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Meson-baryon form factors in the chiral color dielectric model

S. C. Phatak
Institute of Physics, Bhubaneswar 751 005, India

~Received 5 May 1998!

The renormalized form factors for pseudoscalar meson-baryon coupling are computed in the chiral color
dielectric model. This has been done by rearranging the Lippmann-Schwinger series for the meson-baryon
scattering matrix so that it can be expressed as a baryon pole term with renormalized form factors and baryon
masses and the rest of the terms which arise from the crossed diagrams. Thus we are able to obtain an integral
equation for the renormalized meson-baryon form factors in terms of the bare form factors as well as an
expression for the meson self-energy. This integral equation is solved, and renormalized meson baryon form
factors and renormalized baryon masses are computed. The parameters of the model are adjusted to obtain a
best fit to the physical baryon masses. The calculations show that the renormalized form factors are energy
dependent and differ from the bare form factors primarily at momentum transfers smaller than 1 GeV. At
nucleon mass, the change in the form factors is about 10% at zero momentum transfer. The computed form
factors are soft with the equivalent monopole cutoff mass of about 500 MeV. The renormalized coupling
constants are obtained by comparing the chiral color dielectric model interaction Hamiltonian with the standard
form of the meson-nucleon interaction Hamiltonian. The ratio ofDNp andNNp coupling constants is found
to be about 2.15. This value is very close to the experimental value.@S0556-2813~98!06109-3#

PACS number~s!: 12.39.Ki, 12.39.Fe, 13.75.Gx
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I. INTRODUCTION

The meson-baryon form factors are interesting and us
quantities for several reasons. For one thing, we expect
form factors to have some bearing on the underlying str
ture of hadrons. For example, in perturbative chiral qu
models@1# the pion-baryon form factors are directly relate
to the quark wave functions in baryons. Form factors
essential in the effective models of meson-baryon inter
tions since hadrons, after all, are not point particles. One
needs these form factors for a consistant description
nuclear phenomena. The meson-exchange nucleon-nuc
potentials include phenomenological vertex form fact
which are presumably related to the structure of hadro
Form factors are also needed in computation of photoprod
tion and electroproduction of baryon resonances since
principle, the photon can couple to the virtual charged me
cloud in a baryon. Another technical reason for introduc
the form factors is that the effective meson-baryon inter
tion models are, generally, not renormalizable and the fo
factors provide the needed cutoff functions.

Usually, the form factors employed in meson-baryon
teraction models are of monopole type@;1/(12k2/L2)#
with k2 being the four-momentum carried by the meson
must be noted that the monopole form is, as such, pu
phenomenological and is possibly not related to the unde
ing structure of the hadrons. The form factors used in ear
calculations@2# were ‘‘hard’’ with the cutoff parametersL
>1 GeV. There are, however, recent calculations@3# which
indicate that softer form factors (L;500 MeV) are required
to fit D production on nuclei. Some indication of the value
the cutoff parameterL is available from low energy phe
nomenology. For example, Thomas and Holinde@4# argue
that the 3% descrepancy betweenppp0 andpnp1 coupling
constants@5# is essentially due to the four-momentum var
tion of the pNN form factor betweenq25mp

2 and q250.
PRC 580556-2813/98/58~4!/2383~10!/$15.00
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With monopole parametrization of the form factor,L of
about 800 MeV is required to explain this descrepan
Similar arguments have been proposed by Coon and Sca
@6# for L;800 MeV. One should, however, note that the
analyses are restricted to relatively small values ofuq2u
@;(140 MeV)2# and therefore cannot determine the for
factors at larger momentum transfers. Recently, Saito
Afnan @7# have investigated the dependence of triton bind
energy on thepNN form factor. They compute the three
body p-p force contribution to the triton binding energy
They claim that one can determine thepNN form factor in
their model and it turns out that their renormalized for
factor is softer withL;400 MeV. On the other hand
Schultz and Holinde@8# fit pN scattering data and obtain
form factor havingL;800 MeV. Some attempts have bee
made to determine the pion-baryon form factor from QC
For example, Liuet al. @9# have used quenched lattice QC
calculations and extracted aL of 750 MeV. Meissner@10#,
on the other hand, has used QCD sum rules and obtainedL
of about 800 MeV.

In the present work, the renormalized pseudoscalar me
baryon form factors are computed by using the chiral co
dielectric ~CCD! model of baryons@11#. The CCD model is
based on the calculation of Nielsen and Patkos@12# who
showed that ‘‘coarse graining’’ of the QCD Lagrangian on
lattice gives rise to an effective scalar, color-neutral fie
called the color dielectric field. In the CCD model, the inte
action of the color dielectric field with the quark and gluo
fields is such that it gives rise to the confinement of the
objects. Chiral symmetry is restored in the CCD model
introducing the interaction of the pseudoscalar meson o
with the quarks@11#. The CCD model has been used to com
pute the properties of light baryons@11# as well aspN scat-
tering phase shifts@13#. Generally the agreement between t
CCD model results and the experimental data is good
particular, a good agreement with thepN scattering phase
2383 © 1998 The American Physical Society
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2384 PRC 58S. C. PHATAK
shifts is obtained in the CCD model. In thepN work, the
authors showed that solving of the relativistic Lippman
Schwinger equation for pion-nucleon scattering leads to
renormalization of baryon masses and the pion-baryon v
tces are also renormalized due to multiple scattering. H
ever, the renormalized vertex functions~or form factors!
were not computed in that work. The present work is ess
tially an extension of the earlier work@13# but here we have
concentrated on renormalized form factors and have
computed thepN scattering matrix. The basic idea here is
follows. The CCD model~or, for that matter, any othe
quark-based model with mesons coupling to quarks! gives
bare meson-baryon form factors and bare baryon mas
These are then dressed by meson-baryon interactions. A
shall show later in the paper, computation of meson-bar
scattering~including the pole positions of stable particle!
leads to the determination of dressed baryon masses as
as dressed meson-baryon form factors. This is essent
achieved by rearranging the terms in the Lippman
Schwinger series for the meson-baryon scattering matrix
that one obtains equations for the dressed baryon ma
~positions of the poles in the scattering matrix! and meson-
baryon form factors~see the following sections for details!.
Thus, one can compute the dressed pion baryon form fac
One should note here that these dressed~or renormalized!
form factors, and not the bare form factors, should be use
nuclear physics calculations. Some saliant features, of
results of our calculation are the following.

~1! The renormalization of the form factors depends
the energy of the meson-baryon system. At zero momen
transfer, the ratio of renormalized and bare form factors v
ies from about 1.1 to about 1.3 as the energy is increa
from nucleon mass toD mass.

~2! The renormalized form factors differ from the ba
ones for meson momenta of 1 GeV or smaller. There is p
tically no change at larger meson momenta.

~3! The form factors computed in the CCD model are so
If one wants to fit the CCD model form factors by a mon
pole form in the region of 300–700 MeV, the correspondi
L is about 500 MeV.

At this stage we would like to emphasize that our p
scription of computing the renormalized form factors sho
be applicable to models having the basic baryon-meson
teraction as an input. That is, given a model for a bary
meson interaction Lagrangian with bare baryon masses
form factors, one should compute the renormalized form f
tors by fitting the data~cross sections, phase shifts, positio
of the poles of the scattering matrix etc.!. These renormal-
ized form factors should then be used in other nuclear ph
ics calculations such asNN potentials, photoproduction an
electroproduction of mesons, etc. In other words, the par
eters of the basic baryon-meson model are necessarily
bare parameters and should not be obtained directly from
experiments. If one does this, then one is essentially ch
ing dressed parameters in the Lagrangian and then
should use the model at the tree level and should not c
pute meson loops for meson-nucleon scattering, etc., s
that would amount to double counting.

The paper is organized as follows. In Sec. II, a brief d
scription of the CCD model is given and the bare masses
pion-baryon form factors are computed. In Sec. III, beg
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ning with the Lippmann-Schwinger series, the integral eq
tions for the meson-baryon form factors are obtained. In S
IV, the results of the calculation are presented and discus

II. CHIRAL COLOR DIELECTRIC MODEL

The CCD model is described and the bare masses of b
ons and pseudoscalar meson-baryon vertices are comput
this section. The description of the CCD model is somew
brief because in this work we want to focus on the comp
tation of meson-baryon form factors. For the details of t
CCD model the reader is refered to@11,13#.

A. Lagrangian

The Lagrangian density of the CCD model is given
@11#

L~x!5c̄~x!H i ]”2S m01
m

x~x!
U5D1

g

2
la

cA” a~x!J c

1
f 2

4
Tr~]mU]mU†!2

1

2
mf

2 f2~x!2
1

4
x4~x!

3@Fmn
a ~x!#21

1

2
sv

2@]mx~x!#22U~x!, ~1!

whereU5eila
f fa/ f , U55eila

f fag5 / f , andc(x), Am(x), x(x),
andf(x) are quark, gluon, scalar~color dielectric! and me-
son fields, respectively.m and mf are the masses of th
quark and meson,f is the pion decay constant,Fmn(x) is the
usual color electromagnetic field tensor,g is the color cou-
pling constant, andla

c andla
f are the usual Gell-Mann ma

trices acting in color and flavor space, respectively. The
vor symmetry breaking is incorporated in the Lagrang
through the quark mass term@m01(m/x)U5#, where m0
50 for u andd quarks. So the masses ofu, d, ands quarks
arem, m, andm01m, respectively. The meson matrix con
sists of a singleth, triplet of p, and quadruplet ofK. The
self-interactionU(x) of the scalar field is assumed to be
the form

U~x!5aBx2~x!@122~122/a!x~x!1~123/a!x2~x!#,
~2!

so thatU(x) has an absolute minimum atx50 and a sec-
ondary minimum atx51. The constantsv appearing in the
kinetic energy term of the scalar field issv5A2aB/mGB

2 ,
with mGB being the mass of the scalar field.1

We would like to make the following observations on th
Lagrangian of Eq.~1!.

1Note that, unlike the usual definition of scalar fields,x is dimen-
sionless. Sincesv has dimensions of energy, the kinetic ener
term has the correct dimensions. One could define the scalar

by absorbing sv (x̄5svx). Then U(x) will be given by

(mGB
2 /2)x̄2@122(122/a)x̄/sv1(123/a)x̄2/sv

2#. The nonstand-
ard definition ofx is chosen becausex can then be identified with
the color dielectric function multiplying the color electromagne
field tensor.



ra
so

a
.
in
o

ar
d

wi
n

ss

e
e
th

w
lie
e

ba
s
n
n

n-
d
o

o
g.

h
l
ak
t-

i-
q.

ba-
o-
eu-
ely.

ag
e

ese
tric
di-

re
n a
of
vor

trix

r

he
or-
rba-

n-
coz

PRC 58 2385MESON-BARYON FORM FACTORS IN THE CHIRAL . . .
~1! The CCD model Lagrangian is invaraint under chi
transformations if the mass terms of the pseudoscalar me
are dropped.

~2! The coupling of the scalar field (x) to the quark and
gluon fields is such that the quark mass becomes infinite
the dielectric function (x4) vanishes whenx becomes zero
This means that the quarks and gluons cannot exist
region wherex becomes zero. That is, the confinement
quarks and gluons is included in the model.

~3! The two minima of the self-interaction of the scal
field @Eq. ~2!# can be identified with the perturbative an
physical vacua of the MIT bag model@14#. Thus, the CCD
model is a dynamical model generating the bag.

We follow the cloudy bag model approach@1# in the
present work and treat the gluon and meson interactions
the quarks perturbatively. Therefore we expand the Lagra
ian in powers of 1/f and keep terms up to order 1/f in the
Lagrangian of Eq.~1!. With this approximation the CCD
model Lagrangian becomes

L~x!5c̄~x!H i ]”2Fm01
m

x~x!S 11
i

f
lafa~x! D G

1
g

2
laA” a~x!J c1

1

2
@]mfa~x!#22

1

2
mf

2 f2~x!

2
1

4
x4~x!@Fmn

a ~x!#21
1

2
sv

2@]mx~x!#22U~x!.

~3!

The parameters of the CCD model are the quark ma
(m and m0), the ‘‘bag constant’’ (B), the strong coupling
constant (as5g2/4p), the pion decay constant (f ), glueball
~or dielectric field! mass (mGB), and the constanta in U(x).
Of these parameters, the value ofa is chosen to be 24 sinc
from our earlier calculations@11# the results are not sensitiv
to it. To begin with, we choose the experimental value of
pion decay constant (f 593 MeV) in our calculations. As
we shall see later, the value off required to fit the pion-
nucleon coupling constant is very close to 93 MeV. Thus
are left with five free parameters to be adjusted. In our ear
calculations@11# we found that a reasonably good fit to th
baryon masses is obtained form and B1/4 ranging between
100 and 140 MeV. We therefore choosem and B1/4 in this
range and adjustmGB, as , andm0 to fit nucleon,D, andL
masses. Computed masses of other octet and decuplet
ons are within a few percent of their experimental masse

At this stage a comment on the expansion of the Lagra
ian in powers of 1/f is necessary. In particular, one may wa
to keep the terms up to 1/f 2 since the meson-baryon pote
tial, obtained in Sec. III, isO(1/f 2). Indeed, Phatak, Lu, an
Landau@13# had included these terms in their calculation
pion-nucleon scattering. TheO(1/f 2) terms are essential t
have a correct behavior ofS-wave meson-baryon scatterin
They are, however, not so important forP-wave scattering,
and because we are considering pseudoscalar mesons
the emitted mesons are inP wave. In fact, the experimenta
S-wave phase shifts are small, indicating the relative we
ness ofO(1/f 2) terms. Thus one may be justified in neglec
ing O(1/f 2) terms.
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B. Bare baryon states

The equations of motion of quark, gluon, and color d
electric fields can be obtained from the Lagrangian of E
~3!. Since we shall be treating the gluon interactins pertur
tively, the quark and color dielectric field equations of m
tion are solved self-consistently. The gluon as well as ps
doscalar meson interactions are then treated perturbativ
This approach is similar to the one followed in cloudy b
model calculations@1#. Thus the equations of motion for th
quark and dielectric field are

S e i2m02
m

x~r ! Dgi~r !52 f i8~r !2
2

r
f i~r !,

S e i2m02
m

x~r ! D f i~r !5gi8~r !, ~4!

and

x9~r !1
2

r
x8~r !2

2Ba

sv
2

x~r !@123~122/a!x~r !

12~123/a!x2~r !#1(
i

Nimi

sv
2x2~r !

3@gi
2~r !2 f i

2~r !#

50. ~5!

We have assumed spherical symmetry in obtaining th
equations. The equations of motion of quark and dielec
fields are solved self-consistently with the boundary con
tions thatx(r ),gi(r ), f i(r )→0 asr→` andx(r ) andgi(r )
→const andf i(r )→0 as r→0. The bare baryon states a
constructed by putting three quarks of appropriate flavor i
1s1/2 orbital. Thus the baryon wave function is a product
the symmetric space wave function, symmetric spin-fla
wave function, and antisymmetric color wave function@14#.
The mass of this state is computed by evaluating the ma
element of the Hamiltonian

H05E d3xF(
i

C†S 2 iaW •¹1
m

x
1m0DC

1
sv

2

2
@~¹x!21P2#1U~x!G ~6!

in the bare baryon state. HereC is an annihilation operato
of a quark in the state computed in Eq.~4! and P is the
momentum conjugate to the dielectric fieldx. The method of
coherent states@15# has been used to better account for t
energy associated with the dielectric field. To this the col
magnetic interaction between the quarks is added pertu
tively ~see Refs.@11,16# for details!. The bare mass of the
baryon is then

MB
05^B~0W !uH0uB~0W !&1EM , ~7!

where uB(0W )& is the bare baryon state having zero mome
tum. This state is constructed by using the Peierls-Yoc
projection technique@17,18#. It is convinient to expressMB

0

as
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TABLE I. The reduced matrix elementsaBB8f . The matrix elements forK andh mesons are given in curly brackets and square brack
respectively.

N L S J D S* J* V

N 5 @1# $2A18% H2A2

3J A8 H2A8

3J
L $3% @22# 22 $1% 2 $22%

S $21% A12 A32
3

@2#
$25% $2A8% A8

3
@2#

$22%

J $A2% HA50

3 J 21 @23# H2A8

3J 2 @2# $24%

D A32 H2A64

3 J 5 @A5# H2A40

3 J
S* $A8% A24 HA16

3 J @2A8#
$2A8% $A10% A40

3
$A20%

J* $4% H2A16

3 J $2A8% @2A8# HA40

3 J A40
3

@2A5#
$A20%

V $24% $A10% @2A20#
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MB
05mGB~C1

B1asC2
B!, ~8!

whereC1
B depends on the number of strange quarks in

baryon andC2
B depends on the spin-flavor wave function

the baryon. (C1
B and C2

B are, of course, functions of othe
parameters of the model.! The massMB

0 defined above is the
bare mass of baryonB since it does not include the meso
self-energy corrections. In order to obtain the physical m
of the baryon one should determine the position of the p
of the T matrix in the appropriate meson-baryon chan
@13#. Clearly, this mass is different fromMB

0 . In our calcu-
lations we treatmGB, as , and m0 /mGB as free parameter
and obtain a best fit to the baryon masses.

C. Bare meson-baryon vertex

The meson baryon interaction Hamiltonian obtained fr
the Lagrangian of Eq.~3! is

H int5
i

f E d3x
m

x~x!
C̄~x!g5l iC~x!f i~x!. ~9!

In order to compute the bare meson-baryon form factors
quantize the meson fields and evaluate the matrix eleme
H int between bare baryon states defined in the preceding
section. With this, the interaction Hamiltonian can be writt
as

H int5
i

f (B,B8
uB8&^Bu E d3kd3x

A16p3vf~k!
eikW•xW
e

s
le
l

e
of
b-

3F ^B8uC̄~x!g5l iC~x!
m

x~x!
ai~kW !uB&1H.c.G .

~10!

It is convenient to use an angular momentum formali
for evaluating the spin-flavor matrix elements. The details
the calculation are described in Appendix A. The end res
of the calculation is

H int5
i

f (B,B8
uB8&^Bu

aBB8f

A16p3
^TB ,Tf ,tB ,muTB8 ,tB8&

3^SB,1,sB ,nuSB8 ,sB8&~21!n1 i f

3E d3k

Avf~k!
@a2m~kW !2am

† ~kW !#uBB8f
0

~k!k1,2n ,

~11!

where the quantities in angular brackets^•••& are the usual
SU~2! Clebsch-Gordon coefficients,SB andTB are spin and
isospin of baryonB, sB andtB are their projections,m is the
isospin projection of mesonf, and aBB8f are the reduced
matrix elements. The phase factori f is defined in Appendix
A. aBB8f are defined in Table I. The bare form facto
uBB8f

0 (k) is evaluated in the ‘‘brick-wall’’ frame so that the

baryonsuB& and uB8& have momentaukW /2& and u2kW /2&, re-
spectively. The momentum states of the baryons are c
structed using the Peierls-Yoccoz projection techniq
@17,16#.



he
o
e
in
n
ng

he

o
et
tio

yon
How-
f the
n the

-
ide

t the
s

d by

ifts
pur-

n-
ger
the
m-
re.
rm
he
ress
ing
the

ies.
The
ult

tor

-

PRC 58 2387MESON-BARYON FORM FACTORS IN THE CHIRAL . . .
III. MESON-BARYON SCATTERING

Given the meson-baryon interaction Hamiltonian of t
previous section, one can compute the tree-level mes
baryon scattering matrix. It involves the pole and cross
terms shown in Fig. 1. These two terms constitute the driv
term or potential for meson-baryon scattering. To obtai
unitary scattering matrix and to include multiple scatteri
effects the relativistic Lippmann-Schwinger equation

Tba~kW8,kW !5Vba~kW8,kW !1(
g
E d3p

Vbg~kW8,pW !Tga~pW ,kW !

E1 i e2Eg~p!
~12!

is solved. In this equation the meson-baryon channel~includ-
ing the spins and flavors of the particles! is represented by
the subscripts andEg(p)5Ap21mBg

2 1vfg
(p). The poten-

tial V above is computed from the diagrams of Fig. 1~see
Phatak, Lu, and Landau@13# for details!.

We would like to make several points regarding t
T-matrix equation given above@Eq. ~12!#.

~1! The T-matrix given above describes the scattering
one of the octet of the pseudoscalar mesons from the oct
decuplet of baryons. Thus it represents resonance produc

FIG. 1. s-channel~a! andu-channel~b! pole terms~direct and
crossed terms, respectively! contributing to the meson-baryon po
tential.
ze
n-
d
g
a

f
or
n,

production of strange mesons and baryons, etc.
~2! The channel energiesEg in the Lippmann-Schwinger

equation above are defined in terms of the physical bar
masses since these are the physically observable states.
ever, the masses of baryons in the intermediate state o
pole and crossed terms are the bare masses defined i
previous section.

~3! The poles of theT matrix in the appropriate spin
flavor channel of the meson-baryon system should coinc
with the physical masses of the baryons. This means tha
parameters of the CCD model~basically the glueball mas
mGB, strong coupling constantas andm0) are to be adjusted
to obtain the best fit to the physical baryon masses define
the pole positions of theT matrix.

Given the potential Vba(kW8,kW ), one can solve the
Lippmann-Schwinger equation and obtain the phase sh
and cross sections for meson-baryon scattering. For this
pose, it is best to expand theT-matrix equation in spin-
isospin channels of the meson-baryon system@13# and solve
the partial-wave Lippmann-Schwinger equation. As me
tioned earlier, when one solves the Lippmann-Schwin
equation renormalization of baryon masses as well as
form factors is already included. However, one cannot co
pute the renormalized form factors using this procedu
Since we are interested in computing the renormalized fo
factors in the present work, we do not want to solve t
Lippmann-Schwinger equation as such. Instead, we exp
the Lippmann-Schwinger equation as a multiple scatter
series. From this series we obtain integral equations for
renormalized form factors by summing up parts of the ser
We also obtain expressions for the renormalized masses.
details of this exercise are outlined in Appendix B. The res
is an integral equation for the renormalized form fac
uBB8f(k):
uBB8f~k!5uBB8f
0

~k!1 (
f8B9,B-

~21! I ŜB9ŜB-T̂B9T̂B-
aBB-f8aB-B9faB9B8f̄8

12p2f 2aBB8f

W~TBTB-TB9TB8 ;TfTf8!

3W~SBSB-SB9SB8 ;11!E k84dk8uBB-f8
0

~k8!uB-B9f
0

~k!uB9B8f̄8~k8!

vf8~k8!@E2EB-
0

2vf8~k8!2vf~k!#@E2EB92vf8~k8!#
, ~13!
where â5A2a11, EB
0(k)5Ak21(MB

0)2, EB(k)
5Ak21MB

2, vf(k)5Ak21mf
2 , MB and MB

0 are renormal-
ized and bare masses of baryonB, respectively,I 5Df
1Df82SB2SB82TB2TB8 , SB and TB are the spin and
isospin of baryonB, respectively, andW(•••)’s are the
usual Rakah coefficients. The equation for the renormali
propagator of a baryonB is

G~E!5
1

E2MB
0

1
1

E2MB
0

S~E!G~E!5
1

E2MB
02S~E!

,

~14!

where the self-energyS(E) is
d

S~E!5(
B8f

~21!TB81SB82TB2SB2D

12p2f 2

ŜB8T̂B8

ŜBT̂B

aBB8faB8Bf̄

3E k4dkuBB8f
0

~k!uB8Bf̄~k!

vf~k!@MB2EB82vf~k!#
, ~15!

whereD is 0, 21/2, 1/2, and 0 forp, K, K̄, andh, respec-
tively. The renormalized propagator has a pole atE5MB

0

1S(E). Thus the renormalized mass of baryonMB is given
by

MB5MB
01S~MB!. ~16!
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Note that Eqs.~13!–~16! are coupled equations since reno
malized masses and form factors appear in these equat
Thus these equations need to be solved self-consistently

We can now use the renormalized form factors and pro
gators in the expression for the scattering matrix. We th
get

TBf,B8f8~kW ,kW8;E!5TBf,B8f8
P

~kW ,kW8;E!1TBf,B8f8
C

~kW ,kW8!,
~17!

where

TBf,B8f8
P

~kW ,kW8;E!5(
B9

aBB9f̄aB9B8f8

uBB9f̄~k!uB9B8f8~k8!

E2MB9
~18!

and

TBf,B8f8
C

~kW ,kW8!5VBf,B8f8
C

~kW ,kW8!1 (
B9,f9

E d3p

3
VBf,B9f9

C
~kW ,pW !TB9f9,B8f8

C
~pW ,kW8!

E2EB~p!2vf~p!
.

~19!

HereVBf,B8f8
C (kW ,kW8) is the crossed term shown in Fig. 1.

diagramatic representation of theT matrix is shown in Fig. 2.
The interpretation of Eq.~17! is obvious. The first term

represents the pole or resonance contribution which is g
in terms ofphysicalmasses of resonances andrenormalized
form factors or vertex functions. The rest of the contributi
is lumped into the second term which can be considered
background. Clearly, if our model is extended to inclu
higher order terms or exchanges of heavier mesons, t
will predominantly affect the background term.

Usually the T matrix is computed by solving the
Lippmann-Schwinger equation using a suitable numer
technique~e.g., matrix inversion method@19#! or by sum-
ming the Lippmann-Schwinger series numerically to a
sired accuracy. Alternatively, one can now compute
renormalized form factors and propagators and use them
evaluate theT matrix. The computation of the pole term o
the scattering matrix is very simple in this case. For
crossed termTBf,B8f8

C (kW ,kW8), however, one has to solve a
integral equation@Eq. ~19!#. Our computations show that th
crossed term of theT matrix can be computed iteratively an
the convergence is rapid. We also find that the domin

FIG. 2. The graphical depiction of theT-matrix equation. The
first line corresponds to Eq.~17! of the text. The second line depict
the integral equation forTC. The thick ~thin! lines represent bary
ons with physical~bare! masses and the dashed lines represent
sons. Solid circles represent the renormalized form factor.
ns.

a-
n

n

a

se

l

-
e
to

e

nt

contribution to the scattering matrix comes from the po
term. One should note that the computation of the renorm
ized form factor already includes a large number of ter
involving the crossed diagram of the meson-baryon pot
tial. It is therefore not surprising thatTBf,B8f8

C (kW ,kW8) appear-
ing in the T-matrix equation@Eq. ~19!# is somewhat less
important, particularly near the resonance.

Note that pole term of theT matrix, TBf,B8f8
P (kW ,kW8;E),

defined in Eq.~18! has a singularity atE5MB9 . If this sin-
gularity occurs at physical energy, it means that the part
B9 can decay and that should be reflected in the mass of
particle. That is, the physical mass defined above sho
have an imaginary part corresponding to the width of
baryonB9.

The renormalized form factors are computed by solv
Eq. ~13! above iteratively. We find that the iterative proc
dure does converge and the convergence is reached with
iterations. Note that the integrand of the form factor integ
equation has singularities due to the energy denomina
and the integral should be regularized properly. We ha
used a principal value prescription for this purpose. The
sults of the calculation are discussed in the following secti

IV. RESULTS AND DISCUSSIONS

In this section we shall discuss the results of our calcu
tion. The procedure adopted for the calculation is as outlin
below. The coupled quark and dielectric field equations
first solved and bare baryon states are constructed. The
baryon masses are computed by evaluating the matrix
ment of the Hamiltonian@Eq. ~6!# in the momentum-
projected bare baryon states and including the color m
netic interaction. The baryon masses are essentially funct
of mGB , as , andm0 (m andB1/4 are kept fixed for a given
parameter set!. Also, using the momentum-projected baryo
wave functions the bare form factors~vertex functions! for
baryon-meson coupling are computed. These are then us
Eq. ~13! and the renormalized form factors are computed.
principle, one could use the matrix inversion method@19# for
this purpose. However, we find that the dimensionality of
matrices is prohibitively large because we are consider
coupling to all the octets of pseudoscalar mesons. We th
fore solve Eq.~13! iteratively. We find that convergence i
reached after 10–15 iterations. Using the renormalized fo
factors the renormalized masses are computed by using
~16!. The parameters of the CCD model (mGB, as , andm0)
are then adjusted to fit the renormalized masses to the ph
cal masses.

For a comparison with the experimental data we consi
the pNN andpND coupling constants at nucleon and de
masses, respectively. Conventionally, in terms of the non
ativistic pNN interaction Hamiltonian, thepNN coupling
constantf pNN is defined as@1#

H int5
i f pNN

mpA2p
E d3k

A2vp~k!
v~k!@s•kWtW•aW ~kW !1H.c.#,

~20!

wheres and t are nucleon spin and isospin operators,
spectively,v(k) is the form factor defined to be unity whe
k5 imp , andaW (kW ) is the annihilation operator for the pio

e-
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field. The experimental value off pNN is 0.279 (f pNN
2

50.078). Comparing the interaction Hamiltonian of E
~11!, we havef pNN5aNNpuNNp(k50)mp/6Ap f , where the
renormalized form factor is calculated atE5mN , the
nucleon mass. Similarly, f pND5aNDpuNDp(k
50)mpA2/5Ap f .

Computations have been done for a number of param
sets of the CCD model. The results are quite similar for
these sets as long asmGB is between 800 and 1200 MeV
Therefore we have chosen one of the representative pa
eter sets (mGB5978.6, as50.438, B1/45122.3, m5122.3,
and m05210.1) for a detailed discussion. The pion dec
constantf has been fixed at its physical value~93 MeV!. The
bare and renormalizedpNN and pND form factors evalu-
ated at nucleon delta masses are displayed in Fig. 3.
clear from this figure that the renormalized form factors d
fer from the bare form factors at three-momentum trans
smaller than 1 GeV. An inspection of Eq.~13! shows why
this happens. As the momentum transfer increases, the
term in the denominator of the integrand also increases
cause of an increase invf(k). As a result, the contribution
of the integral to the form factor decreases with an incre
in the momentum transfer. Even at momentum trans
smaller than 1 GeV, the change in the form factor is ab
10% for uNNp and 30% foruNDp . Thus one could conclude
that the effects of renormalization are relatively minor.

We can extract equivalent monopole form factors fro
the computed renormalized form factors. If, for examp
uNNp is expanded in power series neark50, one obtainsL
;800 MeV. This value ofL is about same as the one o
tained by various authors@4,6,8–10#. However, one mus
note that as a function of momentum transfer, the monop
form factor falls off more slowly than the CCD model form
factor. We find that a better fit to the CCD model form fact
is obtained by using a dipole or Gaussian form. In fact,
find that if we replace the bare CCD model form factor by
dipole or Gaussian form factor, we get practically the sa
results. If, on the other hand, one wants that the monop

FIG. 3. Renormalized and bare form factors vs momentum
units of the glueball mass. The different curves are foruNNp ~solid
line!, uNNp

0 ~dotted line!, anduNDp ~dashed line!. uNDp
0 is the same

asuNNp
0 .
.
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form factor should be close touNNp(k) for k
;3002500 MeV, L;500 MeV.

The computed value of thepNN coupling constant is
0.254. This value is about 9% smaller than the experime
f NNp . This, by itself, can be considered as a success of
CCD model. Thef NNp as well as the baryon masses can
fitted by decreasing the pion decay constantf to 86 MeV ~a
7% decrease!. It may be mentioned here that this change inf
does not affect the computed properties of baryons v
much.

Let us now consider the ratio ofpND andpNN coupling
constants evaluated at nucleon and delta masses, re
tively. This ratio is 6A2/551.697 for bare coupling con
stants, as dictated by SU(3)flavor symmetry. For renormalized
coupling constants this ratio is about 2.15, which is ve
close to the experimental value of 2.14@20#. We believe that
this is a very important result emerging from our calculatio
This result implies that, to begin with, the quark model val
of the ratio, which is about 25% smaller than the experim
tal value, is itself a good starting point. In other words, t
bare coupling constants in the CCD model themselves ar
qualitative agreement with the experimental values. T
renormalization of these quantities, which should be done
any case, is able to produce a very good agreement with
experimental result. Incidently, we would like to note th
when f 586 MeV thepNN coupling constant agrees wit
the experimental value and the ratio ofpND andpNN cou-
pling constants still remains close to 2.15.

The energy dependence off pNN and f pND is shown in
Fig. 4. The figure shows that the renormalized coupling c
stants increase with energy in the energy range shown.

V. CONCLUSIONS

The chiral color dielectric model has been used in t
work to compute renormalized meson-baryon form facto
This has been done by writing the Lippmann-Schwing
equation in a series form and deriving the integral equat
for the renormalized form factor. We find that the renorm

n
FIG. 4. The ratio of renormalized and bare form factor at ze

momentum transfer as a function of energy. The solid curve is
NNp and the dashed curve is forNDp.
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ization effects are primarily restricted to meson mome
smaller than 1 GeV. The increase in the form factor at z
meson momentum is about 10% at nucleon mass and a
30% atD mass. The renormalizedNNp coupling constant is
about 10% smaller than the experimental value iff , the pion
decay constant, is chosen to be 93 MeV. The ratio ofNDp
and NNp coupling constants is found to be 2.15, which
close to the experimental value. This ratio for bare coupl
constants is 1.697. Thus the renormalization effects y
good agreement between experiment and theory. The c
puted form factors are soft with the equivalent monop
parameterL of about 800 MeV if fitting is done at sma
momentum transfers. However, the CCD model form fact
decrease faster than the monopole form factor for large
menta and the CCD form factors are closer to Gaussia
dipole forms.

Strictly speaking, the computations done in this work a
not fully relativistic although relativistic expressions for e
ergies of the baryons are used. For a completely relativi
calculation, one will need to use relativistic propagators
baryons and use a relativistic integral equation, such as
Blankenbeckler-Sugar equation, instead of the relativi
Lippmann-Schwinger equation that is used in the pres
work. Indeed it is technically possible to do this, with som
increase in the complexity of the problem. However, we f
that the approach followed in the present work is reasona
since we have restricted ourselves to kinetic energies s
in comparison with the baryon masses. Extension of
present calculation to higher energies would require
above-mentioned relativistic generalizations as well as in
sion of heavier baryon resonances.

We would like to thank Prof. R. H. Landau for usef
discussions.

APPENDIX A: BARE FORM FACTORS

The meson-baryon interaction Hamiltonian is

H int5
i

f E d3x
m

x~x!
C̄~x!g5l iC~x!f i~x!, ~A1!

where l i are the SU~3! Gell-Mann matrices acting on th
flavor coordinate of the quarks. In terms of the pseudosc
octet fieldsf i , we define thep, K, andh fields as

fp75f1,7157
1

A2
~f16 if2!,

fp05f1,05f3 , ~A2!

fK25f1/2,1/2
~1! 5

1

A2
~f41 if5!,

fK15f1/2,21/2
~2! 5

1

A2
~f42 if5!,

f K̄05f1/2,21/2
~1! 5

1

A2
~f61 if7!,

fK05f1/2,1/2
~2! 5

1

A2
~f62 if7!,
a
o
ut

g
ld
m-
e

s
o-
or

e

ic
r
he
d
nt

l
le
all
e
e
-

ar

fh5f0,05f8 .

An extra negative sign for thep2 field is introduced to con-
form with the usual definition of vectors in a spherical ba
and is different from the usual definition of pion fields. Wi
these definitions of meson fields,

lafa5~21!mtmf1,2m1v1/2,mf1/2,2m
~1! 1u1/2,mf1/2,2m

~2!

1l8f0,0. ~A3!

Quantizing the meson fields we have

f~x!5
1

A8p3E d3k

A2v i~k!
@eikW•xWai~kW !1e2 ikW•xWāi

†~kW !#,

~A4!

whereai is the annihilation operator of mesoni andāi
† is the

creation operator of the meson conjugate toi . The commu-
tation relations for the meson field operators are

@a1,m~kW !,a1,n
† ~kW8!#5~21!mdm,nd~kW2kW8!,

@a1/2,m
~ i ! ~kW !,a1/2,n

~ j !† ~kW8!#5d i , jdm,nd~kW2kW8!,

and @a0,0(kW ),a0,0
† (kW8)#5d(kW2kW8). Computation of the ma-

trix element of the interaction Hamiltonian between ba
baryon states gives

H int5 (
B,B8,i

uB8&^Bu
i

fA8p3E d3k

A2v i~k!
@ai~kW !2āi

†~kW !#

3uBB8 i
0

~k!^B8ul isW uB&•kW . ~A5!

The details of computing the bare form factoruBB8 i
0 (k) are

given elsewhere@11#. Computing the spin-flavor matrix ele
ment ^B8ul isW uB& and expressing the result in angular m
mentum formalism, we get

H int5(
iaBB8f

4 f p3/2E d3k

Avf~k!
@al,2m~kW !2al,m

† ~kW !#

3k1,2nuBB8f
0

~k!~21!n1 i f^TB ,l,tB ,muTB8 ,tB8&

3^SB ,1,sB ,nuSB8 ,sB8&. ~A6!

Here the summation over spin and isospins of baryons
mesons is implied. Alsof implies that the meson type (p,
K, K̄, andh) and their total isospins and projections alo
the z axis are represented byl and m, respectively. The

FIG. 5. Diagrams~up to order 1/f 6) contributing to theT ma-
trix. Thick lines represent physical baryons, thin lines repres
bare baryons, and dashed lines represent mesons.
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baryon spin~isospin! and its projection are represented
SB (TB) andsB (tB), respectively. The reduced matrix el
ment aBB8f and the phase factori f are determined by ex
plicit calculation of one matrix element, as is usually don
The phase factori f is m, 0, 1/22m, and 0 forp, K, K̄, and
h, respectively.

APPENDIX B: RENORMALIZATION

One can derive the equations for renormalized form f
tors and masses by writing theT-matrix equation in a
Lippmann-Schwinger series and summing parts of the se
This procedure, however, is somewhat cumbersome. On
other hand, the same conclusions can be arrived at by
sidering the graphical representation of the series. We h
therefore shown the diagrams corresponding to the in
vidual terms of the Lippmann-Schwinger series for theT
matrix of Eq.~12! in Fig. 5. The figure shows the diagram
up to 1/f 6. It should be clear that one can easily general

FIG. 6. Diagramatic representation of the vertex renormali
tion.
ia
is

at
h
o

ze
t
is

1/
.

-

s.
he
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e

the conclusions drawn from the analysis of these diagram
the full Lippmann-Schwinger series.

The diagrams in Fig. 5 are organized as follows. The d
grams in the first line renormalize the rightmost vertex. T
diagrams in the second line renormalize the leftmost ver
and the diagrams in the third line renormalize the mass or
propagator of the intermediate baryon. The diagrams in
fourth line are the mixed diagrams representing renormal
tion of vertices as well as mass. Finally, the diagrams in
last line are the rest of the diagrams which do not give rise
renormalization. Generalizing the diagrams in the first line
all orders, we obtain an integral equation for the renorm
ization of vertex~form factor!. Diagramatically, this is rep-
resented in Fig. 6 where the solid circle represents the re
malized form factor.

The corresponding integral equation obtained after so
angular momentum algebra is

-

FIG. 7. Diagramatic representation of the renormalized pro
gator.
uBB8f~k!5uBB8f
0

~k!1 (
f8B9,B-

~21! I ŜB9ŜB-T̂B9T̂B-
aBB-f8aB-B9faB9B8f̄8

12p2f 2aBB8f

3W~TBTB-TB9TB8 ;TfTf8!W~SBSB-SB9SB8 ;11!

3E k84dk8uBB-f8
0

~k8!uB-B9f
0

~k!uB9B8f̄8~k8!

vf8~k8!@E2EB-
0

2vf8~k8!2vf~k!#@E2EB92vf8~k8!#
, ~B1!
c-
where â5A2a11, EB
0(k)5Ak21(MB

0)2, EB(k)
5Ak21MB

2, vf(k)5Ak21mf
2 , MB and MB

0 are renormal-
ized and bare masses of baryonB, respectively,I 5Df

1Df82SB2SB82TB2TB8 , with Df being 1, 0, 1, and 0

for p, K, K̄, andh, respectively,SB andTB are the spin and
isospin of baryonB, respectively, andW(•••)’s are the
usual Rakah coefficients.

Now consider the mass renormalization. The relevent d
grams are shown in Fig. 7. Clearly, the third line in th
diagram is the Schwinger-Dyson equation for the propag
with the self-energy being given by the meson loop. T
thing to notice, however, is that one of the meson-bary
form factors appearing in the self-energy is a renormali
one where as the other is a bare one. Assuming that
computation is done in the frame in which the baryon
stationary, the renormalized and bare propagators are@E
-

or
e
n
d
he

2MB
02S(E)] and 1/(E2MB

0), respectively. The self-
energyS(E) is

S~E!5(
B8f

~21!TB81SB82TB2SB2D

12p2f 2

3
ŜB8T̂B8

ŜBT̂B

aBB8faB8Bf̄E k4dkuBB8f
0

~k!uB8Bf̄~k!

vf~k!@MB2EB82vf~k!#
,

~B2!

whereD is 0, 21/2, 1/2, and 0 forp, K, K̄, andh, respec-
tively. The mass of the physical baryonMB5MB

01S(E
5MB).

It should be evident that using the renormalized form fa
tors and propagators theT matrix can be written in the form
given in Eqs.~16!–~18! and Fig. 2.
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