)‘J§(|kl_k2|r)' (17) 270

The normalization constraint that we impose on the channel 3
two-body correlation functions¥), as well as the coupled \E-Q 220
and uncoupled differential equations coming from the Euler- F§<
Lagrange equations are similar to those described by 170
Modarreq12] and Bordbar and Modarr¢5]. The procedure

for energy calculation has also been fully discussed in these

reference$12,5]. 120
Il. ISOTHERMAL INCOMPRESSIBILITY 7%_2 0.2 06 08 1

At finite temperature, the isothermal incompressibility is RAT

defined as FIG. 1. Isothermal incompressibility versus the raiofor dif-

) ferent temperatures and potentials: Réidl curves, the A-Reid

K%p,B ﬂ=9p2( ﬂ: +18p f (18) (dashed curvgsand theAV,g (dotted curvespotentials.
B, P | )|,
In Fig. 2 the ratio of the isothermal incompressibility
where 7 is the Helmholtz free energy, i.e., K 2(B,T) of hot asymmetric nuclear matter to the incom-
F=E-TS, (19) pressibilitleg(,B,O) of cold asymmetric nuclear matter for

R=3(B=0.33) is plotted against different values of the
with S the entropy per particle, being approximated by atemperatureZ. The results of Bombaat al. [16,17] (BKL)
noninteracting Fermi gas model of quasiparticles in theand Vinaset al.[18] (VBTS) are also given for comparison.
nuclear matter mean field 3], i.e., BKL have done a preliminary investigation within a finite

K temperature Brueckner-Bethe-GoldstdB8G) theory with
__’B he Paris two-nucleon potential in which the long range cor-
S=-— 1-n.KTp,u)n[1-n(kTp, p,)] ¢ p g rang
AET zk it (k. Tprp)Jinl (K Tpy p7)] relations due to hole-holéHH) propagation in the interme-
diate states have been ignored. VBTS have performed a
ok Tpr )Nk Lo )]} (20 Hartree-Fock(HF) calculation using the phenomenological

In view of the work of Friedman and Pandharipantid] and ~ Skyrme SKM interaction which yields a good fit to the
our previous studie§15,17, we approximate the effect of saturation properties of cold nuclear matter. Far

mean field on the single-particle energies by introducing thes6 MeV, we get similar results to those of BKL and
effective massn? (k,7,p,R), VBTS. But for7=6 MeV our calculations show a weaker

£.2k?

6T klI yR = s
(k. Z,p,R) 2 (K TpR)

(2D 1.2

wherem? (k,7,p,R) are treated as variational parameters.
Obviously at saturation point ?, the saturation incom-
pressibility can be written according to E{.8) as follows:

. | PF
KB D=9| p*— (22
P s .
0.4 \\

In Fig. 1 we show the calculated isothermal incompressibil-
ity K3 as a function of proton to neutron ratig at the 0.2 N
corresponding saturation density for various values of the
temperature. It is seen that below some ratios and above 0 . | . .
some temperatures there is no minimum in free energy, so 0 2 ;'(Mev) 6 8 10

we cannot have the saturation incompressibility. This, for
example, happens fdf=10 MeV with R<0.4. It is seen FIG. 2. The ratio of isothermal incompressibility3 calculation
that the results of isothermal incompressibility calculationat saturation point to the corresponding calculation at zero tempera-
with the A-Reid and theAV,g potentials are closer to each ture K£§ for asymmetric nuclear matte&V;g (full curve) and the
other compared with the similar calculations performed withA-Reid (heavy curvg potentials. The results of Reffl6] (BKL)

the Reid potential. (dotted curvg and[18] (VBTS) (dashed curveare also plotted.
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temperature dependence than those of BKL and VBTS. This 30
is expected sinc@) we use more realistic interactions such

as theA-Reid and theA Vg potentials in which a strong spin 25~
dependence, especially via the tensor force in @
—3D; and the'S,—°D, channels has been built in. So we 20

get more attraction even when the temperature is as high as
10 MeV and this will cause a small but finite variation of the 3
incompressibility at these temperaturép. As stated before, =3
since BKL have not taken into account the HH terms and ™~ 1o}
VBTS have performed a simple HF calculation with the zero
range SKM potential, their results should not be compa-
rable with our calculation.

The calculated falloff of the incompressibility with tem- 0 ' ' ' '
perature can be fitted with a parabolic equation as has been 0 01 p°'(2fm-3) 03 04
used by BKL and Baromt al.[19] (BCK), i.e.,

15

(3,
T

FIG. 3. Temperature versus density for isentropic calculation of
K3B.DH=K3B.0[1-ANB)T?]. (23)  asymmetric nuclear matterg&0.33) (full curves. The dashed
curve is the result of Ref16] (BKL).
At 3=0.33 we find47(8)=4.38<10 2 MeV~ 2 which can
be compared with the value of 7.82.0"° MeV~? of BKL.  effect on the internal energy calculatiéBKL reported the
A similar behavior has been found by other groups, such agame value for the effective mass
Huanget al. [20] and Stockef21]. We hope that an exact  From the calculated binding energies we can figgl the
calculation along the lines followed by BKL will yield re- isentropic incompressibility at saturation density. The results
sults clos_,e to what we report here, since at zero temperatugge plotted in Fig. 4 against the proton to neutron ra&ifor
we get similar results to their full BBG calculatig#]. three values of entropy. Unlike the isothermal case we get
very similar results for two different types of potential. But
IV. ISENTROPIC INCOMPRESSIBILITY the ratio (R) dependence is the same as our isothermal cal-
In the collapsing supernova core, the entropy per particlémlﬁr;ﬂ(-)rr;ble | the isentropic incompressibilit)ﬁg of asym-

is very low, about Fhe order of “”'W.” the kg units) and metric nuclear matter 8= 0.33 for different values of total
nearly constant during all stages, until the shock wave start

; . éntropy per nucleon as well as its ratio respect to the corre-
trga{?é?aggg{ Saon Ezgn?r?ﬁgrtlgfh C;legtt:sycmo:get;i nufcl)izrss onding calculation for the cold asymmetric nuclear matter
9 piC P psing p re compared with those of BKL. We find an overall agree-

(the details of the above evolution have been discussed b|¥] . . L .

. : ent with them especially for th&-Reid interaction. Look-
Be_the e_t al. [3). This means that we should CO’FS'der aning at Figs. 1 and 2 and Table | we can argue that the in-
adiabatic process of a highly ordered system during the pe-

riod of collapse. In this situation there is no heat flow to Orcompressibility for the isothermal paths are more sensitive to
pse. potentials and the many-body techniques than for isentropic
from the system.

In order to perform calculations at constant entropy Wep aths. .
vary the temperature until we get the required constan,t en- BCK ar_ld BKII also calculated the pressure densny_ Cr)]f hot
tropy through Eqs(14) and (20). Then we can evaluate the as_ymmemc nuclear matter at constant entrofy-{) wit

) 4 B=0.33, i.e.,
energy per particle via Eq4) and the calculated tempera-
ture.

The temperature of asymmetric nuclear matter as a func- 300
tion of density along three different constant entropy paths is
given in Fig. 3. As usual, the proton to neutron ratio is taken
to be R=3% (B8=0.33). In this calculation we do not vary
the effective massesr(®) in Eq. (12), since we found that N
the internal energy does not change with these parameters. g

250

200

The reason is obvious from EO), in which we intend to o 150

keep the entropy constant by the varying temperafuamd ml< /

effective massem?’ . This means than (k) should remain 100/

constant as well and hen&and m* must vary such that ’

their products remain constant. This is what one should ex- 50

pect in the adiabatic processes for the single particle states

[22]. The results of Fig. 3 are relatively independent of po- 0 ! ! !

tentials, since they are produced through EG@8), (14) and 0.2 0.4 0.6 08 1
(20). RAT

In this figure we also present the result of BKL. Because FIG. 4. Isentropic incompressibility of asymmetric nuclear mat-
of the above discussion, by changing the effective masses wer at saturation density versus rafid at different entropies. Full
can get their resultr* =0.6m). But this will not have any curve (AV,4 potentia) and dashed curveA(-Reid potential.
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TABLE I. The result of the isentropic incompressibility calcu- 60
lation at the saturation point of asymmetrical nuclear matter
ICg(B,S) at 3=0.33 for different values of entropy and potentials.
In the second column the ratio betweErﬁ(ﬁ,S) and the incom-
pressibility of cold asymmetric nuclear matter is tabulated. The re-
sults of Ref.[16] (BKL) are given for comparison.

50

AViq A-Reid BKL
S Kj3 KKy K35 KKy K5 K3Ks

1.0 132 0.511 124 0.563 99 0.688

S
(]
2
0.5 225 0.872 206 0.936 134 0.931 Q
N
15 38 0.147 34 0.154 34 0.236 Q

20
JE
P(p,8=0.335= 1)/p=p% : (24

S

101
Our LOCYV results with theAV,g and theA-Reid potentials

are plotted in Fig. 5 versus density. The BKL and BCK

pressure density calculations are also given for comparison.

It is seen that we get much harder equation of state than 0
those of BCK and BKL. The BCK pressure has been calcu-

lated by addind17] the thermal pressure of the two compo-

nent degenerate free Fermi gas and using an effective mass FIG. 5. Pressure density of isentropic nuclear matter versus den-

m*=0.6em to the Ze_ro temperature p_henomen0|09icalsity (in units of the saturation density @&=0.33) for different
nuclear matter equations of state withlo(8=0.33)  potentials. The\-Reid (dotted curv, the AV, (full curve), dashed

=90 MeV and adiabatic indei} 9] y=3.0, i.e., curve [Ref. [16], (BKL)] and heavy dashed curviRef. [19]
(BCK)].
KolB) ) ]
p(p)= 9y po(B)[u”—1], (25 ture dependence of isothermal and isentropic incompressibil-

ity of asymmetrical nuclear matter were calculated and an
whereu= p/po(8)>1. So neither our LOCV calculation nor overall agreement was found between our results and those
those of BKL results can support the soft nuclear mattelof Bombaciet al. [16,17. We have found that the tempera-
equation of state which has been used in the hydrodynamic#re as well as the asymmetry parameter could reduce the

calculations of supernova explosions. incompressibility of asymmetrical nuclear matter. It appears
that the equation of state that is currently being used in the
V. SUMMARY AND CONCLUSION supernova explosion models is much softer than what we get

here. One can argue that there are still missing effects, such
In this work we have computed the equation of state ofas three-body forces, relativistic effects, etc., which have not
asymmetrical nuclear matter at finite temperature along botbeen taken into account in our calculation, and can change
isothermal and isentropic paths. Three different nucleoneur predictions. But considering these effects still we believe
nucleon potentials, namely, the Reid, theReid, and the that one should use harder equation of state than what is
new AV,g interactions were used. The density and temperagiven by Eq.(25) for the type-Il supernova explosions.
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