
PHYSICAL REVIEW C NOVEMBER 1998VOLUME 58, NUMBER 5
Backbending phenomenon in48Cr
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A new mechanism for the backbending phenomenon in48Cr is discussed based on a careful analysis of the
yrast band, where no level crossing of the single-particle orbits is expected. A newly developed numerical code
for solving the self-consistent cranked Hartree-Fock-Bogoliubov~HFB! equation with a maximum overlap
criterion is applied to48Cr, and various continuous cranked HFB solutions forming many rotational bands are
obtained. By using the first derivative of the cranked HFB wave function with respect to the total angular
momentum, and by comparing the Thouless-Valatin and the Inglis moments of inertia, it is pointed out that a
fully self-consistent mean-field treatment, which properly takes into account the two-body residual interaction,
is crucial in explaining cases of backbending phenomena that are not associated with a single-particle level
crossing.@S0556-2813~98!00211-8#

PACS number~s!: 21.60.Jz, 21.10.Re
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I. INTRODUCTION

The basic mechanism of backbending phenomena,
observed in rare earth nuclei, has been thought to be a
siparticle level crossing between an unoccupied high-j in-
truder orbit and the most high-lying occupied orbit, whi
causes an abrupt change in the moment of inertia of
collective rotation. The main approach for analyzing the
phenomena has been based on the cranked Nils
Strutinsky model, which has also been successful in expl
ing the superdeformed band.

From the standpoint of the nuclear many-body proble
nevertheless, many interesting questions remain. To wha
tent does the uniform rotation caused by a breaking of ro
tional invariance of the mean field persist? How stable is
deformed mean field with respect to the configurat
change? How do the nonadiabatic effects between the co
tive rotation and the single-particle motion manifest the
selves? In exploring these questions, one must carefully
lyze various cases such as those of excited rotational b
or rotational bands in light nuclei, etc., where the nonad
batic effects are expected to play a more crucial role tha
rare earth nuclei.

High-spin states in48Cr exhibit a ‘‘good’’ rotor up to spin
I p5101, after which the yrast band starts to backbend. R
cently, this yrast band has been experimentally establis
up to spinI p5161 @1#. According to Caurieret al. @2#, who
compared the shell model calculation with the crank
Hartree-Fock-Bogoliubov~HFB! calculation by applying the
Gogny force, it turns out that the orbits in the 1f 7/2 shell play
a dominant role in reproducing the backbending pheno
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enon in the48Cr yrast band, and there are no intruder orb
in this shell region. On the other hand, Hamamoto show
numerically that the single-particle orbits among one s
shell do not show any level crossing in the case of the c
lective rotation@3#. One may thus predict that the backben
ing phenomenon in48Cr has a different mechanism than th
discussed for rare earth nuclei.

Aiming at understanding in detail how the rotational sta
changes as the system acquires an additional angular
mentum and how the single-particle orbits are nonlinea
affected by the collective rotation, we have developed a n
numerical code, based on the reference state method@4#, for
solving the self-consistent cranked HFB equation. In contr
with the conventional methods, our method gives a conti
ous solution of the cranked HFB equation with respect to
total angular momentum, and enables us to explore var
global properties of the rotational band by numerica
evaluating various differential quantities such asdb/dI and
dg/dI. It also suggests to what extent the cranked HFB s
remains stable by keeping its identity as the system rot
faster. The objective of this study is to explore the micr
scopic dynamics responsible for the band-crossing phen
ena in thef p-shell nuclei by applying our code to48Cr, a
typical medium-light nucleus exhibiting a backbending ph
nomenon.

II. METHOD FOR ANALYSIS OF STRUCTURE CHANGES
IN ROTATIONAL BANDS

In this section, we discuss the necessary formulas
notations for analyzing structure changes in rotational ban
For the sake of simplicity, we will discuss them within th
cranked HF rather than the cranked HFB formalism. Inc
sion of the pairing correlations is straightforward.

s,
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The intrinsic stateuf(I )& is obtained by solving the
cranked HF equation given as

d^f~ I !uĤ2v Ĵxuf~ I !&50, ~1a!

^f~ I !uĴxuf~ I !&5I . ~1b!

In numerically solving this equation, the Lagrange multipl
v is determined as a function ofI through the condition in
Eq. ~1b!. The functional form ofv with respect toI is ex-
pressed as

v~ I !5
dHrot~ I !

dI
, Hrot~ I ![^f~ I !uĤuf~ I !&. ~2!

Using the intrinsic Hamiltonian in a rotating frame called

the Routhian Rˆ (I )[Ĥ2v(I ) Ĵx , Eq. ~1a! is expressed as

d^f~ I !uR̂~ I !uf~ I !&50. ~3!

Since the intrinsic stateuf(I )& is astationary statesatisfying
Eq. ~3!, the intrinsic Hamiltonian in the rotating frame
generally expressed as

R̂~ I ![Ĥ2v~ I !Ĵx

5^f~ I !uR̂~ I !uf~ I !&1(
m

em~ I !ĉm
† ~ I !ĉm~ I !

2(
m

em~ I !ĉm~ I !ĉm
† ~ I !1:R̂~ I !:, ~4!

where$ĉm
† (I ),ĉm(I )% are the particle- and hole-creation o

erators in therotating frame, satisfying

ĉm~ I !uf~ I !&5 ĉm
† ~ I !uf~ I !&50. ~5!

Here and hereafter, the hole states are denoted bym,n,...,
and the particle states bym,n,... . The operator :R̂(I ): stands
for the two-body residual interaction terms consisting
normal-ordered four fermion operators in the rotating fram

The total angular momentumĴx and thecollective angle

operatorQ̂(I ) defined by

i
]

]I
uf~ I !&5Q̂~ I !uf~ I !& ~6!

satisfy the following equations@5#:

^f~ I !u@Q̂~ I !,Ĵx#uf~ I !&5 i , ~7!

d^f~ I !u@R̂~ I !,i Q̂~ I !#2
dv~ I !

dI
Ĵxuf~ I !&50. ~8!

Since dv(I )/dI is an inverse of theThouless-Valatin mo-
ment of inertia at a given value I, and is a second derivativ
of the expectation value of the Hamiltonian, the followin
relation holds:
r

f
.

$JTV~ I !%21[
dv~ I !

dI
5

d2Hrot~ I !

dI2

5^f~ I !u@@R̂~ I !,i Q̂~ I !#,i Q̂~ I !#uf~ I !&. ~9!

The right-most side of the above equation gives a ma
element appearing in the random phase approxima
~RPA!. Since the value ofv(I ) is numerically obtained in
the self-consistent cranked HF calculation, and our code
merically determinesv(I ) as a continuous function ofI by
maintaining the characteristic properties of the band, the
verse ofJTV(I ) is evaluated using the relationdv(I )/dI,
without calculating the RPA equation@6#. From the
Thouless-Valatin moment of inertia, one may extract d
tailed information on the backbending phenomena.

By neglecting the two-body residual interaction :R̂(I ): in
Eq. ~4!, Eq.~9! is known to be reducible to the Inglis formul

JIng~ I !52(
mm

uJmm~ I !u2

em~ I !2em~ I !
, ~10!

whereJmm(I ) is the particle-hole components ofĴx with re-
spect touf(I )&:

Ĵx[I 1(
mm

$Jmm~ I !ĉm
† ~ I !ĉm~ I !1H.c.%

1(
mn

Jmn~ I !ĉm
† ~ I !ĉn~ I !2(

mn
Jmn~ I !ĉn~ I !ĉm

† ~ I !.

~11!

An I dependence of the matrix elementsJmm(I ) indicates not
only a microscopic structure change of the self-consist
mean fielduf(I )&, but also a change of the properties of t
collective rotation, as the total angular momentum of t
system increases.

Since the angular frequencyv(I ) is related to the first
derivative of the cranked HF state through Eq.~2!, and
since its I -dependent properties ought to be understood
terms of duf(I )&/dI, let us consider the cranked HF sta
uf(I 1DI )& with an angular momentumI 1DI , slightly dif-
ferent fromI , satisfying

d^f~ I 1DI !uĤ2v~ I 1DI !Ĵxuf~ I 1DI !&50, ~12a!

^f~ I 1DI !uĴxuf~ I 1DI !&5I 1DI . ~12b!

With the single-particle operators in therotating frame

$ĉm
† (I ),ĉm(I )% obtained within the cranked HF equation

~1a! and ~1b!, uf(I 1DI )& is represented by means of a
anti-Hermitian one-body operatorDF̂(I ),

uf~ I 1DI !&5eDF̂~ I !uf~ I !&, ~13!

DF̂~ I !5(
mm

$D f mm
I ĉm

† ~ I !ĉm~ I !2H.c.%.

A set of $D f mm
I ,D f mm

I* % in Eq. ~13! represents a new cranke
HF stateuf(I 1DI )& in the TDHF symplectic phase spac
@7–10# called the TDHF manifold@11,12#.
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To explore the structure change of the cranked HF s
by means of that in the occupied single-particle wave fu
tions, one may use a diagonal component of the density
trix

rmm
I ~DI ![^f~ I 1DI !uĉm

† ~ I !ĉm~ I !uf~ I 1DI !&, ~14!

which tells us to what extent the occupied single-parti
statem defined atI undergoes a change when the syst
acquires additional small angular momentumDI . With the
aid of D f mm

I defined in Eq.~13!, rmm
I (DI ) is expressed as

rmm
I ~DI !5~cos2ADf †~ I !Df~ I !!mm, @Df~ I !#mm5D f mm

I .
~15!

Expandingrmm
I (DI ) up to the second order inD f mm

I , one
gets

rmm
I ~DI !'12(

m
D f mm

I* D f mm
I 1¯ . ~16!

As is understood from Eq.~16!, the amount of decrease from
the unit value in the diagonal componentrmm

I (DI ) depends
on how much the occupied statem at I is rearranged by
taking account of the unoccupied componentsm at I , as the
system acquires an additional angular momentumDI . This
rearrangement in the single-particle states tells us how m
the self-consistent mean field is altered by an increase o
total angular momentum.

Dividing the local quantitiesrmm
I (DI ) by the infinitesimal

additional angular momentumDI , one may thus introduce
new quantityOm(I )

Om~ I ![A lim
DI→0

12rmm
I ~DI !

~DI !2 , ~17!

which represents how much each occupied orbitm changes
at a given angular momentumI . Using Eq.~16!, one may
representOm(I ) as

@Om~ I !#2'
@Df †~ I !Df~ I !#mm

~DI !2 5(
m

D f mm
I*

DI

D f mm
I

DI
.

~18!

Let us consider the relation betweenOm(I ) and the mo-
ment of inertiaJTV(I ). Using a perturbative expansion of th
cranked HF equations~12a! and~13! with respect toDI and
D f mm

I ~the latter quantities are considered to be of the sa
te
-
a-

e

ch
he

e

order as the former!, one may obtain the first-order equatio
for determiningD f mm

I as1

@em~ I !2em~ I !#D f mm
I 1(

nn
$D f nn

I A~nn;mm;I !

1D f nn
I*B~nn;mm;I !%5DvJmm~ I !, ~19!

whereA(nn;mm;I ) andB(nn;mm;I ) are the two-body ma-
trix elements of :R̂(I ): defined by

A~nn;mm;I !

[2^f~ I !u@@ :R̂~ I !:,ĉn
†~ I !ĉn~ I !#,ĉm

† ~ I !ĉm~ I !#uf~ I !&,

~20!

B~nn;mm;I !

[^f~ I !u@@ :R̂~ I !:,ĉn
†~ I !ĉn~ I !#,ĉm

† ~ I !ĉm~ I !#uf~ I !&,

andDv is an additional rotational frequency

Dv[v~ I 1DI !2v~ I !5
]2Hrot~ I !

]I 2 •DI 1O@~DI !2#.

~21!

These equations are well-known relations in the RPA. Div
ing both sides of Eq.~19! by DI , and replacingDv/DI with
$JTV(I )%21, one may obtain

@em~ I !2em~ I !#
D f mm

I

DI
1(

nn
H D f nn

I

DI
A~nn;mm;I !

1
D f nn

I*

DI
B~nn;mm;I !J 5

Jmm~ I !

JTV~ I !
. ~22!

Equation ~22! shows thatOm(I ) are related with the
Thouless-Valatin moment of inertia and the two-body
sidual interaction.

1The expectation value of the Routhian̂f(I 1DI )uR̂(I
1DI )uf(I 1DI )& is expanded as

^f~I1DI!uR̂~I1DI!uf~I1DI!&

5^f~I1DI!uR̂~I!2DvĴxuf~I1DI!&

5^f~I!uR̂~I!uf~I!&2Dv^f~I!uĴxuf~I!&

1^f~I!u@R̂~I!,DF̂~I!#uf~I!&2Dv^f~I!u@Ĵx ,DF̂~I!#uf~I!&

1
1
2^f~I!u@@R̂~I!,DF̂~I!#,DF̂~I!#uf~I!&1¯ .

Differentiating both sides of Eq.~26! by D f mm
I* , and using the

cranked HF conditions~1a! and ~12a!, one may obtain Eq.~19!.
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FIG. 1. Lagrange multipliersv in the cranked HF and cranked HFB calculations versus the angular momentumI . The experimental data
from Ref. @1# and values from the cranked HFB calculations in Ref.@2# are denoted by Exp. and Cau95, respectively.
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EvaluatingOm(I ), one may estimate how much the stru
ture of the occupied single-particle states changes depen
on I , i.e., how much the system must adjust its se
consistent mean field to accommodate the faster rotation
the use of the microscopic quantitiesOm(I ), one may extract
the nonadiabatic effects between the collective rotatio
motion and the single-particle motion. This proves use
when investigating backbending phenomena that are no
companied by a single-particle level-crossing, as we disc
in the next section.
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III. NUMERICAL CALCULATIONS

A. Conventional mechanism of backbending phenomena

To investigate the microscopic dynamics responsible
the backbending phenomenon in48Cr, we have performed
numerical calculations for both the cranked HF and cran
HFB equations with Gogny D1 force@13–15#, using the ref-
erence state method@4#, which automatically gives the solu
tion as a continuous function of the total angular moment
I . As the convergence condition for each cranked HF st
we impose
1

A A (
m5occ

~^m~ I !~n!uRone-body
~n! ~ I !2um~ I !~n!&2^m~ I !~n!uRone-body

~n! ~ I !um~ I !~n!&2!<10@eV#, ~23!
is

ur
um
y.
ce

en
,

ns
har-
de-
und
where um(I )(n)& denotes a single-particle state appearing
the nth iteration in the course of solving the cranked H
equation, andRone-body

(n) (I ) is a one-body Routhian matri
folded by a density matrix defined at thenth iteration,

rab
~n!~ I ![ (

m5occ
^bum~ I !~n!&^m~ I !~n!ua&. ~24!

TABLE I. Total Binding Energies of the ground and 2p-2h
states atv50. The experimental value is cited from Ref.@19#.

HFB HF Exp.

Ground state@MeV# 2409.386 2409.347 2411.462
2p-2h state@MeV# 2404.790 2404.792
tIn the HFB calculation, a similar convergence condition
employed.

Since the ground state of48Cr has an axial symmetric
shape@2#, the z axis is chosen as the symmetry axis. O
code includes the major shells up to the principle quant
numberN56, and imposes parity and signature symmetr2

For the maximum overlap criterion required by the referen
state method@4#, our code required that the overlap betwe
two neighboring cranked HF~B! states in the same band

2In our numerical calculations, the single-particle wave functio
are expressed in an expanded form using three-dimensional
monic oscillator bases with a fixed range parameter, which is
fined so as to reproduce the largest binding energy of the gro
state.
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PRC 58 2769BACKBENDING PHENOMENON IN 48Cr
having the total angular momentaI and I 1DI , should be
more than 0.9. That is to say, each small incrementDI is
numerically adjusted by the maximum overlap criterion,
as to maintain the identity of the band.3 Unlike the conven-
tional methods, our numerical calculation using the refere
state method can evaluate quantities such asdb/dI, dg/dI,
andOm(I ), since the cranked HF~B! states connected by th
maximum overlap criterion may be regarded both as belo
ing to the same band, and as an analytic function of the t
angular momentumI .

Our numerical calculations have demonstrated that
Gogny-D1 force reproduces well the binding energy of
ground state both in the HF and HFB calculations~Table I!.
Although our calculated values for the rotational energies
not agree well with their absolute values from experimen
data@1,2#, our numerical results do reproduce well the resu
of the cranked HFB calculations in Ref.@2# where a much
wider shell space was applied than in our present calc
tions ~Fig. 1!.

As is seen in Fig. 1, the Lagrange multiplierv(I ) of the
yrast band first increases in the region 0\&I &10\, then
decreases in 10\&I &14\. v(I ) begins to increase again a
I;14\, and then diverges atI 516\, where the full align-
ment of all particles in thef p shell is completed, terminating
the yrast band built upon the ground state@16#.

After obtaining the ground state~I 50\ state in the yrast
band!, one may construct a 1p-1h state composed of th
most low-lying unoccupied orbit and the most high-lyin
occupied orbit within the parityp52 and signaturea51
subspace of the single-particle Routhian. Taking the th
constructed 1p-1h state as a trial function for the cranke
HFB equation, one may obtain an excited HF~B! state upon
convergence of the iterative calculation. In order to reach
HF~B! state, which has the largest overlap with the init
trial wave function and is thus characterized by a relat
configuration with respect to the yrast band, one has to
the reference state method@4#. In this way, the three differen
excited HF~B! states shown in Fig. 2 are obtained by starti
with the neutron 1p-1h state, the proton 1p-1h state, and
the 2p-2h state where both the proton and neutron 1p-1h
are excited simultaneously.

Starting from the thus-obtained excited HF~B! states, the
excited rotational bands satisfying the maximum overlap
terion have been calculated up to their termination poin
The neutron and proton 1p-1h excited bands terminate atI
514\, and the 2p-2h excited band atI 512\.

It is worth mentioning that the 2p-2h excited band shows
a small triangle shape inE2I plot near the backbendin
region of the yrast band, as has been pointed out in respe
medium-heavy nuclei both by Hamamoto@3# and Marshalek
and Goodman@17#. It should also be mentioned that ou
numerical calculation does not necessarily give a continu
solution up to the band termination point, since either
convergence condition or the maximum overlap criter
may eventually prevent us from proceeding to a higher
gular momentum region. These points are related to the

3In the backbending region, we impose a stricter condition to
tain more precise information.
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bility of the cranked HF solution, and will be discussed e
tensively in a forthcoming paper.

According to Hamamoto@3# and Marshalek and Good
man @17#, the cranking calculation in medium-heavy nucl
shows a large angular momentum fluctuation in the ba
bending region. This is known to be caused by an unphys
mixing between two bands with different angular momen
and to be a fatal defect of the cranked HFB treatment wh
the coupling between two bands with different angular m
menta is incorrectly evaluated at a given angular freque
v. This unphysical coupling causes a large variance of
total angular momentum defined by

G~ I !5A^f~ I !uĴx
2uf~ I !&2^f~ I !uĴxuf~ I !&2, ~25!

in the backbending region. In our cranked HF and crank
HFB calculations for48Cr, however, there was no large fluc
tuation ofI , as is shown in Fig. 3. This fact indicates that t
backbending in48Cr is not caused by a strong mixing be
tween two bands having different total angular momenta
may also be observed in Fig. 2 that no band crossing
apparent in the backbending region.

As was discussed by Sorensen@18#, who examined the
above-mentioned point raised by Hamamoto, the backbe
ing phenomena in medium-heavy nuclei are well describ
by the self-consistent HFB formalism, provided the BC
treatment of the pairing correlation is accurate enough
the quasiparticles are defined in a fully self-consistent w
In our present calculation, however, the binding energies
tained within the cranked HF calculation show a remarka
agreement with those obtained within the cranked HFB c
culation for both the yrast and the 2p-2h bands, as seen in
Fig. 2. This agreement is due to the fact that the pairing fo
contributes to the binding energy very weakly in th
nucleus. Since the pairing gap disappears as a result o
Coriolis antipairing effects atI'4\ in the yrast band, and is
mostly negligible in the 2p-2h band, the pairing correlation
-

FIG. 2. Total binding energies for the yrast, neutron 1p-1h,
proton 1p-1h, and 2h-2h rotational bands. The triangle shape
the 2h-2h band is shown in the upper left.
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FIG. 3. Fluctuation of total angular momentumG(I ).
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does not play any important role in the backbending p
nomenon in48Cr. This suggests that the mechanism of t
backbending phenomenon in48Cr may differ from those in
medium-heavy and rare earth nuclei.

We end this subsection by briefly discussing the conv
tional analysis of the geometrical properties of the yr
band. In Fig. 4~a!, the yrast band solution of the cranke
HFB equation is presented in theb2g plane. The yrast band
has an axial symmetric prolate shape up toI 58. An asym-
metric deformation with negativeg starts to occur atI 58,
then monotonically increases untilI 514. After that, the sys-
tem tends to reach theg5p/3@rad.# oblate shape with a
small b deformation atI 516, where the yrast band term
nates. This geometrical structure change is usually attribu
to a property change from the collective rotation to the n
collective rotation, which generates the total angular mom
tum. However, it is difficult to investigate based on Fig. 4~a!
what happens in the intrinsic state, or why the backbend
is induced through the asymmetric deformation.

In order to more clearly understand the microsco
mechanism of backbending phenomena in medium-light
clei, the derivativesdb/dI anddg/dI are numerically evalu-
ated as shown in Fig. 4~b!. It should be noted that thes
quantities are crucial to an understanding of the backben
phenomena, since the angular frequencyv(I ) is related to
the first derivative of the total HamiltonianHrot(I ) with re-
spect to the total angular momentumI given by Eq.~2!. As
may be clearly recognized from this figure, the properties
the yrast band start to change atI 56, and the most dramati
change occurs atI 512. Since the structure change of th
intrinsic state exhibited by the shape parametersb andg is a
net effect coming from many occupied single-particle orb
it is desirable to explore the interrelation between the coll
tive rotation ~macrolevel dynamics! and the individual
single-particle motion~microlevel dynamics! in a more com-
prehensive manner by employing the quantitiesOm(I ) intro-
duced in the previous section.
-
e

-
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-
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-
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B. New mechanism for backbending phenomenon in48Cr

We are now in a position to discuss a new mechanism
the backbending phenomenon in48Cr. Since our numerica
calculations show that the effect of the pairing force in48Cr
is negligibly small, we hereafter concentrate on the results
the cranked HF calculation. As48Cr is aZ5N nucleus con-
sisting of 24 protons and 24 neutrons, the proton field a
the neutron field in the yrast band are expected to show v
symmetric behavior. Figure 5 clearly shows that the pro
and neutron single-particle Routhians along the yrast b
exhibit very similar behavior, even though their absolute v
ues are different. Also, as seen in Fig. 2, the excitation
ergies of the excited rotational bands characterized by
neutron 1p-1h configuration nearly coincide with those o
the proton 1p-1h configuration. Because of this symmetr
we may hereafter confine our discussion to the sing
particle orbits of the neutron field. Our numerical calcu
tions indicate that the lower shells withN51 and 2 can be
regarded as the core. Hence we will only pay attention to
behaviors of the single-particle orbits near the 1f 7/2 shell in
the neutron field. It should be noted that these orbits are
pure 1f 7/2 orbits since they are affected by other subshells
the f p shell due to the deformation of the system.

For the axial symmetric ground state, the single-parti
wave functions are specified by the quantum numberV of
Ĵz . In Fig. 5~a!, which shows the single-particle Routhian
along the yrast band, there are two orbits nearI 50\ and just
below the Fermi surface, which are mainly described by
linear combination of two eigenfunctions withV563/2\.
Below these, there is another pair of orbits whose main co
ponents are the eigenfunctions withV561/2\. At I'0\,
these two pairs of orbits interact strongly with each other d
to the cranking term, but hardly with the unoccupied orb
Increasing the Lagrange multiplierv, one finds that the pair
of orbits starting withV561/2\ at I 50\ aligns rapidly, as
shown in Fig. 6, and that these orbits are hardly affected
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FIG. 4. Degree of structure change inb2g plane.~a! b2g plot of the yrast band,~b! db/dI ~solid line with diamonds! and dg/dI
~broken line with crosses!.
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the unoccupied orbits. In other words, the alignment of
orbits starting withV561/2\ is mainly responsible for the
increase of the total angular momentum in the low-I region.
By comparison, the alignment of the orbits starting withV
563/2\ contributes much less to the total angular mom
tum in this region. In particular, the most high-lying occ
pied orbit withp52 anda51, hereafter denoted bym* ,
even shows an antialigning character, and so contrib
negatively to the total angular momentum up toI'8\.

The particle-hole componentsJmm(I ) are known to pro-
vide important information regarding the microscopic stru
e

-

es

-

ture of the collective rotation atI , and the value ofG(I )
represents the degree to which the rotational symmetry of
system is violated. As Fig. 7 shows, the matrix eleme
Jmm(I ) between the most high-lying occupied orbits starti
with V563/2\ at I 50\ and the most low-lying unoccu
pied orbits starting withV565/2\ have large values. One
may thus infer that the fluctuationG(I ) is caused mainly by
these matrix elements. SinceĴx satisfies the weak commuta
tion relation ~7!, which characterizes the local microscop
structure of the collective rotation together with Eq.~8!, one
may state that the occupied orbits fromV563/2\ and the
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FIG. 5. Neutron~a! and proton~b! single-particle Routhians«a(I ) along the yrast band near the Fermi surface. Om12~solid lines with
diamonds! and Om32~broken lines with crosses! stand for the occupied orbits starting withV561/2 and with V563/2 at I 50,
respectively. Unoccupied orbits are denoted by Unocc.~dashed lines!. ~p,a! denotes the parity and signature.
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unoccupied orbits fromV565/2\ are also mainly respon
sible for generating the collective rotation up toI'8\, as is
clearly seen in Figs. 6 and 7.

Beginning atI'8\, one can see the onset of a differe
mechanism that generates the additional total angular
mentum. As Fig. 6 shows, the expectation valuesJmm(I ) of
the occupied orbits starting fromV561/2\ begin to satu-
rate at aroundI 58\, so that the alignment of these orbi
can no longer remain a main resource for increasing the t
t
o-

al

angular momentumI . Therefore, the increase ofI from this
point could be seen as being mainly due to the alignmen
the orbits starting fromV563/2\. As we have remarked
previously, the most high-lying occupied orbitm* shows an
antialigning character beforeI'8\, and begins to align
thereafter, whereas the other occupied orbits always show
aligning character. This fact implies that the degrees of fr
dom associated withm* play the major role in reproducing
the backbending phenomenon. When one compares Fi
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FIG. 6. Diagonal matrix elements of the total angular momentumJmm(I ) for neutron occupied orbits along the yrast band. Om12 a
Om32 are the same as in Fig. 5.
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with Fig. 6, it becomes clear that the backbending pheno
enon in 48Cr is induced by a change in the microscop
mechanism that creates the angular momentum, and is
mainly caused by one specific occupied orbitm* .

The properties of the collective rotation should also
affected by the alignment of the orbits fromV563/2\,
which play the major role in generating the collective ro
tion beforeI'8\. As Fig. 7 shows, the two largest values
uJmm(I )u2 have different I dependences afterI'12\,
whereas the third largest reaches its maximum valueI
'8\, and then forms a trough atI'9\. These facts clearly
show that the microscopic structure of the collective rotat
-

us

e

-

n

does change at aroundI'8\ andI'12\. It should be men-
tioned that theI dependence ofJmm(I ) in Fig. 7 also pro-
vides important information regarding how the se
consistent mean field is rearranged, as the total ang
momentum of the system increases. It should also be n
that no single-particle level crossing occurs between the
cupied orbitm* and the most low-lying unoccupied orb
within the space wherep52 anda51, as seen in Fig. 5.

In order to more closely investigate the important role
the orbit m* in reproducing the backbending phenomeno
let us study the quantitiesOm(I ) defined in Sec. II. As Fig. 8
shows, the degree of structure change of the occupied o
s.
t above
FIG. 7. Particle-hole matrix elements of the total angular momentum$Jmm(I )% within the negative parity neutron single-particle state
Nearest~solid lines with diamonds! denotes the matrix element between two orbits having the same signature, which are located jus
and just below the Fermi surface for that signature. Matrix elements between other orbits in thef p shell are denoted by others~broken lines!.
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FIG. 8. Degree of structure change in the occupied orbitsOm(I ) along the yrast band. Om12 and Om32 are the same as in Fig. 5.
~broken lines! denotes the occupied orbits in the major shells withN51 or 2.
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is almost constant up toI'6\. By contrast, the degree o
structure change form* , given byOm* (I ), begins to in-
crease atI'6\, although that of its signature partner orb
remains unchanged.Om* (I ) increases rapidly, showing a lo
cal maximum atI'12\, then decreases untilI'14\. In
other words, the microscopic structure of the most high-ly
occupied orbitm* changes most atI'12\. As we have
pointed out in reference to Fig. 6, the contribution ofm* to
the total angular momentum changes from negative~anti-
aligning! to positive~aligning! as the alignment of the occu
pied orbits originating fromV561/2\ brings their expec-
tation values close to saturation. We have also discusse
reference to Fig. 4~b!, that the system starts to deform towa
the g direction afterI'8\. From these numerical result
one may extract the following microscopic dynamics: t
system has to change its shape self-consistently so as to
ate an occupied orbit, such asm* , that is able to align to-
ward the direction of the total angular momentum after
simple alignment mechanism due to the one-body Cori
term has terminated.

As we stated in the previous subsection, the angular
quency v(I ) is expressed by the derivative of the tot
HamiltonianHrot(I ) with respect toI given in Eq.~2!. Since
the I dependence ofHrot(I ) is coming from that of the
cranked HF stateuf(I )&, the property change ofv(I ) is
directly related to the first derivative of the cranked HF st
with respect toI . Comparing Figs. 4 and 8, one may eas
find a similar I dependence betweenOm* (I ) and the first
derivatives of the shape parametersdb/dI and dg/dI. The
latter quantities reach the local minimum atI'12, reflecting
the large degree of structure change in the cranked HF s
evaluated byduf(I )&/dI. It should be pointed out that thes
quantities express a net effect from various single-part
states, whereasOm(I ) represents an individual effect comin
from m. From Figs. 4 and 8, however, one may draw t
important conclusion that the geometrical structure chang
g

in

re-

e
is

e-

e

te

le

of

the cranked HF state in theb-g plane is mainly caused by
only one occupied orbitm* , and its importance is due to th
large value ofOm* (I ).

Before we discuss the microscopic mechanism that c
ates the special occupied orbitm* , let us briefly consider
why all the components ofOm(I ) diverge in the high spin
region I>14\, as is shown in Fig. 8, in which the occupie
orbits become completely aligned. Using the variational
rameterD f mm

I defined in Eq.~13! and the matrix elemen
Jmm(I ), one may approximate the infinitesimal angular m
mentumDI as

DI'(
mm

„Jmm~ I !D f mm
I* 1H.c.…. ~26!

Dividing both sides of Eq.~26! by DI , one obtains

1'(
mm

S Jmm~ I !
D f mm

I*

DI
1H.c.D . ~27!

Since allph components ofJmm(I ) vanish at the band ter
minating point@16#, the quantities$D f mm

I /DI %, i.e.,Om(I ),
diverge so as to satisfy Eq.~27!.

Let us discuss now the microscopic mechanism of
backbending phenomenon in48Cr by exploiting numerical
results for the moment of inertia. According to Eq.~9!, one
may explore the backbending phenomenon in detail thro
$JTV(I )%21, whose numerical values are shown in Fig. 9. B
comparing Figs. 8 and 9, one may recognize that the quan
$JTV(I )%21, similar todb/dI anddg/dI, shows anI depen-
dence that is similar to that ofOm* (I ), which as we have
seen suggests the basic role of the occupied orbitm* in
producing the backbending phenomenon in48Cr. This coin-
cidence is not accidental, sinceOm* (I ) and $JTV(I )%21 are
related to each other through Eq.~22!.
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FIG. 9. Inverse of the moment of inertia of the yrast band. T-V~solid line with diamonds! and Inglis~broken line with crosses! denote
$JTV(I )%21 and$JIng(I )%

21, respectively.
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Figure 9 also depicts the numerical values ofJIng(I ). In
spite of their differences in absolute value, our numeri
results for bothJTV(I ) and JIng(I ) show a very similarI
dependence up toI'6\: in fact, they are almost constant u
to that point. At I'8\, however,$JTV(I )%21 starts to de-
crease, reaching a minimum value atI'12\, whereas
JIng(I ) remains almost unchanged up toI'12\. Both di-
verge atI 516\, where the band terminates.

Both JTV(I ) andJIng(I ) depend on the matrix elemen
of Ĵx , as well as on the single-particle Routhians. T
former, however, further takes into account the tw
body residual interaction, whereas the latter does not. F
this, we can infer that the two-body residual interacti
plays a crucial role in reproducing the backbending p
nomenon in the yrast band of48Cr. The particle alignmen
in this case is generated not by the one-body Cori
term alone, but also by the nonlinear effects from the
sidual two-body interaction. This interaction contribut
to the generation of a self-consistent mean field that acc
-

ro
.

da
l

-
m

-

s
-

-

modates a special occupied orbit with a property such
it easily aligns toward the direction of the total angul
momentum.

One may thus reach another important conclusi
namely, that a self-consistent treatment of the two-body
sidual interaction atI is of special importance in reproducin
the backbending phenomena where no level crossing of
single-particle orbits is observed. Thus, a theoretical anal
that uses the Inglis formula or a nonfully self-consiste
mean-field theory such as the cranked Nilsson-Strutin
method is not sufficient for an understanding of backbend
phenomena in general.
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