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Octet and decuplet baryons in a covariant and confining diquark-quark model
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The baryon octet and decuplet masses and Bethe-Salpeter vertex and wave functions are calculated in the
ladder approximation to the quark exchange between a scalar or axialvector diquark and a constituent quark.
These functions reflecting full Lorentz covariance are given in terms of an expansion in Gegenbauer polyno-
mials. In the rest frame of the baryon, a complete partial wave decomposition of the Bethe-Salpeter wave
function is performed. The confinement of quarks and diquarks is implemented via a parametrization of the
corresponding propagators. We also discuss some aspects of the momentum routing in the ladder approxima-
tion to the Bethe-Salpeter equation. Numerical results for the octet and decuplet masses with broken flavor
SU(3) in the conserved isospin limit are presentgsl0556-28138)00810-3

PACS numbgs): 11.10.St, 12.39.Ki, 12.40.Yx, 14.20.Dh

I. INTRODUCTION dictated by chiral symmetry, the detailed structure of all
other mesons are still unclear. Although quite a few baryon
In a recent papefl] we presented numerical results for models, see, e.g., Ref&—11], have been developed in the
the nucleon form factors in a fully Lorentz covariant modellast 40 years, a unified description of baryons within a cova-
based on the idea that baryons may be viewed as bourndhnt field theoretical approach, and with quarks and gluons
states of confined constituent diquarks and quarks interactings the fundamental degrees of freedom, is still missing. In
via quark exchange. The confinement of the constituents iaddition to being covariant, such a description should include
hereby effectively parametrized. The poles of the correchiral symmetry in its spontaneously broken phase and con-
sponding propagators are removed by some modifying mulfinement. A covariant model with the correct symmetry pat-
tiplicative factors which, however, possess an essential sirtern but without confinement is the Nambu—Jona-Lasinio
gularity at timelike infinite momentum. The physical picture (NJL) model[12,13 where quarks as fundamental fermion
behind this baryon model is very natural: Diquarks are alields interact locally, for recent reviews see Réfisl—16.
lowed to “decay” into two quarks, one of them recombines There, baryons appear either as nontopological solitbris
with the third quark and forms another diquark. The hope is19] or as bound states of a quark and a digUya®—26. A
that for physics relevant at intermediate momentum transhybrid formalism combining the soliton with the diquark pic-
fers, most of the complicated structure of the baryon may beure has been developed in Rgt7], where it turned out that
efficaciously described by assuming strong correlations inhe soliton background contributes as much to the total bind-
the quark-quark channel. Thus the notion of diquarks paraming energy of the nucleon as the direct coupling between two
etrizes to some extent unknown nonperturbative physicguarks and between quark and diquark. In the Global Color
within baryons. In recent years diquarks have not only beeModel, a nonlocal extension of the NJL model, there also
used in nonperturbative calculations but also in the descripexist preliminary studies of nucleons as diquark-quark bound
tion of inelastic lepton-nucleon scattering, see R3]  states, see, e.g., R¢28] and references therein.
where various applications of diquarks are extensively dis- In this paper we extend the investigations reported in Ref.
cussed. Very recently diquark masses have been estimatétl. There we solved the Bethe-Salpeter equation for nucle-
from lattice measuremenid]. ons in the ladder approximation but restricted ourselves to
The main purpose of our investigations is to formulate ascalar diquarks. Employing the solution of the Bethe-
baryon model applicable to the intermediate energy regionSalpeter equation, i.e., the nucleon vertex functions, we cal-
This is mainly motivated with the advent of a new generationculated various form factors such as the electromagnetic, the
of continuous beam facilities such as CEBAF at TINAF,weak, and the pionic form factor of the nucleon. Despite the
MAMI, ELSA, COSY etc. which are designed to explore an fact that this work is a promising starting point for further
intermediate region lying between the non-perturbative low-investigations, some results, especially for the magnetic mo-
energy and the perturbative high-energy regime of QCDments, signaled that the axial-vector diquark channel is nec-
These facilities explore various hadron observables to a vergssary for a realistic description of baryons as bound states of
high precision. The different existing hadron models are taquarks and diquarks. Here we therefore include the axialvec-
be judged by their ability to predict and to explain thesetor diquark channel into the nucleon Bethe-Salpeter equa-
observables in the near future. While there exist many modtion. We also present results for baryons with spin 3/2.
els capable of describing pion properties which are strongly The paper is organized as follows: In the next section the
covariant and confining diquark-quark model, as defined in
Ref. [1], is briefly reviewed. By modifying the propagators

*E-mail: oettel@pthp3.tphys.physik.uni-tuebingen.de of quarks and diquarks an effective modeling of confinement
"Present address: Deutsche Bank, Frankfurt, Germany. enters our model. In Sec. Il the Bethe-Salpeter equations for
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wave functions, are discussed. With an appropriate three * ()i 2B tTanT

spinor basis we then construct covarialnsaze for the 95 aA(X)Gs(x)1 "CLIGC(X))

wave functions which are suitable for the numerical solution +*BYgac(X) Ciy t3as(X) A X, (X)

of the homogeneous integral equations. Section IV is de- o

voted to a discussion of the subtleties concerning the mo- —ngAa#(x)qB(x)t}ai y“CﬁE(x)). (2.1

mentum routing in the Bethe-Salpeter equation, associated

with the ladder approximation. The numerical method isThe quark field is denoted by(x), the scalar diquark field

shortly described in Sec. V, and our results for the baryor®y A(X) and the axial-vector diquark field by*(x). Their

masses and wave functions are described in Sec. VI. In th@asses are given by the matrices in flavor spage mg+

last section we finally conclude and give an outlook. Somednd my+, respectively. For unbroken flavor symmetry they

technical issues are deferred to three appendixes. reduce to mg=diag(my), mMg+=diag(my+), and my+
=diag(m;+). In Eqg. (2.1), capital subscripts denote color
guantum numbers. In the kinetic part of thé tliquark the

Il. THE COVARIANT AND CONFINING non-Abelian field strength tensorF#”=g*AY—g"A*
DIQUARK-QUARK MODEL +[A* A”] appears AﬂzAaMtg). The associated self-

interactions, however, will not be taken into account. The

coupling strengths, of Yukawa type, between two quarks and

the scalar or axial-vector diquarks are given dyor g,,

r’Fespectively. In order to take an extended diquark into ac-

count, the pointlike couplings will be supplemented with mo-

mentum dependent factors to be defined later.

Here we briefly recapitulate the definition of the covariant
and confining diquark-quark model as given in Réi. Such

sidered in Refs[29,30. Since the solution of a rigorous
relativistic three body equation, a Faddeev equafgij, is

stil rlr(nssmgﬁ:n ftl_eld(;[heory wef IOHO(\jN the gﬁ.th k;)f using '?'Ih An essential ingredient entering our model is the effective
quarks as efiective degrees of freedom within baryons. e}Sarametrization of confinement. This is realized by modify-

SErve as an eff|C|ent_ tool to parametrize some of the un|'ng the kinetic terms of the constituents in the Lagrangian
known non-perturbative features of the baryon wave func—(2 1). Going to Euclideahmomentum space and using
tion. As stated in the Introduction such approaches have been ™"

successful in the past to describe baryons in NJL-type mod- fi(x)=1—e d1+x), (2.2)

els [20-26. A three-dimensional reduction of the fully co-

variant Bethe-Salpeter model discussed here, can be found the model quark and diquark propagators, being diagonal in
Ref.[32], where the author solved the bound state equationsolor and flavor space, are given by

in the Salpeter approximation which ignores all retardation

effects. ip—m 2 2, 2
Having in mind the diquark-quark description arising S(p)= p2+mg(1_e ApTrmimy), 2.3
within the hadronized NJL mod§g20], some basic structures q
are fixed: To build up a colorless baryon out of a diquark and 1
a quark being in the fundamental representation of the color D(p)=— _2(1_efd<p2+m§+)/m§+), (2.4)
group SU(3}, diquarks necessarily live in the color antitrip- p2+ Mg+
let channel. Furthermore, in order to fulfill the Pauli prin-
ciple, scalar diquarks couple via the antisymmetric genera- (8"7+ pMpV/m?) s 2 2
tors of the flavor group?={p?=1-%, axial-vector diquarks D#(p)=— CIR) 1—e dPTEM)IMy
via the symmetric generatorgi={p®=*, respectively pmy.
[20]. Our conventions for these flavor matricgsare given (2.5

in Appendix A. In the following, however, we deviate from p e g the numerators, the mass poles of the propagators are
the NJL model as described in R¢fl6]. Quarks and di- effectively screened.The strength of the screening is de-
quarks are treated as elementary but confined particles, S@griped by the parameter Whereas the analytic behavior of
below, whose interaction, quark exchange, gives rise 9he quark propagatof2.3) is similar to the ones obtained
quark-diquark correlations strong enough to bind these fieldg gy, Dyson-Schwinger studies of QClletails about this
to a baryon. _ , , approach can be found in Ref33]), the justification for
This can be formalized with the Lagrangian using confined diquarks is somewhat more involved. As
stated above, diguarks are not color singlets and should
— - 2 2 therefore be confined by the fundamental interaction of
L=ga(X)(i*d,—mg)F(—d°Tmg)ga(x) QCD. Nevertheless most diquark modf34—36 which de-
+ _ 2 22 scribe them as bound states of two quarks predict diquarks to
+AAX) (=3 ,0"—mg ) f(—a7Img. ) Aa(X) be observable particles. Recent studies, however, which in-
vestigated the system of the quark Dyson-Schwinger equa-

1
- ZFLV(X)f( — 3%Im2.)F#¥(x) tion and the diquark Bethe-Salpeter equation beyond the usu-

1
+ oM AR, (O (— a2 mi ) Aky(x)

2 We use an Euclidean space formulation withy,, ,v,}

=28,,, Y,=7v.,andpg=3,_,p,0,.
c T . wv I3 wlu
+ €"PUgsac(X) iy t5da(X) AZA(X) 2With f=1"we refer to the propagators as tree level propagators.
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ally employed rainbow-ladder approximation, were able toln this formulation, the Bethe-Salpeter equation involves the
explain why diquarks do not appear in the observable parmatrix-valued Bethe-Salpeter wave functions of octet bary-
ticle spectrum. This mechanism works in the Munczek-ons Wg(p;P) and Wg(p;P) and decuplet baryons
Nemirovsky mode[37], as has been shown in R¢88], as  W}!(p;P), respectively, which are projected on positive par-
well as in an extended NJL modE89]. Since both models ity and spin 1/2 or spin 3/2ee the following subsection for
assume a simplified but quite different quark-quark interactheir construction Their flavor part is given by pure octet
tion, one may conjecture that the same also holds true implegnd decuplet states in SU@)or- They depend on the total
menting a realistic interaction. For these reasons we use thﬁomentun‘P of the bound state and on the relative momen-
notion of confined diquarks. In our approach we thereforqum p’ or p between the two constituents. Mathematically,
use the propagators defined in E(a4) and (2.5 which do  the Bethe-Salpeter equations are equivalent to coupled ho-
not allow observable diquarks. In the following it will be mogeneous integral equations. The numerical method for its
seen that working with confined quarks and diquarks leads tgg|ytion is presented in Sec. V, see d40].
the absence of an unphysical quark-diquark threshold for Ajthough the Lagrangiaf2.1) describes a renormalizable
baryons. diquark-quark theory, at least at one-loop level, the Bethe-
Additionally we introduce the diagonal approximation to sapeter equations in ladder approximation are formally di-
the axial-vector diquark propagator by omitting theyergent in the ultraviolet. The divergence, of course, should

prpYim?, term, then be cured by the wave functions. However, to crudely
take into account the extended nature of diquarks we work,
SHY p? as in Ref[30,1], with a finite interaction in momentum space
D**(p)=— -5 1( —2) (2.6 and modify the propagator of the exchanged quark according
p +m1+ my+ to
It is well-known that the full Proca propagator may cause B A?
spurious ultraviolet problems. These vanish in the special, S(q)—>S(q)—S(q)( 24 AZ)' 3.3

unitary gauge and have no physical consequences. As such a

treatment is, however, beyond the scope of our purely phethis corresponds to a monopole-type form factor. As a con-
nomenological investigation we have chosen to avoid thisequence, this also removes all formal ultraviolet divergen-
problem by using a diagonal approximation to the propagacies. Note that we have absorbed the charge conjugation ma-
tor. Its validity is examined more closely in Appendix B.  trix C appearing in the Lagrangia2.1) using the identity

C 'S'(q)C=5(-q).

IIl. BETHE-SALPETER EQUATION FOR OCTET AND Before actually solving the integral equations it is appro-
DECUPLET BARYONS IN THE FLAVOR-SYMMETRIC priate to find a suitable basis for the wave functions appear-
CASE ing in Egs.(3.1) and(3.2.

Using the Lagrangian given in E@2.1) we obtain the A. Relativistic three quark states and their wave functions
ladder Bethe-Salpeter equation for octet and decuplet bary- \when constructing a baryon out of three quarks, its wave

ons function is formally described by a spinor of rank three,
Yapy (a,B,y=1...4). For octet baryons, a convenient
We(p;P) basis for this multi-spinor can be found by expanding the
(p:P) direct product of the spinors describing quarks of flator
8(P: and c with spinor indicesgB and vy into the complete set of
Dirac matrices and taking the direct product with a spinor
,(D(Py) 0 d*p’ basis of quarla [41]:
- lad 2 Jsipa [ 22
S0 Dp)) T (2m)t 05, = (TU)o(¢C Y5y (3.4
- g 1~ . .
vsS(— ) ys — 32y S(—q) ys C denotes charge conjugation and
S
8 g; |9a/* u [<X+ X)]
a = a 1~ —_ ,
— B ysS(— )yt~ S v S(— )y 0 0
9s |94l
Vo(p':P) is a basis of positive energy Dirac spinors in the rest frame
« 8/ P (3.1) describing fermions with spin upH) and spin down {).
E(p'P))’ ' In this representatiol’ and ¢ are Dirac matrices to be ex-
panded in the complete sgt, ys, y*, y5y*,0*"}.
up 2 , Under a Lorentz transformatids(A), this wave function
W16(p;P)=—2|gal*S(pa) D" (pp) transforms according to
d*p’ . 8 _ “1p A -1lveo-1 1
Xf 2 p)n*S(—q)y"‘IfiS(p’;P). 32  Yapy=CL(ATP.ATP)S oo (SU o (SHS Cvs)(%ys)
v .
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TABLE I. The Lorentz covariants leading to baryons with positive parity. They are grouped according to
their diquark content.

Scalar diquark €ys) g, Axial-vector diquark ¢, vsCvs) g,
Octet (T3u), (TP ),
Decuplet (Tfum),
(ys TH“[p7u,]) 4
ISe {LP, B P,o"p,}
FiA”E {P*ys, P*¥s5, ¥"7vs, P*ysP, PXysp,

p”75P1 p#75p1 Pv75UV#1 pV‘YSO-VHv
P#‘}/SPVO-VPpp ’ p,u“YSPVO-Vppp ’ '}’”’}’5PV0'V"pp}

The parity transformation is given by projectof A*=(1+P). Thus we are led to the following
relations between the wave functions of E§.7) and the
corresponding functions in the Bethe-Salpeter equdfal):

L[ SS 3si)A+_ We(p;P)
S\AAr] T AiaAr]T P
(3.8

U8 = m(Y'T (Y P.D)U)(¥*$(7*,P,P) y“c:y;,)m(,
3

e}

Zr?
zir-

where 7 is the intrinsic parity of the baryon and®

=(=P,PY, p=(—p.p*, v*=(—77". The independent covariant§ and .A* are required to be
To ensure total spin 1/2 of the wave function, the freegjgenfunctions ofA * which reduces the number of indepen-
Lorentz indices in(3.4) are to be contracted with the inde- dent scalar functions from sixteen to eight which are now
pendent momenta involved and each covariant will be mulgenoted byS,, (i=1,2) andA;, (i=1...6). Aconvenient
tiplied by a scalar function. representation of these covariants suitable for our numerical

In the diquark-quark model, only the two choices #r procedure and for further applications is given by
={1,y*ys} are taken into account which describe the scalar

and axial-vector diquark. The covariants which lead to posi- S;=A",
tive parity of spin-1/2 octet states['q),, can be grouped S = i 3.9
according to scalar and axial-vector diquark states with the ! = :
spinor indicesB and vy, see Table |, second row. As de- p

scribed above, the free Lorentz indices in these covariants

are contracted with the momenfaandp and are then to be Ab=— LpuypA
multiplied with scalar functions. No further symmetrization 1™ p YsPTA
of the wave function is necessary as this will be provided by p B N
the quark exchange. AG=PHysAT,
Using this classification scheme, the octet wave function Ak= §¢75I3TA+
be denoted b '
can be denoted by Ab— | (3.10
Af=-prysAT,
4 16 . " B
Vapy= 2 (ZTRWL(CY)pyt 2 (ZITHU)a(7,C)p,- AS=ysyEA T A,
(3.7 Af=—rysyrprA"— AL,

Each of the four covariantf's which describe the scalar whereyy=y*—P*P. Note that the indices have been cho-
diquark part in the octet baryon wave function is multiplied sen such that matrices with odd indides{1,3,5 are eigen-
by a scalar functiorz? and likewise there are twelve scalar functions toP—iM whereas the ones with even indices
functionsz” multiplying the axial-vector diquark covariants ={2,4.6; are eigenfunctions t8+iM, with eigenvalue 0 in
rAx, both cases.

A further reduction of thisAnsatzby a projection to posi-
tive energies is very convenient. From the expressii)
for the octet wave function we consider only the part with 3ywe denote normalized four vectors with a hat, e®.P=1. In
spinor indexa, multiply it with the adjoint spinoru(P,s)  the Euclidean rest frameé®=(0,iM) this explicitly reads P
and sum over the spins. This leads to a wave function whick=p/iM. Note that all relative momenta(p’) are real in Euclid-
is, by construction, an eigenfunction of the positive-energyean space as they are only needed for spacelike values.
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In the rest frame of the bound staf=(0,iM), theAn-  twelve covariants as for the octet state with axial-vector di-
satzfor the matrix valued nucleon wave function which we quark correlations, however, multiplied by to ensure posi-

used for further numerical processing reads tive parity. The decuplet wave functions read now
18, 0 Yapy=(Y5U") o 74C) gy
1 0 4
P =3, (ZPTP8"u") o(7,C)gy
Wa(p;P) 1 0 16 .
W4(p:P) ploPAL 2 (ZP s PIUNu(7,C)py, (313

Py 1A, 0
We(piP) 2 where thezP denote the sixteen scalar functions for the de-

cuplet state.
Taking from eq.(3.13 only the part with spinor index
and projecting it to positive energies leads to

+3/2
(3.1 2 Yi(pP)U(P,9UNP.s)

The scalar quantitie§; andA; depend orp=p,p, andz

=cosy=P-p for each value of the bound state mass. As
expected from the properties & and A/ [see Eqs(3.9) (3.149

and(3.10], upper components have odd indices, lower com-Therefore the projected wave functigwhich besides being

ponents have even indices. a 4X4 matrix has tensor characteis determined by the
The strategy shown above for the octet baryon can also bgyngition

applied to decuplet baryons which have spin 3/2. Projection

ip(op)As+ (X p)(op)As O
i

1
A+ — (o XpA 0
pp4 p(O' P As

=Y45(p;P)P" = W43 (p;P) =4} (p;P)P"".

of the trispinor wave function, s, onto total spin 3/2 may Vi (p;P) =W (p;P)P”, (3.19

be achieved by expanding the piece associated with cuark . ) ) ]

in terms of Rarita-Schwinger spinots, : which requires¥4; to be an eigenfunction of the Rarita-

Schwinger projector. Here, the explicit expression of the Eu-

wi%y:(l“u#)awC)By, (3.12 clidean Rarita-Schwinger projector is given by

I' is chosen such that all Lorentz indices are contracted with _ . L1 , 2 PEPY i PRy"— Py~

the momenta® andp. Note that the Rarita-Schwinger con- P*"1=A"| =8+ 2y%y"—3 VERRE M

straints demandi, y*=u,P#*=0 and that in the diquark-

guark model the diquark part of decuplet states is made of =:ATAM?, (3.16

axial-vector diquarks onlyg=C+y". ) _ N )

The covariantd” which are left for decuplet states after The most general form which fulfills conditiof3.15 is
applying the above restrictions and the positive parity con- . -
stegizt (?an be found in Table I, third row.QI'he covgrian)i[s for Wi (p;P)=DiSiA Y A HIE ys AFA T PIAM
octet and decuplet states are closely related. Due to the (3.17
Rarita-Schwinger constraints the Lorentz indexugf must  which requires the covariants again to be eigenfunctions of
be contracted either with the Lorentz index of the axiaI-AJr, as a consequence we may use the same choice for the
vector diquark ¢“C) or with the transversal relative mo- 4# andsS, as in the octet case and are left with eight inde-
mentum p#zp“—lf’“(p P). For the first choice, we have pendent scalar functions.
the same four covariants as for the octet state with scalar In the rest frame of the bound state, the decuplet wave
diquark correlations. For the second choice, we obtain théunctions are then denoted by

(5”—%&&)[)1 0 [—biE4+i(axﬁ)iE6][bi—%(aﬁ)ai 0
VipiP)=| | L | 1
B(UP)<5ij_§UiUJ)D2 0 5[—6‘E3+i<axﬁ>‘E5]<ap>[ﬁj—g(ab)ai 0
. (3.18
I—[pj—%(ap)oj E, O
- p
Wilp;P)=

E, O

P N
i(op)[pj—g(ap)o’
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and all other components &f4J(p;P) vanish. The appear- =—(i/2)[ y*,y"] differs by a minus sign from its Minkowski
ance ofys in Eq. (3.17) has interchanged upper and lower counterpart. The tensots and S are written as a sum over
components as compared to the octet case. the respective tensors for each of the three constituent quarks

Instead of working with the Bethe-Salpeter wave func-which are labeled=1,...,3 andwith respective Dirac in-
tions one may alternatively use the Bethe-Salpeter vertedicesaa’,BB',yy'. _ _
functions obtained by amputating the external quark and di- With the definition of the spin matri>E'=%eijka“‘ the
qguark propagators from the wave function Pauli-Lubanski operator reads

Pg(p;P)=S"*(pa)D (pp)We(p;P), (319 (W) aar 887 vy =L 8aar ® 851 ® 8,0 +(S) aar g7 yy

(3.26
PE(p;P)=S"H(pa) (D™ H*(py) ¥5(p;P), (320
. o d
PLE(P;P)=S"1(pa) (D™ H*"(pp) ¥15(P;P). (3.2 LIZ(_i)fijkpjﬁ_pky (3.27)

Substituting the wave functions by the vertex functions in the
Bethe-Salpeter equatior3.1) and(3.2) leads to a reformu- i 1 i
lation of the bound state equations which is sometimes more(S)aa’.gp", vy =5 [(Z) aar @ 8ppr @ 8y + Saar ® (X)) g
convenient. For example in Ref30,1] the equations con- A
taining only scalar diquarks have been solved in a form ®0,yy t 000 ® 05 ®(2'),, ], (3.28
which includes the vertex function explicitly.

where we have already introduced the relative momerum
B. Orbital angular momentum and spin of the Bethe-Salpeter ~ Petween quark and diquark via a canonical transformation

wave functions in the rest frame of the bound state

P:1+2+3 — 1+2_1_ 3
Whereas the choice of the covariants in E¢&9 and PrpTHps p=7(pHpY) = (1= 7P

(3.10 which build the octet and decuplet wave functions is 1

well suited for numerical computation and further covariant p'==(pt-p?). (3.29
calculations, their physical interpretation is not obvious. In 2

general, covariant wave functions possess only the mass of

the bound stat® and its total angular momentudnas good ~ Assuming a pointlike diquark, the relative momentum be-
quantum numbers. In the rest frame of the bound state, hoviween quark 1 and Z’, vanishes and the only contribution
ever, the wave functions can be written as a sum of trispinor the orbital angular momentum stems frgm W2 now
each possessing definite orbital angular momentum and spitgkes the form

thus allowing a direct interpretation of the different compo-

nents. These trispinors are linear combinations of the cova- W2=12+2L-S+82, (3.30
riantsS; and.4; which have been constructed in the previous

subsection, multiplied by the respective Dirac matrices ) 9 9
(vsC) g, and (y*C) 4, denoting the diquark content, respec- L2= 2p'—i—p2Ap+ p'pl—i—j , (3.3)
tively. ap ap' Jp

In the rest frame the Pauli-Lubanski operator for a tri-
spinor is given by e i
2(L . S)Cra',ﬂﬁ’,‘y‘y' = — eijkpj a_pk{(z )aa/® 5BBI® 6‘}/‘}//

1 )
le—fijkﬁjk, (322 .
2 + Oaa ®[(2) g ® 8,
whose square characterizes the total angular momentum + 533,®(2i)w,]}, (3.32
WW i 5,=3(I+ 1) th g, (3.23 , 1{
(S )aa’, ’ r= 950(0(’®5 r®5 ’
Here, i, is the trispinor wave function with positive parity PELTY 4 pp 7
and positive energy. The tensgrk is the sum of an orbital 1268 RN(EN) o ® S
part LI and a spin par8* which read o« [_( Jop @ Oy
+ 5BB’®(EI)W’]
3
ik ; j 9 Kk 9 i [
Lik=> (=) Ph——Pa—| (3.29 +208,0 ® (2 gpr® (21,1}
a=1 P, apja
(3.33

jk ’ ’ r= jk ’ ’ ’ ’ jk 2 . . .
209 aar ppryy =(01) 4ar @ 81 @ 8y + 0o @ (") g When applyingW? to the wave functions we first note

® 8y + e ® 5BB,®(gik)w, , (3.25 that a scalar function does not contribute to the angular mo-
mentum, e.g.,
such thatC = LIk+ 15k Obviously,L'* is proportional to
the unit matrix in Dirac space. The definition @f*”: L2S,(p?iMp,)=2L-SS;(p%iMp,)=0. (3.39
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TABLE II. Classification of the components of the octet wave [ (¥*C) (¥*C) .
function in terms of eigenstates bf andS? in the rest frame of the S i i )(EJ)Tz( , m ) )
bound state. (¥'C) (¥'C) 2i€mji(y"C)
(3.3
eigenvalue eigenvalue ) T
2 (ysC)(2)'=—3(¥s0), (3.39
[(I+1) of s(s+1)of
¢34, in the rest frame L2 s? (y*C) —3(y*C)
21( i )(2' T=< i ) (3.39
N . (v'C) ('C)
S1u(ysC)=|{ | (7sC) 0 i
T 0" Three covariants can be regarded aswave” compo-
0 nents,S;, A,, andB;, and we expect the corresponding

scalar functions to dominate the wave function decomposi-
Spu(ysC)= }(0 ) (vsC) 2 tion. The other ‘p-, d-wave” components represent all re-
p X maining possibilities of combining orbital angular momen-
tum between quark and diquark and the joint spin of axial-
1 vector diquark and quark to total spin 1/2. In this sense the
~(op)x description is closed.

Blw

Hyy( vEC) — PO 4 2 3
AL C) =P P 0 (0 N The individual terms of the decuplet wave function can be
classified accordingly with the help of the linear combina-
. [0 '
asuyo)=p| o) 0 3 tlons
D]_:Sl, (34@
sruro-( 7Yoo 0 :
fu(y#C)= ¥ 1 2i -
" D4Y=8,0""+ 5 ys(AE+AL)PT,
Biu(yC)=| i | ¥0) 2 2 o guts
BU(UD)X EY=lysASpT,
(P (0P~ 3o E47=iys ALPY,
i(p _i5 _ 2 54 1MT
ChU(yC) = (p'(op)—30)x (4/C) 6 1
. £4"=~iys(AL+ ALY,
i 15 o
Chu(y“C)= (¥'C) 2 2 Eyr=—liys(AE+A5)pr,

I( [
E p'—30'(ap))

2i i ~ 1
[ My M v__ A%
In Table Il we express all terms of the octet wave function in £s ( 3 vsAit 3 75“46) P 351",
terms of eigenstates &f? andS?. To this end we define the

following linear combinations of matrices: 4i i ~ 1
— = vsAL+ g?’sAg pT— 5525“V-

o= -5

Bi=At+AY,

The result can be found in Table Ill. Due to the spin projec-
BS=Ag5+ Ak, tion by use of the Rarita-Schwinger projector the eigenvalue
of W2 is L. y'={xy"",x""} (i=1,2,3) denotes a two-
component vector-spinor which survives the spin-3/2 projec-

Ch=— %Agur gAg, tion in the rest frame. The Rarita-Schwinger constraints re-
duce toox=0.
For the decuplet only ong-wave component exist$, .
e E.AM-F EAM (3.35 Again these covariants exhaust all possible couplings of spin
27 g7t g/t ' and orbital angular momentum, note that even an orbital an-

gular momentunt =3 contributes to a spin-3/2 statg;. A
The eigenvalue ofV/2 is ¢ for all terms, of course. In the contribution of anl =1 state with scalar diquark, such as

table, y={x",x~} denotes an arbitrary Pauli two-
component spinor which is the positive energy basis for
qguark a with Dirac index«. To derive this, the following
relations between Dirac matrices have proven to be useful:
is forbidden by the Pauli principle for pure decuplet states,
SI(ysC)+ (ysC)(2)T=0 (3.39  but may admix in the case of broken flavor symmetry.

0
(px)

)(?’SC),
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TABLE lIl. Classification of the components of the decuplet wave function in terms of eigenstdtés of
and$? in the rest frame of the bound state.

Yoy, in the rest frame eigenvalue eigenvalue
[(I+1) of L? s(s+1)of &

X'\
Dluﬂ<7#0>=( O)<y'c> 0 @
0
. 15
D"u,(y*C)=| 1 D2 ('C) 2 w
2 B«ap)x'—%o'(px))
1( )
EWu(y*C)=iP°| P Px (y*C) 2 3
0
A 0 3
8, (y*C)=iP° . . |(¥'C) 6 z
(op)(px)
Sé‘”uy<w0)=<”("?(p") (<) 6 :
0
Efu(yC)=| 1 | (¥'C) 2 :
—a'(px)
~irA _ 1 i+ i N
£87,(y4C) = p'(px) 3[XO<T(<TIO)(IOX)] (4/C) 6 1
0
. 15
EE'u,(y*O)= 1 . . . , (Yo 12 T
° o (P(aP (P~ (o' (PY) + (oP)X'D
IV. LADDER APPROXIMATION TO THE the two nucleon system or gluon exchange between quark
BETHE-SALPETER EQUATION and antiquark, does not change the identity of the constitu-

ents. Almost all Bethe-Salpeter equations treated in the lit-

In our preceding publicatiofl] we used a momentum. erature are of this kind. For a comprehensive review of the
routing in the Bethe-Salpeter equation, where the interaction

(propagator of the exchanged quaik manifestly indepen- exis_ting Bethe-SaIpeter _Iit_eratgre see _P[GB]. In order to
dent of the total momentur of the baryon, i.e.q= - p clarify the ambiguity arising in the diquark-quark Bethe-

: - . . Salpeter equation, which came up during our investigations
- ! - - ’ - . . !
p’. AP mde_pendent kernel IS desirable for t_he f(_)llowmg we discuss here two possible momentum routings and in Sec.
reasons. As will be discussed in the next section, it reduc

. . . . VI and Appendix the corresponding variations of the results.
the numerical work when solving the integral equation quite For sake of clarity of this discussion we temporarily re-
drastically. Furthermore, the canonical normalization condi: + o rselves to the part of the octet equation which in-
tion for the.Bethe-SaIpeter wave fungtic[nZ] becomes volves only scalar diquarks, i.e., E.1) with g,=0. Fur-
_T#Ch fmore 'EVOIVedI \_Nhen tge ;]ntfasralctlon Hsdepgndent. hthermore, it is more transparent to work with the Bethe-

eretore, when solving a ethe .apete.r equation in t PSaIpeter equation which involves the vertex funciisee Eq.
ladder approximation one usually tries to find a momentumt3 19]:
routing having this very convenient feature. In our equations, "~~~
however, where quark and diquark interact through quark 4
exchange, which changes the identity of the particles after Dg(p:P)=—|g |2f d’p v
each interactiona diquark becomes a quark and a quark g s (2m)* °
becomes a diquark after the quark exchangemanding a
P-independent interaction defines a “modified ladder ap- X(—a)ysS(pa)D(pp)Pg(p';P).  (4.)
proximation” with results deviating from other momentum
routings. Note that this problem does not occur in the BetheRepeating the procedure discussed in Sec. Il A for the ver-
Salpeter approach if the interaction, e.g., meson exchange tex instead of the wave function leads to Ansatz[30,1]
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pNP-p PPy p=nP-p pg=(1-n)P-p PP+ pe(1-n)Pp
_;_ aq-p) — ? Cp’) = Dp) — PICP') q=-pp™+(1-2n)P
pE(1-n)P+p PP’ pE(l-n)P4p pNP4p p(1-n)P-p’ PP+
FIG. 1. Momentum routing defining the modified ladder ap-  FIG. 2. Momentum routing defining the direct ladder approxi-
proximation. mation.

18(pz) O 1S(pz) O

’ Qg(p;P)=| 1 . (4.4)
dg(p;P)=| 1 . (4.2 8(P; Lo o

p(oPS:(p.2) 0 5 (oP) S2(p.2)

We name this the “direct ladder approach.” Although one

Note that in the lower component of this spinorlike objectMight expect that both choices of the momentum routing
the spin is orientated along the spatial part of the relativdéad to the same physical results, we found that this is actu-
momentum. In the Bethe-Salpeter equatiérl) the momen-  ally not the case. In the next sections and Appendix B we
tum of the constituent quark is given Ip,=p’+ 7P, and report on calculations using both momentum routings, see
the momentum of the scalar diquark bp.=—p’ also Ref[44] for further results obtained in the direct ladder

+(1—7)P. P denotes the total momentum of the nucleonapproach. We found that_ physical results slightly differ fOI‘.

and p the relative momentum between quark and diquarkthese two choices. We will show, however, that both possi-

The Mandelstam parameterdescribes howP is partitioned b'“t'est g\re m%mfest'ﬂy kﬂoregtzl (iovarlant, |.eé;hetr$ igenvalues
to quark and diquark. The fact that the eigenvalues of th o not depend on the Mandelstam parameteFurthermore,

Bethe-Salpeter equation are independeny &f a direct con- tﬁ;v}legg t;mdln? ;r;;e;?imi/amreﬂs aInr_oEtl c?mude. Elt\;eré_that
sequence of Lorentz covariance. adder approximation 15 only refiable tor weax binding

If the momentum of the exchanged quark is choseq as we conclude that both methods are of similar validity.
— —p—p’, the interaction kernel is by construction ind(gpen- Although during this discussion we restricted ourselves

dent of the total momentum. Since the quark exchange tran for clarity to scalar diquarks and to the Bethe-Salpeter equa-

forms a quark to a diquark and vice versa, after the interacz?rgli Ir;\\:?c:\r/\;]a?rc:hv?/avetrée?h;uggtrlr?nlétlé Cearazft?or?)%iﬁgi?] mthae
tion, the relative momentum between these partiClesaxialg-lvector di uarz channel thg decuqlet equation an?d also
becomes (+ n)p,— 7pp,= — P, see Fig. 1 for this momen- q ' b d

tum routing. We now demandg(— p;P)=dg(p, - z,P), to the Eqgs(3.1) and(3.2) involving the wave functions in an

i.e., the orientation of the nucleon spin should not depend Or?bwous way. The reported numerical results are always

the orientation ofp as required by the Dirac decomposition given for the full problem.
before projection onto positive energies. Then the vertex
function appearing on the left-hand side in E4.1) reads V. NUMERICAL METHOD

For the numerical solutions of the Bethe-Salpeter equa-
0 tions we developed an iterative hybrid algorithm, which al-
lows a very efficient and fast computation. A description of
1 A ol 4.3 our numerical method will appear in a forthcoming publica-
E(UP)SZ(p’ —2) tion which presents this algorithm in all detdi#0]. Thus we
will focus here on the main steps only.
We solve the Bethe-Salpeter equation as a system of
The definition of the momentum together with Eq(4.3) is  equations for the wave functiol and the vertex function
what we call the “modified ladder approximation” which @, see Eqs(3.1 and(3.2). Both wave and vertex function
leads to satisfying results for various nucleon form factors ircan be expanded in the rest frame according to (Bdl1
the weak binding regime, as can be seen in REf.Using and (3.18. Although there are 10 equations for the eight
such a prescription we have been able to reproduce the rectet functions, stemming from two equations in the scalar
sults of Ref.[30]. diquark channel and 24 equations in the axial-vector di-
Another possible momentum routing allovis to flow  quark channel, we confirmed that two of them are redundant.
through the quark exchangg=—p—p’'+(1-27)P, see The decuplet system yields<212 equations for eight scalar
Fig. 2. When not taking into account that the quark andfunctions due to the tensor character of the wave function
diquark change their role after exchanging a quark, thatwvhich reduce again to eight independent equations. This es-
means attributing the index a to the quark and index b to theecially underlines the necessity of including the subdomi-
diquark, the relative momentum after the interaction is givernant amplitudes describing orbital angular momentum to
by p. Correspondingly, the vertex function on the left-handkeep the system closed.
side in Eqg.(4.1) is denoted by We expand the scalar functionamplitude$ S,A and

15,(p,—2)
Dg(p;P)=
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D,E defined in Eqs(3.8) and(3.17) into Chebyshev poly- TABLE IV. Octet Bethe-Salpeter equation-eigenvaluggsfor
nomials of the second kind, variousm,, ., andn,,,, the maximum Chebyshev momenta of ver-
tex and wave function. Parametersmg=my+=my+, M
=1.5m,, A=2my, 0,/9s=0.5, »=0.5, momentum grid size

©

Yi(Pip)= 2, ITYI(PEPAUNP-P),  (BD  Tog
® Confining propagatorsi=10
Yi(Pip)= 2 INVI(PEPAUNP D), (52 0 1 5 3
mmax

where amplitudes with a hat, i.€Y;, belong to the vertex
function and the ones without a hat to the wave function.
Here we use the generic labeY¥; according to Y;

9.4362 9.1533 9.1417 9.1420
9.7480 9.2277 9.2260 9.2265

= O

2 9.7568  9.2276  9.1992  9.1988
=151,z .- - Asloctes {D1.D2, - .. Eéldecupler 3 9.7568  9.2277  9.1994  9.1990
Throughout the calculation we work with usual hyper-
spherical coordinates Confining propagatorsj=1
i . . .
P1 siny’ sind’ sing’ Nmax 0 1 2 3
P, | siny’sing’ cos’ , L, Mnax
pi| P singlcowr |1 ? =cog)’=P-p’. 0 11.3797  10.9507 10.9544  10.9547
, ; 1 11.8555  11.1401  11.1704  11.1711
P4 cos) 2 11.8656  11.1503  11.1443  11.1445
53 3 11.8656  11.1504  11.1444  11.1446

We are free to choose the spatial part of the relative momen-
tum p appearing on the left-hand side of the Bethe-Salpeter

iq(%a(t)l;n/_z(l&_l)z. \F/)\Q;hom loss of generality, we selegt eigenvalue of the Bethe—SaIpeter equation whictydsfor

We expand,querk and diquark propagators into Cheby-Spm'll2 andy, f(_)r spln-3/2_ ba_lryons_.
shev polynomials as well and project the Bethe-Salpeter rclgeﬁggsfg:l?rgngxpvgﬁsi\ggl ién\éisglt?y?ﬁe\t/h&l;ﬁgﬁggnIC:?Ir-
e(rqnuat#on onto the _Chebyshev moments of the amphtude hermore, the independence of the eigenvalue from the Man-
Yi",Yi'. Note that in the chosen Lorentz frame with the ge|stam parametey will be discussed. The chosen example
relative momentunp parallel to the third axis this is espe- js the octet equatior(3.1) with the axial-vector diquark
cially easy because in this case the amplitudes as given igropagator diagonal in Lorentz indices and a diquark size
Eq. (3.11) do not mix. The integration necessary to generat&actor of the monopole type.
the k_ernel will be performed in hyperspherical .coordinates. For all calculations reported, a momentum mesh size of
The integrations overy’ and ¢’ are done analytically, and 20x 20 and the inclusion of only zeroth, first, and second
the remaining two over’ andz (due to the projectionnu-  Chebyshev moments for both vertex and wave function am-

merically. _ . o . ~ plitudes is sufficient for determining the eigenvalue up to
The final equation suitable for iteration or diagonalization1g-4 precision(see Table Y. This is also reflected in the

reads magnitudes of the vertex amplitudeé4: Going up one

8 Nmax A Chebyshev moment suppresses the amplitudes by almost one
Y'(p)=—-0%> > PIM(p)¥(p,) (5.4  order of magnitude. The wave function amplitudéscon-
[=1n=0 verge somewhat slower, see also Sec. VI C. For a large pole
8 My screening factorg>5, and a weak binding situation the even
9 T , / Chebyshev momenta are more pronounced than the odd
Yipp=2 3 | dp’'p’HK(p1,, P ) YRR ol P
k=1 m=0 JO .
(5.5 Increasing the coupling constagy in the nucleon equa-

) o . ~ tion always lowers the eigenvalue, hence the axial-vector
Here,P{}‘” is the propagator matrix with amplitude indices diquark enhances binding.

i,j and Chebyshev moment indicesn and Hj"(p,p’) is For tree level propagators the choice of the Mandelstam
the matrix of the quark exchange kernel given on a momenparameter » is limited to the values 7ne[l
tum grid (p|l,p,’2) with respective amplitude indicgsk and ~ —min{mg+,m;+}/M,m,/M] to avoid singularities in the

Chebyshev moment indicesm. The sum over amplitude Propagators. This restriction should not apply for confining
indices runs from 1 to 8 for both octet and decuptef,yy propagators. To demonstrate this, we choose the extreme
and Ny denote the highest Chebyshev polynomial considcaSe Mo+ =My =2m, and the tree level threshold

ered in the expansion of the vertex and the wave functior 3Mq-~ Then, tree level propagators limit the choices}o
amplitudes, respectively. The kernel includes also the flavor 1/3, as opposed to confining propagators. For a small pole
factors and the ratig, /g, (for spin-1/2 baryons It is only

in the modified ladder approximation that the integral kernel

does not include an explicit dependence on the bound stateé*ror similar choices of quark and diquark masses we calculate the
massM for all values of#, which makes a fast determina- octet and decuplet masses, see Sec. VI. The masses of the decuplet
tion of M for given couplings feasible. We refer gpas the  baryons are close to the tree level threshold.
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1 Dependence of the Eigenvalue
my*=m,*=2m,, M=3m,, A=2m,, 9,/9,=0.5

1 Dependence of the Eigenvalue

15.0 m=mg*=m,*, M=1.5m_ A=2m,, ¢./9,=0.5

14.0 ] "o

130 | ] st et g ] FIG. 3. Eigenvalue vs Mandel-

120 stam parameter, left: two pole
g &, & 100 screening factors compared, right:
3 e H] modified and direct ladder ap-
g 100 § °° proach compared. Dotted lines de-
® a0 , O | s ] note the location of the propagator

8o | 1 poles.

B - 85

6'%.10 O.éO 0.230 0.;10 0.‘50 0.60 0.‘70 0.‘30 8'00.20 0.250 O.AO 0.‘50 0.‘60 0.‘70 0.80

n n

screening factod=1 we could varyn in a wide range with- becomes worse and fok <%(mq+ Mg+ 1+) our method
out affecting the eigenvalue, fat=10 due to numerical in- failed in finding a real eigenvalue for the coupligg. In this
stabilities the invariance region depends on the constituenhass region an effect well known from the Cutkosky model
masses, displayed in Fig. 3 in the left panel. It can be seeis visible: two states described by their functiangM) col-
that the poles in the tree level propagators are effectivelyide and form a complex conjugate pair of eigenvalues
screened although the invariance region @+ 10 is re- [45,46. This shortcoming of the ladder approximation pro-
stricted to 0.2—-0.42. vides us with an upper limit of the coupling constaptfor

Whereas the latter results were obtained in the modifiedvhich the approximation is valid. However, thhg needed to
ladder approximation, the check af independence for the describe the baryon decuplet is well below this critical value.
direct ladder approach requires the total momentento
appear in the kernej=—p—p’ +(1—2%)P, which slows
down the numerics considerably. In the case of tree level VI. RESULTS: MASSES AND SELECTED WAVE
propagators, the right panel of Fig. 3 shows the invariance of FUNCTIONS
the eigenvalue for both momentum routings.

The crucial advantage of using confining propagators can
be seen even more clearly in Fig. 4. Here the functgiM) In our approach the strange quark constituent magsis
decreases rapidly for tree level propagators near thresholtie only source of flavor symmetry breaking. Isospin is as-
while the corresponding function for confining propagatorssumed to be conserved. The equations describing octet and
runs smoothly over the “pseudo”-threshold. We furthermoredecuplet baryons have been derived under the premises of
observe that the even Chebyshev momenta of the Bethdlavor and spin conservation, i.e., only wave function com-
Salpeter wave functions for tree level propagators close tponents with same spin and flavor content couple. The flavor
threshold become squeezed in the low momentum domaistructure of the eight  equations  describing
while the corresponding odd momenta are suppressed. N8, A, 3, B, A, 3*, E* andQ can be found in Ap-
such effect is present for the Bethe-Salpeter wave functionpendix A.
obtained with confining propagators. In order to limit the number of parameters we assume the

All the numerical features described also apply to the descalar and axial-vector diquark masses to be equal. Further-
cuplet equation in the weak binding regirrﬁd&/l>%(mq more, we choose them to hﬂﬂ{ﬁ 1+=§&(mg+my) where
+mg+ 1+)]. For lower bound state masses the convergenceg e {uu,us,ss} is the flavor content of the diquark. We de-

note the diquark mass parameteréafAssumingé €[ 0,1] is

A. Octet and decuplet masses

Eigenvalue vs. Bound State Mass obviously natural. With these choices the model has the fol-
. _ Mmemgsmy, A2m, 4/g.205 ‘ lowing parameters: two constituent quark masseg
120 b ] =my,Mms, the pole screening facta}, the diquark size fac-
1.0 E- tor A, the diquark mass parametér and the couplings

10.0 F el 1 Ja:0s-
o0 F ] We do not try to make a thorough fit onto the baryon
masses in our parameter space. Inspired by our results for the

form factors of proton and neutrdri], we assume first
=10. This results in only slight modifications of the propa-

eigenvalue g,

40| — Teo ovel prop. N ] gators compared to the tree level ones for spacelike mo-
---- Confini ., d=1 N

Z-O* ZZ7 Gonfiing brop. de10 S menta. Furthermore, we choose=1 GeV~2m, and ¢

0 NE

=1 to stay close to calculations of octet and decuplet masses
‘ ‘ e ‘ ‘ in NJL-diquark-models as done in Ref&5] and[23]. These
o1e A7 a8 A8 20 21 22 23 authors, however, used just a static approximation to the
) Bethe-Salpeter equation. Note that this part of our calcula-
FIG. 4. Eigenvalues vs bound state mass Note the absence tion has been done only in modified ladder approximation
of threshold effects for confining propagators. since we were forced to choosg<0.4 (cf. Fig. 3), and

1.0 F
0.0
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TABLE V. Octet and decuplet masses obtained with the maxi- Columns Il and Ill show the results fat=1 with the
mum order in Chebyshev polynomiats, ,x=Nmax=3 and momen-  other parameters chosen to give baryon masses to the same

tum grid sizen,=20. level of accuracy as before. In this case quark and diquark
propagators are strongly modified for spacelike momenta.

Expt. Modified ladder Direct ladder  Quark and diquark “masses” begin to lose their meaning

' Il il which we usually attach to them. This is reflected in our

d 10 1 1 solutions in a_rather small diquarl_< mass parameter whic_h
A (Gev) 1 1 1 renders constituent quarks and diquarks roughly equal in

their masses. The direct and modified ladder approaches give

z“ ((GGee\X) (? '655 (()) ':3 8 '653 approximately the same results in the latter case.
gs 1 0'73 0'73 In all cases the Gell-Mann—Okubo mass formula for the
: : octet is fulfilled with an inaccuracy of less than 0.5%. It
should be emphasized that the mass splitting between the
Ya 10.35 10.92 10.05 octet and decuplet is exclusively provided by the quark ex-
9s 9.43 8.06 7.34 change with the coupling strengths andg, and is not due
to a heavier axial-vector diquark as assumed in other
My (GeV) 1116 1.123 1.130 1.133 diquark-quark models, e.g., in R¢21].
Ms (GeV) 1.193 1.134 1.137 1.140
Mz (GeV) 1315 1.307 1319 1.319 B. Vertex functions for the A-hyperon
The A hyperon appears to be of special interest. First, its
M:. (GeV) 1.384 L1373 L1372 1.380 measured polarization asymmetry in the progess-K* A
Mz. (GeV) 1.530 1.545 1.548 1.516 could provide a stringent test for the diquark-quark model.
M, (GeV) 1672  1.692 1.697 1.665

As discussed in Ref47], there are only scalar diquarks in-
) volved in this process and in the following we will concen-
X 0.0028  0.0028 0.0021 trate on the scalar diquark part of the vertex function.

Secondly, broken S(3)-flavor symmetry induces a
component of the total antisymmetric flavor singlet
solely for »=0.5 the integral kernel does not depend on the(l/\/§)[(su)d+(ud)s+(ds)u] into wave and vertex func-
baryon mass in the direct approach, which allows a fast detion (see Appendix A® As the flavor singlet is only com-
termination ofM. We then fix the couplingg, andgs by the  posed of scalar diquarks and quarks, this generates two ad-
nucleon anq delta mass. The' ragio/ g is qqlte mgiependent ditional scalar amplitude$, singlet and ngmglet besides the
from the ratioM , /mgy and varies weakly withl. Finally we usual two from the octeh state (1;(/5)[(3u)d— V2(ud)s
vary just the two constituent quark masses to obtain the Othen[(ds)u]. The vector part of the vertex function remains
six hyperon masses reasonably close to their experimentﬁ changed in flavor space, @)([Su]ﬂd_[ds]ﬂu)_

values. These scalar amplitudes for the vertex function are de-

Secondly, we explore the cade=1 and now additionally . - :
allow the diquark mass factog to vary. In Ref.[1] we picted in Fig. 5 for the parameter set of column | in Table V.

showed that this strong screening of the propagator polesne Sl,singletco”?ponem is suppressed agaiﬁﬂf:?tgtpy two
leads to overestimated nucleon e.m. form factors for higrprders of magnitude. However, the purely relativiSiiGingiet
Q2. In this case we also compare results for the two momencomponent is only 5 times smaller than its octet counterpart.
tum routings, modified and direct ladder approach. In botrObserving that th&; component usually contributes the ma-

calculationsy is set to 0.5. jor part to observables as demonstrated in REf. we can
The results are given in Table V. The quality of the resultssafely regard the\ hyperon as an almost pure octet state in
may be read from the quantity flavor space.
6 i i 2
Xz_ (Mineor™ Mexp) C. Wave functions for nucleon and delta
=> —
=1 (Mexp) In this subsection we present Bethe-Salpeter wave func-

tions for nucleon and delta, using the parameter set of col-

Note that the mean deviation of the calculated masses fromn | in Table V. They are normalized t87(p;)=1

the experimental ones is of the order of half a per cent ofnucleon or D(p;)=1 (delta where p; is the smallest
less. Column | shows the results fde=10. A remarkable point of the momentum mesh. The amplitudes represent the
feature is the large constituent quark mags=500 MeV,  strengths of thel(?, S?) eigenfunctions given in Sec. Il B
whereas the constituent mass difference between strange affid are simple linear combinations out of the amplitudes
up quark is 160 MeV, a commonly used value. In the fol-defined in Eqs(3.8) and (3.17).

lowing two subsections we will show for this set of param-

eters the wave function amplitudes for the nucleon and the

delta and discuss the contribution of the various componentssye denote scalar diquarks, with parentheses, ewg)=us
with respect to their orbital angular momentum and exem-—sy, Axial-vector diquarks we denote &8s]=us+su.

plify flavor symmetry breaking effects on the wave and ver- ®n nonrelativistic quark models with S6) symmetry such a
tex function of theA hyperon. component is forbidden by the Pauli principle.
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As already mentioned, the convergence of the wave funcether octet wave functions when compared to the nucleon.
tion amplitudes in terms of Chebyshev polynomials is somefor the vertex functiongwhere the zeroth Chebyshev mo-
what slower than for the vertex amplitudes: The second an¢hent dominates we observed a limited increase of the
zeroth Chebyshev moments of the amplitudes differ by lesgidth in momentum space with increasing number sof
than one order of magnitude. All wave function amplitudesquarks(lo% difference betweefl and ). The width is
are concentrated to four-momers=0.6 GeV. hereby defined as the absolute value of the relative momen-

In Fig. 6, the nucleon amplitudes with even orbital angu-tym p where the zeroth Chebyshev moment of swave
lar momenturd appear in the left row: These are the thsee amplitude reaches half the maximum value.

waves describingdi) scalar diquark and quarkii) and (iii)
axial-vector diquark and quark oppositely aligned to give
spin 1/2. There are two axial-vector diquark components due
to the virtual time component of the latter. The scalar di- In this paper we extended the covariant and confining
quark component is the most important but the otheraves  diquark-quark model of Refl1] by including axial-vector
enhance binding by approximately 30%. The fourth “nonrel-diquarks in the description of baryons within the Bethe-
ativistic” component is a strongly suppressedvave with  Salpeter approach. Thus we were able to calculate the octet
quark and axial-vector diquark aligned to give spin 3/2. Thebaryons masses as well as the decuplet masses and wave
lower components depicted on the right side can be undefunctions. We implemented confinement via an effective pa-
stood as the admixture of negative-energy spinors to the praametrization of the constituent propagators and demon-
ton wave function and contribute approximately 10% to thestrated the existence of bound states beyond the pseudo-
binding energy. threshold.

The delta amplitudes in Fig. 7 have also been arranged We decomposed octet and decuplet vertex and wave func-
into “non-relativistic” (left row) and “relativistic” compo- tions in the Dirac and Lorentz algebra, obtaining eight scalar
nents(right row). As expected, the onlg-wave dominates functions, respectively, which we computed numerically.
the decomposition, but the relativistizwave components, Two approximations to the Bethe-Salpeter equation were
which act repulsively, increase the eigenvalue by approxidiscussed and compared: The direct ladder approximation,
mately 20% and are thus non-negligible. Again the compoand a modified ladder approximation with a special momen-
nent with the highest orbital angular momentuhs; 3, is  tum routing leading to a kernel independent of the bound
highly suppressed. state mass.

No clear effects of flavor symmetry breaking, as in terms In order to fix the parameters of the model preliminarily,
of the width in momentum space, can be detected for theve computed the masses of octet and decuplet for broken

VII. CONCLUSIONS AND OUTLOOK
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FIG. 6. Scalar and axial vector amplitudes of the nucleon wave function

=10, andA=1 GeV.

with parameters giner=y5 GeV, ¢=1, »=0.33,d
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FIG. 7. Axial vector amplitudes of the delta wave function with parameters givemsy0.5 GeV, £=1, »=0.33, d=10, andA

=1 GeV.
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SU(3)avor With isopin conserved. With the scalar and axial- to baryon phenomenology. The calculated amplitudes which
vector diquark mass assumed to be equal, the octet-decupfiicode the nontrivial information of a baryon as a diquark-
mass splitting is a result of the different effects of the cou-quark bound state serve as a necessary input for the calcula-
pling constants in the scalar and axial-vector diquark chantion of various observables. A calculation of the electromag-
nel. For a parameter set which fits the octet and decuplgietic form factors of the octet and decuplet baryons is hereby
masses well, we computed vertex amplitudes and wave fundhe next task. Such an investigation will furthermore help to
tions for all octet and decuplet baryons. The wave functiondix some of the parameters. Our aim is, however, to apply the
for baryons with different strangeness content but the sameovariant and confining diquark-quark model to processes,
spin differ mostly due to the different flavor Clebsch-Gordanwhich are far less understood. Especially, the reactjpps
coefficients, the respective scalar functions being very simi—KA and pp—pAK, currently measured at ELSA and
lar. Therefore we presented only the wave functions for théCOSY, respectively, will serve as a stringent test of our ap-
nucleon and delta out of this data. The decomposition of th@roach. Additionally, we plan to get further insight into this
wave functions in the rest frame of the bound state in termgicture of baryons by computing structure functions for a
of spin and orbital angular momentum eigenstates revealespectator mode[30] which includes the axial-vector di-
an s-wave dominance in all ground state baryons stemmingluark.

from both scalar and axial-vector diquark contributions. The

p-wave contributions sneaking in via the lower components ACKNOWLEDGMENTS
of the spinors are of greater importance for decuplet baryons
than for octet baryons. We thank Lorenz v. Smekal and Herbert Weigel for valu-
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vestigated the\ hyperon in more detail and discussed its critical remarks. We are grateful to Lorenz v. Smekal for
vertex amplitudes. In our approach, theacquires a small allowing us to compare our numerical results with his re-
flavor singlet admixture which is absent in @Ysymmetric  garding the Bethe-Salpeter eigenvalues prior to publication.
nonrelativistic quark models. This work has been supported by BMBF under Contract No.

This work, together with our preceding paddrd, pro- 06TU888, DFG under Contract No. We 1254/4-1 and Gra-
vides a sound basis for further applications of this approackluiertenkolleg “Hadronen und Kerne(DFG Mu705/3.

APPENDIX A: OCTET AND DECUPLET EQUATIONS

The symmetric and antisymmetric flavor matrices can be written as

0 1 0 0 0 1 0 0
t2={p*t-3={| -1 0 0|, | O 0 O], [0 O 1], (A1)
0 0 O -1 0 0 0 -1
tg:{pa=4...9}
J2 0 0 0 0 O 0 0 O 10 0 0 1 0 00
={{ o o of, [0 V2 o0, [0O0 0], [12 o], o o of, [0 0 1
0 0 0 0 0 0 0 0 2 0 0 0 10 0 010

(A2)
By these conventions flavor antisymmetric diquarks ard)(=ud—du, etc., and flavor symmetric diquark&uu,[ud]:
=ud+du, etc. The flavor wave functions of octet and decuplet states do not decouple osoguididk breaks the symmetry.
The Bethe-Salpeter equatidd.l) still describes nucleon@sospin is assumed to be conseryeahd Eq.(3.2) still refers toA
and ) which possess only single-component flavor wave functjeng*fu, respectively[ss]*’s.
We use the following abbreviations to give short-hand Bethe-Salpeter equations for the remaining baryons:

(ab)c and [ab]#c: octet flavor wave functions with diquark flavor conteab and spectator quark of flavaoe;
[ab]#Pc: decuplet flavor wave functions;

S,: quark propagator of the spectator quaak

D and Df‘a’f,]': scalar and axial-vector diquark propagator;

Ko = [[d*p'/(2m)*]¥*Sa(—q)¥* (p,A=1...5): exchange kernel for quark flavaa, see Eq.(3.3) for the

definition of S.
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Of course, in contrast to Eq&2.3—(2.5), different masses corresponding to the flavor content of the quark and diquark are
used in the numerators and denominators of the propagators.

For octet states each flavor wave function with scalar diquarks is to be expanded in Dirac space accordi®1d) Kdth
only the scalar amplitudeS; and S, and each one with axial-vector diquarks according to the same equation with the six
vector amplituded\; . .. Ag. For decuplet states only flavor wave functions with axial-vector diquarks are considered, they
have to be expanded as indicated in E2118.

The Bethe-Salpeter equation f&r baryons now reads

55 9a, ., Ga,,
(us)s SsD us) 0 0 Ky _EKuS \/—g Ke® (us)s
2
, g 95 . g%
[us]#s | =—g2 0 S:Dfiy 0 gZKW — Ky \/EgaK“ [us]’s |. (A3)
S S
[ss]“u 0 0 squgé' fgaKSu \/igaKw 0 [ss]’u

S

By interchangings<u one obtains immediately the equation ®rbaryons.
Broken SU3) couples the symmetricA and the flavor singlet. We introduce the flavor wave functidfg

=(1\2)[(us)d—(ds)u], F,=(ud)s andA*=(1/y2)([us]*d—[ds]*u) and the equation for the physicAl reads

9a v
—K§’5 \/EK‘E‘S __aKS,S
s
Fl SUD(US) 0 0 9 (US)S
Fol=-g3 O SPwy O V2KGS 0 _ﬁg_aKLVf5 [us]’s|. (A4)
s
AH 0 0 DHH [ss]’u
SU Lus] ga 5MI ga 5,u gg w
- —K¢ —V2—Kj ——2KS
Os 9s Os

The E* baryons belonging to the decuplet are described by the equation

([us]ﬂps)__ sDfy 0 K 2k ([us]”ﬂs) N
T AR I A £ N -

As before the equation for the* baryons may be obtained by interchangig u. Note that we neglected contributions
from a state with scalar diquarki§).
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tion, and the axial-vector diquark propagator with and without di- FIG. 9. Eigenvalues vs bound state mi&gor direct and modi-

agonal approximation. fied ladder approximations.
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Vertex Amplitude $,°(p) Vertex Amplitude 8, '(p)
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APPENDIX B: SOLUTIONS WITH PROCA PROPAGATOR APPENDIX C: DIRECT VS MODIFIED LADDER
FOR AXIAL-VECTOR DIQUARKS APPROXIMATION

In order to st_udy the influence of the full Proca propagator In Fig. 9 we display for a representative parameter set the
on vertex functions of spin-1/2 baryons and the correspondeigenvalues obtained in direct and modified ladder approxi-
ing eigenvalues we are forced to use a diquark size factor ghations. One clearly sees that for bound state masses ap-

the dipole type, writing instead of E¢3.3) proximately equal to the sum of the constituent masses the
eigenvalues are almost identical, and even for strongly bound
5 |2 states the deviation is small.
S(q)—3(q)=5(q) - 2) (B1) . However, larger deV|at|ons.occur in the vertex funtitlons.
g-+A Figure 10 shows zeroth and first Chebyshev moments,; of

for modified and direct ladder approximation. Wherﬁs
to regularize the equation which has no stable solution Othhardly differs for the two approachéﬁi receives a sign flip

erwise. when switching between the two approaches. This occurs for

In Fig. 8 we compare the elgenva.lues.as afunctloqu almost all amplitudes in odd Chebyshev moments. When
for both the Proca propagator and its diagonal approxima:

tion. Even in regions of moderate binding the eigenvalues dgon&dermg'the Betk.le—S.eA\Ilpeter equation for. nucleons with
not differ by more than 2% which makes the approximationda= 0. the different sign ir§; causes the electric form factor

of the diagonal propagator in computing the masses a reliof the neutron to change. Isospin breaking effects are also
able one. While the vertex functions are essentially the samdifferent: The neutron-proton mass difference is in the direct
for both choices of the axial-vector diquark propagator, theapproach bigger than the constituent quark mass difference
A; components of the Bethe-Salpeter wave function differ bymy—m, whereas in the modified ladder approximation it as-
approximately a factor of 10. sumes values of approximately Onf{—m,) [48].
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