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Non-Abelian density functional theory
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Moscow Aviation Institute and Landau Institute for Theoretical Physics, 2 Kosygin Street, 117334 Moscow, Russia
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The density functional approach to a nuclear system with pi and rho coupling is framed. We also extend the
Hohenberg-Kohn theorem and the self-consistent equations to the arbitrary gauge fields. Particularly, the
binding energy of infinite nuclear matter within the nonlinear sigma model is calculated.
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The relativistic density functional theoDFT) for the  states G={|®)}. The map is surjective, indeed: any
last five years has become a successful tool for solving thground staté®) e G has its originalA € P. The second map
nuclear many-body problefl—9]. The main usefulness of s:G—N, being also surjective, maps the &bf the ground
this method is that it allows ong) to take into account the states onto the set of the ground-state densfti¢s-N. The
correlation energy(ii) to work with relatively simple one- injectivity of the two maps implies that potentials differing
particle equations, andii) to present the ground-state en- by more than a gauge transform correspond to different
ergy as a density functional. The last two points are espeground states which give different ground-state densities.
cially important in comparison with relativistic Bruckner This entails the injectivity of the compositi@af=h and the
calculations[10] which include nonlocal equations. More- existence of the inverse madp 1. Hence any ground state
over, the DFT methods make it possible to find separatelyd)=|d[n]) can be presented as a unique functional of the
the correlation energy, which we illustrate for calculations ofground-state density(r), as well as the ground-state density
the nonlinear sigma model. E[n]=(®[n]|H|®[n]). Thus, establishing the injectivity of

DFT is based on the Hohenberg-KotHiK) theorem and  the two mappings ands, the HK theorem justifies the pos-

Kohn-Sham(KS) equations. This nodal formalism, initially - sjpility of using unique density functionals for the ground-
discussed in solid state physics, has been extended to quagtate energy and other quantities.

tum hadrodynamics with scalar and vector® mesons

(QHD-1) [3]. Though the power of the density functional in The termU(A) reads as

nuclear physics with pseudoscataiand pseudovectgr me-

sons(this version is called QHD-JIhas been recently shown O(A):f 3> {gi\?iAi}

[9], the relevant fundamentals pertaining to the non-Abelian i

DFT have not been considered in detail. Below we try to _

perform this task, taking into account the interaction with an = f d3r[l,+0,+0,+0,], Vi= ¢1~i[p’ 2

arbitrary gauge field, particularly QHD-II.

We start with the most general formulation of the HK

theorem. It reads as follows. The stationary Sdimger Wwhere the first two terms in square brackets correspond to the

equation interaction with external sigma- and omega-meson fields, re-
N . . spectively[11,12
Hied®)=[Hin+ U(A)]|®)=E|D) 1

for the ground statéb) of an interacting many-fermion sys-  U,=—Qshthp=—0sh, U,=09,(¥Y* )V, ="V,
tem gives the ground-state ener@y The renormalized (©)
HamiltonianH ,=H+ CTC—VEV includes the ternJ (A)
describing the interaction of the fermion quantum fietld While the interaction of fermions with pi- and rho-meson
with the external classical static fiek{r), whereas the term external potentials is given by
H,,; corresponds to the interacting many-body system itself. _
We say that two potentiala gndA’ belong to the same aﬂzigw(lpys;{p).ﬁ:i@s. 7,
equivalence class when they differ by a gauge trans{@in
while the two ground statei) and [®') are equivalent if 1 - 1
|®')=¢€'*|®). (For a nondegenerate system the identical 0,== (g,yy"7)-b,== W b, (4
ground states correspond to the same energy and the same P2 ko2 #
ground-state density. Being constructed of these equiva-
lence classes, the set of external potentiBls{A} is In the future we omit the coupling constants if they lead to
mapped by a map: P— G onto the set of all possible ground confusion.
Let two potentialsA, A’ e P, correspond to the identical
ground states®), |®')eG. Then, inserting expressions
*Electronic address: vs@itp.ac.ru (2)—(4) in Eq. (1), one obtains
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. . . For the approximatior9), Eqgs.(12) and(13) yield
fd3r{—es(¢—¢'>+w<vﬂ—v;>+ié5~(ﬁ—ﬁ’> o ) S
qxXbg(r)=0, d6(r)=0, qg+6(r)xbe(r)=c,
(14

1~ - .
+§w“-(bﬂ—bl’i) |®)=(E—E")|P). (5) ) A
which are satisfied for constabt,. For arbitraryby(r) the
Contrary to the conserving baryon currgrt, the quantity  potentials in Eq(7) differ by more than a gauge transforma-
tion (10) and(11), while the relevant ground states with en-
ergiesE andE’ are identical. Thus the DFT method cannot
be applied to a modeéb) with nucleons interacting through

3 the pure electric rho-meson field.

vAT/“, in general, does not coincide with the conserving isoto
pic current[11]

20_30. kAo 03 By R0 . o . .

F=w"+b, XB™¥+ X[ m+[7xb7]], Quite an analogous situation arises when we consider the
- R - . interaction with the external gluon field incorporating the
B.,=d[.0,—9g,[b,Xb,]. (6) renormalized Hamiltoniai14] of quantum chromodynam-

ics. The conserved color currefft*= Y2+ f22FP1 AC co-

_ _ R 2 incides withY2= (ﬂy#)\a:ﬁ only in the case&ﬁ=0. The rel-
the baryon and isotopic charge operat@sand|, respec-  evant analog of Eq(7) will be a consequence of a time-
tiVer, we State, that, if EqS) has Solutions, it will be writ- independent gauge transformation

ten as

f d3r

with an arbitrary constant and with an arbitrary constant AL2—AS=q3+ PG A o(r)=c®.  (16)
vector¢, when

However, in light of commuting the Hamiltoni<';if=|ren with

AL =P3+4,e2+ 1% A, ed=qPt+63(r) (15)

R 1 = ~ 1 _=
—CJO(r)+5c-w°(r)}|®)=(—cQ+§c~|)|<1>) .

=(E-E")|®), 7 9 02=0, fa%uA4(r)=0,

R R For the gauge field, considered [ib5], we can choose con-
wo(r)=1o(r). (8) stant vectorg? and 62 satisfying the condition&l6). Yet for
arbitrary A(r) the potentials leading to the same ground
If the equality (8) does not take place, then, inevitably, state differ by more than a gauge transformatib), but do
=0, and Eq.(7) reduces to the relevant QHD-I versif8],  correspond to the same ground state.
with no trouble concerning fulfillment of the theorem. Equa- Now we shall prove the injectivity of the second map
tion (6) reduces to Eq(8) when only one component of the s:G—N, mapping all the ground stat¢d)eG onto the
isotopic triplet is present, i.e., only neutral pions and rhoground-state densitiegn}=N. The explicit expression of
mesons, and we come again to the QHD-| formulatlon._How-each eIemenmz(ps,J“,és,W“) of the set has the form
ever, condition(8) takes place also in the case of the sigma, 2, o
omega, and rho interactions ag[ik] and at the approxima- =(Y)=(@[n][Y'|®[n])ren, namely,
tion that the magnetic components of the rho-meson field are . R . . ~
neglected, namely, ps=(Qs), I*=(J*), ©5=(0s), WH=(W*), an

where the operators are defined by relati@8sand (4). If

In the latter case we have to discover whether the potentiaf@1® SUSPECts that the _t"‘i’o diStif‘iCt ground, S}@?”d|®,>
leading to Eq.(7) can be produced by a gauge transforma-€ad to the same density=(®[Y'|®)=(d’|Y'[®"), a con-
tion. The time-independent gauge transformations have thigadiction inevitably springs up: in light of Eq¢2) and
form (17), one may write

H1)=0, by(r)=0. )

V() =V, (1) +d,A(r0), ArH=ct+A(r), (10  E=(®[n]|Hed®[n])<(P[n']|Hed®[n’])

L1 = Bo(r) + 1) X Bo(r) 44, =(@[n" )| ®[n'])+ (@' 1] O(A) - O(A") [ @[n']).

(18)
bL(r)=by(r)+dB(r)+ 6(r)Xby(r), 11 . . . . .
(M) =Di(1)+ (1) + (1) X by(r) (D Then, interchanging the roles of primed and unprimed vari-
wherec is arbitrary, whileg satisfies the constraint ables and writing the analogous formula, adding the latter to
Eqg. (18), we come to the incorrect statemelt-E'<E’
Gxb,(r)=0 (12  TE that makes us recognize the injectivity of the second
a ' map.
Inserting Egs(10) and(11) in Eq. (5), we come to Eq(7) if Thus the HK theorem warrants the standard application of

R R DFT to QHD-II. We can use the unique ground-state func-
WO(r)+0(r)Xb(r)=0, q+6(r)Xbg(r)y=c. (13)  tional E[n]=(®[n]|H,{P[n]), which gives the exact
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ground-state enerdy and for all other densities’ # n leads _

to a higher energy®[n’]|H,e{®[n’])>E. { —ia-V+p
It should be noted that the functiond[n]=E[n]

—Ua[n], where

M — "+ yV¥ +iysr. o

“w )Qom(r):emgom(r)a (26)
Ualn]=(®[n]|U(A)|P[n])

=f dr> gin'A;, (19 [_ia'V+,3

M+, gl'Af
I

] em(r) = €mem(r)
27

does not depend on the external potent|als at all. Setting
external fields equal to zero, we treéfos,0s,J*,W+] as  [Where we have used the notatighir) = = nem(r) ), with
the proper energy functional of the QHD-II system withoutindexm related to the single-particle baryon densiliesith
external potentials. For a noninteracting system with theself-consistent local potentials

HamiltonianH =T+ U(A) the kinetic energy functiondl,
reads

AT(r)=Ai(r)+

SRIN]
Sn(r)” 29

To[n]=(P[n]|T[®[n])
_ provided that the noninteracting system of Kohn-Sham par-
= J d3r(®[n]| (i ya+M)g|P[n])  (20) ticles has the same ground-state energy as the real interacting
system. Equations with the self-consistent poteriicor-
respond to the equation for the self-consistent Green function
of the Kohn-Sham particle, with the self-enerdjyreplaced

by the local potentia(28). The Kohn-Sham equatiaf27) is
solved self-consistently as in QHDB]: substituting some

and coincides witi=[n] of the noninteracting system.
Let us consider the Hamiltonian

Hiené}=H+(£—1H,+U(A{£}), approximate potentials in Eq27), we construct single-
particle densities, then obtain new potentials, and so on, until
T 3 ViA. the required accuracy is achieved. Equatiq@é) were
A f d rEi Lo AL @D solved in the frames of QHD-II with the exchange potentials

[9]; they have the general for27) for an arbitrary interac-
where the proper system in the external fildorresponds tion of the current with the external field. The functional
to £=1, while £=0 corresponds to the noninteracting systemR[n]=Eu[n]+E,[n]+E,[n] includes the Hartree term
of Kohn-Sham particles moving in the self-consistent fieldEx[n], the exchangéFock termE,[n], and the correlation
A#=A(£=0) whose total energy i€{0}=Ty+Ups It is energyE [ n]. The Hartree and exchange contributions were

clear that discussed in detail by several authfrs-9]. The correlation
energy, in spite of a thorough achievement within the
dH model[16], is rarely discussed in QHD-II.
ren{f} ~ 3 l{f} . : .
=H,+| d rE ,1,//F (22 The simplest method to evaluate the correlation energy is
the random phase approximatiRPA) [17]. However, as

_ was noted iff18], the QHD lattice calculationgl9] showed
In light of the Gellmann-Feynman theorej6i], the energy  that the RPA yields only 40% of the total correlation energy.
functional is presented in the form Even if the vacuum effects are estimafé@], the correlation
energy is not small with respect to the binding energy. Re-
cently, a method20], based on the density functional tech-
¢{§}> . nique[6], for calculating the correlation energy with vacuum
(23) corrections has been achieved for the nonlinear sigma model.
Nuclear matter calculations in the frames of that model are
often applied to the equation of stdl]. On account of the
extreme importance of the correlation enef§§], we appeal
_ _ to the approximatiorj20] to carry out the present calcula-
E{1}=E[n]=Toln]+ Uln]+Rin], 24 tions for infinite matter.
Thus the total correlation energy is expressed as a sum of
the sigma and pion contributiof20]:

1 o~ Aa
Rln]=| d¢ d3r<<b &> gil//Fi’/’Ai‘q) § > 2 4 2
[KGEREIED: @ e ¥ e g 2R
(25 (2m) 1= Xo0(DRse(Q)

E({)=E{(- m+fd4®§4 a8

Substituting Eq(22), we then immediately obtain

with the coupling term

. 2
The variational differentiatiodE[n]/én'=0 yields a set X70(@)R(Q)
, : : + : (29
of single-particle equations 1= Xa0(QR;(q)
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TABLE I. Binding and correlation energies vs Fermi momentum.

ke (fm™9) 0.5 075 10 11 1.2 13 1.36 1.4 15 16 175 2

Eg (MeV) —-15 —-45 -7.7 —9.0 —10.3 —11.8 —12.8 —12.3 —11.0 -6.2 4.6 36.6
E, (MeV) —-0.08 —0.17 —0.4 —07 -11 -17 -21 -23 -35 —44 —6.9 —16.7
E,(Mev) -009 —-0.11 —-03 —06 —.8 -1.6 -20 -22 -34 —-42 -69 —16.9
Ecor (MeV) —0.17 —0.28 —0.7 —1.3 -1.9 -33 -41 -45 —69 —8.6 —13.8 —33.6

where x,o and x o is the pion and sigma-meson noninter- the required accurack., as well asEy andE, .

acting response functions, respectiveRy,.(q) andR,; are The coupling constang was varied until the saturation
the pion and sigma-meson effective interactions. The poterdensity 0.17 fm? (kr=1.36 fm ) was achieved. This cor-
tial 5 responds tay?/47=16.43 and yields the compressibiliky
20y =314 MeV. The equation of state for a wider rangekpfis
V) ===t —— 5 B0 shown in Table |
u+9°—dy  (#°+a°—0ap) g . .
At the saturation density the binding energy Eg=
and the interaction radiys %, where —12.8 MeV per nucleon, while the correlation energy is
Econ=—4.2 MeV, with a sigma and pion contribution of
2M p? wt f dq’ 1 [ x20(Q) E(,zll—z.é Msv and E_= —2.O'|1\élev, respectively,I r|10t
7 =pPs— 7 > — small, indeed, in comparison witi;. More exact calcula-
9 ps ) (2m)7 p24q?—qf L1 XoolARAA  one beyond the approximati¢@0] will be performed in the
2 (q) future. Also, recent advances of the Thomas-Fermi approach
+3L , (31 to quantum chromodynamid4.5] may inspire us to apply
1= x=o(@)Rz(q) the density functional theory, considered above, at that range

) o of parameters when the Thomas-Fermi model is not reliable.
are calculated self-consistent[20]. Substituting value of

g2ps/(2M) for u?, we, after several iterations, obtain with | wish to thank Prof. V. A. Khodel for helpful discussions.
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