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Meson-baryon form factors in the chiral color dielectric model
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The renormalized form factors for pseudoscalar meson-baryon coupling are computed in the chiral color
dielectric model. This has been done by rearranging the Lippmann-Schwinger series for the meson-baryon
scattering matrix so that it can be expressed as a baryon pole term with renormalized form factors and baryon
masses and the rest of the terms which arise from the crossed diagrams. Thus we are able to obtain an integral
equation for the renormalized meson-baryon form factors in terms of the bare form factors as well as an
expression for the meson self-energy. This integral equation is solved, and renormalized meson baryon form
factors and renormalized baryon masses are computed. The parameters of the model are adjusted to obtain a
best fit to the physical baryon masses. The calculations show that the renormalized form factors are energy
dependent and differ from the bare form factors primarily at momentum transfers smaller than 1 GeV. At
nucleon mass, the change in the form factors is about 10% at zero momentum transfer. The computed form
factors are soft with the equivalent monopole cutoff mass of about 500 MeV. The renormalized coupling
constants are obtained by comparing the chiral color dielectric model interaction Hamiltonian with the standard
form of the meson-nucleon interaction Hamiltonian. The ratid dfr andNN7 coupling constants is found
to be about 2.15. This value is very close to the experimental vEB256-28188)06109-3

PACS numbds): 12.39.Ki, 12.39.Fe, 13.75.Gx

I. INTRODUCTION With monopole parametrization of the form factok, of
about 800 MeV is required to explain this descrepancy.
The meson-baryon form factors are interesting and usefubimilar arguments have been proposed by Coon and Scadron
guantities for several reasons. For one thing, we expect thé] for A~800 MeV. One should, however, note that these
form factors to have some bearing on the underlying strucanalyses are restricted to relatively small values|aqf
ture of hadrons. For example, in perturbative chiral quark ~(140 MeV)?] and therefore cannot determine the form
models[1] the pion-baryon form factors are directly related factors at larger momentum transfers. Recently, Saito and
to the quark wave functions in baryons. Form factors aréAfnan[7] have investigated the dependence of triton binding
essential in the effective models of meson-baryon interacenergy on therNN form factor. They compute the three-
tions since hadrons, after all, are not point particles. One alsbody 7-7 force contribution to the triton binding energy.
needs these form factors for a consistant description ofhey claim that one can determine th&N form factor in
nuclear phenomena. The meson-exchange nucleon-nucledeir model and it turns out that their renormalized form
potentials include phenomenological vertex form factorsfactor is softer withA~400 MeV. On the other hand,
which are presumably related to the structure of hadronsSchultz and Holind¢8] fit 7N scattering data and obtain a
Form factors are also needed in computation of photoprodudorm factor havingA ~800 MeV. Some attempts have been
tion and electroproduction of baryon resonances since, imade to determine the pion-baryon form factor from QCD.
principle, the photon can couple to the virtual charged mesofor example, Livet al.[9] have used quenched lattice QCD
cloud in a baryon. Another technical reason for introducingcalculations and extracted /& of 750 MeV. Meissnef10],
the form factors is that the effective meson-baryon interacon the other hand, has used QCD sum rules and obtained a
tion models are, generally, not renormalizable and the fornbf about 800 MeV.
factors provide the needed cutoff functions. In the present work, the renormalized pseudoscalar meson
Usually, the form factors employed in meson-baryon in-baryon form factors are computed by using the chiral color
teraction models are of monopole type-1/(1-k?A?)]  dielectric(CCD) model of baryong11]. The CCD model is
with k? being the four-momentum carried by the meson. Itbased on the calculation of Nielsen and Patkdd] who
must be noted that the monopole form is, as such, purelghowed that “coarse graining” of the QCD Lagrangian on a
phenomenological and is possibly not related to the underlytattice gives rise to an effective scalar, color-neutral field
ing structure of the hadrons. The form factors used in earliecalled the color dielectric field. In the CCD model, the inter-
calculations[2] were “hard” with the cutoff parameterd action of the color dielectric field with the quark and gluon
=1 GeV. There are, however, recent calculatifBisvhich  fields is such that it gives rise to the confinement of these
indicate that softer form factors\(~500 MeV) are required objects. Chiral symmetry is restored in the CCD model by
to fit A production on nuclei. Some indication of the value of introducing the interaction of the pseudoscalar meson octet
the cutoff parameteA is available from low energy phe- with the quarkg§11]. The CCD model has been used to com-
nomenology. For example, Thomas and Holirjd¢ argue  pute the properties of light baryof$1] as well asmN scat-
that the 3% descrepancy betweepr® andpnz™* coupling  tering phase shiftgl3]. Generally the agreement between the
constantg5] is essentially due to the four-momentum varia- CCD model results and the experimental data is good. In
tion of the #NN form factor betweerqz:m,zT andg?=0. particular, a good agreement with theN scattering phase
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shifts is obtained in the CCD model. In theN work, the  ning with the Lippmann-Schwinger series, the integral equa-
authors showed that solving of the relativistic Lippmann-tions for the meson-baryon form factors are obtained. In Sec.
Schwinger equation for pion-nucleon scattering leads to théV, the results of the calculation are presented and discussed.
renormalization of baryon masses and the pion-baryon veri-

tces are also renormalized due to multiple scattering. How- Il. CHIRAL COLOR DIELECTRIC MODEL

ever, the renormalized vertex functiofer form factors ) )

were not computed in that work. The present work is essen- The CCD model is described and the bare masses of bary-
tially an extension of the earlier wofii3] but here we have ©ns and pseudoscalar meson-baryon vertices are computed in
concentrated on renormalized form factors and have ndfiS Section. The description of the CCD model is somewhat
computed therN scattering matrix. The basic idea here is asPi€f because in this work we want to focus on the compu-
follows. The CCD model(or, for that matter, any other tation of meson-baryon_form factors. For the details of the
quark-based model with mesons coupling to quadiges ~CCD model the reader is refered[tb1,13.

bare meson-baryon form factors and bare baryon masses.

These are then dressed by meson-baryon interactions. As we A. Lagrangian

shall show later in the paper, computation of meson-baryon
scattering(including the pole positions of stable partigles 1]
leads to the determination of dressed baryon masses as wg]

as dressed meson-baryon form factors. This is essentially — .
achieved by rearranging the terms in the Lippmann- Lix)= ’ﬂ(x)["g_
Schwinger series for the meson-baryon scattering matrix so
that one obtains equations for the dressed baryon masses
(positions of the poles in the scattering matrand meson-
baryon form factorgsee the following sections for details 1
Thus, one can compute the dressed pion baryon form factors. a 2 2 2_

One should note hpere that these dr%s&wdreﬁormalizehj XIFLL 001+ EUU[B“X(X)] Uix), @
form factors, and not the bare form factors, should be used in

nuclear physics calculations. Some saliant features, of thﬁhereu:em;dﬁ/f U5=ei>\;¢ay5/f andy(x), A, (x), x(X)
results of our calculation are the following. ' ; Lo !

The Lagrangian density of the CCD model is given by

LY
x(x) °

my+ + gnga(x)] W
f2 1 1
+ 7 Tr(9,UaUT) = Smid?(x) = 7x*(x)

S and ¢(x) are quark, gluon, scaldcolor dielectri¢ and me-
(1) The renormalization of the form factors depends ongon fields, respectivelym and m,, are the masses of the

the energy of the meson-baryon system. At zero momenturauark and mesorf, is the pion decay constarft, (x) is the
1 wv

transfer, the ratio of renormalized and bare form factors Variélsual color electromagnetic field tensgris the color cou-

ies from about 1.1 to about 1.3 as the energy is increase ing constant, and.® and)\fa are the usual Gell-Mann ma-

from nucleon mass td mass. Pl N .
(2) The renormalized form factors differ from the bare trices acting in color and flavor space, respectively. The fla-

ones for meson momenta of 1 GeV or smaller. There is prac\-/Or symmetry breaking is incorporated in the Lagrangian

tically no change at larger meson momenta. through the quark mass terfimg+ (M/x)Us]. where m,
(3) The form factors computed in the CCD model are soft._ 0 foru anddd qtjrarks. So thf. mlassTer? wfd, ands qtu_arks
If one wants to fit the CCD model form factors by a mono- arem, m, andmo-m, respeclively. The meson matrix con-

pole form in the region of 300—700 MeV, the correspondingSiStS. of a si_ngletn, triplet of 7, anq quadruplet oK. The
A is about 500 MeV/. self-interactionU(y) of the scalar field is assumed to be of

At this stage we would like to emphasize that our pre—the form

scription of computing the renormalized form factors should _ 2 _o(1_ _ 2

be applicable to models having the basic baryon-meson in- U00)=aBx"C0I1=2(1=2la)x(x)+ (1= 3la) x (X)]iz)

teraction as an input. That is, given a model for a baryon-

e e o eSh 1 (1) s an abslte minmum 30 and a sec-

) . ; ... ___ondary minimum aty=1. The constané, appearing in the

tors by fitting the datdcross sections, phase shifts, positions__. ™. ol e

of the poles of the scattering matrix etcThese renormal- kl!’]etIC energy term of the scalar field {5, = 2aB/mgg,

ized form factors should then be used in other nuclear physith Mcs being the mass of the scalar field.

ics calculations such @8N potentials, photoproduction and We W.OUId like to make the following observations on the

electroproduction of mesons, etc. In other words, the param-29rangian of Eq(1).

eters of the basic baryon-meson model are necessarily the

bare parameters and should not be obtained directly from the

experiments. If one does this, then one is essentially choos-!Note that, unlike the usual definition of scalar fielgsis dimen-

ing dressed parameters in the Lagrangian and then orsonless. Sincer, has dimensions of energy, the kinetic energy

should use the model at the tree level and should not conterm has the correct dimensions. One could define the scalar field

pute meson loops for meson-nucleon scattering, etc., sinag absorbing o, (y=o,x). Then U(x) will be given by

that would amount to double counting. (méBIZ);Z[l—Z(l— g/a);/gﬁ(l_g/a);z/gg]. The nonstand-
The paper is organized as follows. In Sec. Il, a brief de-ard definition ofy is chosen because can then be identified with

scription of the CCD model is given and the bare masses anghe color dielectric function multiplying the color electromagnetic

pion-baryon form factors are computed. In Sec. Ill, begin-field tensor.
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(1) The CCD model Lagrangian is invaraint under chiral B. Bare baryon states
transformations if the mass terms of the pseudoscalar mesons 1,4 equations of motion of quark, gluon, and color di-
are dropped. : !

) i electric fields can be obtained from the Lagrangian of Eq.
(2) The coupling of the scalar fieldy] to the quark and

(3). Since we shall be treating the gluon interactins perturba-

gluon fields is such that4the quark mass becomes infinite anfl,e|y the quark and color dielectric field equations of mo-
the dielectric function x) vanishes whery becomes zero. {ion ‘are solved self-consistently. The gluon as well as pseu-

This means that the quarks and gluons cannot exist in goscalar meson interactions are then treated perturbatively.
region wherey becomes zero. That is, the confinement ofrhis approach is similar to the one followed in cloudy bag

quarks and gluons is included in the model. model calculation§1]. Thus the equations of motion for the
(3) The two minima of the self-interaction of the scalar quark and dielectric field are

field [Eq. (2)] can be identified with the perturbative and
physical vacua of the MIT bag modgl4]. Thus, the CCD
model is a dynamical model generating the bag.

We follow the cloudy bag model approadh] in the
present work and treat the gluon and meson interactions with ('Ei —my
the quarks perturbatively. Therefore we expand the Lagrang-
ian in powers of 1ff and keep terms up to orderflih the
Lagrangian of Eq(1). With this approximation the cCD 2and
model Lagrangian becomes

m _ . 2
(ﬁ‘mo— m)gi(r)_ - (r)—rfi(r),

m

X(r))fi(r):gi(r)i (4)

2 2Ba
X0+ X (0= —5 x(N[1=3(1=2/a)x(r)

v

m
Mo+ ——

X(X)

L(x)=$(x>{m— 1+ ';xmx))

N;m;
o x3(r)

+2(1-3la) YA ]+ >,
g a 1 2 1 2 42 i
+SNAYX) [t 5[0, ha(X) ] — 5 My ¢(X)
X[g2(r)—f2(r)]

1 1
= X OOLFL 00124+ S 00l 9,0 (0 2= U(x). =0. (5)

(3 We have assumed spherical symmetry in obtaining these
equations. The equations of motion of quark and dielectric
fields are solved self-consistently with the boundary condi-

The parametef‘s of the CCD”modeI are the quark Mass&fins thaty(r),gi(r),f;(r)—0 asr—o and x(r) andg;(r)
(m and mo), thf bag con;tant B). the strong coupling —const andf;(r)—0 asr—0. The bare baryon states are
constant ¢s=g/4m), the pion decay constant, glueball -, cted by putting three quarks of appropriate flavor in a
(or dielectric field mass (ngg), and the constant inU(x). 1 . orbital. Thus the baryon wave function is a product of
Of these parameters, the value®is chosen to be 24 since o ‘symmetric space wave function, symmetric spin-flavor
from our earlier calculationsl1] the results are not sensitive wave function, and antisymmetric color wave functida].

to it. To begin with, we choose the experimental value of therpg mass of this state is computed by evaluating the matrix
pion decay constantf&93 MeV) in our calculations. AS  qjament of the Hamiltonian

we shall see later, the value 6frequired to fit the pion-

nucleon coupling constant is very close to 93 MeV. Thus we - m
ping y H0=Jd3x{2 qﬁ(—ia-v+—+mo v
|

are left with five free parameters to be adjusted. In our earlier
calculationg[11] we found that a reasonably good fit to the
baryon masses is obtained for and B¥* ranging between o 5 o
100 and 140 MeV. We therefore chooseand BY* in this + 5 (VO™ IIT]+ U(x)
range and adjusthgg, ag, andm, to fit nucleon,A, andA

masses. Computed masses of other octet and decuplet bajy-the bare baryon state. Hete is an annihilation operator
ons are within a few percent of their experimental masses. of 5 quark in the state computed in E@) andII is the

~ Atthis stage a comment on the expansion of the Lagrangmomentum conjugate to the dielectric figld The method of

ian in powers of 1fl is necessary. In particular, one may want coherent statefl5] has been used to better account for the
to keep the terms up to ff/ since the meson-baryon poten- energy associated with the dielectric field. To this the color-
tial, obtained in Sec. Ill, i©(1/f?). Indeed, Phatak, Lu, and magnetic interaction between the quarks is added perturba-

Landau[13] had included these terms in their calculation of tiyely (see Refs[11,16 for detaily. The bare mass of the
pion-nucleon scattering. Th@(1/f?) terms are essential to baryon is then

have a correct behavior &wave meson-baryon scattering. . R

They are, however, not so important fBrwave scattering, Mg=(B(0)|Ho|B(0))+En, ()

and because we are considering pseudoscalar mesons here, .

the emitted mesons are M wave. In fact, the experimental where|B(0)) is the bare baryon state having zero momen-
S-wave phase shifts are small, indicating the relative weaktum. This state is constructed by using the Peierls-Yoccoz
ness ofO(1/f?) terms. Thus one may be justified in neglect- projection techniquél7,18. It is convinient to expresk/lg

ing O(1/f?) terms. as

2

(6)
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TABLE I. The reduced matrix elemenigsg ,. The matrix elements fdk and» mesons are given in curly brackets and square brackets,
respectively.

N A py =] A 3% B* Q
N 5(1]  {-Vi§ {\@] B [\/g]
A B8 -2 -2 {1} 2 {-2)
3 -1 12 2 {-5) {8} S {-2)

I

{\2} [\/?} -1 [-3] [\/g] 2[2] {-4)
SRR o [

3* {V8} V24 16 {~\8} {V10} 40 {V20}
Vo 2
= {4} 16 —8} [—8] 40 40 V20
REI N Eea
Q {—4} {10} [—+20]
0__ B B
Mg =Mgg(C +aCa), ® X (B’|\I_f(x)ys)\i\P(x)%ai(E)|B>+H.c..

Wherec? depends on the number of strange quarks in the (10

baryon ancCS depends on the spin-flavor wave function of
the baryon. C§ and C3 are, of course, functions of other |t is convenient to use an angular momentum formalism
parameters of the modgThe massM g defined above is the ~ for evaluating the spin-flavor matrix elements. The details of
bare mass of baryoB since it does not include the meson the calculation are described in Appendix A. The end result
self-energy corrections. In order to obtain the physical massf the calculation is

of the baryon one should determine the position of the pole
of the T matrix in the appropriate meson-baryon channel
[13]. Clearly, this mass is different froml3. In our calcu-
lations we treaimgg, @, andmg/mgg as free parameters
and obtain a best fit to the baryon masses.

i gl XBB ¢
Him=;z |B ><B|\/ﬁ<TB'T¢'tB:M|TB’ tar)
B,B’

X(SB,l,SB,V|SB/ ,SB/>(_1)V+i¢

C. Bare meson-baryon vertex Xf d%k [a (R’)_aT(R’)]uO (K)ky
- BB’ v
The meson baryon interaction Hamiltonian obtained from w 4(K) g g ¢
the Lagrangian of Eq3) is (12)
i m —
Hintz?f dSXW‘I’(X) ¥shiW(X) di(X). 9
X where the quantities in angular brackéts - ) are the usual

SU(2) Clebsch-Gordon coefficientS§g and Ty are spin and

In order to compute the bare meson-baryon form factors wéS©SPIn of baryorB, sg andtg are their projectionsy is the
quantize the meson fields and evaluate the matrix element &fOSPIN projection of mesor, and agp:, are the reduced
H,; between bare baryon states defined in the preceding suffatrix elements. The phase facigris defined in Appendix
section. With this, the interaction Hamiltonian can be written}; “se’¢ are defined in Table 1. The bare form factor
as Ugg: 4(K) is evaluated in the “brick-wall” frame so that the
baryons|B) and|B’) have momentak/2) and|—k/2), re-
dBdx ) spectively. The momentum states of the baryons are con-
ik- structed using the Peierls-Yoccoz projection technique

i
H‘”‘:fBZBr 8 ><B|J V1670, (K) [17,16.

X
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ANRYC 00) ol ) production of strange mesons and baryons, etc.

. e (2) The channel energies,, in the Lippmann-Schwinger

equation above are defined in terms of the physical baryon
masses since these are the physically observable states. How-
ever, the masses of baryons in the intermediate state of the

@ (b) pole and crossed terms are the bare masses defined in the
previous section.

FIG. 1. s-channel(a) and u-channel(b) pole terms(direct and (3) The poles of theT matrix in the appropriate spin-
crossed terms, respectivglgontributing to the meson-baryon po- flavor channel of the meson-baryon system should coincide
tential. with the physical masses of the baryons. This means that the
parameters of the CCD modébasically the glueball mass
. MESON-BARYON SCATTERING Mgg, Strong coupling constamt; andmg) are to be adjusted

Given the meson-baryon interaction Hamiltonian of thef© obtain the_b_est fit to the phy§ical baryon masses defined by
previous section, one can compute the tree-level mesorhe pole positions of th& matilx.a
baryon scattering matrix. It involves the pole and crossed Given the potentialVg,(k’,k), one can solve the
terms shown in Fig. 1. These two terms constitute the drivind-ippmann-Schwinger equation and obtain the phase shifts
term or potential for meson-baryon scattering. To obtain aand cross sections for meson-baryon scattering. For this pur-
unitary scattering matrix and to include multiple scatteringpose, it is best to expand thE-matrix equation in spin-
effects the relativistic Lippmann-Schwinger equation isospin channels of the meson-baryon sysf&fj and solve
T - the partial-wave Lippmann-Schwinger equation. As men-
T (EI,E):V (E',E)JFE fdspvﬁv(k_’p)-rw(p’k) tioned_ earlier, whgn one solves the Lippmann-Schwinger
pa pa y E+ie—E,(p) equation renormalization of baryon masses as well as the
(12)  form factors is already included. However, one cannot com-
. . . _ pute the renormalized form factors using this procedure.
IS solved. I.n this equation the meson—_balryon chatinelud-  gjnce we are interested in computing the renormalized form
ing the spins and flavors szthe particles represented by  f5ct0rs in the present work, we do not want to solve the
the subscripts an&,(p) = \/p“+mg +w, (p). The poten- | jppmann-Schwinger equation as such. Instead, we express
tial V above is computed from the diagrams of Fig(ske the Lippmann-Schwinger equation as a multiple scattering

S

B B” B’ B B” B’

Phatak, Lu, and Landdu.3] for details. series. From this series we obtain integral equations for the
We would like to make several points regarding therenormalized form factors by summing up parts of the series.
T-matrix equation given abovdeq. (12)]. We also obtain expressions for the renormalized masses. The

(1) The T-matrix given above describes the scattering ofdetails of this exercise are outlined in Appendix B. The result
one of the octet of the pseudoscalar mesons from the octet @ an integral equation for the renormalized form factor
decuplet of baryons. Thus it represents resonance productiongg 4(K):

0 ~ ~ ~ ~ aBB/”¢'aBWB”(Z)aB"B'g/
Ugp’ ¢( k) = UBB/ (k) + E ( - 1)' SBHSBWTBHTBW
¢ 2¢2
#'B",B" 12 f aBB'¢

W(TBTB”’TBHTBV ;T¢T¢!)

k,4dk,u0 111 /(k,)uo/// ” (k)u " /_'(k,)
X W(SgSgmSgrSg: ;11)f , - BB” ¢ , B”B"¢ B"B’ ¢ — (13)
U)(/,/(k )[E_EB,,,_w¢r(k )—w¢(k)][E—EBr/—w¢,(k )]
|

where a=.2a+1, E3K)=VkZ+(MD?  Egk) Lo (CDTetS TS B Ty B
= VkZ+ M3, w4(k)=kZ+ m2¢, Mg and M are renormal- E(E)_Z 1272f2 g 5. “BB47BBY
ized and bare masses of bary@) respectively,I=A, B¢ BB
T8y —Sg—Sp—Tg—Tg, Sg and Tp are th(’-',' spin and k4dkugB,¢(k)uBng(k)
isospin of baryonB, respectively, and/N(---)'s are the , (15
usual Rakah coefficients. The equation for the renormalized ws(K)[Mg—Epr—wy(k)]

propagator of a baryoB is

whereA is 0, —1/2, 1/2, and 0 forr, K, K, and 7, respec-

G(E)= 1 n 1 S(E)G(E) = 1 tively. The renormalized propagator has a poleEat Mg
-My E—-M3 E-MY—3(E)’ +3(E). Thus the renormalized mass of baryldr is given
(14 by

where the self-energy (E) is Mg=Mg+3(Mp). (16)
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FIG. 2. The graphical depiction of thE-matrix equation. The
first line corresponds to EQ17) of the text. The second line depicts
the integral equation fof©. The thick(thin) lines represent bary-
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contribution to the scattering matrix comes from the pole
term. One should note that the computation of the renormal-
ized form factor already includes a large number of terms
involving the crossed diagram of the meson-baryon poten-
tial. It is therefore not surprising thé‘tgd)’B,W(IZ,IZ’) appear-

ing in the T-matrix equation[Eq. (19)] is somewhat less
important, particularly near the resonance.

Note that pole term of thd@ matrix, Tg, g/, (K.K';E),
defined in Eq(18) has a singularity aE =My . If this sin-
gularity occurs at physical energy, it means that the particle
B” can decay and that should be reflected in the mass of the

ons with physicalbarg masses and the dashed lines represent meparticle. That is, the physical mass defined above should

sons. Solid circles represent the renormalized form factor.

Note that Eqs(13)—(16) are coupled equations since renor-

have an imaginary part corresponding to the width of the
baryonB”.
The renormalized form factors are computed by solving

malized masses and form factors appear in these equationsg. (13) above iteratively. We find that the iterative proce-

Thus these equations need to be solved self-consistently. gyre does converge and the convergence is reached within 15
We can now use the renormalized form factors and propaerations. Note that the integrand of the form factor integral

gators in the expression for the scattering matrix. We themquation has singularities due to the energy denominators

get
TB¢’B/¢/(E,E,;E):TP

B¢,B’¢’(|Z’IZ,;E)+Tg¢,8’¢’(|z’|2’)'
17

where

uBB"g(k)uB”B’(f)/(k,)

P - > . _ -
TB¢,B’</>’(k’k,’E)_E aBp’¢XB"B’ ¢/
BII

E_ MBH

(18)

and
c oy _\/C > >,
Tep o (KK)=Vg, g4 (Kk )+B%H d°p
V(B:(;S,B”g[;”(lz!5)Tg"¢uyBr¢/(5,E,)
E_EB(p)—w¢(p)

19

HereVS(,),B,(b,(IZ,IZ’) is the crossed term shown in Fig. 1. A

diagramatic representation of tliematrix is shown in Fig. 2.
The interpretation of Eq(17) is obvious. The first term

and the integral should be regularized properly. We have
used a principal value prescription for this purpose. The re-
sults of the calculation are discussed in the following section.

IV. RESULTS AND DISCUSSIONS

In this section we shall discuss the results of our calcula-
tion. The procedure adopted for the calculation is as outlined
below. The coupled quark and dielectric field equations are
first solved and bare baryon states are constructed. The bare
baryon masses are computed by evaluating the matrix ele-
ment of the Hamiltonian[Eg. (6)] in the momentum-
projected bare baryon states and including the color mag-
netic interaction. The baryon masses are essentially functions
of mgg, as, andm, (m andB'* are kept fixed for a given
parameter s¢t Also, using the momentum-projected baryon
wave functions the bare form factogertex functions for
baryon-meson coupling are computed. These are then used in
Eqg. (13) and the renormalized form factors are computed. In
principle, one could use the matrix inversion meth#] for
this purpose. However, we find that the dimensionality of the
matrices is prohibitively large because we are considering
coupling to all the octets of pseudoscalar mesons. We there-

represents the pole or resonance contribution which is giveg, o solve Eq.(13) iteratively. We find that convergence is

in terms ofphysicalmasses of resonances amtormalized

reached after 10—15 iterations. Using the renormalized form

form factors or vertex functions. The rest of the contributionfactOrS the renormalized masses are computed by using Eq.
is lumped into the second term which can be considered aS@e). The parameters of the CCD modendg, a., andmy)

background. Clearly, if our model is extended to include
higher order terms or exchanges of heavier mesons, thegg

will predominantly affect the background term.

are then adjusted to fit the renormalized masses to the physi-
| masses.
For a comparison with the experimental data we consider

_Usually the T matrix is computed by solving the he NN and#NA coupling constants at nucleon and delta
Lippmann-Schwinger equation using a suitable numericaf,asses, respectively. Conventionally, in terms of the nonrel-

technigue(e.g., matrix inversion methofll9]) or by sum-
ming the Lippmann-Schwinger series numerically to a de

sired accuracy. Alternatively, one can now compute the
renormalized form factors and propagators and use them to

evaluate thel' matrix. The computation of the pole term of

the scattering matrix is very simple in this case. For the

crossed terngq},B,(ﬁ,(E,IZ’), however, one has to solve an
integral equatiofEq. (19)]. Our computations show that the
crossed term of th& matrix can be computed iteratively and

ativistic #NN interaction Hamiltonian, therNN coupling

constantf .y is defined agl]

if 2N

m,\2m

v(K)[o-kr-a(k)+H.c],
(20)

Hine=

f d3k
V2w (k)
where o and 7 are nucleon spin and isospin operators, re-
spectively,v (k) is the form factor defined to be unity when

the convergence is rapid. We also find that the dominank=im_, and 5(IZ) is the annihilation operator for the pion
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. . FIG. 4. The ratio of renormalized and bare form factor at zero
FIG. 3. Renormalized and bare form factors vs momentum in : . .
. . . momentum transfer as a function of energy. The solid curve is for
units of the glueball mass. The different curves areugy,, (solid

line), ul,,.. (dotted ling, anduy,, (dashed ling U, _is the same '\ N7 @nd the dashed curve is forA .
asudn, -
form factor should be close touyn,(k) for k

field. The experimental value of ,yy is 0.279 2,y ~—300-500 MeV,A~500 MeV. . _
=0.078). Comparing the interaction Hamiltonian of Eq. The computed value of therNN coupling constant is

(11), we havef yn= annaUnna(K=0)m_ /6y7f, where the 0.254. This value is about 9% smaller than the experimental
renormalized form factor is calculated &=my, the fnnm- This, by itself, can be considered as a success of the

nucleon mass. Similarly,  fya=ana Unao(k ~ CCD model. Thefyy, as well as the baryon masses can be
=0)m_\2/5{xf. fitted by decreasing the pion decay consthtd 2_36 MeV (a_

Computations have been done for a number of parametef?e decreaselt may be mentioned here that this changé in
sets of the CCD model. The results are quite similar for alldo€s not affect the computed properties of baryons very
these sets as long @sgg is between 800 and 1200 Mev. Much. _ _ _
Therefore we have chosen one of the representative param- L€t us now consider the ratio afNA andwNN coupling
eter sets ifigs=978.6, as=0.438, BY4=122.3, m=122.3, gonstants_ eval_ua’Fed at nucleon and delta masses, respec-
and my=210.1) for a detailed discussion. The pion decaytively. This ratio is 6/2/5=1.697 for bare coupling con-
constantf has been fixed at its physical val(88 MeV). The  Stants, as dictated by SU(g)or Symmetry. For renormalized
bare and renormalize¢NN and 7NA form factors evalu- coupling constants this ratio is about 2.15, WhICh is very
ated at nucleon delta masses are displayed in Fig. 3. It i§/0S€ to the experimental value of 2.0120]. We believe that
clear from this figure that the renormalized form factors dif- this is a very important result emerging from our calculation.
fer from the bare form factors at three-momentum transferd Nis resultimplies that, to begin with, the quark model value
smaller than 1 GeV. An inspection of EQL3) shows why of the ratio, v_vhlch is about 25% smaI.Ier than the experimen-
this happens. As the momentum transfer increases, the firl value, is itself a good starting point. In other words, the
term in the denominator of the integrand also increases bdareé coupling constants in the CCD model themselves are in
cause of an increase in,(K). As a result, the contribution dualitative agreement with the experimental values. The
of the integral to the form factor decreases with an increaséenormalization of these quantities, which should be done in
in the momentum transfer. Even at momentum transfer&nY case, is able to produce a very good agreement with the
smaller than 1 GeV, the change in the form factor is abougXxperimental result. Incidently, we would like to note t_hat
10% for uyy, and 30% foruy, . Thus one could conclude whenf=$6 MeV the wNN couplmg constant agrees with
that the effects of renormalization are relatively minor.  the experimental value and the ratio@NA and 7NN cou-

We can extract equivalent monopole form factors fromPling constants still remains close to 2.15. _
the computed renormalized form factors. If, for example, The energy dependence bfNN andf NA is shown in
Unn., IS expanded in power series ndar 0, one obtains\ Fig. 4. The figure ;hows thatl the renormalized coupling con-
~800 MeV. This value ofA is about same as the one ob- Stants increase with energy in the energy range shown.
tained by various authorg4,6,8—1(Q. However, one must
note that as a function of momentum transfer, the monopole V. CONCLUSIONS
form factor falls off more slowly than the CCD model form
factor. We find that a better fit to the CCD model form factor The chiral color dielectric model has been used in this
is obtained by using a dipole or Gaussian form. In fact, wework to compute renormalized meson-baryon form factors.
find that if we replace the bare CCD model form factor by aThis has been done by writing the Lippmann-Schwinger
dipole or Gaussian form factor, we get practically the sameequation in a series form and deriving the integral equation
results. If, on the other hand, one wants that the monopolér the renormalized form factor. We find that the renormal-
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ization effects are primarily restricted to meson momenta™, .7 . T N 7T T
smaller than 1 GeV. The increase in the form factor at zero
meson momentum is about 10% at nucleon mass and abot_
30% atA mass. The renormalizedN7 coupling constant is o . L )
about 10% smaller than the experimental valug ithe pion N0 D s s L NS
decay constant, is chosen to be 93 MeV. The ratiblafr . N P
and NN7 coupling constants is found to be 2.15, which is _ e s L e L
close to the experimental value. This ratio for bare coupling~~_ .-~ ~«_.-=~ oo S om=ommag o

constants is 1.697. Thus the renormalization effects yield™" B . -

good agreement between experiment and theory. The com- FIG. 5. Diagramgup to order 1) contributing to theT ma-
puted form factors are soft with the equivalent monopoletrix. Thick lines represent physical baryons, thin lines represent
parameterA of about 800 MeV if fitting is done at small bare baryons, and dashed lines represent mesons.

momentum transfers. However, the CCD model form factors

~e” TN R4 ~< ,—-s’\, ~ R4

decrease faster than the monopole form factor for large mo- b= boo= bs.
menta and the CCD form factors are closer to Gaussian or
dipole forms. An extra negative sign for the ™ field is introduced to con-

Strictly speaking, the computations done in this work areform with the usual definition of vectors in a spherical basis
not fully relativistic although relativistic expressions for en- and is different from the usual definition of pion fields. With
ergies of the baryons are used. For a completely relativistithese definitions of meson fields,
calculation, one will need to use relativistic propagators for —(_ 1\ ) )
baryons and use a relativistic integral equation, such as the Naa= (D 7ubr— ¥ V100 bl Uzu bl
Blankenbeckler-Sugar equation, instead of the relativized +Ngbopo- (A3)
Lippmann-Schwinger equation that is used in the present
work. Indeed it is technically possible to do this, with someQuantizing the meson fields we have
increase in the complexity of the problem. However, we feel

that the approach followed in the present work is reasonable ¢ (x)= _f ———[e*¥a, (k) +e K al (k)]
since we have restricted ourselves to kinetic energies small V8w ) \2wi(k) | '
in comparison with the baryon masses. Extension of the (A4)

present calculation to higher energies would require the
above-mentioned relativistic generalizations as well as incluWherea; is the annihilation operator of mesomnda is the

sion of heavier baryon resonances. creation operator of the meson conjugate.tdhe commu-
We would like to thank Prof. R. H. Landau for useful tation relations for the meson field operators are
discussions. , '
[a1,.(K),a],(K)]=(=1)*5, ,8(k=K),
APPENDIX A: BARE FORM FACTORS [}, (K),ad) (K')]= 6 ;8, ,6(K—K"),

The meson-baryon interaction Hamiltonian is and[aovo(IZ),agyo(IZ’)]=5(I2— IZ’). Computation of the ma-

trix element of the interaction Hamiltonian between bare
Him= f d° X \P(X) Yshi ¥ (X) bi(X), (A1) baryon states gives

where \; are the SW@3) Gell-Mann matrices acting on the H. — B'\(B i j d (R —aT(k
flavor coordinate of the quarks. In terms of the pseudoscalar =~ ™ B%,i L |f\/8ﬂ-3 ,/2wi(k)[a'( )=ai(k)]
octet fieldsg; , we define ther, K, and 7 fields as o R R
X Ugg(K)(B'|\o|B)-k. (AB)
brr=h15:1= = (P1E1 ), . .

! \/— ! 2 The details of computing the bare form facla)%B,i(k) are
given elsewher¢l1]. Computing the spin-flavor matrix ele-

$n0= br0= b3, (A2) ment (B'|\;o|B) and expressing the result in angular mo-
1 mentum formalism, we get
¢K—:¢(1}%,1/2:E(¢4+i¢5)’ |a'BB’
1 Hin= 4f773,2f W[ak (0 —al 0]
=2 (i
¢K+ ¢1/2,71/2 \/§(¢4 |¢5)1 Xkl,—quBI¢(k)(_1)V+I¢<TB1)\ItBIM|TB/ 'tB/>
><<SB,1,SB,V|SBr ,SB!>. (AG)

bico= b 1/2:i( dstigy),
g

Here the summation over spin and isospins of baryons and
mesons is implied. Als@ implies that the meson typer(

K, K, and ») and their total isospins and projections along
the z axis are represented by and w, respectively. The

bro= 3 1/z=i(¢6— i $7),
NG



PRC 58 MESON-BARYON FORM FACTORS IN THE CHIRAL ... 2391

- - N \ \ P

7 7 -

, , , S _= — + —_— S + + e e
— — P S _|_ et
- — + _;i_ + _Q_I:‘_ + o o
FIG. 6. Diagramatic representation of the vertex renormaliza-
tion. - .

baryon spin(isospin and its projection are represented by
Sg (Tg) andsg (tg), respectively. The reduced matrix ele-
ment agg 4 and the phase factor, are determined by ex-
plicit calculation of one matrix element, as is usually done.the conclusions drawn from the analysis of these diagrams to
The phase factdry is u, 0, 1/2- x, and 0 form, K, K, and the full Lippmann-Schwinger series. ,
7, respectively. The _dlagrar_ns in Fig. 5 are o_rgamzeo_l as follows. The dia-
grams in the first line renormalize the rightmost vertex. The
diagrams in the second line renormalize the leftmost vertex
APPENDIX B: RENORMALIZATION and the diagrams in the third line renormalize the mass or the
propagator of the intermediate baryon. The diagrams in the
One can derive the equations for renormalized form facfourth line are the mixed diagrams representing renormaliza-
tors and masses by writing th&-matrix equation in a tion of vertices as well as mass. Finally, the diagrams in the
Lippmann-Schwinger series and summing parts of the seriefast line are the rest of the diagrams which do not give rise to
This procedure, however, is somewhat cumbersome. On th@normalization. Generalizing the diagrams in the first line to
other hand, the same conclusions can be arrived at by comdl orders, we obtain an integral equation for the renormal-
sidering the graphical representation of the series. We havigation of vertex(form factor. Diagramatically, this is rep-
therefore shown the diagrams corresponding to the indiresented in Fig. 6 where the solid circle represents the renor-
vidual terms of the Lippmann-Schwinger series for the malized form factor.
matrix of Eq.(12) in Fig. 5. The figure shows the diagrams  The corresponding integral equation obtained after some
up to 1£°. It should be clear that one can easily generalizeangular momentum algebra is

FIG. 7. Diagramatic representation of the renormalized propa-
gator.

aBBrrr¢r aB/rrBrr(ﬁaBuBrgr

0 & & 4 4
UBB’ (k) =u ’ (k) + 2 ( - 1) SBNSB//ITBNTB/II
¢ BB'¢ (b,B",BW 127T2f2aBBr¢

X W(TBTBWTB”TB’ ,T¢T¢/ )W(SBSB/HSBHSB/ X 11)

(B1)

% f k,4d k,u(B)B///QS/(k,)ug”/B’/(b(k)uB”B/g'(k’)
® 4 (K)E—Epn— 04 (k') — 04K [E—Egr— @y (k)]

where a=.2a+1, E(B’(k)z«/k2+(M°B)2, Eg(k) —M%—E(E)]_ and l/(E—Mg), respectively. The self-
= K2+ M3, w4(k)=+k?+m3, Mg andMJ are renormal- energy= (E) is

ized and bare masses of parycB] re_spectively,l =Ay (—1)Ter+Ser~To—Sp-4

+A 4 —Sg—Sg/—Tg—Tg:, With Ay being 1, 0, 1, and 0 S(E)=D, 5

for 7, K, K, andy, respectivelySg andTg are the spin and B'¢ 1277

isospin of baryonl_3,_ respectively, and/N(---)’s are the 5 Ta k4dkugB,¢,(k)uB/Bg(k)

usual Rakah coefficients. ——— BB ¢ ¥B'Bg ,
Now consider the mass renormalization. The relevent dia- SgTs o 4(K)[Mg—Eg —w4(K)]

grams are shown in Fig. 7. Clearly, the third line in this (B2)
diagram is the Schwinger-Dyson equation for the propagator _

with the self-energy being given by the meson loop. ThewhereA is 0, —1/2, 1/2, and 0 forr, K, K, and#, respec-
thing to notice, however, is that one of the meson-baryoriively. The mass of the physical barydezMg+2(E
form factors appearing in the self-energy is a renormalized=Mpg).

one where as the other is a bare one. Assuming that the It should be evident that using the renormalized form fac-
computation is done in the frame in which the baryon istors and propagators thie matrix can be written in the form
stationary, the renormalized and bare propagators @ 1/ given in Eqs.(16)—(18) and Fig. 2.
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