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Until now, calculations of thé&e2 amplitude in theN— A transition using the spatial current operator have
differed considerably from those using the one-body charge operator and Siegert’'s theorem. We show that this
difference is almost entirely explained by spatial two-body exchange currents consistent with the chosen
quark-quark potentials. These were not explicitly included in previous comparisons. Furthermore, using Sieg-
ert's theorem we find that the main contribution to tB8 amplitude comes from a two-quark spin-flip
mechanism originating from pion and gluon degrees of freedom in the charge operator. Our results provide
insight into the microscopic origin of the intrinsic deformation of the nuclé¢&80556-281®8)00710-9

PACS numbsgs): 13.40.Em, 14.20.Gk, 12.39.Jh

I. INTRODUCTION the Skyrme model[12], the linear o-model [13], the
Nambu-Jona-Lasinio mod¢ll4], and some effective La-
The electromagneticy+N—A transition form factors grangian model§15], theE2 part of the amplitude is domi-
have received considerable attention during recent yearsated by pion and/or sea-quark degrees of freedom, and usu-
High-precision pion production experiments with real andally E2 strengths compatible with experiment have been
virtual photons in the\-resonance region have recently beenobtained. This suggests that some important dynamical fea-
carried out and more are planngti-4]. From these data, turé has been missing in previous CQM calculations.
information on the transverse magnetic dipod 1), the Previous CQM calculations with tensor forces due to one-
transverse electric quadrupol&Z), and the longitudinal 9luon exchange pred|c_teE[2 transition Strei‘gthQEZ(o)
charge quadrupoleQ2) transition form factors can be ex- '2nding betweerGe,(J)=0.0025 andGe,(p) =0.065[11],
tracted. At small photon momentum transfégs, the total depending on whether the calculation was performed with
' . : " the spatial current or, using Siegert's theorem, with the
yN— A amplitude is almost completely determined by the ; . ; .
M1 spin-flip transition, which is the quark model analog of f:harge denglty, rgspecnvely. This came as a surprlse.because
the 21 cm line due to h erfine interaction between the ro|n a gauge-invariant theory both methods of calculating the
ton and electron spin i)r/1patomic hydrogen. At zero phor'zo E2 strength should give the same answer. Thus the standard

cQM explanation ofGg, based on tensor-force-inducéd
momentum transfergq|=0), the strength of thi$11 tran- Q P E2

ition | imately ai by the Bea-Lee-Pai lati states in the nucleon ankl(1232) wave function is incom-
sition is (approximately given by the Beg-Lee-Pais relation plete, both from a phenomenological and conceptual point of

,LLpHAJr:(Z\/E/s)/.Lp [5], which connects th&l— A transi-  \iq,
tion magnetic moment with the proton magnetic moment. In" the main purpose of this work is to investigate the origin
addition, there are also sma#2(C2) contributions[6]. A ¢ the severe violation of gauge invariance observed in Ref.
recent dispersion theoretical analygi§ partly based on the [11] and subsequently corroborated by several autfiBs
data of Ref[1] gives for the quadrupole transition form fac- 1) | 4 calculation which includes bofb-wave admixtures
tor Gep(q) at the reaK-matrix poleGg,=0.108, while the 54 explicit spatial exchange currents, we show that the
data of Ref.[2] yield GE5=0.133(20). These quadrupole strong gauge dependence ®, observed in Refg.11,16—
strengt.hs.ar@T crucial observables because they are a Measyg} is mainly due to the omission of explicit spatial two-
of the intrinsic deformation of the nucleon and the _ body currents in previous comparisons. However, even after
Various explanations for the microscopic origin of this jncjyding spatial exchange currents, and establishing gauge
deformation have been suggested. In the framework of thwariance in leading order, the numerical results underesti-
constituent quark mode¢CQM) the intrinsic deformation of 5te the data foGg, by a factor of 2 or more. Another
the nucleon has been interpreted as arising from effectivgurpose of this paper is to show that the pion and gluon
tensor forces between quarks and the ensilingave ad-  gegrees of freedom in thehargeoperator lead via Siegert's
mixtures in the nucleon wave functi¢f—11]. However, for  theorem to anE2 amplitude inyN—A that is in better

realistic bag radii 0.6 fm) and D-state admixtures agreement with recent experiments than previous CQM re-
(~0.5%) the calculate&?2 transition strength is a factor of gjts.

5-10 smaller than experimef@—11]. On the other hand, in
1. HAMILTONIAN AND WAVE FUNCTION
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3 Pi2 p2 3 pseudoscalakpion), and scalar(sigma exchange interac-
— LIS S confrp . H
H 2, | mg qu) o, Z,] Veonlri,ry) tions
3 Veri 1) =VOCER T 1) + VOPERr r ) + VOSER Y 1),
+X VL), (1) &

i<j

1;/vhich are motivated by the symmetries and dynamical prop-
erties of QCD. These are: asymptotic freedom at short dis-
mentum of the baryon. Color confinement is modeled by tances, chiral symmetry and its dynamical breaking, which

linear or quadratic two-body quark-quark potential. Here. we as important consequences for the form of the interaction at
q ody quark-q P : ' intermediate and larger distances.
take a two-body harmonic-oscillator confinement potential

wherer;, p; are the spatial and momentum coordinates o
theith quark, respectively, and is the center-of-mass mo-

V(i rp) = —acki- N(ri—r))?, 2 A. Effective quark-quark interaction
where\,; is the color matrix of theth quark. Asymptotic freedom is modeled in the nonrelativistic
The residual strong interaction between two spin-1/2 ferquark mode(NRQM) by the one-gluon exchange potential,
mions, can quite generally be parametrized in terms of fiv&/°®EF, which was introduced by De Rujula, Glashow, and
relativistic bilinear invariants, namely scalar, pseudoscalarGeorgi in 1975[19]. In an expansion up to third order in
vector, pseudovector, and tensor combinations that can kigm, (the leading-order color Coulomb potential is counted
formed out of the Dirac spinors and matrices. The chiral as 1fmg), without retardation corrections, and for equal
qguark modelsee Fig. 1 emphasizesffectivevector(gluon), quark masses it reads

11 A~ A

ag 1 =

1
rxi(pi"'pj)

11 1 1 1
—qu 73{3 VXE(Pi—pj)>5(0'i+0'j)— ’E(‘Ti_a'j)”v (4)
wherer=r;—r;; o is the usual Pauli spin matrix, arx is the color operator of theth quark. Equatior{4) contains a
spin-independent central pddolor Coulomb, a spin-dependent central pécblor-magnetic interactiona Galilean-invariant
spin-orbit term, a Galilean-noninvariant spin-orbit term, and a tensor[t28iWith the exception of the color Coulomb term,
all terms in Eq.(4) are higher-order relativistic corrections. However, these ardalest order nonvanishing terma a
nonrelativistic reduction of the Feynman diagrams of Fig),land for instance, the color-magnetic teNn\; o5 - o; of order
O(m;s), is crucial in explaining why the\ (1232) with spin 3/2 is heavier than tiN{939) with spin 1/2.

Chiral symmetry is the other important property of QCD. The spontaneous breaking of this symmetry by the physical
vacuum is responsible for the constituent quark mass generation, as well as for the appearence of pseudoscalar Goldstone

bosons that couple to the constituent quarks. This aspect of QCD is modeled by a one-pion exchange\fidteriiatween
constituent quarks

ngq 1 A? e M

2 e
477(4m§) §A2—,u,27i.71 gt ok r

pP———(u—A)|,

VOPEP(ri,I’J-)= r
)

+(30'|F0']F_0'|0'J)(1+

_+—
pr o (ur)?

wherer=|r|; u is the pion mass, and the chiral cutoff. Heres denotes the isospin of thiegh quark. The pion-quark
coupling constamgiq/(47r), is related to the well-knowsrN coupling constanti,\,/(4w). In addition to the pion, its chiral
partner, namely a massive scalar-isoscalar sigma-meson,amkehange potentidl°SEPis introduced 21]. Quite generally,

the scalar-isoscalar potential between two spin-1/2 fermions, including relativistic corrections toaﬁrdgzﬁ) is given
as[22]:

1 1
VS=Vg- W({(m-pi)z,vé}ﬂm-p,-)?-‘,v?;}+§<VE+V§>V§
q
1dvi1 1
Tar 5(0'1"' 03) - IX(py—p2)+ 5(0'1—0'2)-r><(p1+p2) , (6)
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() (b) (©) FIG. 2. One-body and two-body exchange currents between
quarks: (a) impulse, (b) gluon pair, (c) pion pair, (d) pionic, (e)
FIG. 1. Residual(@ one-gluon,(b) one-pion, and(c) onew  Scalar pair. The finite electromagnetic size of the constituent quarks
exchange potentials between constituent quarks. The hadronic si#&d the pion is indicated by the filled circles.

of the constituent quarks is indicated by small dots. ) o
If, as usual, we restrict ourselves td: @ excitations, we

where have four excited states;DQ,S, @3, , Pp,,, Pp) for theN
o2 ) and three excited state®{, , @5, ®p ) for the A. The

Joq S
Vo=VOSE=— 47 A2 [exp(—mgr)/r —(my—A)]. subscriptsL,, describe the orbital angular momentuin) (

and the symmetrysym) of the orbital wave function under
The parameters of this oneexchange potential are fixed by Particle exchange. Here5 denotes symmetricM mixed
the requirements of chiral symmetry 1] symmetric, andA antisymmetric orbital wave functions. The
N andA wave functions are then given by

9oq O7q  frqf2mg)? N N N N N
(o4 _ T _ T 2N 2 2 — ,
E_ 477_47T( M ) ’ mUN(qu) Tt CDN assq)ss+assq)s's+aSM(bSM+aDM(bDM+aPA(D A’
A
A =A,=A, @) <I>A=bss<1>és+bsrsrbsé+b[)s<bés+bDM<I>éM. )

where f2 /(4)=(3/5)*f%\/(4). If one takesVg=V"  Typical D-state probabilities range between 0.1684 and
one obtains a generalized spin-dependent confinement poted:8% [11]. A detailed description of these wave functions
tial including relativistic correctionf27]. can be found in Refg23,24.

The potential model outlined above should be seen as an
effective description that models the symmetries and main ;. ELECTROMAGNETIC CURRENTS AND GAUGE
properties of the underlying quantum field theory. Despite its INVARIANCE
obvious shortcomings, the constituent quark model with its
lowest nonvanishing order termisas been very successfulin ~ In most applications of the CQ¥B-11,17,1§ the total
describing a wide spectrum of experimental data, ranginglectromagnetic current has been approximated by a sum of
from the properties of single baryons to the properties offee single-quark currenfsee Fig. 29)]:
nuclear few-body systems. The phenomenological success of

imp _ ig-ri.
the potential model coupled with the scarcity of parameters paf(ri @) =ee' s
employed indicates that the notion of constituent quarks in-
teracting via two-body potentials provides a viable descrip- [1] mO(r, Q)= (I[U|><p. 9T+ {p; €97}, (10)

tion of low-energy QCD.

This approximation is called impulse approximation. Equa-
tion (10) corresponds to the operator of lowest nonvanishing
As usual we employ harmonic-oscillator wave functionsorder in a nonrelativistic expansion of the relativistic one-
to diagonalize the Hamiltonian. For three quarks in the)f0 body quark current. In Eq(10), e;=3e(1+373) is the
harmonic-oscillator ground state, the total baryon wave funcguark charge operatot;; is the third component of the iso-
tion @y, is an inner product of the orbital, spin-isospin, spin of theith quark, andg is the three-momentum of the
and color wave function and given by photon.
o3 o 2o N(A) Constituent quarks are_quasiparticles, i.e., current quarks
|¢’N(A>>:(1/\/§”b )7exp(— (p714b™+ N*/30%))[ST) surrounded by a cloud afq pairs and gluons. The internal
structure of the constituent quarks as seen by the electromag-
X |[111]>color ' (8) . . .
netic probe is usually described by a monopole form factor

B. Wave functions

where the Jacobi coordinatgsand N are defined agp=r,

—r, andA=rz—(ry+r,)/2; b is the harmonic-oscillator
constant(quark core radiyswhich describes the size of the
baryon. Due to the residual interactions between the constitu-
ent quarks, they can be scattered from their unperturbeWherery is the charge radius of the constituent quark. In
(0s)® ground-state into higher oscillator shells. This processprder to take the internal electromagnetic structure of the
usually referred to as configuration mixing, admixes excitedconstituent quarks into account, the charge and current op-
states to the unperturbed ground state wave func{ig8s  erators used in this work must be multiplied by the form

Fya(a?) = (11)

1+(16)0%r2,
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factor of Eq.(11). While the mass and size of the constituent TABLE I|. Lowest nonvanishing order of each charge and cur-
quarks are different from those of the current quarks, theent operator according to th@(m,) " classification schemig28].
anomalous magnetic moment of constituent quarks is smat
[25] and therefore neglected here. Imp Pion Gluon Scalar
Before discussing two-body operators, we give our ex-
pressions for the matrix elements of the one-body charge arfd
current operators of Eq10) evaluated between mixed wave J mg* mg* m; 3 mg >
functions. We use the definition of tHe2 transition form
factor Gg, atg=0 as in Ref[24]

-2 —4 —4

m° m m m,

Qo
Qo
o)

3 3
_ Ja)=2 J}T{’(n)ﬂ% [INrior )+ 357 (rir)
Gez(ppy) =b°N| (asbp,, —ap,,bs) _ B
+3J9ry )+ I ) + 38 )]
2 7
£ anbh. — N =Ji11+ o1 - (14
+ \/§(asszM ap,,bsy) + \/@aDMbDS , (117 2]
On the right-hand side of Eq$13),(14) the dependence of
each operator on the photon momentgns suppressed.

. 1
Ge2(J1) = E(aSSbDM"_aDMbSS)y (12
A. Exchange charge and current operators

_ ; In the following, we list the two-body charge and current
where N=My(M,—My)/(2y45). Our expression for o
GEZ(PI[T]p) differs from the ones used in Reff9,11,24, operators employed in this work. These operators have been

: ) . derived by a nonrelativistic reduction of the Feynman dia-
which contain an addltlonalad%bDM/\/é term. Such a term grams of Fig. 2, keeping only the lowest nonvanishing order

is absent in Eq(12) for the following reason: In order for the terms in a Irh, expansion for each process. As usual the
orbital-spin-isospin wave function to be fully symmetric, static limit is taken and nonlocal terms are discarfi2d].
there must be a relative minus sign between the two terms ipor classifying the relativistic corrections, we use the scheme
the mixed symmetric nucleon wave functifsee, e.g., EQ. of Friar [28] in which the leading-order potential of each
(3.12 in Ref. [24]]. If nucleon wave functions with the cor- giagram in Fig. 1 is counted as being of ordé(nn;l). The

rect permutational symmetry are used, the term proportionakativistic orders of the charge and current operators used in
to aS[I\AbDM drops from the final result. Note that this term is this work are listed in Table |.
also absent in Refl16]. We begin with the gluon-exchange current of Fig)2
The numerical difference between the two ways of calcu- _
lating the electric quadrupole transition in E42) has been  pf5{(r;,rj,q)
repeatedly discussed in the literature. However, the impor-
tance of exchange currents for a correct explanation of this

difference has not been recognized. _ = is)\i-hj{eieiq'”[q- r+(0,Xq)- (oyX1)]
The current of Eq(10) is not conserved in the presence of 16my
interactions between the quarks. In a bound system of quarks 1
the electromagnetic current operator is not simply a sum of (o))
. . . 3
free quark currents as in EqL0), but necessarily contains r

various exchange currents for the total electromagnetic cur-

rent to be conserve[®6]. We construct the four-vector ex- 94a,
change current operators from the Feynman diagrams of21 (Fi1,Q)
Figs. 2b)—2(e) and subsequent nonrelativistic expansion up

o 1 1
to lowest nonvanishing order. The spatial parts of the non- =-— —sz)\i-)\j eie'q"ii(ai+a-j)><r+(i<—>j) —.
relativistically reduced exchange currents are closely related My r
to the quark-quark potentials from which they can be derived (15)

by minimal substitutior]27].
The total four vector current density consists of a one-

body operator, and several two-body operaihsee-body Thg above r_;oordmgte space expressions describe a quark-
antiquark pair creation process induced by the external pho-
operators are neglected

ton, or the coupling of the external photon to a quark-
antiquark pair in the nucleon. These gluon-pair currents are

. 3 — = of relativistic origin as reflected by the higher powers of
P(CI)Zizl P[l]p(fi)Jr; Lo} rir) + o] i) 1/m, as compared to the nonrelativistic impulse current of

- ) Eq. (10).

+pE72(}q(ri ,rj)_,’_pfg]nf(ri )] In addition to the gluon exchange currents, we include

pion pair exchange currenfsee Fig. Z)]. For theN—A
=pryt+ P (13)  transition only the isovector pion-pair current contributes
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ie 2 A2 1 current, all other two-body currents are relativistic correc-
g7Tq . . . . .
P mqq (ri.rj, Q== 5 12 tions. This is shown in Table I. We point out that some of
4m (4m ) —u? mq these operators havespin-isospin structureot present in

the lowest order one-body or two-body currents. Thus, al-
though being formally of higher order, they can induce, e.g.,
e M e—Ar) transitions to states not accessible by the lowest order one-

X{73€'9"i0y-qoy- Vo +(i])}

X T body or two-body currents. We will come back to this point.
_ gz A2 B. Gauge invariance and current conservation
J[Wﬂq(fi g ,q)=e4 Zq AZ— In this section we investigate to what extent the electro-
(4m ) magnetic charge and current operators of Sec. Il satisfy the
x{(7 % 1.J.)Seiorrig-i oV, +(i—])} continuity equation
e M e M q-J(a)=[H,p(a)], (19
X - . (16
r r wherep(q) andJ(q) are, respectively, the total charge den-

sity and current density for an interacting three-quark sys-
tem. Verification of Eq(19) in approximate theories is usu-

lly a complicated problem. In this work we cannot do more
han take a few steps in the right direction, and remove two
approximations that are usually employed.

The pionic current of Fig. @) describes a process where
the photon couples to the pion directly. In the static limit Fig.
2(d) does not contribute to the charge density but only to th
spatial current

P (ri.r;,9) =0, ~ We start with a decomposition of all operators in ELP)
into one- and two-body operators and denote them by sub-
g2 A2 script[1] and[ 2], respectively,
mq

Joymm rr,q) = (X T
@i (rir ) A7 X7)3 p(d)=pr1)(a) +p2)(A),

J() = Jp13(q) + 21 (),
H= T[l] + V[2] . (20)

e
Am(4mi) A*—p

112
Xai-Vo,-V; dye'd (R-rv)
PO )

X 17 Proper symmetrization of the two-body operators is under-

stood. In principle, this decomposition could be extended to
In the pionic exchange current we have used the fol|ov\/|ngélhree bOd]}/ opehraéors Then v'\:/e pgrforgl a nonrelat|v|st|fc Le-
abhiovaions: R (112, 2(01)-Lyt 101, ‘g Sucion ofeath dagram i Fig 2 and group ems o e
Lm(a,0) =[50%(1—40?) +m?]¥2 q 1.2 .. y

&)erscripts in parenthesea)(
Next, we construct scalar exchange currents correspond-

e Luf e-Lar
z

——Z —
“L,r A Lar

ing to the generalized scalarmeson exchange and confine- (@) =pf(1)])(q)+p(2)(q)

ment potentials. As in the one-gluon exchange potential, we

have kept relativistic corrections up to ord:@(m;e’) in the prz)(A)=p (q)+p<4>(q)

scalar exchange potential. Although scalar exchange currents

do not contribute to thdl— A transition atg=0 we list them \][ll(q):\]ﬁ])(q) +‘]E§]>(q),

for completeness. Note that the spatial part of the scalar ex-

change current has the same spin-isospin structure as the J[ZI(q):JE%])(qHJg])(q)_ (21)

single-quark current:
In leading nonrelativistic orddr)(mo), the charge density is
1 iq-rj 2 - not modified by exchange curre?wt effects, i.e., one has

P[z](ran,Q) (2m ) eeq ! q _Iq'Vr+§Vr (0) . o L :
~pp1i- This can be seen from Table I and the explicit ex
pressions for the two-body charge densities. On the other

><V§(ri ,rj)+(i<—>j)], hand, the spatial current density is already affected by ex-

change currents in leading nonrelativistic ord@(m;l).
According to Eq.(21) one has

q- (Ja3(@) +Jpy(a) =[H, p{2} (). (22

In this work, we ignore the higher relativistic orders in the
Equation(18) is used to calculate both the confinement- andkinetic energy and the one-body charge and current density.
o-meson-exchange currents. For the two-body operators we keep for each degree of free-
With the exception of the isovector pion-pair current of dom the lowest nonvanishing order, even if it is a higher-
Eg. (16) and the isovector pionic current of E(L7), which  order correction. The reasons for this apparently asymmetri-
are of the same relativistic ord€?(m, 1y as the one-body cal treatment are discussed in Sec. Il C. Equat2®) can

sz](ri,rjaQ) om 2{eelq g X qV(rir =)}
(18
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be further decomposed. Let us first consider the standandght-hand side it is 11%,; a 6% deviation(see also the
nonrelativistic one-body current of the quarks of Fi¢g)2It review by Luchaet al.[30]). Thus, despite its nonrelativistic
is straightforward to show that the one-body current of Eqappearance, the kinetic energy on the right-hand side con-
(10) and the kinetic energy term in E@l) satisfy an inde- tains a considerable amount of relativistic corrections. This is

pendent continuity equation: due to the actual values of the constituent quark masand
) ©0) the quark core radiub. For another estimate consider the
q- I =Ty Py (A1 (23)  matrix elements of the nonrelativistically expanded kinetic
©) L ) energy between the wave function of E§)
wherepy;{ is the nonrelativistic one-body charge density of
order O(mg) in Eqg. (10). Therefore, the two-body spatial 3 5 35
current in Eq.(22) and the potential energy term in EQ) (PpIT[ON)=3Mg+ 5~ ograt poss T
satisfy the following continuity equation: d a a (25)
q-Jp21(D=[Vz) . P (D] (24 We observe that for our choige,~b~* the latter two cor-

) ) , . rections largely cancel each other, and we are again left with
Equation(24) provides a connection between the potentialsy,e syal nonrelativistic expression, i.e., the first two terms in
used to calculate the excitation spectrum of the nucleon angq_ (25).

the electromagnetic currents of bound quarks that are respon--; appears that due to our choice mf,=313 MeV and

sible for its electromagnetic properties. There are tWo,_q g fm the lowest-order terms in the kinetic energy are
sources which contribute to the commutator on the rlght'sufﬁcient to account for the bulk of relativistic effects.

hand side of Eq(24): (i) the momentum dependence &dfid  Therefore. in the framework of the CQM, it seems to be
the isospin-dependence of the potential. For example, th@gitimate to ignore next-to-leading order correctionsalh

spatial gluon exchange current of E{.5) originates from one-body operatorgkinetic energy, one-body charge and

. _mlomﬁ_rlltur;n depep?er)ce of tt?e one-gluon exfchange PRurrent density consistently. The reason for this is E83).
tential, while the spatial pion exchange currents of B4} e should not use next-to-leading order relativistic correc-

Nfons in the one-body charge and current operators if one
ignores them in the kinetic energy. It seems that a proper
choice of quark model parameters suchmgs b, andr , in
the kinetic energy, wave function, and electromagnetic one-
C. Higher-order relativistic corrections body current operator is a better way of including relativistic
The reader may ask why we did not include relativistic €ffects than insisting on formal consistency of a series ex-
corrections to the one-body operators in the Hamiltonianpansion[up to a certain orde©(m,")] [27]. We therefore
charge, and spatial current operators. At first sight it seems tpropose that relativistic corrections to one-body operators be
be inconsistent to use relativistic corrections in two-bodyconsistently neglected.
operators but to ignore them in one-body operators. Recall The same reasoning does not apply to two-body opera-
that in our approach we include for each Feynman diagrantors. For the two-body currents it is important to include
and for each nonrelativistic invariant onthe lowest non- terms of order(’)(mgz) and higher, because in many cases
vanishing order We have previously shown that the inclu- theseare the lowest nonvanishing ordeiSor example, there
sion of next-to-leading order terms in the one-body currents no pion contribution to the charge operator in leading or-
destroys the successful constituent quark model predictionger O(mg). The pion contribution to the charge operator
of baryon magnetic momenf&7]. We have argued that use enters only in orde©(m; ?) (see Table)l It is important to
of these next-to-leading orders in one-body operators contraeep such terms because they contribute isospin-spin struc-
dicts the CQM paradigm, which says that the bulk of rela-tures, not present in the lowest order charge opef&tr In
tivistic corrections is already taken care of by the choice ofuclear physics, the use of these lowest nonvanishing pion
the constituent quarkquasiparticlg mass, and the size pa- exchange corrections in the charge operator is common prac-
rametersb andr . tice [32] even though the consistency with the lowest order
Can one justify the neglect of relativistic corrections in gne-pion exchange potential is broken. For further details on

one-body currents? For a heuristic argument in favor of oufelativistic corrections in one- and two-body operators in the
approach consider the nonrelativistic expansion of the relanonrelativistic quark model see R¢83].

one-pion exchange potential. Equati(®@¥) is shown to be
satisfied for each potential term in E{.) individually [27].

tivistic kinetic energy of a single quark Summarizing this section, it is clear that an effective op-
erator expansion in powers ofr§ converges only very
2 4 6 . .

v p p p slowly or does not converge at all for constituent quarks with

Mg P =Mt o " am? 57 ~mq, the problem being alread t at the level of

Mg 8m;  16m; p~my, the problem being already apparent at the level o

the Hamiltonian. Despite the asymmetrical treatment of one-
An estimate forp based on the uncertainty relation showsand two-body operatorghe kinetic energy is expanded up to
that p~1/b~m,, whereb is the quark core radius. This order(’)(m;l), whereas the two-body potentials may contain
means the series converges only very slowly or does naterms up to ordeO(mq’?’) [19]), the constituent quark model
converge at all, ifb is significantly smaller than 0.6 fm. provides a vast amount of results in agreement with experi-
However, if we truncate the series after tp%I(qu) term  ment[23]. In this work we extend this approach to the
and usep~my, the numerical value for the relativistic ki- charge and current operator which enter the theory in the
netic energy is for the left-hand sidéimq while for the  presence of an external electromagnetic field. We believe
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that by including the lowest nonvanishing order pion-,elements of the Coulomb multipolér'€’) operators which
gluon-, and scalar exchange charges and currents, one gaia®e based on the charge dengity
deeper insight into the problem which dynamical processes T
overn the electromagnetic properties of baryons, than b . o [J+ .
i%noring two-body cu?rents glto%ether. Withoyut exchangey <f|TEJ(|q|_’O)|'>:_W T<f|TCJ(|q|HO)|'>'
currents there is no gauge invariance at all as we will see in (27
the next section.
Here, w is the energy difference between initial and final
IV. THE N—A QUADRUPOLE TRANSITION states and equals the energy transfer of the photon, asd
AND SIEGERT'S THEOREM the total angular momentum of the photon. We use the defi-
nition of the electromagnetic multipole operators as in Ref.
Some time ago it was pointed ofit1] that a calculation  [36]. We will not rederive Siegert's theorem here but merely
of the transversaN— A quadrupole transition form factor, state the necessary requirements for its derivetasi:
Geo(0), evaluated at the pseudothreshojetO gives very (i) The low-momentum transfer limg— 0.
different results depending on whether the transverse current (i) The use of exact eigenstatés and|f) of the Hamil-
density or the charge density of E4.0) is used. This seems tonianH.
to constitute a violation of the gauge invariance condition (i) The continuity equation for the electromagnetic cur-
rent (gauge invariande which relates the total charge den-
sity p, the total current density and the total Hamiltonian of

. . , - the systenq-J(q)=[H,p(q)].
according to which both calculations should give the same Al previous quark model calculations of the— A quad-

answer because the corresponding operators are related ?ﬁbole transition violate the latter two requirements for Sieg-

Coﬁhnrﬂ;gciﬁ'(zg)]'e violation of gaude invariance is huge ert's theorem to some extent. In shell-model calculations,
y: gaug 9 'thich use a finite number of harmonic oscillator stdfeste

Egrrreeri(tagﬂlsei,t a Caltﬂga;frg-btaffioﬂrihfng ngf' bRO(g%/ 4]Spat'%onfiguration spade one always deals with approximate
Yy Xt Il '’ eigenstates. In addition, there is a violation of the continuity

and the expression fdBg,(0) given in Ref.[11], yields an e P ; :
" B = guation if, in the presence of momentum and/or isospin-
E|2 trat1n3|t|ond moTenGE?t(‘]dll])f_ O'Ot?]?G' This dlffgrs by I?ependent two-body interactions only spatial one-body cur-
Emoz an ci[] ero rrt;a%nl uhe romd es(;orrespoi OlnquEesu ents are employeB5]. As in Refs[11,16,17, we use only
ased on the one-body charge densBy,(pyy))=0. the limited 26 w configuration space given by E(®) for the

[11]. .'!‘ Ref. [11] it i's stated that a calculation Of. tH.EZ N andA wave functions. It has been previously shojt8]
transition strength via the one-body charge density is to b‘ﬁwat an increase in the number of oscillator shells does not

preferred, because it is less sensitive to the restriction to famove the violation of gauge invariance. Therefore, we will
finite r;umk;er otf oscnlgtor sfhellsf_m th?. expansion of the TU%ocus on the implications of the continuity equation.
wave function(truncation of configuration space The continuity equation for the electromagnetic current

The malg flﬂ;ﬂlggz ofV\;he plor;]eerlggvztudgsof RO[IEI'&] involves the total charge, the total current and the total
were corroborated by Weyrauch an ehes] and by Hamiltonian of the interacting quark system. However, in

BourdeaL_J Z.ind Mukhopadhy#47], who extend_ed the calcu- most applications of Siegert’s theorem, the continuity equa-

fion is used to replace the divergence of the spatia-body

current density by the commutator of thetal Hamiltonian

with the one-body charge densif¢1,16—18§. One thereby

implicitly includes just those two-body exchange currents
2 that are minimally required by the two-body exchange
otentialVp,; .

In lowest nonvanishing order one usually writes

q,J%=wp—q-I=0, (26)

role of pions. Later Capstick and Ka¥ll8] enlarged the
model space to®w in order to test the conclusions of Refs.
[11,16,17. They pointed out that a larger wave function ba-
sis and the use of relativized wave functions does not remov
the lack of current conservation and suggested investigatin
the electromagnetic transitiavperatorin more detail.

Thus, although there is general agreement that the trunca-
tion of configuration space is partly responsible for the
strong gauge dependence of previous results@ps, the
main source for this discrepancy has not been identified in h (0) is th lativisti “bodv ch tor |
previous CQM calculations. In this work, we show that theV€€pa] IS th€ Nonrelativistic one-body charge operator in

. . Eq. (13). Taking matrix elements on both sides of E}8)
main reason for the large difference betwegg,(pp,;) and ) :
Gg2(Jp1)) is that the former includes the lowest order a and assuming that the stafii¥) and|A) are exact eigen-

relativistic expansionspatial exchange currenls,; . This is states ofH with eigenvaluesty andE, , respectively, one

a consequence of the continuity equation used in the derivao—btalns

tion of Siegert’s theorem.

[H. () 1=a" Gpa)(q) + Ipzy (@), (28)

(AILH.p{F}(@]IN) = (Es—En)(Alp{2}()N)
A. Siegert's theorem =q-(A|(Jy(a@) +Ipz2(@)[N).

Siegert’s theoreni35] states that the matrix elements of (29
the transverse electric multipole operatoféY) as derived
from the spatial current density, can be calculated in the It is evident from Eq.(29) that an evaluation of the matrix
low-momentum transfer limit from the corresponding matrix elements of the one-body charge operatgf implicitly in-
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cludes the effect of spatial two-body exchange currépis

This fact has long been know5|, and it is widely recog- C2

nized that Siegert’'s theorem provides a convenient way of ﬁ
including the spatial two-body exchange currents connected

with the two-body potentials when calculating electric mul-

tipole transitions. N A

B. Siegert's theorem including exchange charges FIG. 3. Two-body gluon and pion exchange charges induce a

The second purpose of this work is to explain the dynamidouble spin flipN(S—wave)—~A(S—-wave) quadrupole E2)
cal origin (in our approachfor the largeE2 amplitude in the transition not .allowed in nonrelatlwstlc.l.mpqlse.apprOX|mat|0n. The
N— A transition. In Eq(29), we have approximated the total strength of_th|5N—>A qgadrupole tra}n3|t|on is given b'y the neutron
charge density by the nonrelativistic one-body charge dencharge rad'uQN*ﬂ:r”/\/E’ or e..quwaleftlyzby tzhe difference be-
sity. This is the usual approximation made in nuclear physiciVeen proton and ™ charge radiiQy-.= (15— r3:)/V2 [39).
and corresponds to Siegert’'s original derivation. It is some- . ~
times called Siegert’s hypothegid7] in order to distinguish pr*[[ o1 x alT ]I [ YT (p) x Y121 (@) (217000,
it from Siegert's theorem, which is more general. Siegert's (33
hypothesis is sufficient for establishing consistency between .
each potential term in Eq3) and the corresponding spatial Therefore, T%?(p(2)= Y% (p), and we get a nonvanishing
exchange currents in Sec. lll A. It is also the underlying asmatrix element of theC2 multipole operator also for a8
sumption of previous quark model work on the=A tran-  — S transition, i.e., a transition involving only the dominant
sition. However, Siegert's theorem of E@7) is more gen- S wave in the nucleon and the domingtwave in theA.
eral, and it is not necessary to use Siegert's hypothesis in ithis transition corresponds to a double spin-flip transition

derivation. involving two quarks(see Fig. 3. With the one-body charge
Consider the following continuity equation with two-body Operator such a transition is impossible. That is why the two-
terms in the charge operator: body charge densities derived from Figsb)2and 2d) lead

to a nonvanishing quadrupole moment, even if there are no
q- Jpa1(a) +Ip2y(a@) + Iz =[H, p1(a) + pr2y (@) 1. D waves in the nucleon and/dr.
(30 In anticipation of our numerical results, we point out that
itis not justified to assume that tipg,; contribution is small,
Here,jm is a spatial two-body current, which is more gen-as in nuclear physics. Oq the contrary, there are obsgrvables
eral than the one in Sec. Ill A, anlj is a heretofore unex- in baryon physics for which the two-body pair terms in the
plored three-body current. charge-density operator are very important. Examples are the
It is interesting to study the implications of Siegert’s theo-neutron charge radiy88] and theN— A transition quadru-
rem based on the more general continuity equa(&®) in ~ pole momen{39]. Using Siegert's theorem we will see that

more detail. The Coulomb quadrupole operator entering Ethe two-body charge operatpt,; provides also the largest
(27) is defined[39] as contribution for theN— A transition form factoiGg, .

1 ~ V. RESULTS AND DISCUSSION
(d)=- 5= [ dogp@vP@. @
m A. Role of spatial exchange currents

wherep(q) is the total charge operator of E(L3) contain- In Table Il we use the wave functions of Refs.
ing one- and two-body terms. Obviously, in order for the[8,9,11,16,38to calculate(i) Ge,(pyy;) Using Siegert's theo-
Coulomb quadrupole operator to be nonzestg) must be rem of Eq.(28), and(ii) Gg,(J) using the total spatial cur-
proportional toY!2(g). Next we investigate the one-body rent of Eq.(14). The latter calculation explicitly includes the

and the two-body terms in the charge-density operator of E yvo-body exchange cyrrenttlz] co_nsstent with _the two-
(13) entering Eq(30) separately ody exchange potentialé,; used in the calculation of the

We start with the one-body charge operaigy . After an N arr]ldA wave furt'1ct|0ns. Nc_)te_lt_hg} onl1lly thg g]'o?tﬁnd glulon
expansion of the plane wave eip{r;) into partial waves exchange currents appear in 1abié 1, and that the Sealar

2] . _ (2], and confinement exchange currents do not contribute in the
we see that its¥*~}(q) component is proportional ®'“(p) it g=0. As is evident from Table II, both methods of

. " calculating theE2 strength agree with each other within 20%
pray [ Y () x Y (p) 1100, (32 for the models investigated. For the models of RES9,38,
A the agreement betwedde,(p[1;) and Ggy(J) is better than
Thus, according to Eq31) T?(p4;) = Y?!(p), and we get 5%. For the model used in Ref11] the inital order of
nonvanishing matrix elements of tf@&2 multipole operator magnitude difference betwee®g,(p1;) and Gea(Jg)
only for the off-diagonalS—D, D—S, and the diagonal shrinks to a 20% discrepancy once the exchange currents
D—D transitions, as can be explictly seen from Ef2).  Jj; consistent with the chosen Hamiltonian are included.
Obviously all terms in Eq(12) involve the smallD-wave Furthermore, we point out that the contribution of the spatial
components in the nucleon aid two-body current],; is usually larger than the one of the
On the other hand, the two-body gluon and pion chargespatial one-body currenl;;;. Concerning the relative con-
densitiesp,; contain a rank-2 tensor in spin space tribution of gluon and pion exchange currents we see from
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TABLE Il. The transverse electric quadrupole form fac®g,(gq?=0) for the y+p—A" transition
calculated with(i) the one-body charge densipf{] using Siegert's theorentji) with the spatial current
density J;;;+Jp2; - The difference betweeGEz(pflf) and Gg,(Jpy;) is almost entirely explained by the
spatial two-body currentd;,; needed to satisfy the continuity equati?¥) with the corresponding poten-
tials. A comparison of the entries in tfiest and last rowshows how well the continuity equation is satisfied
in a truncated (2 w) configuration space for various quark-quark interaction models. The experimental range
for Gg,(0) is: Gg,=0.133(20)[2], Gg,=0.108(17)[1,7], Gg,=0.095(16)[41,42, Gg,=0.066(18)[40].

The remaining discrepancy between theory and recent experiments can be explained by the two-body gluon
and pion charge densitigg,; [39] [see Eq(36)].

Ref.[8] Ref.[9] Ref.[11] Ref.[16] Ref. [38]( )
Gea(p()) 0.0192 0.0203 0.0796 0.0177 0.0165
Gea(J1]) 0.0118 0.0092 0.0076 0.0027 0.0058
G239 0.0084 0.0114 0.0561 0.0044 0.0039
Gea(I7% 0.0000 0.0000 0.0000 0.0122 0.0103
Ge2(I5™) 0.0000 0.0000 0.0000 -0.0039 -0.0037
Gea(J2) 0.0084 0.0114 0.0561 0.0127 0.0105
Gea(Jj1y+Jp2)) 0.0202 0.0206 0.0637 0.0154 0.0163

Table Il that once pions are includéske the models of Refs. tion of the one-body charge operator, despite being of lead-
[16,38) they tend to dominate. ing nonrelativistic ordeO(mg) is very small.

We conclude that gauge invariance is approximately re- In Ref.[39] we have shown that the two-body exchange
stored even in a truncated model space, provided that theorrections to thecharge operator in Eq.(13) provide the
spatial two-body exchange currents required by @) are  major contribution to theC2 amplitude in theN— A transi-
explicitly taken into account. The results in Table Il clearly tion. By virtue of Siegert's theorem they will also lead to a
show that for theN— A quadrupole transition, the violation |arge contribution to the transverse elecfi2 transition am-
of gauge invariance induced by the finite wave function basiglitude as we have argued in Sec. IV B. Due to their particu-
is small compared to the error induced by neglecting spatialar spin and isospin structure, these pion and gluon exchange
exchange currents. Thus the gauge dependence observedchiarge operators can induce transitions betweendtrai-
Refs.[11,17,18 seems to be mainly due to the neglect ofnant S wavesn the nucleon and\ wave functions, and
explicit spatial exchange currents, and has relatively little toexplain theN— A quadrupole transition as a simultaneous
do with the truncation of the model space. This lends furthegpin-flip of two quarks(double spin-flip transition Using
support to our assertion in Ref39] that spatial two-body our parameter-independent relation between the transition
exchange currents are crucial for a gauge-invariant calculaguadrupole moment and the neutron charge radius:

tion of the E2 transition form factor via the spatial current QN—»A(p[Z]):rﬁ/\/E [39], as well as Siegert's theorem we
density. Having explicitly demonstrated that gauge invari-fing

ance holds to good approximation in &@ model space,

one can take either side of the continuity equation to calcu- wMN\/§ )
late Gg,. We obtain using Eqq12) and(27) Gealpp) =~ —75 n=0.107, (39
Gea(pp1)) =0.0166, (34

for the corresponding2 strength induced by the exchange
terms in the charge operator. If we add this to the contribu-
whereas the most recent experimental result igion of the one-body charge density in E§4) we obtain
Gegy=0.133(20)[2].

Gea(pp1)) + Gealpp2)) =0.0166+ 0.107=0.124. (36)

B. The importance of two-body terms in the charge operator  This has to be compared to the most recent experimental
Evidently, a large discrepancy remains between the recenaluesGeg,=0.133(20)[2], andGg,=0.108(17)[1,7].
experimental results G&P=0.133(20) [2] or G Note that Eq(35) is an approximate relation derived us-
—0.108(17)[1,7], and the calculation with the one-body N9 pureS waves for theN andA wave functions. A more
charge operator or the spatial current operator of &d) complef[e calculation using mixed wavg.funcuons for the
(see Table Ii. What is the origin of this discrepancy? From Qvaluatlon of the two—bod_y charge denS|t_|es cannot_ qualita-
our discussion in Sec. IV B and EL2) it is evident that the tively change our conclusion th&eg;(pj2;) is the dominant
one-body charge operator or the leading-order spatial twolerm. Because the admixture coefficients of the other com-
body currents contribute to tHe2 transition only if there are Ponents in theN andA wave functions of Eq(9) are small
D-wave components in the nucleon andbrwave func- [8:9,16,38, we expect Eq(35) to hold within some 30%.
tions. The calculate®-wave probablities in the nucleon and  As to the relative importance @f3{* andpf;]*in Eq.(35),
A wave function are in the constituent quark modelwe have shown before that gluons dominate, if there is no
[9,8,10,38 much less than 1%, and therefore the contribu-configuration mixind 39,38, whereas pions and gluons give
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comparable contributions if configuration mixing is included of the restricted continuity equatid¢@8), in which the charge
[38]. However, theN— A quadrupole transition is probably operator has been approximated by the leading order one-
not a good observable to pin down the relative importance obody contribution. This was sufficient to explain thppar-

pion and gluon degrees of freedom. Because pions do na@nt violation of gauge invariance found in previous quark
couple to the strange quarks, the radiati2 decays of the model calculations that did not include spatial exchange cur-
strange decuplet hyperons provide additional information oments. However, it was insufficient to explain the data. In a
the importance oéffectivegluon degrees of freedom in non- second step, we have investigated the role of the two-body

perturbative QCO43]. terms in the charge operator when applying Siegert’s theo-
rem. Our total result of Eq(36) for the E2 transition
VI. CONCLUSION strength is based on the commutator side of the more com-

] ] plete continuity equatiori30). The latter involves the total

In this work, we have calculated tH€2 strength in the  charge operator including the two-body exchange charge
N—A transition in two different ways. First, we have evalu- , ., |t should be stressed that both ways of calculating the
ated the spatial current density including exchange currents" amplitude[via the total charge or via the total spatial
between mixed wave functions in af@ configuration  cyrrent operator in Eq(30)] will give approximately the
space. Second, using Siegert's theorem, we have calculate@me results, and that one can take either side of the conti-
the E2 amplitude with the help of the one-body charge dennyity equation if one is only interested in transverse electric
sity and mixed wave functions. We have found that bothmyltipoles. This is the content of Siegert's theorem. Thus,
calculations agree remarkably well. This conclusion is indejrrespective of whetheGg, is calculated with the spatial
pendent of the particular model considered. Thus, we havgyrrent or the charge operator, exchange currents dominate
shown that the strong violation of gauge invariance, found inhe N A quadrupoleE2 transition form factor. We con-
the pioneering study of Re{11] and also in subsequent gjger this result as compelling evidence for the important role
works [16—18, was mainly due to the omission ekplicit — f two-body exchange currents in tfé—A quadrupole
spatial two-body currents. The importance of two-body ex+ransition form factor.
change currents for a correct explanation of the apparent vio- |; would be interesting to calculate thel1 transition
lation of gauge invariance has not been recognized before.girength including exchange currents. In this case, one has to

The present calculation also shows that the contribution ogxp"dﬂy calculate the spatial current operator of E80) or
the spatial current of Eq14) evaluated between mixed wave g generalization of it. This issue, and the explicit proof of
functions is far too small to explain the empiride2 transi-  cyrrent conservation whepy, is taken into account deserve
tion form factor. This is a consequence of the snixibtate  fyrther study. However, for the present application to the
probabilities in the nucleon and wave functions of less gjectric quadrupole transition form factor this is not neces-
than 1%. We have previously shown that even if there argary. we stress that our total result for t&@ strength is
no D states in the nucleon and/dr, one obtains &N— A based on the more complete charge operator of E3).and
charge quadrupole moment of the right sign and magnitudgiegertvs theorem.
[39], if one includes two-body pion and gluon pair ter(@s In conclusion, the present CQM calculation with ex-
graphs in the charge operator. Siegert's theorem then im-change currents and tensor force indud@dstates clearly
plies that theE2 transition to theA (1232) can be attributed ghows that the microscopic origin of the deformation lies in
to thesetwo-bodyterms in the charge-density operator. De-the pion and gluon degrees of freedom connected with the
spite being a higher-order relativistic correction, they Pro-quark-antiquark pairgin our language: pair exchange cur-
vide numerically the largest contribution. The reason for thisrenté and not with theD-wave motion of valence quarks as
is simple. Unlike the one-body charge operator, which givesyas heretofore assumed. The double spin-flip mechanism re-
nonzero matrix elements only whéh states are involved, gyiting from our theory with pair-exchange currents seems to
the two-body charge operators can, due to their tensoriagde the physical mechanism that explains the empiri¢al

structure in spin space, connect the domirmtaves inthe _, A quadrupole transition in the constituent quark model.
nucleon andA by a two-quark spin-flip transitiof39].

Let us recapitulate the two steps that we have made to-
wards a gauge-invariant calculation of th@ strength in the ACKNOWLEDGMENTS
quark potential model. We have used Siegert’'s theorem of
Eq. (27) to calculate the transver&e2 amplitude. The basic U. M. is grateful for the kind hospitality during his stay in
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proven the equivalence of the matrix elements of both sidegen for their hospitality.
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