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Octet and decuplet baryons in a covariant and confining diquark-quark model

M. Oettel,* G. Hellstern,† R. Alkofer,‡ and H. Reinhardt
Institute for Theoretical Physics, Tu¨bingen University, Auf der Morgenstelle 14, D–72076 Tu¨bingen, Germany

~Received 29 May 1998!

The baryon octet and decuplet masses and Bethe-Salpeter vertex and wave functions are calculated in the
ladder approximation to the quark exchange between a scalar or axialvector diquark and a constituent quark.
These functions reflecting full Lorentz covariance are given in terms of an expansion in Gegenbauer polyno-
mials. In the rest frame of the baryon, a complete partial wave decomposition of the Bethe-Salpeter wave
function is performed. The confinement of quarks and diquarks is implemented via a parametrization of the
corresponding propagators. We also discuss some aspects of the momentum routing in the ladder approxima-
tion to the Bethe-Salpeter equation. Numerical results for the octet and decuplet masses with broken flavor
SU~3! in the conserved isospin limit are presented.@S0556-2813~98!00810-3#

PACS number~s!: 11.10.St, 12.39.Ki, 12.40.Yx, 14.20.Dh
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I. INTRODUCTION

In a recent paper@1# we presented numerical results f
the nucleon form factors in a fully Lorentz covariant mod
based on the idea that baryons may be viewed as bo
states of confined constituent diquarks and quarks interac
via quark exchange. The confinement of the constituent
hereby effectively parametrized. The poles of the cor
sponding propagators are removed by some modifying m
tiplicative factors which, however, possess an essential
gularity at timelike infinite momentum. The physical pictu
behind this baryon model is very natural: Diquarks are
lowed to ‘‘decay’’ into two quarks, one of them recombin
with the third quark and forms another diquark. The hope
that for physics relevant at intermediate momentum tra
fers, most of the complicated structure of the baryon may
efficaciously described by assuming strong correlations
the quark-quark channel. Thus the notion of diquarks par
etrizes to some extent unknown nonperturbative phy
within baryons. In recent years diquarks have not only b
used in nonperturbative calculations but also in the desc
tion of inelastic lepton-nucleon scattering, see Refs.@2,3#
where various applications of diquarks are extensively d
cussed. Very recently diquark masses have been estim
from lattice measurements@4#.

The main purpose of our investigations is to formulate
baryon model applicable to the intermediate energy reg
This is mainly motivated with the advent of a new generat
of continuous beam facilities such as CEBAF at TJNA
MAMI, ELSA, COSY etc. which are designed to explore a
intermediate region lying between the non-perturbative lo
energy and the perturbative high-energy regime of QC
These facilities explore various hadron observables to a v
high precision. The different existing hadron models are
be judged by their ability to predict and to explain the
observables in the near future. While there exist many m
els capable of describing pion properties which are stron
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dictated by chiral symmetry, the detailed structure of
other mesons are still unclear. Although quite a few bary
models, see, e.g., Refs.@5–11#, have been developed in th
last 40 years, a unified description of baryons within a co
riant field theoretical approach, and with quarks and gluo
as the fundamental degrees of freedom, is still missing
addition to being covariant, such a description should inclu
chiral symmetry in its spontaneously broken phase and c
finement. A covariant model with the correct symmetry p
tern but without confinement is the Nambu–Jona-Lasi
~NJL! model @12,13# where quarks as fundamental fermio
fields interact locally, for recent reviews see Refs.@14–16#.
There, baryons appear either as nontopological solitons@17–
19# or as bound states of a quark and a diquark@20–26#. A
hybrid formalism combining the soliton with the diquark pi
ture has been developed in Ref.@27#, where it turned out that
the soliton background contributes as much to the total bi
ing energy of the nucleon as the direct coupling between
quarks and between quark and diquark. In the Global Co
Model, a nonlocal extension of the NJL model, there a
exist preliminary studies of nucleons as diquark-quark bou
states, see, e.g., Ref.@28# and references therein.

In this paper we extend the investigations reported in R
@1#. There we solved the Bethe-Salpeter equation for nu
ons in the ladder approximation but restricted ourselves
scalar diquarks. Employing the solution of the Beth
Salpeter equation, i.e., the nucleon vertex functions, we
culated various form factors such as the electromagnetic,
weak, and the pionic form factor of the nucleon. Despite
fact that this work is a promising starting point for furth
investigations, some results, especially for the magnetic
ments, signaled that the axial-vector diquark channel is n
essary for a realistic description of baryons as bound state
quarks and diquarks. Here we therefore include the axialv
tor diquark channel into the nucleon Bethe-Salpeter eq
tion. We also present results for baryons with spin 3/2.

The paper is organized as follows: In the next section
covariant and confining diquark-quark model, as defined
Ref. @1#, is briefly reviewed. By modifying the propagato
of quarks and diquarks an effective modeling of confinem
enters our model. In Sec. III the Bethe-Salpeter equations
spin-1/2 and spin-3/2 baryons, determining their masses
2459 © 1998 The American Physical Society
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wave functions, are discussed. With an appropriate th
spinor basis we then construct covariantAnsätze for the
wave functions which are suitable for the numerical solut
of the homogeneous integral equations. Section IV is
voted to a discussion of the subtleties concerning the
mentum routing in the Bethe-Salpeter equation, associ
with the ladder approximation. The numerical method
shortly described in Sec. V, and our results for the bary
masses and wave functions are described in Sec. VI. In
last section we finally conclude and give an outlook. So
technical issues are deferred to three appendixes.

II. THE COVARIANT AND CONFINING
DIQUARK-QUARK MODEL

Here we briefly recapitulate the definition of the covaria
and confining diquark-quark model as given in Ref.@1#. Such
a model, although without confinement, has been also c
sidered in Refs.@29,30#. Since the solution of a rigorou
relativistic three body equation, a Faddeev equation@31#, is
still missing in field theory we follow the path of using d
quarks as effective degrees of freedom within baryons. T
serve as an efficient tool to parametrize some of the
known non-perturbative features of the baryon wave fu
tion. As stated in the Introduction such approaches have b
successful in the past to describe baryons in NJL-type m
els @20–26#. A three-dimensional reduction of the fully co
variant Bethe-Salpeter model discussed here, can be fou
Ref. @32#, where the author solved the bound state equati
in the Salpeter approximation which ignores all retardat
effects.

Having in mind the diquark-quark description arisin
within the hadronized NJL model@20#, some basic structure
are fixed: To build up a colorless baryon out of a diquark a
a quark being in the fundamental representation of the c
group SU(3)C, diquarks necessarily live in the color antitrip
let channel. Furthermore, in order to fulfill the Pauli pri
ciple, scalar diquarks couple via the antisymmetric gene
tors of the flavor grouptA

a 5$ra51..3%, axial-vector diquarks
via the symmetric generatorstS

a5$ra54..9%, respectively
@20#. Our conventions for these flavor matricesra are given
in Appendix A. In the following, however, we deviate from
the NJL model as described in Ref.@16#. Quarks and di-
quarks are treated as elementary but confined particles
below, whose interaction, quark exchange, gives rise
quark-diquark correlations strong enough to bind these fie
to a baryon.

This can be formalized with the Lagrangian

L5q̄A~x!~ igm]m2mq! f ~2]2/mq
2!qA~x!

1DA
†~x!~2]m]m2m01

2
! f ~2]2/m01

2
!DA~x!

2
1

4
Fmn

† ~x! f ~2]2/m11
2

!Fmn~x!

1
1

2
m11

2 DAam
† ~x! f ~2]2/m11

2
!DAa

m ~x!

1eABC
„gsqC

T~x!Cig5tA
a qB~x!DaA* ~x!
e

n
-

o-
ed
s
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ee
to
s

1gs* DaA~x!q̄B~x!ig5CtA
†aq̄C

T~x!…

1eABC
„gaqC

T~x!CigmtS
aqB~x!DAam* ~x!

2ga* DAam~x!q̄B~x!tS
†aigmCq̄C

T~x!…. ~2.1!

The quark field is denoted byq(x), the scalar diquark field
by D(x) and the axial-vector diquark field byDm(x). Their
masses are given by the matrices in flavor spacemq , m01

and m11, respectively. For unbroken flavor symmetry th
reduce to mq5diag3(mq), m015diag3(m01), and m11

5diag6(m11). In Eq. ~2.1!, capital subscripts denote colo
quantum numbers. In the kinetic part of the 11 diquark the
non-Abelian field strength tensorFmn5]mDn2]nDm

1@Dm,Dn# appears (Dm5DamtS
a). The associated self

interactions, however, will not be taken into account. T
coupling strengths, of Yukawa type, between two quarks
the scalar or axial-vector diquarks are given bygs or ga ,
respectively. In order to take an extended diquark into
count, the pointlike couplings will be supplemented with m
mentum dependent factors to be defined later.

An essential ingredient entering our model is the effect
parametrization of confinement. This is realized by modi
ing the kinetic terms of the constituents in the Lagrang
~2.1!. Going to Euclidean1 momentum space and using

f 21~x!512e2d~11x!. ~2.2!

the model quark and diquark propagators, being diagona
color and flavor space, are given by

S~p!5
ip”2mq

p21mq
2 ~12e2d~p21mq

2
!/mq

2
!, ~2.3!

D~p!52
1

p21m01
2 ~12e2d~p21m

01
2

!/m
01
2

!, ~2.4!

Dmn~p!52
~dmn1pmpn/m11

2
!

p21m11
2 ~12e2d~p21m

11
2

!/m
11
2

!.

~2.5!

Due to the numerators, the mass poles of the propagator
effectively screened.2 The strength of the screening is d
scribed by the parameterd. Whereas the analytic behavior o
the quark propagator~2.3! is similar to the ones obtaine
from Dyson-Schwinger studies of QCD~details about this
approach can be found in Ref.@33#!, the justification for
using confined diquarks is somewhat more involved.
stated above, diquarks are not color singlets and sho
therefore be confined by the fundamental interaction
QCD. Nevertheless most diquark models@34–36# which de-
scribe them as bound states of two quarks predict diquark
be observable particles. Recent studies, however, which
vestigated the system of the quark Dyson-Schwinger eq
tion and the diquark Bethe-Salpeter equation beyond the

1We use an Euclidean space formulation with$gm ,gn%
52dmn , gm

† 5gm andpq5(m51
4 pmqm .

2With f [1 we refer to the propagators as tree level propagat
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ally employed rainbow-ladder approximation, were able
explain why diquarks do not appear in the observable p
ticle spectrum. This mechanism works in the Muncze
Nemirovsky model@37#, as has been shown in Ref.@38#, as
well as in an extended NJL model@39#. Since both models
assume a simplified but quite different quark-quark inter
tion, one may conjecture that the same also holds true im
menting a realistic interaction. For these reasons we use
notion of confined diquarks. In our approach we theref
use the propagators defined in Eqs.~2.4! and~2.5! which do
not allow observable diquarks. In the following it will b
seen that working with confined quarks and diquarks lead
the absence of an unphysical quark-diquark threshold
baryons.

Additionally we introduce the diagonal approximation
the axial-vector diquark propagator by omitting th
pmpn/m11

2 term,

Dmn~p!52
dmn

p21m11
2 f 21S p2

m11
2 D . ~2.6!

It is well-known that the full Proca propagator may cau
spurious ultraviolet problems. These vanish in the spec
unitary gauge and have no physical consequences. As su
treatment is, however, beyond the scope of our purely p
nomenological investigation we have chosen to avoid
problem by using a diagonal approximation to the propa
tor. Its validity is examined more closely in Appendix B.

III. BETHE-SALPETER EQUATION FOR OCTET AND
DECUPLET BARYONS IN THE FLAVOR-SYMMETRIC

CASE

Using the Lagrangian given in Eq.~2.1! we obtain the
ladder Bethe-Salpeter equation for octet and decuplet b
ons

S C8~p;P!

C8
n~p;P!

D
52ugsu2S D~pb! 0

0 Dnm~pb!
DS~pa!E d4p8

~2p!4

3S g5S̃~2q!g5 2A3
ga

gs
gm8S̃~2q!g5

2A3
ga*

gs*
g5S̃~2q!gm 2

ugau2

ugsu2
gm8S̃~2q!gmD

3S C8~p8;P!

C8
m8~p8;P!

D , ~3.1!

C10
nr~p;P!522ugau2S~pa!Dnm~pb!

3E d4p8

~2p!4
glS̃~2q!gmC10

lr~p8;P!. ~3.2!
o
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In this formulation, the Bethe-Salpeter equation involves
matrix-valued Bethe-Salpeter wave functions of octet ba
ons C8(p;P) and C8

n(p;P) and decuplet baryons
C10

ln(p;P), respectively, which are projected on positive pa
ity and spin 1/2 or spin 3/2~see the following subsection fo
their construction!. Their flavor part is given by pure octe
and decuplet states in SU(3)flavor. They depend on the tota
momentumP of the bound state and on the relative mome
tum p8 or p between the two constituents. Mathematical
the Bethe-Salpeter equations are equivalent to coupled
mogeneous integral equations. The numerical method fo
solution is presented in Sec. V, see also@40#.

Although the Lagrangian~2.1! describes a renormalizabl
diquark-quark theory, at least at one-loop level, the Bet
Salpeter equations in ladder approximation are formally
vergent in the ultraviolet. The divergence, of course, sho
then be cured by the wave functions. However, to crud
take into account the extended nature of diquarks we wo
as in Ref.@30,1#, with a finite interaction in momentum spac
and modify the propagator of the exchanged quark accord
to

S~q!→S̃~q!5S~q!S L2

q21L2D . ~3.3!

This corresponds to a monopole-type form factor. As a c
sequence, this also removes all formal ultraviolet diverg
cies. Note that we have absorbed the charge conjugation
trix C appearing in the Lagrangian~2.1! using the identity
C21S̃T(q)C5S̃(2q).

Before actually solving the integral equations it is app
priate to find a suitable basis for the wave functions appe
ing in Eqs.~3.1! and ~3.2!.

A. Relativistic three quark states and their wave functions

When constructing a baryon out of three quarks, its wa
function is formally described by a spinor of rank thre
cabg (a,b,g51 . . . 4). For octet baryons, a convenie
basis for this multi-spinor can be found by expanding t
direct product of the spinors describing quarks of flavorb
and c with spinor indicesb andg into the complete set o
Dirac matrices and taking the direct product with a spin
basis of quarka @41#:

cabg
8 5~Gu!a~fCg5!bg . ~3.4!

C denotes charge conjugation and

u5H S x1

0 D , S x2

0 D J
is a basis of positive energy Dirac spinors in the rest fra
describing fermions with spin up (1) and spin down (2).
In this representationG andf are Dirac matrices to be ex
panded in the complete set$1,g5 ,gm,g5gm,smn%.

Under a Lorentz transformationS(L), this wave function
transforms according to

cabg
8 5„SG~L21P,L21p!S21

…aa8~Su!a8~SfS21Cg5!bg .
~3.5!
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TABLE I. The Lorentz covariants leading to baryons with positive parity. They are grouped accord
their diquark content.

Scalar diquark (Cg5)bg Axial-vector diquark (gmg5Cg5)bg

Octet (G i
Su)a (G i

Amu)a

Decuplet (G i
Sum)a

(g5 G i
Am @pT

nun#)a

G i
SP $1, P” , p” , Pmsmnpn%

G i
AmP $Pmg5 , pmg5 , gmg5 , Pmg5P” , Pmg5p” ,

pmg5P” , pmg5p” , Png5snm, png5snm,
Pmg5Pnsnrpr , pmg5Pnsnrpr , gmg5Pnsnrpr%
ee
-
u

la
s

th
-
n

n
b

io

r
ed
ar
s

ith

ic
rg
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ow

ical

o-
The parity transformation is given by

cabg
8 5p„g4G~g̃m,P̃,p̃!u…a„g

4f~g̃m,P̃,p̃!g4Cg5…bg ,
~3.6!

where p is the intrinsic parity of the baryon andP̃
5(2P,P4), p̃5(2p,p4), g̃m5(2g,g4).

To ensure total spin 1/2 of the wave function, the fr
Lorentz indices in~3.4! are to be contracted with the inde
pendent momenta involved and each covariant will be m
tiplied by a scalar function.

In the diquark-quark model, only the two choices forf
5$1,gmg5% are taken into account which describe the sca
and axial-vector diquark. The covariants which lead to po
tive parity of spin-1/2 octet states, (Gu)a , can be grouped
according to scalar and axial-vector diquark states with
spinor indicesb and g, see Table I, second row. As de
scribed above, the free Lorentz indices in these covaria
are contracted with the momentaP andp and are then to be
multiplied with scalar functions. No further symmetrizatio
of the wave function is necessary as this will be provided
the quark exchange.

Using this classification scheme, the octet wave funct
can be denoted by

cabg
8 5(

i 51

4

~Zi
SG i

Su!a~Cg5!bg1(
i 55

16

~Zi
AG i

Amu!a~gmC!bg .

~3.7!

Each of the four covariantsGS
i which describe the scala

diquark part in the octet baryon wave function is multipli
by a scalar functionZi

S and likewise there are twelve scal
functionsZi

A multiplying the axial-vector diquark covariant
G i

Am .
A further reduction of thisAnsatzby a projection to posi-

tive energies is very convenient. From the expression~3.7!
for the octet wave function we consider only the part w
spinor indexa, multiply it with the adjoint spinorū(P,s)
and sum over the spins. This leads to a wave function wh
is, by construction, an eigenfunction of the positive-ene
l-

r
i-

e

ts

y

n

h
y

projector3 L15(11P”̂ ). Thus we are led to the following
relations between the wave functions of Eq.~3.7! and the
corresponding functions in the Bethe-Salpeter equation~3.1!:

S Zi
SG i

S

Zi
AG i

AmDL15S SiSi

AiA i
mD 5S SiSi

AiA i
mDL15S C8~p;P!

C8
m~p;P!

D .

~3.8!

The independent covariantsSi andA i
m are required to be

eigenfunctions ofL1 which reduces the number of indepe
dent scalar functions from sixteen to eight which are n
denoted bySi , (i 51,2) andAi , (i 51 . . . 6). Aconvenient
representation of these covariants suitable for our numer
procedure and for further applications is given by

Si5H S15L1,

S252
i

p
p” TL1,

~3.9!

A i
m5

¦

A 1
m52

i

p
P̂mg5p” TL1,

A 2
m5 P̂mg5L1,

A 3
m5 p̂T

mg5p”̂ TL1,

A 4
m5

i

p
pT

mg5L1,

A 5
m5g5gT

mL12A 3
m ,

A 6
m5

i

p
g5gT

mp” TL12A 4
m ,

~3.10!

wheregT
m5gm2 P̂mP”̂ . Note that the indices have been ch

sen such that matrices with odd indicesi 5$1,3,5% are eigen-
functions toP” 2 iM whereas the ones with even indicesi
5$2,4,6% are eigenfunctions toP” 1 iM , with eigenvalue 0 in
both cases.

3We denote normalized four vectors with a hat, e.g.,P̂• P̂51. In

the Euclidean rest frameP5(0,iM ) this explicitly reads P̂
5P/ iM . Note that all relative momenta (p,p8) are real in Euclid-
ean space as they are only needed for spacelike values.
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In the rest frame of the bound state,P5(0,iM ), theAn-
satzfor the matrix valued nucleon wave function which w
used for further numerical processing reads

S C8~p;P!

C8
4~p;P!

C8~p;P!
D 51

S 1S1 0

1

p
~sp!S2 0D

S 1

p
~sp!A1 0

1A2 0D
S i p̂~sp̂!A31~s3p̂!~sp̂!A5 0

i

p
pA41

1

p
~s3p!A6 0D 2 .

~3.11!

The scalar quantitiesSi andAi depend onp5Apmpm andz

5cosc5P̂•p̂ for each value of the bound state mass.
expected from the properties ofSi andA i

m @see Eqs.~3.9!
and~3.10!#, upper components have odd indices, lower co
ponents have even indices.

The strategy shown above for the octet baryon can als
applied to decuplet baryons which have spin 3/2. Projec
of the trispinor wave functioncabg onto total spin 3/2 may
be achieved by expanding the piece associated with quaa
in terms of Rarita-Schwinger spinorsum :

cabg
10 5~Gum!a~fC!bg , ~3.12!

G is chosen such that all Lorentz indices are contracted w
the momentaP andp. Note that the Rarita-Schwinger con
straints demandumgm5umPm50 and that in the diquark
quark model the diquark part of decuplet states is made
axial-vector diquarks only,f5Cgn.

The covariantsG which are left for decuplet states afte
applying the above restrictions and the positive parity c
straint can be found in Table I, third row. The covariants
octet and decuplet states are closely related. Due to
Rarita-Schwinger constraints the Lorentz index ofum must
be contracted either with the Lorentz index of the axi
vector diquark (gmC) or with the transversal relative mo
mentumpT

m5pm2 P̂m(p• P̂). For the first choice, we hav
the same four covariants as for the octet state with sc
diquark correlations. For the second choice, we obtain
s

-

be
n

th

of

-
r
he

-

ar
e

twelve covariants as for the octet state with axial-vector
quark correlations, however, multiplied byg5 to ensure posi-
tive parity. The decuplet wave functions read now

cabg
10 5~Y10

mnun!a~gmC!bg

5(
i 51

4

~Zi
DG i

Sdmnun!a~gmC!bg

1(
i 55

16

~Zi
Dg5G i

Amp̂T
nun!a~gmC!bg , ~3.13!

where theZi
D denote the sixteen scalar functions for the d

cuplet state.
Taking from eq.~3.13! only the part with spinor indexa

and projecting it to positive energies leads to

(
s523/2

13/2

Y10
mn~p;P!un~P,s!ūl~P,s!

5Y10
mn~p;P!Pnl5C10

mn~p;P!5C10
ml~p;P!Pln.

~3.14!

Therefore the projected wave function~which besides being
a 434 matrix has tensor character! is determined by the
condition

C10
mn~p;P!5C10

ml~p;P!Pln, ~3.15!

which requiresC10
mn to be an eigenfunction of the Rarita

Schwinger projector. Here, the explicit expression of the E
clidean Rarita-Schwinger projector is given by

Pmn:5L1S 2dmn1
1

3
gmgn2

2

3

PmPn

M2
1

i

3

Pmgn2Pngm

M D
5:L1Lmn. ~3.16!

The most general form which fulfills condition~3.15! is

C10
mn~p;P!5DiS iL

1Lmn1 iEig5A i
mL1p̂T

lLln

~3.17!

which requires the covariants again to be eigenfunctions
L1, as a consequence we may use the same choice fo
A i

m andSi as in the octet case and are left with eight ind
pendent scalar functions.

In the rest frame of the bound state, the decuplet w
functions are then denoted by
C10
i j ~p;P!5S S d i j 2

1

3
s is j DD1 0

1

p
~sp!S d i j 2

1

3
s is j DD2 0

D 1S @2 p̂iE41 i ~s3p̂! iE6#F p̂ j2
1

3
~sp̂!s j G 0

1

p
@2 p̂i E31 i ~s3p̂! iE5#~sp!F p̂ j2

1

3
~sp̂!s j G 0

D
~3.18!

C10
4 j~p;P!5S i

pFpj2
1

3
~sp!s j GE2 0

i ~sp̂!F p̂ j2
1

3
~sp̂!s j GE1 0

D
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and all other components ofC10
mn(p;P) vanish. The appear

ance ofg5 in Eq. ~3.17! has interchanged upper and low
components as compared to the octet case.

Instead of working with the Bethe-Salpeter wave fun
tions one may alternatively use the Bethe-Salpeter ve
functions obtained by amputating the external quark and
quark propagators from the wave function

F8~p;P!5S21~pa!D21~pb!C8~p;P!, ~3.19!

F8
m~p;P!5S21~pa!~D21!mn~pb!C8

n~p;P!, ~3.20!

F10
mr~p;P!5S21~pa!~D21!mn~pb!C10

nr~p;P!. ~3.21!

Substituting the wave functions by the vertex functions in
Bethe-Salpeter equations~3.1! and ~3.2! leads to a reformu-
lation of the bound state equations which is sometimes m
convenient. For example in Refs.@30,1# the equations con
taining only scalar diquarks have been solved in a fo
which includes the vertex function explicitly.

B. Orbital angular momentum and spin of the Bethe-Salpeter
wave functions in the rest frame of the bound state

Whereas the choice of the covariants in Eqs.~3.9! and
~3.10! which build the octet and decuplet wave functions
well suited for numerical computation and further covaria
calculations, their physical interpretation is not obvious.
general, covariant wave functions possess only the mas
the bound stateM and its total angular momentumJ as good
quantum numbers. In the rest frame of the bound state, h
ever, the wave functions can be written as a sum of trispin
each possessing definite orbital angular momentum and s
thus allowing a direct interpretation of the different comp
nents. These trispinors are linear combinations of the co
riantsSi andAi which have been constructed in the previo
subsection, multiplied by the respective Dirac matric
(g5C)bg and (gmC)bg denoting the diquark content, respe
tively.

In the rest frame the Pauli-Lubanski operator for a
spinor is given by

Wi5
1

2
e i jkL jk, ~3.22!

whose square characterizes the total angular momentum

WiWicabg5J~J11!cabg . ~3.23!

Here,cabg is the trispinor wave function with positive parit
and positive energy. The tensorL jk is the sum of an orbita
part L jk and a spin partSjk which read

L jk5 (
a51

3

~2 i !S pa
j ]

]pa
k

2pa
k ]

]pa
j D , ~3.24!

2~Sjk!aa8,bb8,gg85~s jk!aa8^ dbb8^ dgg81daa8^ ~s jk!bb8

^ dgg81daa8^ dbb8^ ~s jk!gg8 , ~3.25!

such thatL jk5L jk1 1
2 Sjk. Obviously,L jk is proportional to

the unit matrix in Dirac space. The definition ofsmn:
-
x
i-

e

re

t

of

w-
rs
in,
-
a-

s

-

52(i/2)@gm,gn# differs by a minus sign from its Minkowsk
counterpart. The tensorsL andS are written as a sum ove
the respective tensors for each of the three constituent qu
which are labeleda51, . . . ,3 andwith respective Dirac in-
dicesaa8,bb8,gg8.

With the definition of the spin matrixS i5 1
2 e i jks jk the

Pauli-Lubanski operator reads

~Wi !aa8,bb8,gg85Lidaa8^ dbb8^ dgg81~Si !aa8,bb8,gg8 ,
~3.26!

Li5~2 i !e i jkpj
]

]pk
, ~3.27!

~Si !aa8,bb8,gg85
1

2
@~S i !aa8^ dbb8^ dgg81daa8^ ~S i !bb8

^ dgg81daa8^ dbb8^ ~S i !gg8#, ~3.28!

where we have already introduced the relative momentump
between quark and diquark via a canonical transformatio

P5p11p21p3, p5h~p11p2!2~12h!p3,

p85
1

2
~p12p2!. ~3.29!

Assuming a pointlike diquark, the relative momentum b
tween quark 1 and 2,p8, vanishes and the only contributio
to the orbital angular momentum stems fromp. W2 now
takes the form

W25L212L•S1S2, ~3.30!

L25S 2pi
]

]pi
2p2Dp1pipj

]

]pi

]

]pj D , ~3.31!

2~L•S!aa8,bb8,gg852e i jkpj
]

]pk
$~S i !aa8^ dbb8^ dgg8

1daa8^ @~S i !bb8^ dgg8

1dbb8^ ~S i !gg8#%, ~3.32!

~S2!aa8,bb8,gg85
1

4
$9 daa8^ dbb8^ dgg8

12 daa8^ @~S i !bb8^ dgg8

1dbb8^ ~S i !gg8#

12daa8^ ~S i !bb8^ ~S i !gg8%.

~3.33!

When applyingW2 to the wave functions we first not
that a scalar function does not contribute to the angular m
mentum, e.g.,

L2 S1~p2,iMp4!52L•SS1~p2,iMp4!50. ~3.34!
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In Table II we express all terms of the octet wave function
terms of eigenstates ofL2 andS2. To this end we define the
following linear combinations of matrices:

B 1
m5A 5

m1A 3
m ,

B 2
m5A 6

m1A 4
m ,

C 1
m52

1

3
A 5

m1
2

3
A 3

m ,

C 2
m52

1

3
A 6

m1
2

3
A 4

m . ~3.35!

The eigenvalue ofW2 is 3
4 for all terms, of course. In the

table, x5$x1,x2% denotes an arbitrary Pauli two
component spinor which is the positive energy basis
quark a with Dirac indexa. To derive this, the following
relations between Dirac matrices have proven to be use

S j~g5C!1~g5C!~S j !T50 ~3.36!

TABLE II. Classification of the components of the octet wa
function in terms of eigenstates ofL2 andS2 in the rest frame of the
bound state.

cabg
8 in the rest frame

eigenvalue eigenvalue

l ( l 11) of
L2

s(s11)of
S2

S1u~g5C!5S x

0D ~g5C! 0 3
4

S2u~g5C!5S 0

1

p
~sp!xD ~g5C! 2 3

4

A 1
mu~gmC!5 P̂0S 1

p
~sp!x

0
D ~g4C! 2 3

4

A 2
mu~gmC!5 P̂0S 0

x
D ~g4C! 0 3

4

B 1
mu~gmC!5S is ix

0 D ~g iC! 0 3
4

B 2
mu~gmC!5S 0

i

p
s i~sp!xD g iC) 2 3

4

C 1
mu~gmC!5S i ~ p̂i~sp̂!2

1
3 s i !x

0
D ~g iC! 6 15

4

C 2
mu~gmC!5S 0

i

p
„pi2

1
3 s i~sp!…D ~g iC! 2 15

4

r

l:

S j S ~g4C!

~g iC!
D 1S ~g4C!

~g iC!
D ~S j !T5S 0

2i em ji~gmC!
D ,

~3.37!

S j~g5C!~S j !T523~g5C!, ~3.38!

S j S ~g4C!

~g iC!
D ~S j !T5S 23~g4C!

~g iC!
D . ~3.39!

Three covariants can be regarded as ‘‘s-wave’’ compo-
nents,S1 , A2 , andB1 , and we expect the correspondin
scalar functions to dominate the wave function decompo
tion. The other ‘‘p-, d-wave’’ components represent all re
maining possibilities of combining orbital angular mome
tum between quark and diquark and the joint spin of ax
vector diquark and quark to total spin 1/2. In this sense
description is closed.

The individual terms of the decuplet wave function can
classified accordingly with the help of the linear combin
tions

D15S1 , ~3.40!

D 2
mn5S 2dmn1

2i

3
g5~A 5

m1A 3
m! p̂T

n ,

E 1
mn5 ig5A 2

mp̂T
n ,

E 2
mn5 ig5A 1

mp̂T
n ,

E 3
mn52 ig5~A 6

m1A 4
m! p̂T

n ,

E 4
mn52 ig5~A 5

m1A 3
m! p̂T

n ,

E 5
mn5S 2

2i

3
g5A 4

m1
i

3
g5A 6

mD p̂T
n2

1

3
S 1dmn,

E 6
mn5S 2

4i

5
g5A 3

m1
i

5
g5A 5

mD p̂T
n2

1

5
S 2dmn.

The result can be found in Table III. Due to the spin proje
tion by use of the Rarita-Schwinger projector the eigenva
of W2 is 15

4 . x i5$x1 i ,x2 i% ( i 51,2,3) denotes a two
component vector-spinor which survives the spin-3/2 proj
tion in the rest frame. The Rarita-Schwinger constraints
duce tosx50.

For the decuplet only ones-wave component exists,D1 .
Again these covariants exhaust all possible couplings of s
and orbital angular momentum, note that even an orbital
gular momentuml 53 contributes to a spin-3/2 state,E6 . A
contribution of anl 51 state with scalar diquark, such as

S 0

~px!
D ~g5C!,

is forbidden by the Pauli principle for pure decuplet stat
but may admix in the case of broken flavor symmetry.
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TABLE III. Classification of the components of the decuplet wave function in terms of eigenstatesL2

andS2 in the rest frame of the bound state.

cabg
10 in the rest frame eigenvalue eigenvalue

l ( l 11) of L2 s(s11)of S2

D1um~gmC!5S x i

0 D ~g iC! 0 15
4

D 2
mnun~gmC!5S 0

1

p
~~sp!x i2

2
3 s i~px!!D ~g iC! 2 15

4

E 1
mnun~gmC!5 i P̂0S 1

p
~px!

0
D ~g4C! 2 3

4

E 2
mnun~gmC!5 i P̂0S 0

~sp̂!~ p̂x!
D ~g4C! 6 3

4

E 3
mnun~gmC!5S s i~sp̂!~ p̂x!

0
D ~g iC! 6 3

4

E 4
mnun~gmC!5S 0

1

p
s i~px!D ~g iC! 2 3

4

E 5
mnun~gmC!5S p̂i~ p̂x!2

1
3 @x i1s i~sp̂!~ p̂x!#

0
D ~g iC! 6 15

4

E 6
mnun~gmC!5S 0

1

p
~pi~sp̂!~ p̂x!2

1
5 @s i~px!1~sp!x i # !D ~g iC! 12 15

4
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IV. LADDER APPROXIMATION TO THE
BETHE-SALPETER EQUATION

In our preceding publication@1# we used a momentum
routing in the Bethe-Salpeter equation, where the interac
~propagator of the exchanged quark! is manifestly indepen-
dent of the total momentumP of the baryon, i.e.,q52p
2p8. A P-independent kernel is desirable for the followin
reasons. As will be discussed in the next section, it redu
the numerical work when solving the integral equation qu
drastically. Furthermore, the canonical normalization con
tion for the Bethe-Salpeter wave function@42# becomes
much more involved when the interaction isP dependent.
Therefore, when solving a Bethe-Salpeter equation in
ladder approximation one usually tries to find a moment
routing having this very convenient feature. In our equatio
however, where quark and diquark interact through qu
exchange, which changes the identity of the particles a
each interaction~a diquark becomes a quark and a qua
becomes a diquark after the quark exchange!, demanding a
P-independent interaction defines a ‘‘modified ladder a
proximation’’ with results deviating from other momentu
routings. Note that this problem does not occur in the Bet
Salpeter approach if the interaction, e.g., meson exchang
n

es
e
i-

e

,
k
er

-

-
in

the two nucleon system or gluon exchange between qu
and antiquark, does not change the identity of the const
ents. Almost all Bethe-Salpeter equations treated in the
erature are of this kind. For a comprehensive review of
existing Bethe-Salpeter literature see Ref.@43#. In order to
clarify the ambiguity arising in the diquark-quark Beth
Salpeter equation, which came up during our investigatio
we discuss here two possible momentum routings and in S
VI and Appendix the corresponding variations of the resu

For sake of clarity of this discussion we temporarily r
strict ourselves to the part of the octet equation which
volves only scalar diquarks, i.e., Eq.~3.1! with ga50. Fur-
thermore, it is more transparent to work with the Beth
Salpeter equation which involves the vertex function@see Eq.
~3.19!#:

F8~p;P!52ugsu2E d4p8

~2p!4
g5S̃

3~2q!g5S~pa8!D~pb8!F8~p8;P!. ~4.1!

Repeating the procedure discussed in Sec. III A for the v
tex instead of the wave function leads to anAnsatz@30,1#
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F8~p;P!5S 1 Ŝ1~p,z! 0

1

p
~sp!Ŝ2~p,z! 0D . ~4.2!

Note that in the lower component of this spinorlike obje
the spin is orientated along the spatial part of the rela
momentum. In the Bethe-Salpeter equation~4.1! the momen-
tum of the constituent quark is given bypa85p81hP, and
the momentum of the scalar diquark bypb852p8
1(12h)P. P denotes the total momentum of the nucle
and p the relative momentum between quark and diqua
The Mandelstam parameterh describes howP is partitioned
to quark and diquark. The fact that the eigenvalues of
Bethe-Salpeter equation are independent ofh is a direct con-
sequence of Lorentz covariance.

If the momentum of the exchanged quark is chosen aq
52p2p8, the interaction kernel is by construction indepe
dent of the total momentum. Since the quark exchange tr
forms a quark to a diquark and vice versa, after the inter
tion, the relative momentum between these partic
becomes (12h)pa2hpb52p, see Fig. 1 for this momen
tum routing. We now demandF8(2p;P)5F8(p,2z,P),
i.e., the orientation of the nucleon spin should not depend
the orientation ofp as required by the Dirac decompositio
before projection onto positive energies. Then the ver
function appearing on the left-hand side in Eq.~4.1! reads

F8~p;P!5S 1 Ŝ1~p,2z! 0

1

p
~sp!Ŝ2~p,2z! 0D . ~4.3!

The definition of the momentumq together with Eq.~4.3! is
what we call the ‘‘modified ladder approximation’’ whic
leads to satisfying results for various nucleon form factors
the weak binding regime, as can be seen in Ref.@1#. Using
such a prescription we have been able to reproduce the
sults of Ref.@30#.

Another possible momentum routing allowsP to flow
through the quark exchange,q52p2p81(122h)P, see
Fig. 2. When not taking into account that the quark a
diquark change their role after exchanging a quark, t
means attributing the index a to the quark and index b to
diquark, the relative momentum after the interaction is giv
by p. Correspondingly, the vertex function on the left-ha
side in Eq.~4.1! is denoted by

FIG. 1. Momentum routing defining the modified ladder a
proximation.
t
e

.

e
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s-
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re-
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e
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F8~p;P!5S 1Ŝ1~p,z! 0

1

p
~sp8! Ŝ2~p,z! 0D . ~4.4!

We name this the ‘‘direct ladder approach.’’ Although on
might expect that both choices of the momentum rout
lead to the same physical results, we found that this is a
ally not the case. In the next sections and Appendix B
report on calculations using both momentum routings,
also Ref.@44# for further results obtained in the direct ladd
approach. We found that physical results slightly differ f
these two choices. We will show, however, that both pos
bilities are manifestly Lorentz covariant, i.e., the eigenvalu
do not depend on the Mandelstam parameterh. Furthermore,
for weak binding the eigenvalues almost coincide. Given t
the ladder approximation is only reliable for weak bindin
we conclude that both methods are of similar validity.

Although during this discussion we restricted ourselv
for clarity to scalar diquarks and to the Bethe-Salpeter eq
tion involving the vertex function, it can be extended in
straightforward way to the complete equation including t
axial-vector diquark channel, the decuplet equation and a
to the Eqs.~3.1! and~3.2! involving the wave functions in an
obvious way. The reported numerical results are alw
given for the full problem.

V. NUMERICAL METHOD

For the numerical solutions of the Bethe-Salpeter eq
tions we developed an iterative hybrid algorithm, which
lows a very efficient and fast computation. A description
our numerical method will appear in a forthcoming public
tion which presents this algorithm in all details@40#. Thus we
will focus here on the main steps only.

We solve the Bethe-Salpeter equation as a system
equations for the wave functionC and the vertex function
F, see Eqs.~3.1! and ~3.2!. Both wave and vertex function
can be expanded in the rest frame according to Eq.~3.11!
and ~3.18!. Although there are 10 equations for the eig
octet functions, stemming from two equations in the sca
diquark channel and 234 equations in the axial-vector di
quark channel, we confirmed that two of them are redund
The decuplet system yields 2312 equations for eight scala
functions due to the tensor character of the wave funct
which reduce again to eight independent equations. This
pecially underlines the necessity of including the subdo
nant amplitudes describing orbital angular momentum
keep the system closed.

We expand the scalar functions~amplitudes! S,A and

FIG. 2. Momentum routing defining the direct ladder appro
mation.
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D,E defined in Eqs.~3.8! and ~3.17! into Chebyshev poly-
nomials of the second kind,

Yi~P;p!5 (
n50

`

i nYi
n~P2;p2!Un~ P̂• p̂!, ~5.1!

Ŷi~P;p!5 (
n50

`

i nŶi
n~P2;p2!Un~ P̂• p̂!, ~5.2!

where amplitudes with a hat, i.e.,Ŷi , belong to the vertex
function and the ones without a hat to the wave functi
Here we use the generic labelYi according to Yi
5$S1 ,S2 , . . . ,A6%octet, $D1 ,D2 , . . . ,E6%decuplet.

Throughout the calculation we work with usual hype
spherical coordinates

S p18

p28

p38

p48

D 5p8S sinc8sinu8sinf8

sinc8sinu8cosf8

sinc8cosu8

cosc8

D , z85cosc85 P̂• p̂8.

~5.3!

We are free to choose the spatial part of the relative mom
tum p appearing on the left-hand side of the Bethe-Salpe
equation ~3.1!. Without loss of generality, we selectpm

5(0,0,pA12z2,pz).
We expand quark and diquark propagators into Che

shev polynomials as well and project the Bethe-Salpe
equation onto the Chebyshev moments of the amplitud
Ŷi

m ,Yi
m . Note that in the chosen Lorentz frame with th

relative momentump parallel to the third axis this is espe
cially easy because in this case the amplitudes as give
Eq. ~3.11! do not mix. The integration necessary to gener
the kernel will be performed in hyperspherical coordinat
The integrations overf8 and u8 are done analytically, and
the remaining two overz8 andz ~due to the projection! nu-
merically.

The final equation suitable for iteration or diagonalizati
reads

Yi
m~pl 1

!52g2(
j 51

8

(
n50

nmax

Pi j
mn~pl 1

!Ŷj
n~pl 1

! ~5.4!

Ŷj
n~pl 1

!5 (
k51

8

(
m50

mmax E
0

`

dp8 p83H jk
nm~pl 1

,pl 2
8 !Yk

m~pl 2
8 !.

~5.5!

Here,Pi j
mn is the propagator matrix with amplitude indice

i , j and Chebyshev moment indicesm,n and H jk
nm(p,p8) is

the matrix of the quark exchange kernel given on a mom
tum grid (pl 1

,pl 2
8 ) with respective amplitude indicesj ,k and

Chebyshev moment indicesn,m. The sum over amplitude
indices runs from 1 to 8 for both octet and decuplet.mmax
and nmax denote the highest Chebyshev polynomial cons
ered in the expansion of the vertex and the wave func
amplitudes, respectively. The kernel includes also the fla
factors and the ratioga /gs ~for spin-1/2 baryons!. It is only
in the modified ladder approximation that the integral ker
does not include an explicit dependence on the bound s
massM for all values ofh, which makes a fast determina
tion of M for given couplings feasible. We refer tog as the
.

n-
r

-
r
s,

in
e
.

-

-
n
r

l
te

eigenvalue of the Bethe-Salpeter equation which isgs for
spin-1/2 andga for spin-3/2 baryons.

In the following we will investigate the convergenc
properties of the expansion in Chebyshev polynomials. F
thermore, the independence of the eigenvalue from the M
delstam parameterh will be discussed. The chosen examp
is the octet equation~3.1! with the axial-vector diquark
propagator diagonal in Lorentz indices and a diquark s
factor of the monopole type.

For all calculations reported, a momentum mesh size
20320 and the inclusion of only zeroth, first, and seco
Chebyshev moments for both vertex and wave function a
plitudes is sufficient for determining the eigenvalue up
1024 precision~see Table IV!. This is also reflected in the
magnitudes of the vertex amplitudesŶi : Going up one
Chebyshev moment suppresses the amplitudes by almos
order of magnitude. The wave function amplitudesYi con-
verge somewhat slower, see also Sec. VI C. For a large
screening factor,d.5, and a weak binding situation the eve
Chebyshev momenta are more pronounced than the
ones.

Increasing the coupling constantga in the nucleon equa-
tion always lowers the eigenvalue, hence the axial-vec
diquark enhances binding.

For tree level propagators the choice of the Mandelst
parameter h is limited to the values hP@1
2min$m01,m11%/M ,mq /M # to avoid singularities in the
propagators. This restriction should not apply for confini
propagators. To demonstrate this, we choose the extr
case m015m1152mq and the tree level thresholdM
53mq .4 Then, tree level propagators limit the choice toh
51/3, as opposed to confining propagators. For a small p

4For similar choices of quark and diquark masses we calculate
octet and decuplet masses, see Sec. VI. The masses of the de
baryons are close to the tree level threshold.

TABLE IV. Octet Bethe-Salpeter equation-eigenvaluesgs for
variousmmax andnmax, the maximum Chebyshev momenta of ve
tex and wave function. Parameters:mq5m015m11, M
51.5mq , L52mq , ga /gs50.5, h50.5, momentum grid size
np520.

Confining propagators,d510

nmax 0 1 2 3
mmax

0 9.4362 9.1533 9.1417 9.1420
1 9.7480 9.2277 9.2260 9.2265
2 9.7568 9.2276 9.1992 9.1988
3 9.7568 9.2277 9.1994 9.1990

Confining propagators,d51

nmax 0 1 2 3
mmax

0 11.3797 10.9507 10.9544 10.9547
1 11.8555 11.1401 11.1704 11.1711
2 11.8656 11.1503 11.1443 11.1445
3 11.8656 11.1504 11.1444 11.1446
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FIG. 3. Eigenvalue vs Mandel
stam parameterh, left: two pole
screening factors compared, righ
modified and direct ladder ap
proach compared. Dotted lines de
note the location of the propagato
poles.
e
ee
e

fie

v
e

ca

ho
r
re
th

a
. N
ion

de

nc

el

es
o-

e.

as-
and
s of
m-
vor
g

the
her-

-

fol-

on
r the

a-
mo-

ses

the
la-

ion
screening factord51 we could varyh in a wide range with-
out affecting the eigenvalue, ford510 due to numerical in-
stabilities the invariance region depends on the constitu
masses, displayed in Fig. 3 in the left panel. It can be s
that the poles in the tree level propagators are effectiv
screened although the invariance region ford510 is re-
stricted to 0.2–0.42.

Whereas the latter results were obtained in the modi
ladder approximation, the check ofh independence for the
direct ladder approach requires the total momentumP to
appear in the kernel:q52p2p81(122h)P, which slows
down the numerics considerably. In the case of tree le
propagators, the right panel of Fig. 3 shows the invarianc
the eigenvalue for both momentum routings.

The crucial advantage of using confining propagators
be seen even more clearly in Fig. 4. Here the functiongs(M )
decreases rapidly for tree level propagators near thres
while the corresponding function for confining propagato
runs smoothly over the ‘‘pseudo’’-threshold. We furthermo
observe that the even Chebyshev momenta of the Be
Salpeter wave functions for tree level propagators close
threshold become squeezed in the low momentum dom
while the corresponding odd momenta are suppressed
such effect is present for the Bethe-Salpeter wave funct
obtained with confining propagators.

All the numerical features described also apply to the
cuplet equation in the weak binding regime@M. 3

4 (mq
1m01,11)#. For lower bound state masses the converge

FIG. 4. Eigenvalues vs bound state massM . Note the absence
of threshold effects for confining propagators.
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becomes worse and forM, 1
2 (mq1m01,11) our method

failed in finding a real eigenvalue for the couplingga . In this
mass region an effect well known from the Cutkosky mod
is visible: two states described by their functionsga(M ) col-
lide and form a complex conjugate pair of eigenvalu
@45,46#. This shortcoming of the ladder approximation pr
vides us with an upper limit of the coupling constantga for
which the approximation is valid. However, thega needed to
describe the baryon decuplet is well below this critical valu

VI. RESULTS: MASSES AND SELECTED WAVE
FUNCTIONS

A. Octet and decuplet masses

In our approach the strange quark constituent massms is
the only source of flavor symmetry breaking. Isospin is
sumed to be conserved. The equations describing octet
decuplet baryons have been derived under the premise
flavor and spin conservation, i.e., only wave function co
ponents with same spin and flavor content couple. The fla
structure of the eight equations describin
N, L, S, J, D, S* , J* and V can be found in Ap-
pendix A.

In order to limit the number of parameters we assume
scalar and axial-vector diquark masses to be equal. Furt
more, we choose them to bem01,11

f g
5j(mf1mg) where

f gP$uu,us,ss% is the flavor content of the diquark. We de
note the diquark mass parameter asj. AssumingjP@0,1# is
obviously natural. With these choices the model has the
lowing parameters: two constituent quark massesmu
5md ,ms , the pole screening factord, the diquark size fac-
tor L, the diquark mass parameterj and the couplings
ga ,gs .

We do not try to make a thorough fit onto the bary
masses in our parameter space. Inspired by our results fo
form factors of proton and neutron@1#, we assume firstd
510. This results in only slight modifications of the prop
gators compared to the tree level ones for spacelike
menta. Furthermore, we chooseL51 GeV'2mu and j
51 to stay close to calculations of octet and decuplet mas
in NJL-diquark-models as done in Refs.@25# and@23#. These
authors, however, used just a static approximation to
Bethe-Salpeter equation. Note that this part of our calcu
tion has been done only in modified ladder approximat
since we were forced to chooseh,0.4 ~cf. Fig. 3!, and
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solely for h50.5 the integral kernel does not depend on
baryon mass in the direct approach, which allows a fast
termination ofM . We then fix the couplingsga andgs by the
nucleon and delta mass. The ratioga /gs is quite independen
from the ratioMD /mq and varies weakly withd. Finally we
vary just the two constituent quark masses to obtain the o
six hyperon masses reasonably close to their experime
values.

Secondly, we explore the cased51 and now additionally
allow the diquark mass factorj to vary. In Ref. @1# we
showed that this strong screening of the propagator p
leads to overestimated nucleon e.m. form factors for h
Q2. In this case we also compare results for the two mom
tum routings, modified and direct ladder approach. In b
calculationsh is set to 0.5.

The results are given in Table V. The quality of the resu
may be read from the quantity

x25(
i 51

6
~M theor

i 2Mexp
i !2

~Mexp!
2 .

Note that the mean deviation of the calculated masses f
the experimental ones is of the order of half a per cen
less. Column I shows the results ford510. A remarkable
feature is the large constituent quark massmu5500 MeV,
whereas the constituent mass difference between strange
up quark is 160 MeV, a commonly used value. In the f
lowing two subsections we will show for this set of param
eters the wave function amplitudes for the nucleon and
delta and discuss the contribution of the various compon
with respect to their orbital angular momentum and exe
plify flavor symmetry breaking effects on the wave and v
tex function of theL hyperon.

TABLE V. Octet and decuplet masses obtained with the ma
mum order in Chebyshev polynomialsmmax5nmax53 and momen-
tum grid sizenp520.

Expt. Modified ladder Direct ladder
I II III

d 10 1 1
L ~GeV! 1 1 1
mu ~GeV! 0.5 0.5 0.5
ms ~GeV! 0.65 0.63 0.63
j 1 0.73 0.73

ga 10.35 10.92 10.05
gs 9.43 8.06 7.34

ML ~GeV! 1.116 1.123 1.130 1.133
MS ~GeV! 1.193 1.134 1.137 1.140
MJ ~GeV! 1.315 1.307 1.319 1.319

MS* ~GeV! 1.384 1.373 1.372 1.380
MJ* ~GeV! 1.530 1.545 1.548 1.516
MV ~GeV! 1.672 1.692 1.697 1.665

x2 0.0028 0.0028 0.0021
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Columns II and III show the results ford51 with the
other parameters chosen to give baryon masses to the
level of accuracy as before. In this case quark and diqu
propagators are strongly modified for spacelike momen
Quark and diquark ‘‘masses’’ begin to lose their meani
which we usually attach to them. This is reflected in o
solutions in a rather small diquark mass parameter wh
renders constituent quarks and diquarks roughly equa
their masses. The direct and modified ladder approaches
approximately the same results in the latter case.

In all cases the Gell-Mann–Okubo mass formula for t
octet is fulfilled with an inaccuracy of less than 0.5%.
should be emphasized that the mass splitting between
octet and decuplet is exclusively provided by the quark
change with the coupling strengthsgs andga and is not due
to a heavier axial-vector diquark as assumed in ot
diquark-quark models, e.g., in Ref.@21#.

B. Vertex functions for the L-hyperon

The L hyperon appears to be of special interest. First,
measured polarization asymmetry in the processpg→K1L
could provide a stringent test for the diquark-quark mod
As discussed in Ref.@47#, there are only scalar diquarks in
volved in this process and in the following we will conce
trate on the scalar diquark part of the vertex function.

Secondly, broken SU~3!-flavor symmetry induces a
component of the total antisymmetric flavor single5

(1/A3)@(su)d1(ud)s1(ds)u# into wave and vertex func-
tion ~see Appendix A!.6 As the flavor singlet is only com-
posed of scalar diquarks and quarks, this generates two
ditional scalar amplitudesŜ1,singlet and Ŝ2,singlet besides the
usual two from the octetL state (1/A6)@(su)d2A2(ud)s
1(ds)u#. The vector part of the vertex function remain
unchanged in flavor space, (1/A2)(@su#md2@ds#mu).

These scalar amplitudes for the vertex function are
picted in Fig. 5 for the parameter set of column I in Table
The Ŝ1,singlet component is suppressed againstŜ1,octet by two
orders of magnitude. However, the purely relativisticŜ2,singlet
component is only 5 times smaller than its octet counterp
Observing that theŜ1 component usually contributes the m
jor part to observables as demonstrated in Ref.@1#, we can
safely regard theL hyperon as an almost pure octet state
flavor space.

C. Wave functions for nucleon and delta

In this subsection we present Bethe-Salpeter wave fu
tions for nucleon and delta, using the parameter set of
umn I in Table V. They are normalized toS1

0(p1)51
~nucleon! or D1

0(p1)51 ~delta! where p1 is the smallest
point of the momentum mesh. The amplitudes represent
strengths of the (L2, S2) eigenfunctions given in Sec. III B
and are simple linear combinations out of the amplitud
defined in Eqs.~3.8! and ~3.17!.

5We denote scalar diquarks, with parentheses, e.g., (us)5us
2su. Axial-vector diquarks we denote as@us#5us1su.

6In nonrelativistic quark models with SU~6! symmetry such a
component is forbidden by the Pauli principle.

i-
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FIG. 5. Scalar amplitudes o
the vertex function for theL hy-

peron normalized toŜ1,octet
0 (p1)

51 with p1 being the first point
on the momentum mesh. The pa
rameters used aremu50.5 GeV,
ms50.65 GeV, j51, h50.33, d
510 andL51 GeV.
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As already mentioned, the convergence of the wave fu
tion amplitudes in terms of Chebyshev polynomials is som
what slower than for the vertex amplitudes: The second
zeroth Chebyshev moments of the amplitudes differ by l
than one order of magnitude. All wave function amplitud
are concentrated to four-momentap<0.6 GeV.

In Fig. 6, the nucleon amplitudes with even orbital ang
lar momentuml appear in the left row: These are the threes
waves describing~i! scalar diquark and quark,~ii ! and ~iii !
axial-vector diquark and quark oppositely aligned to g
spin 1/2. There are two axial-vector diquark components
to the virtual time component of the latter. The scalar
quark component is the most important but the others-waves
enhance binding by approximately 30%. The fourth ‘‘nonr
ativistic’’ component is a strongly suppressedd wave with
quark and axial-vector diquark aligned to give spin 3/2. T
lower components depicted on the right side can be un
stood as the admixture of negative-energy spinors to the
ton wave function and contribute approximately 10% to
binding energy.

The delta amplitudes in Fig. 7 have also been arran
into ‘‘non-relativistic’’ ~left row! and ‘‘relativistic’’ compo-
nents~right row!. As expected, the onlys-wave dominates
the decomposition, but the relativisticp-wave components
which act repulsively, increase the eigenvalue by appro
mately 20% and are thus non-negligible. Again the com
nent with the highest orbital angular momentum,l 53, is
highly suppressed.

No clear effects of flavor symmetry breaking, as in ter
of the width in momentum space, can be detected for
c-
-
d
s

s

-

e
-

-

e
r-
o-
e

d
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s
e

other octet wave functions when compared to the nucle
For the vertex functions~where the zeroth Chebyshev mo
ment dominates!, we observed a limited increase of th
width in momentum space with increasing number ofs
quarks ~10% difference betweenN and J). The width is
hereby defined as the absolute value of the relative mom
tum p where the zeroth Chebyshev moment of ans-wave
amplitude reaches half the maximum value.

VII. CONCLUSIONS AND OUTLOOK

In this paper we extended the covariant and confin
diquark-quark model of Ref.@1# by including axial-vector
diquarks in the description of baryons within the Beth
Salpeter approach. Thus we were able to calculate the o
baryons masses as well as the decuplet masses and
functions. We implemented confinement via an effective
rametrization of the constituent propagators and dem
strated the existence of bound states beyond the pse
threshold.

We decomposed octet and decuplet vertex and wave fu
tions in the Dirac and Lorentz algebra, obtaining eight sca
functions, respectively, which we computed numerical
Two approximations to the Bethe-Salpeter equation w
discussed and compared: The direct ladder approximat
and a modified ladder approximation with a special mom
tum routing leading to a kernel independent of the bou
state mass.

In order to fix the parameters of the model preliminari
we computed the masses of octet and decuplet for bro
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FIG. 6. Scalar and axial vector amplitudes of the nucleon wave function with parameters given bymu50.5 GeV, j51, h50.33, d
510, andL51 GeV.
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FIG. 7. Axial vector amplitudes of the delta wave function with parameters given bymu50.5 GeV, j51, h50.33, d510, andL
51 GeV.
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SU(3)flavor with isopin conserved. With the scalar and axia
vector diquark mass assumed to be equal, the octet-dec
mass splitting is a result of the different effects of the co
pling constants in the scalar and axial-vector diquark ch
nel. For a parameter set which fits the octet and decu
masses well, we computed vertex amplitudes and wave fu
tions for all octet and decuplet baryons. The wave functio
for baryons with different strangeness content but the sa
spin differ mostly due to the different flavor Clebsch-Gord
coefficients, the respective scalar functions being very si
lar. Therefore we presented only the wave functions for
nucleon and delta out of this data. The decomposition of
wave functions in the rest frame of the bound state in te
of spin and orbital angular momentum eigenstates reve
an s-wave dominance in all ground state baryons stemm
from both scalar and axial-vector diquark contributions. T
p-wave contributions sneaking in via the lower compone
of the spinors are of greater importance for decuplet bary
than for octet baryons.

Due to its special role among the other baryons, we
vestigated theL hyperon in more detail and discussed
vertex amplitudes. In our approach, theL acquires a smal
flavor singlet admixture which is absent in SU~6! symmetric
nonrelativistic quark models.

This work, together with our preceding paper@1#, pro-
vides a sound basis for further applications of this appro
let
-
-

et
c-
s
e

i-
e
e
s

ed
g
e
s
ns

-

h

to baryon phenomenology. The calculated amplitudes wh
encode the nontrivial information of a baryon as a diqua
quark bound state serve as a necessary input for the cal
tion of various observables. A calculation of the electroma
netic form factors of the octet and decuplet baryons is her
the next task. Such an investigation will furthermore help
fix some of the parameters. Our aim is, however, to apply
covariant and confining diquark-quark model to process
which are far less understood. Especially, the reactionspg
→KL and pp→pLK, currently measured at ELSA an
COSY, respectively, will serve as a stringent test of our
proach. Additionally, we plan to get further insight into th
picture of baryons by computing structure functions for
spectator model@30# which includes the axial-vector di
quark.
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APPENDIX A: OCTET AND DECUPLET EQUATIONS

The symmetric and antisymmetric flavor matrices can be written as

tA
a 5$ra51 . . . 3%5H S 0 1 0

21 0 0

0 0 0
D , S 0 0 1

0 0 0

21 0 0
D , S 0 0 0

0 0 1

0 21 0
D J , ~A1!

tS
a5$ra54 . . . 9%

5H S A2 0 0

0 0 0

0 0 0
D , S 0 0 0

0 A2 0

0 0 0
D , S 0 0 0

0 0 0

0 0 A2
D , S 0 1 0

1 0 0

0 0 0
D , S 0 0 1

0 0 0

1 0 0
D , S 0 0 0

0 0 1

0 1 0
D J .

~A2!

By these conventions flavor antisymmetric diquarks are (ud):5ud2du, etc., and flavor symmetric diquarksA2uu,@ud#:
5ud1du, etc. The flavor wave functions of octet and decuplet states do not decouple once thes quark breaks the symmetry
The Bethe-Salpeter equation~3.1! still describes nucleons~isospin is assumed to be conserved!, and Eq.~3.2! still refers toD
andV which possess only single-component flavor wave functions@uu#mru, respectively,@ss#mrs.

We use the following abbreviations to give short-hand Bethe-Salpeter equations for the remaining baryons:

~ab!c and @ab#mc: octet flavor wave functions with diquark flavor contentab and spectator quark of flavorc;

@ab#mrc: decuplet flavor wave functions;

Sa : quark propagator of the spectator quarka;

D (ab) and D [ab]
mm8 : scalar and axial-vector diquark propagator;

Ka
rl5*@d4p8/~2p!4#grS̃a~2q!gl ~r,l51 . . . 5!: exchange kernel for quark flavora, see Eq.~3.3! for the

definition of S̃.
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Of course, in contrast to Eqs.~2.3!–~2.5!, different masses corresponding to the flavor content of the quark and diquar
used in the numerators and denominators of the propagators.

For octet states each flavor wave function with scalar diquarks is to be expanded in Dirac space according to Eq.~3.11! with
only the scalar amplitudesS1 and S2 and each one with axial-vector diquarks according to the same equation with th
vector amplitudesA1 . . . A6 . For decuplet states only flavor wave functions with axial-vector diquarks are considered
have to be expanded as indicated in Eq.~3.18!.

The Bethe-Salpeter equation forJ baryons now reads

S ~us!s

@us#ms

@ss#mu

D 52gs
2S SsD ~us! 0 0

0 SsD [us]
mm8 0

0 0 SuD [ss]
mm8

D S Ku
5,5

2
ga

gs
Ku

n,5 A2
ga

gs
Ks

n,5

2
ga

gs
Ku

5,m8
ga

2

gs
2

Ku
nm8 A2

ga
2

gs
2

Ks
nm8

A2
ga

gs
Ks

5,m8 A2
ga

2

gs
2

Ks
nm8 0

D S ~us!s

@us#ns

@ss#nu

D . ~A3!

By interchangings↔u one obtains immediately the equation forS baryons.
Broken SU~3! couples the symmetricL and the flavor singlet. We introduce the flavor wave functionsF1

5(1/A2)@(us)d2(ds)u#, F25(ud)s andLm5(1/A2)(@us#md2@ds#mu) and the equation for the physicalL reads

S F1

F2

Lm
D 52gs

2S SuD ~us! 0 0

0 SsD ~ud! 0

0 0 SuD [us]
mm8

D S 2Ks
5,5 A2Ku

5,5
2

ga

gs
Ks

n,5

A2Ku
5,5 0 2A2

ga

gs
Ku

n,5

2
ga

gs
Ks

5,m8 2A2
ga

gs
Ku

5,m8 2
ga

2

gs
2

Ks
nm8

D S ~us!s

@us#ns

@ss#nu
D . ~A4!

The J* baryons belonging to the decuplet are described by the equation

S @us#mrs

@ss#mruD 52ga
2S SsD [us]

mm8 0

0 SuD [ss]
mm8D S Ku

nm8 A2Ks
nm8

A2Ks
nm8 0

D S @us#nrs

@ss#nruD . ~A5!

As before the equation for theS* baryons may be obtained by interchangings↔u. Note that we neglected contribution
from a state with scalar diquark (us).
di

FIG. 8. Eigenvalues vs bound state massM in the octet equa-

tion, and the axial-vector diquark propagator with and without
agonal approximation.
- FIG. 9. Eigenvalues vs bound state massM for direct and modi-
fied ladder approximations.
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FIG. 10. Zeroth~left! and first
~right! Chebyshev moment of th

vertex amplitudeŜ1 . The param-
eters are mq5m015m11, M
51.9mq , L52mq , ga /gs50.5
andd510.
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APPENDIX B: SOLUTIONS WITH PROCA PROPAGATOR
FOR AXIAL-VECTOR DIQUARKS

In order to study the influence of the full Proca propaga
on vertex functions of spin-1/2 baryons and the correspo
ing eigenvalues we are forced to use a diquark size facto
the dipole type, writing instead of Eq.~3.3!

S~q!→S̃~q!5S~q!S L2

q21L2D 2

~B1!

to regularize the equation which has no stable solution o
erwise.

In Fig. 8 we compare the eigenvalues as a function ofM
for both the Proca propagator and its diagonal approxim
tion. Even in regions of moderate binding the eigenvalues
not differ by more than 2% which makes the approximat
of the diagonal propagator in computing the masses a
able one. While the vertex functions are essentially the sa
for both choices of the axial-vector diquark propagator,
A1 components of the Bethe-Salpeter wave function differ
approximately a factor of 10.
l.
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APPENDIX C: DIRECT VS MODIFIED LADDER
APPROXIMATION

In Fig. 9 we display for a representative parameter set
eigenvalues obtained in direct and modified ladder appro
mations. One clearly sees that for bound state masses
proximately equal to the sum of the constituent masses
eigenvalues are almost identical, and even for strongly bo
states the deviation is small.

However, larger deviations occur in the vertex function

Figure 10 shows zeroth and first Chebyshev moments oŜ1

for modified and direct ladder approximation. WhereasŜ1
0

hardly differs for the two approaches,Ŝ1
1 receives a sign flip

when switching between the two approaches. This occurs
almost all amplitudes in odd Chebyshev moments. Wh
considering the Bethe-Salpeter equation for nucleons w

ga50, the different sign inŜ1
1 causes the electric form facto

of the neutron to change. Isospin breaking effects are a
different: The neutron-proton mass difference is in the dir
approach bigger than the constituent quark mass differe
md2mu whereas in the modified ladder approximation it a
sumes values of approximately 0.7(md2mu) @48#.
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