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Non-Abelian density functional theory

G. V. Vlasov*
Moscow Aviation Institute and Landau Institute for Theoretical Physics, 2 Kosygin Street, 117334 Moscow, Russia

~Received 2 March 1998!

The density functional approach to a nuclear system with pi and rho coupling is framed. We also extend the
Hohenberg-Kohn theorem and the self-consistent equations to the arbitrary gauge fields. Particularly, the
binding energy of infinite nuclear matter within the nonlinear sigma model is calculated.
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The relativistic density functional theory~DFT! for the
last five years has become a successful tool for solving
nuclear many-body problem@1–9#. The main usefulness o
this method is that it allows one~i! to take into account the
correlation energy,~ii ! to work with relatively simple one-
particle equations, and~iii ! to present the ground-state e
ergy as a density functional. The last two points are es
cially important in comparison with relativistic Bruckne
calculations@10# which include nonlocal equations. More
over, the DFT methods make it possible to find separa
the correlation energy, which we illustrate for calculations
the nonlinear sigma model.

DFT is based on the Hohenberg-Kohn~HK! theorem and
Kohn-Sham~KS! equations. This nodal formalism, initiall
discussed in solid state physics, has been extended to q
tum hadrodynamics with scalars and vectorv mesons
~QHD-I! @3#. Though the power of the density functional
nuclear physics with pseudoscalarp and pseudovectorr me-
sons~this version is called QHD-II! has been recently show
@9#, the relevant fundamentals pertaining to the non-Abel
DFT have not been considered in detail. Below we try
perform this task, taking into account the interaction with
arbitrary gauge field, particularly QHD-II.

We start with the most general formulation of the H
theorem. It reads as follows. The stationary Schro¨dinger
equation

Ĥ renuF&5@Ĥ int1Û~A!#uF&5EuF& ~1!

for the ground stateuF& of an interacting many-fermion sys
tem gives the ground-state energyE. The renormalized
HamiltonianĤ ren5Ĥ1CTC2VEV includes the termÛ(A)
describing the interaction of the fermion quantum fieldĉ
with the external classical static fieldA(r ), whereas the term
Ĥ int corresponds to the interacting many-body system its

We say that two potentialsA andA8 belong to the same
equivalence class when they differ by a gauge transform@3#,
while the two ground statesuF& and uF8& are equivalent if
uF8&5eiauF&. ~For a nondegenerate system the identi
ground states correspond to the same energy and the
ground-state density.! Being constructed of these equiv
lence classes, the set of external potentialsP5$A% is
mapped by a mapf :P→G onto the set of all possible groun
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states G5$uF&%. The map is surjective, indeed: an
ground stateuF&PG has its originalAPP. The second map
s:G→N, being also surjective, maps the setG of the ground
states onto the set of the ground-state densities$n%5N. The
injectivity of the two maps implies that potentials differin
by more than a gauge transform correspond to differ
ground states which give different ground-state densit
This entails the injectivity of the compositions+ f 5h and the
existence of the inverse maph21. Hence any ground stat
uF&5uF@n#& can be presented as a unique functional of
ground-state densityn(r ), as well as the ground-state densi
E@n#5^F@n#uĤuF@n#&. Thus, establishing the injectivity o
the two mappingsf ands, the HK theorem justifies the pos
sibility of using unique density functionals for the groun
state energy and other quantities.

The termÛ(A) reads as

Û~A!5E d3r(
i

$giŶ
iAi%

5E d3r @ ûs1ûv1ûp1û%#, Ŷi5 ĉ̄G i ĉ, ~2!

where the first two terms in square brackets correspond to
interaction with external sigma- and omega-meson fields,
spectively@11,12#

ûs52gsĉ̄ ĉf52%̂sf, ûv5gv~ ĉ̄gmĉ!Vm5 ĵ mVm ,
~3!

while the interaction of fermions with pi- and rho-meso
external potentials is given by

ûp5 igp~ ĉ̄g5tW ĉ !•pW 5 i%Ŵ 5•pW ,

ûr5
1

2
~grĉ̄gmtW ĉ !•bW m5

1

2
wŴ m

•bW m . ~4!

In the future we omit the coupling constants if they lead
confusion.

Let two potentialsA, A8PP, correspond to the identica
ground statesuF&, uF8&PG. Then, inserting expression
~2!–~4! in Eq. ~1!, one obtains
2581 © 1998 The American Physical Society
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E d3r F2%̂s~f2f8!1 ĵ m~Vm2Vm8 !1 i%Ŵ 5•~pW 2pW 8!

1
1

2
wŴ m

•~bW m2bW m8 !G uF&5~E2E8!uF&. ~5!

Contrary to the conserving baryon current̂m, the quantity

wŴ m, in general, does not coincide with the conserving iso
pic current@11#

ı¢̂05wŴ 01bŴ m3BŴ 0m1pŴ 3@]0pŴ 1@pŴ 3bŴ 0##,

BW mn5] [mbW n]2gr@bW m3bW n#. ~6!

However, in light of commuting the HamiltonianĤ ren with

the baryon and isotopic charge operators,Q̂ and IŴ, respec-
tively, we state, that, if Eq.~5! has solutions, it will be writ-
ten as

E d3r F2c̂0~r !1
1

2
cW•wŴ 0~r !G uF&5S 2cQ̂1

1

2
cW•IŴD uF&

5~E2E8!uF&, ~7!

with an arbitrary constantc and with an arbitrary constan
vectorcW , when

wŴ 0~r !5 ı¢̂0~r !. ~8!

If the equality ~8! does not take place, then, inevitably,cW
50, and Eq.~7! reduces to the relevant QHD-I version@3#,
with no trouble concerning fulfillment of the theorem. Equ
tion ~6! reduces to Eq.~8! when only one component of th
isotopic triplet is present, i.e., only neutral pions and r
mesons, and we come again to the QHD-I formulation. Ho
ever, condition~8! takes place also in the case of the sigm
omega, and rho interactions as in@13# and at the approxima
tion that the magnetic components of the rho-meson field
neglected, namely,

pŴ ~r !50, bŴ k~r !.0. ~9!

In the latter case we have to discover whether the poten
leading to Eq.~7! can be produced by a gauge transform
tion. The time-independent gauge transformations have
form

Vm8 ~r !5Vm~r !1]mL~r ,t !, L~r ,t !5ct1l~r !, ~10!

bW 08~r !5bW 0~r !1uW ~r !3bW 0~r !1qW ,

bW k8~r !5bW k~r !1]kuW ~r !1uW ~r !3bW k~r !, ~11!

wherec is arbitrary, whileqW satisfies the constraint

qW 3bW m~r !50. ~12!

Inserting Eqs.~10! and~11! in Eq. ~5!, we come to Eq.~7! if

]kuW ~r !1uW ~r !3bW k~r !50, qW 1uW ~r !3bW 0~r !5cW . ~13!
-

-

-
,

re

ls
-
he

For the approximation~9!, Eqs.~12! and ~13! yield

qW 3bW 0~r !50, ]kuW ~r !50, qW 1uW ~r !3bW 0~r !5cW ,
~14!

which are satisfied for constantbW 0 . For arbitrarybW 0(r ) the
potentials in Eq.~7! differ by more than a gauge transform
tion ~10! and~11!, while the relevant ground states with e
ergiesE andE8 are identical. Thus the DFT method cann
be applied to a model~9! with nucleons interacting through
the pure electric rho-meson field.

Quite an analogous situation arises when we consider
interaction with the external gluon field incorporating th
renormalized Hamiltonian@14# of quantum chromodynam
ics. The conserved color current̂am5Ŷam1 f abcF̂bmnÂm

c co-

incides withŶam5 ĉ̄gmlaĉ only in the caseÂk
c50. The rel-

evant analog of Eq.~7! will be a consequence of a time
independent gauge transformation

Am
a85Am

a 1]m«a1 f abc«bAcm , «a5qat1ua~r ! ~15!

if

]ku
a50, f abcqbAc0~r !50,

A08
a2A0

a5qa1 f abcubAc0~r !5ca. ~16!

For the gauge field, considered in@15#, we can choose con
stant vectorsqa andua satisfying the conditions~16!. Yet for
arbitrary A0

a(r ) the potentials leading to the same grou
state differ by more than a gauge transformation~16!, but do
correspond to the same ground state.

Now we shall prove the injectivity of the second ma
s:G→N, mapping all the ground statesuF&PG onto the
ground-state densities$n%5N. The explicit expression of

each elementn5(rs ,Jm,%W 5 ,WW m) of the set has the formni

5^Ŷi&5^F@n#uŶi uF@n#& ren, namely,

rs5^%̂s&, Jm5^ ̂m&, %W 55^%Ŵ 5&, WW m5^wŴ m&,
~17!

where the operators are defined by relations~3! and ~4!. If
one suspects that the two distinct ground statesuF& anduF8&
lead to the same densityni5^FuŶi uF&5^F8uŶi uF8&, a con-
tradiction inevitably springs up: in light of Eqs.~2! and
~17!, one may write

E5^F@n#uĤ renuF@n#&,^F@n8#uĤ renuF@n8#&

5^F@n8#uĤ ren8 uF@n8#&1^F@n8#uÛ~A!2Û~A8!uF@n8#&.

~18!

Then, interchanging the roles of primed and unprimed va
ables and writing the analogous formula, adding the latte
Eq. ~18!, we come to the incorrect statementE1E8,E8
1E that makes us recognize the injectivity of the seco
map.

Thus the HK theorem warrants the standard application
DFT to QHD-II. We can use the unique ground-state fun
tional E@n#5^F@n#uĤ renuF@n#&, which gives the exact
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ground-state energyE and for all other densitiesn8Þn leads
to a higher energŷF@n8#uĤ renuF@n8#&.E.

It should be noted that the functionalF@n#5E@n#
2UA@n#, where

UA@n#5^F@n#uÛ~A!uF@n#&

5E d3r(
i

gin
iAi , ~19!

does not depend on the external potentials at all. Set

external fields equal to zero, we treatF@%s ,%W 5 ,Jm,WW m# as
the proper energy functional of the QHD-II system witho
external potentials. For a noninteracting system with
HamiltonianĤ05T̂1Û(A), the kinetic energy functionalT0
reads

T0@n#5^F@n#uT̂uF@n#&

5E d3r ^F@n#uc̄~ igk]k1M !cuF@n#& ~20!

and coincides withF@n# of the noninteracting system.
Let us consider the Hamiltonian

Ĥ ren$j%5Ĥ1~j21!ĤI1Û~A$j%!,

ĤI5E d3r(
i

@giŶ
i Âi #, ~21!

where the proper system in the external fieldA corresponds
to j51, whilej50 corresponds to the noninteracting syste
of Kohn-Sham particles moving in the self-consistent fie
A#5A(j50) whose total energy isE$0%5T01UA#. It is
clear that

dĤren$j%

dj
5ĤI1E d3r(

i
Fgi ĉ̄G i ĉ

dAi$j%

dj G . ~22!

In light of the Gellmann-Feynman theorem@6#, the energy
functional is presented in the form

E$z%5E$z50%1E
0

z

djK F$j%U dĤren$j%

dj
UF$j%L .

~23!

Substituting Eq.~22!, we then immediately obtain

E$1%5E@n#5T0@n#1UA@n#1R@n#, ~24!

with the coupling term

R@n#5E
0

1

djE d3r K F$j%U(
i

gi ĉ̄G i ĉÂiUF$j%L .

~25!

The variational differentiationdE@n#/dni50 yields a set
of single-particle equations
g

t
e

H 2 ia•¹1bFM2f#1gmVm
# 1 ig5tW•pW #

1
1

2
gmtW•bW mG J wm~r !5emwm~r !, ~26!

H 2 ia•¹1bFM1(
i

giG
iAi

#G J wm~r !5emwm~r !

~27!

@where we have used the notationĉ(r )5(mwm(r )âm
† with

index m related to the single-particle baryon densities#, with
self-consistent local potentials

Ai
#~r !5Ai~r !1

dR@n#

dni~r !
, ~28!

provided that the noninteracting system of Kohn-Sham p
ticles has the same ground-state energy as the real intera
system. Equations with the self-consistent potentialA# cor-
respond to the equation for the self-consistent Green func
of the Kohn-Sham particle, with the self-energyŜ replaced
by the local potential~28!. The Kohn-Sham equation~27! is
solved self-consistently as in QHD-I@3#: substituting some
approximate potentials in Eq.~27!, we construct single-
particle densities, then obtain new potentials, and so on, u
the required accuracy is achieved. Equations~26! were
solved in the frames of QHD-II with the exchange potenti
@9#; they have the general form~27! for an arbitrary interac-
tion of the current with the external field. The function
R@n#5EH@n#1Ex@n#1Ec@n# includes the Hartree term
EH@n#, the exchange~Fock! termEx@n#, and the correlation
energyEc@n#. The Hartree and exchange contributions we
discussed in detail by several authors@7–9#. The correlation
energy, in spite of a thorough achievement within thes-v
model @16#, is rarely discussed in QHD-II.

The simplest method to evaluate the correlation energ
the random phase approximation~RPA! @17#. However, as
was noted in@18#, the QHD lattice calculations@19# showed
that the RPA yields only 40% of the total correlation energ
Even if the vacuum effects are estimated@18#, the correlation
energy is not small with respect to the binding energy. R
cently, a method@20#, based on the density functional tec
nique@6#, for calculating the correlation energy with vacuu
corrections has been achieved for the nonlinear sigma mo
Nuclear matter calculations in the frames of that model
often applied to the equation of state@21#. On account of the
extreme importance of the correlation energy@18#, we appeal
to the approximation@20# to carry out the present calcula
tions for infinite matter.

Thus the total correlation energy is expressed as a sum
the sigma and pion contributions@20#:

Ec52
g2

2 E
0

1

djE dq4

~2p!4 V~q!F xs0
2 ~q!Rsj~q!

12xs0~q!Rsj~q!

13
xp0

2 ~q!Rpj~q!

12xp0~q!Rpj~q!
G , ~29!
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TABLE I. Binding and correlation energies vs Fermi momentum.

kF (fm21) 0.5 0.75 1.0 1.1 1.2 1.3 1.36 1.4 1.5 1.6 1.75 2

EB ~MeV! 21.5 24.5 27.7 29.0 210.3 211.8 212.8 212.3 211.0 26.2 4.6 36.6
Es ~MeV! 20.08 20.17 20.4 20.7 21.1 21.7 22.1 22.3 23.5 24.4 26.9 216.7
Ep ~MeV! 20.09 20.11 20.3 20.6 2.8 21.6 22.0 22.2 23.4 24.2 26.9 216.9
Ecorr ~MeV! 20.17 20.28 20.7 21.3 21.9 23.3 24.1 24.5 26.9 28.6 213.8 233.6
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h
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f

ach
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s.
wherexs0 and xp0 is the pion and sigma-meson noninte
acting response functions, respectively;Rsj(q) andRpj are
the pion and sigma-meson effective interactions. The po
tial

V~q!52
1

m21qW 22q0
2

1
2q0

2

~m21qW 22q0
2!2

~30!

and the interaction radiusm21, where

2Mm2

g2 5rs2
m4

rs
E dq4

~2p!4

1

m21qW 22q0
2 F xs0

2 ~q!

12xs0~q!Rs~q!

13
xp0

2 ~q!

12xp0~q!Rp~q!
G , ~31!

are calculated self-consistently@20#. Substituting value of
g2rs /(2M ) for m2, we, after several iterations, obtain wit
l.

n.

p.

e

n-

the required accuracyEc , as well asEH andEx .
The coupling constantg was varied until the saturation

density 0.17 fm23 (kF51.36 fm23) was achieved. This cor
responds tog2/4p516.43 and yields the compressibilityK
5314 MeV. The equation of state for a wider range ofkF is
shown in Table I.

At the saturation density the binding energy isEB5
212.8 MeV per nucleon, while the correlation energy
Ecorr524.2 MeV, with a sigma and pion contribution o
Es522.1 MeV and Ep522.0 MeV, respectively, not
small, indeed, in comparison withEB . More exact calcula-
tions beyond the approximation@20# will be performed in the
future. Also, recent advances of the Thomas-Fermi appro
to quantum chromodynamics@15# may inspire us to apply
the density functional theory, considered above, at that ra
of parameters when the Thomas-Fermi model is not relia
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