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Until now, calculations of theE2 amplitude in theN→D transition using the spatial current operator have
differed considerably from those using the one-body charge operator and Siegert’s theorem. We show that this
difference is almost entirely explained by spatial two-body exchange currents consistent with the chosen
quark-quark potentials. These were not explicitly included in previous comparisons. Furthermore, using Sieg-
ert’s theorem we find that the main contribution to theE2 amplitude comes from a two-quark spin-flip
mechanism originating from pion and gluon degrees of freedom in the charge operator. Our results provide
insight into the microscopic origin of the intrinsic deformation of the nucleon.@S0556-2813~98!00710-9#

PACS number~s!: 13.40.Em, 14.20.Gk, 12.39.Jh
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I. INTRODUCTION

The electromagneticg1N→D transition form factors
have received considerable attention during recent ye
High-precision pion production experiments with real a
virtual photons in theD-resonance region have recently be
carried out and more are planned@1–4#. From these data
information on the transverse magnetic dipole (M1), the
transverse electric quadrupole (E2), and the longitudinal
charge quadrupole (C2) transition form factors can be ex
tracted. At small photon momentum transfersuqu, the total
gN→D amplitude is almost completely determined by t
M1 spin-flip transition, which is the quark model analog
the 21 cm line due to hyperfine interaction between the p
ton and electron spin in atomic hydrogen. At zero pho
momentum transfers (uqu50), the strength of thisM1 tran-
sition is ~approximately! given by the Beg-Lee-Pais relatio
mp→D15(2A2/3)mp @5#, which connects theN→D transi-
tion magnetic moment with the proton magnetic moment
addition, there are also smallE2(C2) contributions@6#. A
recent dispersion theoretical analysis@7# partly based on the
data of Ref.@1# gives for the quadrupole transition form fa
tor GE2(q) at the realK-matrix poleGE250.108, while the
data of Ref.@2# yield GE2

exp50.133(20). These quadrupo
strengths are crucial observables because they are a me
of the intrinsic deformation of the nucleon and theD.

Various explanations for the microscopic origin of th
deformation have been suggested. In the framework of
constituent quark model~CQM! the intrinsic deformation of
the nucleon has been interpreted as arising from effec
tensor forces between quarks and the ensuingD-wave ad-
mixtures in the nucleon wave function@8–11#. However, for
realistic bag radii (;0.6 fm) and D-state admixtures
(;0.5%) the calculatedE2 transition strength is a factor o
5–10 smaller than experiment@8–11#. On the other hand, in
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the Skyrme model@12#, the linear s-model @13#, the
Nambu–Jona-Lasinio model@14#, and some effective La-
grangian models@15#, theE2 part of the amplitude is domi
nated by pion and/or sea-quark degrees of freedom, and
ally E2 strengths compatible with experiment have be
obtained. This suggests that some important dynamical
ture has been missing in previous CQM calculations.

Previous CQM calculations with tensor forces due to o
gluon exchange predictedE2 transition strengthsGE2(0)
ranging betweenGE2(J)50.0025 andGE2(r)50.065 @11#,
depending on whether the calculation was performed w
the spatial current or, using Siegert’s theorem, with
charge density, respectively. This came as a surprise bec
in a gauge-invariant theory both methods of calculating
E2 strength should give the same answer. Thus the stan
CQM explanation ofGE2 based on tensor-force-inducedD
states in the nucleon andD(1232) wave function is incom-
plete, both from a phenomenological and conceptual poin
view.

The main purpose of this work is to investigate the orig
of the severe violation of gauge invariance observed in R
@11# and subsequently corroborated by several authors@16–
18#. In a calculation which includes bothD-wave admixtures
and explicit spatial exchange currents, we show that
strong gauge dependence ofGE2 observed in Refs.@11,16–
18# is mainly due to the omission of explicit spatial two
body currents in previous comparisons. However, even a
including spatial exchange currents, and establishing ga
invariance in leading order, the numerical results undere
mate the data forGE2 by a factor of 2 or more. Anothe
purpose of this paper is to show that the pion and glu
degrees of freedom in thechargeoperator lead via Siegert’s
theorem to anE2 amplitude ingN→D that is in better
agreement with recent experiments than previous CQM
sults.

II. HAMILTONIAN AND WAVE FUNCTION

The Hamiltonian of the CQM consists of the kinetic e
ergy, a quadratic confinement potential, and residual inte
tionsVres ~see Fig. 1! which model the relevant properties o
QCD:
2478 © 1998 The American Physical Society
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3 S mq1
pi

2

2mq
D 2

P2

6mq
1(

i , j

3

Vconf~r i ,r j !

1(
i , j

3

Vres~r i ,r j !, ~1!

wherer i , pi are the spatial and momentum coordinates
the i th quark, respectively, andP is the center-of-mass mo
mentum of the baryon. Color confinement is modeled b
linear or quadratic two-body quark-quark potential. Here,
take a two-body harmonic-oscillator confinement potentia

Vconf~r i ,r j !52acli•lj~r i2r j !
2, ~2!

whereli is the color matrix of thei th quark.
The residual strong interaction between two spin-1/2 f

mions, can quite generally be parametrized in terms of
relativistic bilinear invariants, namely scalar, pseudosca
vector, pseudovector, and tensor combinations that can
formed out of the Dirac spinors andg matrices. The chiral
quark model~see Fig. 1! emphasizeseffectivevector~gluon!,
f

a
e

-
e
r,
be

pseudoscalar~pion!, and scalar~sigma! exchange interac-
tions

Vres~r i ,r j !5VOGEP~r i ,r j !1VOPEP~r i ,r j !1VOSEP~r i ,r j !,
~3!

which are motivated by the symmetries and dynamical pr
erties of QCD. These are: asymptotic freedom at short
tances, chiral symmetry and its dynamical breaking, wh
has important consequences for the form of the interactio
intermediate and larger distances.

A. Effective quark-quark interaction

Asymptotic freedom is modeled in the nonrelativist
quark model~NRQM! by the one-gluon exchange potentia
VOGEP, which was introduced by De Rujula, Glashow, a
Georgi in 1975@19#. In an expansion up to third order i
1/mq ~the leading-order color Coulomb potential is count
as 1/mq), without retardation corrections, and for equ
quark masses it reads
,

hysical
Goldstone

l

VOGEP~r i ,r j !5
as

4
li•lj H 1

r
2

p

mq
2S 11

2

3
si•sj D d~r !2

1

4mq
2

1

r 3~3si• r̂sj• r̂2si•sj !

2
1

2mq
2

1

r 3F3S r3
1

2
~pi2pj ! D • 1

2
~si1sj !2S r3

1

2
~pi1pj ! D • 1

2
~si2sj !G J , ~4!

wherer5r i2r j ; si is the usual Pauli spin matrix, andli is the color operator of thei th quark. Equation~4! contains a
spin-independent central part~color Coulomb!, a spin-dependent central part~color-magnetic interaction!, a Galilean-invariant
spin-orbit term, a Galilean-noninvariant spin-orbit term, and a tensor term@20#. With the exception of the color Coulomb term
all terms in Eq.~4! are higher-order relativistic corrections. However, these are thelowest order nonvanishing termsin a
nonrelativistic reduction of the Feynman diagrams of Fig. 1~a!, and for instance, the color-magnetic termli•ljsi•sj of order
O(mq

23), is crucial in explaining why theD(1232) with spin 3/2 is heavier than theN(939) with spin 1/2.
Chiral symmetry is the other important property of QCD. The spontaneous breaking of this symmetry by the p

vacuum is responsible for the constituent quark mass generation, as well as for the appearence of pseudoscalar
bosons that couple to the constituent quarks. This aspect of QCD is modeled by a one-pion exchange potentialVOPEPbetween
constituent quarks

VOPEP~r i ,r j !5
gpq

2

4p~4mq
2!

1

3

L2

L22m2ti•tjFsi•sjm
2

e2mr

r
1~3si• r̂sj• r̂2si•sj !S 11

3

mr
1

3

~mr !2Dm2
e2mr

r
2~m↔L!G ,

~5!

where r 5ur u; m is the pion mass, andL the chiral cutoff. Here,ti denotes the isospin of thei th quark. The pion-quark
coupling constant,gpq

2 /(4p), is related to the well-knownpN coupling constantf pN
2 /(4p). In addition to the pion, its chira

partner, namely a massive scalar-isoscalar sigma-meson, and as-exchange potentialVOSEPis introduced@21#. Quite generally,
the scalar-isoscalar potential between two spin-1/2 fermions, including relativistic corrections to orderO(mq

23) is given
as @22#:

VS5V0
S2

1

4mq
2S $~si•pi !

2,V0
S%1$~sj•pj !

2,V0
S%1

1

2
~¹1

21¹2
2!V0

S

1
1

r

dV0
S

dr F1

2
~s11s2!•r3~p12p2!1

1

2
~s12s2!•r3~p11p2!G D , ~6!
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where

V0
S5VOSEP52

gsq
2

4p

L2

L22ms
2 @exp~2msr !/r 2~ms↔L!#.

The parameters of this one-s exchange potential are fixed b
the requirements of chiral symmetry as@21#

gsq
2

4p
5

gpq
2

4p
5

f pq
2

4p S 2mq

m D 2

, ms
2'~2mq!21m2,

Lp5Ls5L, ~7!

where f pq
2 /(4p)5(3/5)2f pN

2 /(4p). If one takesV0
S5Vconf

one obtains a generalized spin-dependent confinement p
tial including relativistic corrections@27#.

The potential model outlined above should be seen a
effective description that models the symmetries and m
properties of the underlying quantum field theory. Despite
obvious shortcomings, the constituent quark model with
lowest nonvanishing order terms, has been very successful
describing a wide spectrum of experimental data, rang
from the properties of single baryons to the properties
nuclear few-body systems. The phenomenological succes
the potential model coupled with the scarcity of paramet
employed indicates that the notion of constituent quarks
teracting via two-body potentials provides a viable desc
tion of low-energy QCD.

B. Wave functions

As usual we employ harmonic-oscillator wave functio
to diagonalize the Hamiltonian. For three quarks in the (0s)3

harmonic-oscillator ground state, the total baryon wave fu
tion FN(D) is an inner product of the orbital, spin-isospi
and color wave function and given by

uFN~D!&5~1/A3pb2!3/2exp„2~r2/4b21l2/3b2!…uST&N~D!

3u@111#&color
N~D! , ~8!

where the Jacobi coordinatesr and l are defined asr5r1
2r2 and l5r32(r11r2)/2; b is the harmonic-oscillator
constant~quark core radius! which describes the size of th
baryon. Due to the residual interactions between the cons
ent quarks, they can be scattered from their unpertur
(0s)3 ground-state into higher oscillator shells. This proce
usually referred to as configuration mixing, admixes exci
states to the unperturbed ground state wave functions@23#.

FIG. 1. Residual~a! one-gluon,~b! one-pion, and~c! one-s
exchange potentials between constituent quarks. The hadronic
of the constituent quarks is indicated by small dots.
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If, as usual, we restrict ourselves to 2\v excitations, we
have four excited states (FS

S8
N

, FSM

N , FDM

N , FPA

N ) for the N

and three excited states (FS
S8

D
, FDS

D , FDM

D ) for the D. The

subscriptsLsym describe the orbital angular momentum (L)
and the symmetry~sym! of the orbital wave function unde
particle exchange. Here,S denotes symmetric,M mixed
symmetric, andA antisymmetric orbital wave functions. Th
N andD wave functions are then given by

FN5aSS
FSS

N 1aS
S8
FS

S8
N

1aSM
FSM

N 1aDM
FDM

N 1aPA
FPA

N ,

FD5bSS
FSS

D 1bS
S8
FS

S8
D

1bDS
FDS

D 1bDM
FDM

D . ~9!

Typical D-state probabilities range between 0.16%@8# and
0.8% @11#. A detailed description of these wave function
can be found in Refs.@23,24#.

III. ELECTROMAGNETIC CURRENTS AND GAUGE
INVARIANCE

In most applications of the CQM@8–11,17,18#, the total
electromagnetic current has been approximated by a sum
free single-quark currents@see Fig. 2~a!#:

r [1]
imp~r i ,q!5eie

iq–r i;

J[1]
imp(r i ,q…5

ei

2mq
~ i @si3pi ,eiq–r i#1$pi ,eiq–r i%!. ~10!

This approximation is called impulse approximation. Equ
tion ~10! corresponds to the operator of lowest nonvanish
order in a nonrelativistic expansion of the relativistic on
body quark current. In Eq.~10!, ei5

1
6 e(113ti3) is the

quark charge operator;ti3 is the third component of the iso
spin of thei th quark, andq is the three-momentum of th
photon.

Constituent quarks are quasiparticles, i.e., current qua
surrounded by a cloud ofqq̄ pairs and gluons. The interna
structure of the constituent quarks as seen by the electrom
netic probe is usually described by a monopole form fac

Fgq~q2!5
1

11~1/6!q2r gq
2

, ~11!

where r gq
2 is the charge radius of the constituent quark.

order to take the internal electromagnetic structure of
constituent quarks into account, the charge and current
erators used in this work must be multiplied by the for

ize

FIG. 2. One-body and two-body exchange currents betw
quarks: ~a! impulse, ~b! gluon pair, ~c! pion pair, ~d! pionic, ~e!
scalar pair. The finite electromagnetic size of the constituent qu
and the pion is indicated by the filled circles.
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factor of Eq.~11!. While the mass and size of the constitue
quarks are different from those of the current quarks,
anomalous magnetic moment of constituent quarks is sm
@25# and therefore neglected here.

Before discussing two-body operators, we give our
pressions for the matrix elements of the one-body charge
current operators of Eq.~10! evaluated between mixed wav
functions. We use the definition of theE2 transition form
factor GE2 at q50 as in Ref.@24#

GE2~r [1]
imp!5b2NS ~aSS

bDM
2aDM

bSS
!

1
2

A3
~aS

S8
bDM

2aDM
bS

S8
!1

7

A30
aDM

bDSD ,

GE2~J[1]
imp!5

1

A5
~aSS

bDM
1aDM

bSS
!, ~12!

where N5MN(MD2MN)/(2A45). Our expression for
GE2(r [1]

imp) differs from the ones used in Refs.@9,11,24#,
which contain an additional 4aS

M8
bDM

/A6 term. Such a term

is absent in Eq.~12! for the following reason: In order for the
orbital-spin-isospin wave function to be fully symmetri
there must be a relative minus sign between the two term
the mixed symmetric nucleon wave function@see, e.g., Eq.
~3.12! in Ref. @24##. If nucleon wave functions with the cor
rect permutational symmetry are used, the term proportio
to aS

M8
bDM

drops from the final result. Note that this term

also absent in Ref.@16#.
The numerical difference between the two ways of cal

lating the electric quadrupole transition in Eq.~12! has been
repeatedly discussed in the literature. However, the imp
tance of exchange currents for a correct explanation of
difference has not been recognized.

The current of Eq.~10! is not conserved in the presence
interactions between the quarks. In a bound system of qu
the electromagnetic current operator is not simply a sum
free quark currents as in Eq.~10!, but necessarily contain
various exchange currents for the total electromagnetic
rent to be conserved@26#. We construct the four-vector ex
change current operators from the Feynman diagrams
Figs. 2~b!–2~e! and subsequent nonrelativistic expansion
to lowest nonvanishing order. The spatial parts of the n
relativistically reduced exchange currents are closely rela
to the quark-quark potentials from which they can be deriv
by minimal substitution@27#.

The total four vector current density consists of a on
body operator, and several two-body operators~three-body
operators are neglected!:

r~q!5(
i 51

3

r [1]
imp~r i !1(

i , j

3

@r [2]
gqq̄~r i ,r j !1r [2]

pqq̄~r i ,r j !

1r [2]
sqq̄~r i ,r j !1r [2]

conf~r i ,r j !#

5r [1]1r [2] , ~13!
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J~q!5(
i 51

3

J[1]
imp~r i !1(

i , j

3

@J[2]
gqq̄~r i ,r j !1J[2]

gpp~r i ,r j !

1J[2]
pqq̄~r i ,r j !1J[2]

sqq̄~r i ,r j !1J[2]
conf~r i ,r j !#

5J[1]1J[2] . ~14!

On the right-hand side of Eqs.~13!,~14! the dependence o
each operator on the photon momentumq is suppressed.

A. Exchange charge and current operators

In the following, we list the two-body charge and curre
operators employed in this work. These operators have b
derived by a nonrelativistic reduction of the Feynman d
grams of Fig. 2, keeping only the lowest nonvanishing or
terms in a 1/mq expansion for each process. As usual t
static limit is taken and nonlocal terms are discarded@29#.
For classifying the relativistic corrections, we use the sche
of Friar @28# in which the leading-order potential of eac
diagram in Fig. 1 is counted as being of orderO(mq

21). The
relativistic orders of the charge and current operators use
this work are listed in Table I.

We begin with the gluon-exchange current of Fig. 2~b!

r [2]
gqq̄~r i ,r j ,q!

52 i
as

16mq
3li•lj$eie

iq•r i@q•r1~si3q!•~sj3r !#

1~ i↔ j !%
1

r 3 ,

J[2]
gqq̄~r i ,r j ,q!

52
as

4mq
2 li•lj H eie

iq•r i
1

2
~si1sj !3r1~ i↔ j !J 1

r 3 .

~15!

The above coordinate space expressions describe a q
antiquark pair creation process induced by the external p
ton, or the coupling of the external photon to a qua
antiquark pair in the nucleon. These gluon-pair currents
of relativistic origin as reflected by the higher powers
1/mq as compared to the nonrelativistic impulse current
Eq. ~10!.

In addition to the gluon exchange currents, we inclu
pion pair exchange currents@see Fig. 2~c!#. For theN→D
transition only the isovector pion-pair current contributes

TABLE I. Lowest nonvanishing order of each charge and c
rent operator according to theO(mq)2n classification scheme@28#.

Imp Pion Gluon Scalar

r mq
0 mq

22 mq
24 mq

24

J mq
21 mq

21 mq
23 mq

23
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r [2]
pqq̄~r i ,r j ,q!5

ie

2

gpq
2

4p~4mq
2!

L2

L22m2

1

mq

3$tj 3eiq•r isi•qsj•¹r1~ i↔ j !%

3S e2mr

r
2

e2Lr

r D ,

J[2]
pqq̄~r i ,r j ,q!5e

gpq
2

4p~4mq
2!

L2

L22m2

3$~ti3tj !3eiq•r isisj•¹r1~ i↔ j !%

3S e2mr

r
2

e2Lr

r D . ~16!

The pionic current of Fig. 2~d! describes a process whe
the photon couples to the pion directly. In the static limit F
2~d! does not contribute to the charge density but only to
spatial current

r [2]
gpp~r i ,r j ,q!'0,

J[2]
gpp~r i ,r j ,q!5e

gpq
2

4p~4mq
2!

L2

L22m2~ti3tj !3

3si•“ isj•“ jE
21/2

1/2

dveiq•~R2rv !

3S zm

e2Lmr

Lmr
2zL

e2LLr

LLr D . ~17!

In the pionic exchange current we have used the follow
abbreviations: R5(r i1r j )/2, zm(q,r )5Lmr1 ivrq, and

Lm(q,v)5@ 1
4 q2(124v2)1m2#1/2.

Next, we construct scalar exchange currents correspo
ing to the generalized scalars-meson exchange and confin
ment potentials. As in the one-gluon exchange potential,
have kept relativistic corrections up to orderO(mq

23) in the
scalar exchange potential. Although scalar exchange curr
do not contribute to theN→D transition atq50 we list them
for completeness. Note that the spatial part of the scalar
change current has the same spin-isospin structure as
single-quark current:

r [2]
S ~r i ,r j ,q!5

1

~2mq!3H eie
iq•r iS 3

2
q22 iq•¹ r1

1

2
¹ r

2D
3V0

S~r i ,r j !1~ i↔ j !J ,

J[2]
S ~r i ,r j ,q!52

i

2mq
2$eie

iq•r isi3qV0
S~r i ,r j !1~ i↔ j !%.

~18!

Equation~18! is used to calculate both the confinement- a
s-meson-exchange currents.

With the exception of the isovector pion-pair current
Eq. ~16! and the isovector pionic current of Eq.~17!, which
are of the same relativistic orderO(mq

21) as the one-body
.
e

g

d-

e

nts

x-
the

d

current, all other two-body currents are relativistic corre
tions. This is shown in Table I. We point out that some
these operators have aspin-isospin structurenot present in
the lowest order one-body or two-body currents. Thus,
though being formally of higher order, they can induce, e
transitions to states not accessible by the lowest order o
body or two-body currents. We will come back to this poin

B. Gauge invariance and current conservation

In this section we investigate to what extent the elect
magnetic charge and current operators of Sec. III satisfy
continuity equation

q•J~q!5@H,r~q!#, ~19!

wherer(q) andJ(q) are, respectively, the total charge de
sity and current density for an interacting three-quark s
tem. Verification of Eq.~19! in approximate theories is usu
ally a complicated problem. In this work we cannot do mo
than take a few steps in the right direction, and remove t
approximations that are usually employed.

We start with a decomposition of all operators in Eq.~19!
into one- and two-body operators and denote them by s
script @1# and @2#, respectively,

r~q!5r [1]~q!1r [2]~q!,

J~q!5J[1]~q!1J[2]~q!,

H5T[1]1V[2] . ~20!

Proper symmetrization of the two-body operators is und
stood. In principle, this decomposition could be extended
three-body operators. Then we perform a nonrelativistic
duction of each diagram in Fig. 2 and group terms of t
same orderO(mq

2n) with n50,1,2, . . . denoted by the su-
perscripts in parentheses (n)

r [1]~q!5r [1]
~0!~q!1r [1]

~2!~q!,

r [2]~q!5r [2]
~2!~q!1r [2]

~4!~q!,

J[1]~q!5J[1]
~1!~q!1J[1]

~3!~q!,

J[2]~q!5J[2]
~1!~q!1J[2]

~3!~q!. ~21!

In leading nonrelativistic orderO(mq
0), the charge density is

not modified by exchange current effects, i.e., one har
'r [1]

(0) . This can be seen from Table I and the explicit e
pressions for the two-body charge densities. On the o
hand, the spatial current density is already affected by
change currents in leading nonrelativistic orderO(mq

21).
According to Eq.~21! one has

q•~J[1]~q!1J[2]~q!!5@H,r [1]
~0!~q!#. ~22!

In this work, we ignore the higher relativistic orders in th
kinetic energy and the one-body charge and current den
For the two-body operators we keep for each degree of f
dom the lowest nonvanishing order, even if it is a high
order correction. The reasons for this apparently asymme
cal treatment are discussed in Sec. III C. Equation~22! can
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be further decomposed. Let us first consider the stand
nonrelativistic one-body current of the quarks of Fig. 2~a!. It
is straightforward to show that the one-body current of E
~10! and the kinetic energy term in Eq.~1! satisfy an inde-
pendent continuity equation:

q•J[1]
~1!~q!5@T[1] ,r [1]

~0!~q!#, ~23!

wherer [1]
(0) is the nonrelativistic one-body charge density

order O(mq
0) in Eq. ~10!. Therefore, the two-body spatia

current in Eq.~22! and the potential energy term in Eq.~1!
satisfy the following continuity equation:

q•J[2]~q!5@V[2] ,r [1]
~0!~q!#. ~24!

Equation~24! provides a connection between the potenti
used to calculate the excitation spectrum of the nucleon
the electromagnetic currents of bound quarks that are res
sible for its electromagnetic properties. There are t
sources which contribute to the commutator on the rig
hand side of Eq.~24!: ~i! the momentum dependence and~ii !
the isospin-dependence of the potential. For example,
spatial gluon exchange current of Eq.~15! originates from
the momentum dependence of the one-gluon exchange
tential, while the spatial pion exchange currents of Eqs.~16!
and~17! are a consequence of the isospin dependence o
one-pion exchange potential. Equation~24! is shown to be
satisfied for each potential term in Eq.~1! individually @27#.

C. Higher-order relativistic corrections

The reader may ask why we did not include relativis
corrections to the one-body operators in the Hamiltoni
charge, and spatial current operators. At first sight it seem
be inconsistent to use relativistic corrections in two-bo
operators but to ignore them in one-body operators. Re
that in our approach we include for each Feynman diag
and for each nonrelativistic invariant onlythe lowest non-
vanishing order. We have previously shown that the inclu
sion of next-to-leading order terms in the one-body curr
destroys the successful constituent quark model predict
of baryon magnetic moments@27#. We have argued that us
of these next-to-leading orders in one-body operators con
dicts the CQM paradigm, which says that the bulk of re
tivistic corrections is already taken care of by the choice
the constituent quark~quasiparticle! mass, and the size pa
rametersb and r gq .

Can one justify the neglect of relativistic corrections
one-body currents? For a heuristic argument in favor of
approach consider the nonrelativistic expansion of the r
tivistic kinetic energy of a single quark

Amq
21p25mq1

p2

2mq
2

p4

8mq
3

1
p6

16mq
5

2•••.

An estimate forp based on the uncertainty relation show
that p'1/b'mq , where b is the quark core radius. Thi
means the series converges only very slowly or does
converge at all, ifb is significantly smaller than 0.6 fm
However, if we truncate the series after thep2/(2mq) term
and usep'mq , the numerical value for the relativistic ki
netic energy is for the left-hand sideA2mq while for the
rd

.
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right-hand side it is 1.5mq ; a 6% deviation~see also the
review by Luchaet al. @30#!. Thus, despite its nonrelativisti
appearance, the kinetic energy on the right-hand side c
tains a considerable amount of relativistic corrections. Thi
due to the actual values of the constituent quark massmq and
the quark core radiusb. For another estimate consider th
matrix elements of the nonrelativistically expanded kine
energy between the wave function of Eq.~8!

^FNuTuFN&53mq1
3

2mqb2 2
5

8mq
3b4 1

35

48mq
5b6 1•••.

~25!

We observe that for our choicemq'b21 the latter two cor-
rections largely cancel each other, and we are again left w
the usual nonrelativistic expression, i.e., the first two terms
Eq. ~25!.

It appears that due to our choice ofmq5313 MeV and
b'0.6 fm, the lowest-order terms in the kinetic energy a
sufficient to account for the bulk of relativistic effect
Therefore, in the framework of the CQM, it seems to
legitimate to ignore next-to-leading order corrections inall
one-body operators~kinetic energy, one-body charge an
current density! consistently. The reason for this is Eq.~23!.
One should not use next-to-leading order relativistic corr
tions in the one-body charge and current operators if
ignores them in the kinetic energy. It seems that a pro
choice of quark model parameters such asmq , b, andr gq in
the kinetic energy, wave function, and electromagnetic o
body current operator is a better way of including relativis
effects than insisting on formal consistency of a series
pansion@up to a certain orderO(mq

2n)# @27#. We therefore
propose that relativistic corrections to one-body operators
consistently neglected.

The same reasoning does not apply to two-body ope
tors. For the two-body currents it is important to includ
terms of orderO(mq

22) and higher, because in many cas
theseare the lowest nonvanishing orders. For example, there
is no pion contribution to the charge operator in leading
der O(mq

0). The pion contribution to the charge operat
enters only in orderO(mq

22) ~see Table I!. It is important to
keep such terms because they contribute isospin-spin s
tures, not present in the lowest order charge operator@31#. In
nuclear physics, the use of these lowest nonvanishing p
exchange corrections in the charge operator is common p
tice @32# even though the consistency with the lowest ord
one-pion exchange potential is broken. For further details
relativistic corrections in one- and two-body operators in
nonrelativistic quark model see Ref.@33#.

Summarizing this section, it is clear that an effective o
erator expansion in powers of 1/mq converges only very
slowly or does not converge at all for constituent quarks w
p'mq , the problem being already apparent at the level
the Hamiltonian. Despite the asymmetrical treatment of o
and two-body operators~the kinetic energy is expanded up
orderO(mq

21), whereas the two-body potentials may conta
terms up to orderO(mq

23) @19#!, the constituent quark mode
provides a vast amount of results in agreement with exp
ment @23#. In this work we extend this approach to th
charge and current operator which enter the theory in
presence of an external electromagnetic field. We beli
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that by including the lowest nonvanishing order pion
gluon-, and scalar exchange charges and currents, one
deeper insight into the problem which dynamical proces
govern the electromagnetic properties of baryons, than
ignoring two-body currents altogether. Without exchan
currents there is no gauge invariance at all as we will se
the next section.

IV. THE N˜D QUADRUPOLE TRANSITION
AND SIEGERT’S THEOREM

Some time ago it was pointed out@11# that a calculation
of the transversalN→D quadrupole transition form factor
GE2(q), evaluated at the pseudothresholdq50 gives very
different results depending on whether the transverse cur
density or the charge density of Eq.~10! is used. This seem
to constitute a violation of the gauge invariance condition

qmJm5vr2q•J50, ~26!

according to which both calculations should give the sa
answer because the corresponding operators are relate
cording to Eq.~26!.

Numerically, the violation of gauge invariance is hug
For example, a calculation based on the one-body sp
current densityJ[1] , the admixture coefficients of Ref.@34#,
and the expression forGE2(0) given in Ref.@11#, yields an
E2 transition momentGE2(J[1] )50.0076. This differs by
almost an order of magnitude from the corresponding re
based on the one-body charge densityGE2(r [1] )50.065
@11#. In Ref. @11# it is stated that a calculation of theE2
transition strength via the one-body charge density is to
preferred, because it is less sensitive to the restriction
finite number of oscillator shells in the expansion of the tr
wave function~truncation of configuration space!.

The main findings of the pioneering study of Ref.@11#
were corroborated by Weyrauch and Weber@16# and by
Bourdeau and Mukhopadhyay@17#, who extended the calcu
lation to finite momentum transfers, and also investigated
role of pions. Later Capstick and Karl@18# enlarged the
model space to 6\v in order to test the conclusions of Ref
@11,16,17#. They pointed out that a larger wave function b
sis and the use of relativized wave functions does not rem
the lack of current conservation and suggested investiga
the electromagnetic transitionoperator in more detail.

Thus, although there is general agreement that the tru
tion of configuration space is partly responsible for t
strong gauge dependence of previous results forGE2 , the
main source for this discrepancy has not been identified
previous CQM calculations. In this work, we show that t
main reason for the large difference betweenGE2(r [1] ) and
GE2(J[1] ) is that the former includes the lowest order~in a
relativistic expansion! spatial exchange currentsJ[2] . This is
a consequence of the continuity equation used in the der
tion of Siegert’s theorem.

A. Siegert’s theorem

Siegert’s theorem@35# states that the matrix elements
the transverse electric multipole operators (TEJ) as derived
from the spatial current density,J, can be calculated in the
low-momentum transfer limit from the corresponding mat
,
ins
s
y

e
in

nt

e
ac-

.
ial

lt

e
a

e

e

-
ve
ng

a-

in

a-

elements of the Coulomb multipole (TCJ) operators which
are based on the charge densityr:

^ f uTEJ~ uqu→0!u i &52
v

uquA
J11

J
^ f uTCJ~ uqu→0!u i &.

~27!

Here, v is the energy difference between initial and fin
states and equals the energy transfer of the photon, andJ is
the total angular momentum of the photon. We use the d
nition of the electromagnetic multipole operators as in R
@36#. We will not rederive Siegert’s theorem here but mere
state the necessary requirements for its derivation@36#:

~i! The low-momentum transfer limitq→0.
~ii ! The use of exact eigenstatesu i & andu f & of the Hamil-

tonianH.
~iii ! The continuity equation for the electromagnetic cu

rent ~gauge invariance!, which relates the total charge den
sity r, the total current densityJ and the total Hamiltonian of
the systemq•J(q)5@H,r(q)#.

All previous quark model calculations of theN→D quad-
rupole transition violate the latter two requirements for Sie
ert’s theorem to some extent. In shell-model calculatio
which use a finite number of harmonic oscillator states~finite
configuration space!, one always deals with approximat
eigenstates. In addition, there is a violation of the continu
equation if, in the presence of momentum and/or isosp
dependent two-body interactions only spatial one-body c
rents are employed@35#. As in Refs.@11,16,17#, we use only
the limited 2\v configuration space given by Eq.~9! for the
N andD wave functions. It has been previously shown@18#
that an increase in the number of oscillator shells does
remove the violation of gauge invariance. Therefore, we w
focus on the implications of the continuity equation.

The continuity equation for the electromagnetic curre
involves the total charge, the total current and the to
Hamiltonian of the interacting quark system. However,
most applications of Siegert’s theorem, the continuity eq
tion is used to replace the divergence of the spatialone-body
current density by the commutator of thetotal Hamiltonian
with the one-body charge density@11,16–18#. One thereby
implicitly includes just those two-body exchange curren
J[2] that are minimally required by the two-body exchan
potentialV[2] .

In lowest nonvanishing order one usually writes

@H,r [1]
~0!~q!#5q•„J[1]~q!1J[2]~q!…, ~28!

wherer [1]
(0) is the nonrelativistic one-body charge operator

Eq. ~13!. Taking matrix elements on both sides of Eq.~28!
and assuming that the statesuN& and uD& are exact eigen-
states ofH with eigenvaluesEN and ED , respectively, one
obtains

^Du@H,r [1]
~0!~q!#uN&5~ED2EN!^Dur [1]

~0!~q!uN&

5q•^Du~J[1]~q!1J[2]~q!!uN&.

~29!

It is evident from Eq.~29! that an evaluation of the matrix
elements of the one-body charge operatorr [1] implicitly in-
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cludes the effect of spatial two-body exchange currentsJ[2] .
This fact has long been known@35#, and it is widely recog-
nized that Siegert’s theorem provides a convenient way
including the spatial two-body exchange currents connec
with the two-body potentials when calculating electric m
tipole transitions.

B. Siegert’s theorem including exchange charges

The second purpose of this work is to explain the dyna
cal origin~in our approach! for the largeE2 amplitude in the
N→D transition. In Eq.~29!, we have approximated the tota
charge density by the nonrelativistic one-body charge d
sity. This is the usual approximation made in nuclear phys
and corresponds to Siegert’s original derivation. It is som
times called Siegert’s hypothesis@37# in order to distinguish
it from Siegert’s theorem, which is more general. Siege
hypothesis is sufficient for establishing consistency betw
each potential term in Eq.~3! and the corresponding spati
exchange currents in Sec. III A. It is also the underlying
sumption of previous quark model work on theN→D tran-
sition. However, Siegert’s theorem of Eq.~27! is more gen-
eral, and it is not necessary to use Siegert’s hypothesis i
derivation.

Consider the following continuity equation with two-bod
terms in the charge operator:

q•„J[1]~q!1 J̃[2]~q!1J[3]…5@H,r [1]~q!1r [2]~q!#.
~30!

Here, J̃[2] is a spatial two-body current, which is more ge
eral than the one in Sec. III A, andJ[3] is a heretofore unex
plored three-body current.

It is interesting to study the implications of Siegert’s the
rem based on the more general continuity equation~30! in
more detail. The Coulomb quadrupole operator entering
~27! is defined@39# as

TC2~ uqu!52
1

4pE dVqr~q!Y0
[2]~ q̂!, ~31!

wherer(q) is the total charge operator of Eq.~13! contain-
ing one- and two-body terms. Obviously, in order for t
Coulomb quadrupole operator to be nonzero,r(q) must be
proportional toY[2] (q̂). Next we investigate the one-bod
and the two-body terms in the charge-density operator of
~13! entering Eq.~30! separately.

We start with the one-body charge operatorr [1] . After an
expansion of the plane wave exp(iq•r i) into partial waves
we see that itsY[2] (q̂) component is proportional toY[2] (r̂)

r [1]}@Y[ l ]~ q̂!3Y[ l ]~ r̂!# [0] . ~32!

Thus, according to Eq.~31! TC2(r [1] )}Y[2] (r̂), and we get
nonvanishing matrix elements of theC2 multipole operator
only for the off-diagonalS→D, D→S, and the diagona
D→D transitions, as can be explictly seen from Eq.~12!.
Obviously all terms in Eq.~12! involve the smallD-wave
components in the nucleon andD.

On the other hand, the two-body gluon and pion cha
densitiesr [2] contain a rank-2 tensor in spin space
f
d

i-

n-
s
-

s
n

-

its

-

q.

q.

e

r [2]}@@si
[1]3sj

[1] # [2]3@Y[0]~ r̂!3Y[2]~ q̂!# [2] # [0] .
~33!

Therefore,TC2(r [2] )}Y[0] (r̂), and we get a nonvanishin
matrix element of theC2 multipole operator also for anS
→S transition, i.e., a transition involving only the domina
S wave in the nucleon and the dominantS wave in theD.
This transition corresponds to a double spin-flip transit
involving two quarks~see Fig. 3!. With the one-body charge
operator such a transition is impossible. That is why the tw
body charge densities derived from Figs. 2~b! and 2~d! lead
to a nonvanishing quadrupole moment, even if there are
D waves in the nucleon and/orD.

In anticipation of our numerical results, we point out th
it is not justified to assume that ther [2] contribution is small,
as in nuclear physics. On the contrary, there are observa
in baryon physics for which the two-body pair terms in t
charge-density operator are very important. Examples are
neutron charge radius@38# and theN→D transition quadru-
pole moment@39#. Using Siegert’s theorem we will see tha
the two-body charge operatorr [2] provides also the larges
contribution for theN→D transition form factorGE2 .

V. RESULTS AND DISCUSSION

A. Role of spatial exchange currents

In Table II we use the wave functions of Ref
@8,9,11,16,38# to calculate~i! GE2(r [1] ) using Siegert’s theo-
rem of Eq.~28!, and~ii ! GE2(J) using the total spatial cur
rent of Eq.~14!. The latter calculation explicitly includes th
two-body exchange currentsJ[2] consistent with the two-
body exchange potentialsV[2] used in the calculation of the
N andD wave functions. Note that only the pion and gluo
exchange currents appear in Table II, and that the scalas
and confinement exchange currents do not contribute in
limit q50. As is evident from Table II, both methods o
calculating theE2 strength agree with each other within 20
for the models investigated. For the models of Refs.@8,9,38#,
the agreement betweenGE2(r [1] ) andGE2(J) is better than
5%. For the model used in Ref.@11# the inital order of
magnitude difference betweenGE2(r [1] ) and GE2(J[1] )
shrinks to a 20% discrepancy once the exchange curr
J[2] consistent with the chosen Hamiltonian are include
Furthermore, we point out that the contribution of the spa
two-body currentJ[2] is usually larger than the one of th
spatial one-body currentJ[1] . Concerning the relative con
tribution of gluon and pion exchange currents we see fr

FIG. 3. Two-body gluon and pion exchange charges induc
double spin flip N(S2wave)→D(S2wave) quadrupole (E2)
transition not allowed in nonrelativistic impulse approximation. T
strength of thisN→D quadrupole transition is given by the neutro
charge radiusQN→D5r n

2/A2, or equivalently by the difference be
tween proton andD1 charge radii,QN→D5(r p

22r D1
2 )/A2 @39#.
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2486 PRC 58BUCHMANN, HERNÁNDEZ, MEYER, AND FAESSLER
TABLE II. The transverse electric quadrupole form factorGE2(q250) for the g1p→D1 transition
calculated with~i! the one-body charge densityr [1]

(0) using Siegert’s theorem,~ii ! with the spatial current
density J[1]1J[2] . The difference betweenGE2(r [1]

(0)) and GE2(J[1] ) is almost entirely explained by the
spatial two-body currentsJ[2] needed to satisfy the continuity equation~24! with the corresponding poten
tials. A comparison of the entries in thefirst and last rowsshows how well the continuity equation is satisfie
in a truncated (2\v) configuration space for various quark-quark interaction models. The experimental
for GE2(0) is: GE250.133(20)@2#, GE250.108(17)@1,7#, GE250.095(16)@41,42#, GE250.066(18)@40#.
The remaining discrepancy between theory and recent experiments can be explained by the two-bod
and pion charge densitiesr [2] @39# @see Eq.~36!#.

Ref. @8# Ref. @9# Ref. @11# Ref. @16# Ref. @38#(p)

GE2(r [1]
(0)) 0.0192 0.0203 0.0796 0.0177 0.0165

GE2(J[1]
(1)) 0.0118 0.0092 0.0076 0.0027 0.0058

GE2(J[2]
gqq̄) 0.0084 0.0114 0.0561 0.0044 0.0039

GE2(J[2]
pqq̄) 0.0000 0.0000 0.0000 0.0122 0.0103

GE2(J[2]
gpp) 0.0000 0.0000 0.0000 -0.0039 -0.0037

GE2(J[2] ) 0.0084 0.0114 0.0561 0.0127 0.0105
GE2(J[1]1J[2] ) 0.0202 0.0206 0.0637 0.0154 0.0163
.
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Table II that once pions are included~see the models of Refs
@16,38#! they tend to dominate.

We conclude that gauge invariance is approximately
stored even in a truncated model space, provided that
spatial two-body exchange currents required by Eq.~28! are
explicitly taken into account. The results in Table II clear
show that for theN→D quadrupole transition, the violatio
of gauge invariance induced by the finite wave function ba
is small compared to the error induced by neglecting spa
exchange currents. Thus the gauge dependence observ
Refs. @11,17,18# seems to be mainly due to the neglect
explicit spatial exchange currents, and has relatively little
do with the truncation of the model space. This lends furt
support to our assertion in Ref.@39# that spatial two-body
exchange currents are crucial for a gauge-invariant calc
tion of the E2 transition form factor via the spatial curre
density. Having explicitly demonstrated that gauge inva
ance holds to good approximation in a 2\v model space,
one can take either side of the continuity equation to ca
late GE2 . We obtain using Eqs.~12! and ~27!

GE2~r [1] !50.0166, ~34!

whereas the most recent experimental result
GE2

exp50.133(20)@2#.

B. The importance of two-body terms in the charge operator

Evidently, a large discrepancy remains between the re
experimental results GE2

exp50.133(20) @2# or GE2
exp

50.108(17) @1,7#, and the calculation with the one-bod
charge operator or the spatial current operator of Eq.~14!
~see Table II!. What is the origin of this discrepancy? Fro
our discussion in Sec. IV B and Eq.~12! it is evident that the
one-body charge operator or the leading-order spatial t
body currents contribute to theE2 transition only if there are
D-wave components in the nucleon and/orD wave func-
tions. The calculatedD-wave probablities in the nucleon an
D wave function are in the constituent quark mod
@9,8,10,38# much less than 1%, and therefore the contrib
-
he
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tion of the one-body charge operator, despite being of le
ing nonrelativistic orderO(mq

0) is very small.
In Ref. @39# we have shown that the two-body exchan

corrections to thecharge operator in Eq.~13! provide the
major contribution to theC2 amplitude in theN→D transi-
tion. By virtue of Siegert’s theorem they will also lead to
large contribution to the transverse electricE2 transition am-
plitude as we have argued in Sec. IV B. Due to their parti
lar spin and isospin structure, these pion and gluon excha
charge operators can induce transitions between thedomi-
nant S wavesin the nucleon andD wave functions, and
explain theN→D quadrupole transition as a simultaneo
spin-flip of two quarks~double spin-flip transition!. Using
our parameter-independent relation between the trans
quadrupole moment and the neutron charge rad
QN→D(r [2] )5r n

2/A2 @39#, as well as Siegert’s theorem w
find

GE2~r [2] !52
vMNA3

12
r n

250.107, ~35!

for the correspondingE2 strength induced by the exchang
terms in the charge operator. If we add this to the contri
tion of the one-body charge density in Eq.~34! we obtain

GE2~r [1] !1GE2~r [2] !50.016610.10750.124. ~36!

This has to be compared to the most recent experime
valuesGE250.133(20)@2#, andGE250.108(17)@1,7#.

Note that Eq.~35! is an approximate relation derived u
ing pureS waves for theN andD wave functions. A more
complete calculation using mixed wave functions for t
evaluation of the two-body charge densities cannot qua
tively change our conclusion thatGE2(r [2] ) is the dominant
term. Because the admixture coefficients of the other co
ponents in theN andD wave functions of Eq.~9! are small
@8,9,16,38#, we expect Eq.~35! to hold within some 30%.

As to the relative importance ofr [2]
pqq̄ andr [2]

gqq̄ in Eq. ~35!,
we have shown before that gluons dominate, if there is
configuration mixing@39,38#, whereas pions and gluons giv
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comparable contributions if configuration mixing is includ
@38#. However, theN→D quadrupole transition is probabl
not a good observable to pin down the relative importance
pion and gluon degrees of freedom. Because pions do
couple to the strange quarks, the radiativeE2 decays of the
strange decuplet hyperons provide additional information
the importance ofeffectivegluon degrees of freedom in non
perturbative QCD@43#.

VI. CONCLUSION

In this work, we have calculated theE2 strength in the
N→D transition in two different ways. First, we have eval
ated the spatial current density including exchange curr
between mixed wave functions in a 2\v configuration
space. Second, using Siegert’s theorem, we have calcu
the E2 amplitude with the help of the one-body charge de
sity and mixed wave functions. We have found that bo
calculations agree remarkably well. This conclusion is in
pendent of the particular model considered. Thus, we h
shown that the strong violation of gauge invariance, found
the pioneering study of Ref.@11# and also in subsequen
works @16–18#, was mainly due to the omission ofexplicit
spatial two-body currents. The importance of two-body e
change currents for a correct explanation of the apparent
lation of gauge invariance has not been recognized befo

The present calculation also shows that the contribution
the spatial current of Eq.~14! evaluated between mixed wav
functions is far too small to explain the empiricalE2 transi-
tion form factor. This is a consequence of the smallD-state
probabilities in the nucleon andD wave functions of less
than 1%. We have previously shown that even if there
no D states in the nucleon and/orD, one obtains aN→D
charge quadrupole moment of the right sign and magnit
@39#, if one includes two-body pion and gluon pair terms~Z
graphs! in the charge operator. Siegert’s theorem then
plies that theE2 transition to theD(1232) can be attributed
to thesetwo-bodyterms in the charge-density operator. D
spite being a higher-order relativistic correction, they p
vide numerically the largest contribution. The reason for t
is simple. Unlike the one-body charge operator, which gi
nonzero matrix elements only whenD states are involved
the two-body charge operators can, due to their tenso
structure in spin space, connect the dominantS waves in the
nucleon andD by a two-quark spin-flip transition@39#.

Let us recapitulate the two steps that we have made
wards a gauge-invariant calculation of theE2 strength in the
quark potential model. We have used Siegert’s theorem
Eq. ~27! to calculate the transverseE2 amplitude. The basic
ingredient in Siegert’s theorem is the continuity equation
the electromagnetic current. In a first step, we have explic
proven the equivalence of the matrix elements of both si
e-

ym
th
of
ot

n

ts

ted
-
h
-
e

n

-
o-
.
f

e

e

-

-
-
s
s

al

o-

of

r
y
s

of the restricted continuity equation~28!, in which the charge
operator has been approximated by the leading order o
body contribution. This was sufficient to explain theappar-
ent violation of gauge invariance found in previous qua
model calculations that did not include spatial exchange c
rents. However, it was insufficient to explain the data. In
second step, we have investigated the role of the two-b
terms in the charge operator when applying Siegert’s th
rem. Our total result of Eq.~36! for the E2 transition
strength is based on the commutator side of the more c
plete continuity equation~30!. The latter involves the tota
charge operator including the two-body exchange cha
r [2] . It should be stressed that both ways of calculating
E2 amplitude@via the total charge or via the total spati
current operator in Eq.~30!# will give approximately the
same results, and that one can take either side of the c
nuity equation if one is only interested in transverse elec
multipoles. This is the content of Siegert’s theorem. Th
irrespective of whetherGE2 is calculated with the spatia
current or the charge operator, exchange currents domi
the N→D quadrupoleE2 transition form factor. We con-
sider this result as compelling evidence for the important r
of two-body exchange currents in theN→D quadrupole
transition form factor.

It would be interesting to calculate theM1 transition
strength including exchange currents. In this case, one ha
explicitly calculate the spatial current operator of Eq.~30! or
a generalization of it. This issue, and the explicit proof
current conservation whenr [2] is taken into account deserv
further study. However, for the present application to t
electric quadrupole transition form factor this is not nec
sary. We stress that our total result for theE2 strength is
based on the more complete charge operator of Eq.~13! and
Siegert’s theorem.

In conclusion, the present CQM calculation with e
change currents and tensor force inducedD states clearly
shows that the microscopic origin of the deformation lies
the pion and gluon degrees of freedom connected with
quark-antiquark pairs~in our language: pair exchange cu
rents! and not with theD-wave motion of valence quarks a
was heretofore assumed. The double spin-flip mechanism
sulting from our theory with pair-exchange currents seem
be the physical mechanism that explains the empiricaN
→D quadrupole transition in the constituent quark mode
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