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Forming disoriented chiral condensates through fluctuations
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Using the influence functional formalism, classical equations of motion foOiti¢) model are derived in
the presence of a heat bath, in both the symmetric phase as well as the phase of spontaneously broken
symmetry. The heat bath leads to dissipation and fluctuation terms in the classical equations of motion, which
are explicitly computed to lowest order in perturbation theory. In the broken phase these terms are found to be
large for theo field, even at zero temperature, due to the decay pragess , while they are small for the
7 fields at temperatures beloW.=160 MeV. It is shown that in large volumes the presence of dissipation
and fluctuations suppresses the formation of disoriented chiral conde(B&€s). In small volumes, how-
ever, fluctuations become sufficiently large to induce the formation of DCC'’s even if chiral symmetry has not
been restored in the initial stage of the system’s evolufi60556-28188)02810-9

PACS numbegps): 25.75—-q, 11.30.Qc, 11.30.Rd, 12.39.Fe

I. INTRODUCTION AND CONCLUSIONS If a single domain of DCC is formed, the probabiliB(R)
~1/\R, which is drastically different from the case where
At vanishing net-baryon number density and temperaturepions are emitted in a statistically independent manner,
aboveT. =160 MeV, lattice calculations of quantum chro- P(R)~ §(R—1/3) (for large, isospin-symmetric systejns
modynamics predict the existence of a phase of nuclear mat- The formation and decay of DCC'’s has been studied in a
ter where quarks and gluons are deconfined and chiral synyariety of approaches over the last couple of ygais and
metry is restored1]. One of the primary goals of relativistic the original idea has undergone several refinements. One ob-
heavy-ion physics is to create and study this phase in nucleafous effect that has an influence on DCC formation in
collisions[2]. heavy-ion collisions is the presence of a background of a
The formation of a so-called disoriented chiral condensaténultitude of other particles. Most of these are pions with
(DCC) has been proposed as a possible signature for th@/pical transverse momenta on the order of a couple of hun-
restoration of chiral symmetr8]. The idea is the following: ~dred MeV[6]. In [7] it was assumed that these pions consti-
in the phase where chiral symmetry is restored the quarkute a backgroundheat bath”) of unobserved, thermalized
condensate vanishe&q)=0. If at all, in a heavy-ion colli- degrees of freedom. Their presence leads to temperature-
sion this state can only be transiently created. Once the sydependent dissipation and fluctuation terms in the classical
tem cools belowT., chiral symmetry is spontaneously bro- eqqatlons of motion W_hlch .correspond tq four'-partlcle inter-
ken and the system has to evolve back into the true grounﬁCt'ons between classical fields and particles in the heat bath

— ) ) ) and can be rigorously derivd@] (cf. also[9]) via the influ-
state wherg(qq)#0. If in the course of this evolution the o' nctional formalisil0]. For a typical(average tem-

pseudoscalar condensatrysq) assumes nonvanishing perature evolution in a heavy-ion collision it was then stud-
values (instead of remaining zero, as in the ground state jed in[7], how DCC's form in an expanding system which is
one speaks of a disoriented chiral condensate. in contact with this(steadily cooling heat bath of particles.

This mechanism becomes physically most transparent ifhe main result was that, on the average, dissipation and
the framework of theO(4) model. One identifies$;  fluctuation tend to suppress the formation of DCC’s. How-
~{qq), ¢i~{(q7vsq), i=2,3,4, and spontaneously broken ever, fluctuations grow-1/\V for V—0. Thus, in small
symmetry is realized by a potentidl( ¢) which looks like a  volumes and in a single event, the fluctuations can be large
(tilted) “mexican hat,” with minimum at¢é=(f,,0) for T enough to destabilize the system and actually enhance the
=0. For increasing, the “hat” becomes shallower and the likelihood to form a DCC.
minimum moves towards the origin, such that-0 for T The authors of 7] made two approximations. The first
—T., and chiral symmetry is restored. The creation ofwas to compute the dissipation terms in the chiralfynmet-
DCC's is most likely in the so-called “quench scenaript]. ric phase and then to use them for the evolution of the sys-
Here, it is assumed that, after restoration of chiral symmetrytem in the phase where chiral symmetry is spontaneously
the system cools instantaneouslyTte: 0. If the fields¢ are  broken This leads to considerable simplifications, since in
assumed to follow classical equations of motion in the pothe symmetric phase these terms are straightforward gener-
tential U(¢), the evolution of the system can be visualizedalizations of results obtained previouslydrt theory[8]. For
as “rolling down” from the initial state with restored chiral dissipation arising from four-particle interactions which are
symmetry, =0, into the true ground staté=(f_,0). If present both in the symmetric and the broken phase, this
that happens on a “path” where,;#0,i=2,3,4, the chiral approximation is probably justified in the initial stage of the
condensate becomes “disoriented.” evolution, where temperatures are high and clos@& to It

The ratio R of neutral pions to the sum of neutral and becomes questionable at smaller temperatures due to the fact
charged pions was suggested as experimental obseff@ble that not all particles have the same mass in the broken phase
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(the o is heavy, while therr's are lighi. This has the advantage that, in a perturbative computation of
There is, however, another reason to reconsider this aghe correction terms to the classical equations of motion up
proximation at temperatures beldli. In the broken phase to some given orden in the coupling constant, expectation
the structure of the underlying Lagrangian is fundamentallyvalues of the hard degrees of freedom have to be computed
different: there are additional three-particle interactions. Asnly to ordern—1. It is furthermore shown that for systems
will be shown in detail in the following, this has the conse-with more than one field degree of freedom, there can be
quence that, while the dissipation 4s\? in the symmetric  cross correlations between the noise terms for different
phase and of equal magnitude for all fields,, a fields.
=1, ... 4,dissipative corrections arise alreadyfist order In Sec. IV, the general framework derived in the previous
in \ in the broken phase, and are of sizable magnitude for thgections is applied to th@(N) model in the symmetric case.
o degree of freedom and rather small for pions. The formerThe corrections to the classical equation of motion are first
correspond physically to the decay obainto two 7's (cf. ~ computed to ordek, where they only change the mass term
also[11]), and are nonvanishing even®t 0. Therefore, the in the classical equation of motion, and then also to oxder
dissipation coefficients beloW, are different from an ex- Where they lead to dissipation and fluctuations. The treat-
trapolation of the results obtained in the symmetric phase. ment is fairly cursory, since this case is rather similagtb
The second approximation made [ifi] was to infer the theory[or, in other words, th€©(1) casé discussed in detail

variance of the fluctuation terms,, a=1, .. .,4,from the  in [8]. The main focus is to demonstrate the applicability of
dissipation coefficient; via the method developed in Sec. lll. It is shown that the damp-

ing coefficient agrees with previous results in the cades
) 2Tn , =1[8]andN=4 [7].
(&a(D&()= 75(t_t )Bab - 1) In Sec. V theO(N) model is discussed for the case of
spontaneously broken symmetry. In this case, only correc-
Apart from the fact that this equation does not account foitions up to first order in the coupling constant are considered,
different dissipation coefficients far and 7’s, one has to but due to the presence of two interaction vertices in the
note that the factor 2 stems from the high-temperatujiee., ~ Lagrangian(one proportional to. and the other proportional
classical limit of a more general expressiofef. [8] and  to Mf,~\Y?), there is dissipation and fluctuation already to
below). For temperature§ smaller than the typical mass this order in\. In particular, the dissipation coefficient for
scale of the theory, i.e., fof<m_=T., one therefore ex- the o field is shown to be large even &=0, »,=m,
pects sizable deviations from Ed). In particular, whenever =600 MeV. The physical process responsible for this is the
» happens to be finite & =0 (which, as mentioned above decay of ar into two 7’s. This has important consequences
and shown below, is indeed the case for thdield in the  which are discussed in Sec. VI. On the other hand, the dis-
broken phasg Eq. (1) predicts that fluctuations vanish even sipation coefficient for ther fields is small for the tempera-
in the presence of dissipation, in contradiction to theture range of interest, the reason being that scatteringmof a
dissipation-fluctuation theorem. or o from the heat bath off a classicat field is strongly
The aim of this paper is to make a first step towards ssuppressed by phase space. Fef0, as well as in the chiral
consistent treatment of dissipation and fluctuation in thdimit m_—O0 for arbitraryT, one even hag,—0. The clas-
framework of theO(4) model in the phase where chiral sical equations of motion fos’s and 7's are derived and
symmetry is broken. The outline of the paper, as well as thetudied in detail for th&=0 modes of the classical fields. It
main results and conclusions are as follows. In Sec. Il, thés shown that the static solution for tlefield corresponds to
derivation of the influence functional is presented for a systhe well-known shift of the vacuum ground state at finite
tem of N real-valued scalar fieldsp,, ...,¢y. Short- temperature. Moreover, the validity of Goldstone’s theorem
wavelength modes, i.e., those with “hard” momerjtd  at the classical level is checked.
>k., wherek; is an arbitrary momentum scale, are sepa- In Sec. VI, arguments are presented that the formation of
rated from long-wavelength modes, i.e., those with “soft” DCC's is most likely in a quench scenario, i.e., B&0.
momentdk| <k, [12], and the reduced density matrix for the Numerical solutions of the equations of motion for the ho-
soft modes is obtained from the full density matrix by tracingmogeneous modes of the fields at zero temperature are then
over the hard degrees of freedom, which thus are thought tpresented, which show that, in large volumes, the large dis-
constitute the unobserved backgroufitieat bath”) men-  sipation coefficient for ther field leads to a rapid damping
tioned above. The influence functional enters as a phase faof oscillations of all classical fields, including the pions. The
tor in the reduced density matrix. This section is a straightformation of DCC’s seems thus not very likely in large sys-
forward generalization of the treatment [8]. It serves tems. In small volumes, on the other hand, the fluctuations
merely to introduce the notation, and can be skipped by readkssociated with the dissipation are large enough to disorient
ers familiar with the subject. the pion fields and possibly lead to the formation of DCC's.
Section 1l contains the derivation of the classical equa-These results are in agreement with those founf7in ex-
tions of motion for the soft fields by expanding the reducedcept that here they apply even B&=0. This may have the
density matrix around its diagonal elements. The main dif-experimentally interesting implication that DCC'’s are per-
ference as compared to previous treatments of the subjebaps formed more readily in collisions of lighter ions, or
[8,13,14 is that functional derivatives of the influence func- even inpp collisions (which constitutes a possible explana-
tional are expressed as averages over functional derivative®n for the CENTAURO event$15]), while they are pre-
of the action characterizing the interaction between softsumably less likely to be formed in collisions of heavy ions.
classical fields and the unobserved hard degrees of freedor.definite conclusion, however, can only be drawn after per-



PRC 58 FORMING DISORIENTED CHIRAL CONDENSATE . .. 2333

forming dynamical simulations including modes with finite  is the time evolution operator. Let us choose a bisig)}

and taking the overall expansion of the system into accounsf eigenfunctions of the Schdinger field operato@f(x). In

[16]. this basis, one finds for the density matrix element
There is, however, another possible consequence of the

results found here. As long as the volume is small,

~10 fm?, the disorientation of ther fields (and possibly p(bs,diite)

DCC formation) becomes likely even if the system’s evolu- — —

tion starts near the true ground stdeven small perturba-

tions in the 7 fields sufficg. As a consequence, in small =(&lo(tr)| 1)

systems restoration of chiral symmetry does not seem to be a & 4!

necessary prerequisite to observe disorientation of classical =f DéDoip(di,df ;ti)f D¢f /‘D¢’

pion fields. It is, however, rather likely that this fluctuation- - s TJe T
induced phenomenon is related to ordinary fluctuations in xexgli (S ¢]-S[ o' D}, (5)

finite volumes.

The results of the present work have to be viewed in the
light of the following two comments(a) the classical ap-
proximation works well in the limit of large occupation num-
bers. For instance, in thermodynamical equilibrium this is
achieved for modes with energy<T. However, the lowest- 1:J D ¢i| ¢ ){ i (6)
energy mode for(noninteracting o particles haso=m, - -
=600 MeV which is much larger than the temperature in
the broken phaseT«T,=160 MeV). Therefore, at least in [h?feDéEH§=1de¢a(X)], and the path-integral represen-
thermodynamical equilibrium, the field should not seri- tation
ously be considered classically. In a sense, the expected large

where one has employed E@®), the completeness relation

guantum corrections become manifest in the fluctuations in- - i .

duced by the decay— w7 as calculated in the present (& U(ts t) )= & D expliS[ ]}, (@)
work. (b) The dissipation and fluctuation terms are here com-

puted to first order in perturbation theory. However, for ré-where Dézﬂgzlﬂt,xdﬁba(tyx), and S ]

alistic parameters of th©(N) model the coupling constant t S .

A=20, which renders the perturbative expansion uncontrol-:ftifdtfdsxaé(t'x))zftifd4X£(2(X))- Note that it is cus-

lable. Future studies will have to improve on this point. tomary[8,13,14 to employ the closed-time-path formalism
Possible other extensions of the present work(arehe  [18] to simplify the right-hand side of Ed5). Although this

inclusion of collisional interactions betweem's and #w's  is an elegant bookkeeping device, for the sake of clarity we

which are of order~\? [17], (b) the study of long- shall continue to work in terms of the fields and ¢'.

wavelength modes with finite momeritainstead of the ho- At each timet, a particular field component with 3 mo-

mogeneous modes only, as well @3 the study of DCC mentumk has the Fourier representation

formation including these effects with a realistic temperature

evolution[16]. Units areh =c=kg= 1, and the metric tensor T
is g’“’=diag(+,—,—,—). é(t,k)z d°xe Q(t,X) (8)
Il. DERIVATION OF THE INFLUENCE FUNCTIONAL Let us now separate “hard” from “soft” degrees of free-

Let us consider a quantum systemibfeal-valued scalar dom[8,12]. More precisely, let us define soft fields

fieldsp=(¢1, ... ,¢\), characterized by a Lagrangian den- &K

sity £(¢). The Hamilton operatoH = [d3x H(p(x)), H (p(t,x)zf e X (t,k) O (k—|K|), 9
=m-dp—L, m=3dLlJ(J ), is assumed to have no ex- - (2m)°® -

plicit time dependence. The time evolution of the density

matrix reads and hard fields
S S T d°k ik-x
=11, @ @(t0= [ e etholk k), (10
(27)
with initial condition p(t;)=p; . The formal solution at time
t; is where k. is an arbitrary momentum scale separating hard
from soft momentum modes. Obviously, the space spanned
p(t) =0t ,t)p 0t ,t), (3) by {l¢)} is the product space spanned f§y)} and{|®)},
{lo)}={le)}@{|P)}. [This is most easily seen in the space
where of functions ¢(t,k).] Also, ¢(x)=¢(x)+P(x), andS[ ¢]
) A . . =]+ P]+S[e,P], where S[¢,®] is the action
U(t, t)=exp—iH(t;—t)}=0T(t; ,t)=0"1(t; ,ty) characterizing interactions between soft and hard fields.

(4) The density matrix5) then assumes the form
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! ! ! ! ! ! 2f gf ¢ ! i, !
ple el 0 it)= | DeDLDE DD ple el ) 1) [“De[ D [g [0

Xexp{i(Sel+ L]+ 5[, P]-F¢'|-FP']-S[¢", ']} (11)

Let us ‘now assume that the interactions between soft and hard fields vanish at the initigl. tihhen, the initial density
matrix p; is block diagonalp;=p{®®p(®, and

p(ei Piol @/ t)=p"(gi, @ ;t)pP(D; D] ;t)). (12)

The object of interest in the following is theduceddensity matriXp(‘P)(gf @1 ;t5) for the soft fields, which is obtained by
tracing (11) over the degrees of freedom of the hard fields. This reduced density matrix has the form

(¢)(£f1£fl;tf):fDfiniIP(@(fi @i ) Qng %;Dg’eXp{i(S[g]—S[g’]+S|F[g.£’])}, (13)
@i 24

where theinfluence functional §[ ¢,¢’'] is defined by[10]

[or for
explisile.¢'1)= | DODLOD/p (0.0 5t) [P0 [ D0 expli(S 91+ S[e. 21T @ )-S[¢" 2 D)
c (14

An obvious property of the influence function@br real-valued scalar fielgiss
Sele. ' 1=—Sil¢’. ¢l (15

For the proof, note that for any element of thelermitian density matrix one has* (¢, ¢ ;t)=(d|p(t)|¢’)*

=(¢'lp" (O B)=(¢'|p(t) | B)=p(&', :1).
Another property is

For the proof, note that ii§r, ¢ plays the role of an external, and thus fixed, field. Defining the acSigd |=5 @ |

+ S [ ¢,®] for hard fields in the presence of this external figldand a corresponding time evolution opera?p;(tf ,ti) with
matrix elements

- ¢
(@0t 0)|0) = [ Do explis, (@), )

one then reverts in Eq14) the steps which led to EG5). Then, exfiSe[¢,¢lt=/DPpl"(®;, ¢ t)=Tr p{(t1)=1, con-
sequentIyS,F[<p ¢]=0. Here p(‘l’)(t ) is the density matrix for the hard degrees of freedom as it evolved from its initial value

p{™ to the final timet; subject to the time evolution operatdr(t;,t;). This evolution in general differs from the one when
the external fieldp is absent.

Ill. DERIVATION OF CLASSICAL EQUATIONS OF MOTION FOR THE SOFT FIELDS

The classical equations of motion for the soft fielelare determined by expanding the ph&e]—S[ ¢' |+ Se[¢,¢'] in
Eq. (13) around field configurationg=¢’, i.e., where this phase vanishes according to(E6). Let us introduce

L

Il
N[ =

(¢t+¢"), Ap=¢—¢', (18)

and expand ¢]—S[¢']+ Sl ¢, ¢'] to quadratic order in ¢:

N
17t
Ag(X)+ 2 f dixdly S Aga(x)
—| = 8Jy ab=1

2 1/ 8Se[w,¢'] O0Se[@, 0’
Slel-Se¢' 1+ Skl @' 1= el 1 5Sele.¢'] Lo, ])

5£(x)+2 Se(X) 8¢/ (x)

ti

( *Sele '] B 8°Sele. '] 3 *Sele. '] 8°Sele. ']
5¢a(X)8@p(y)  Spa(X)Sep(Y)  0a(X)Sen(y)  Sea(x)den(Y)] _

Agp(y). (19
e
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Previous derivations qf classical equations of motlon_ln a 5ZS|[§,Q] ' 5S|[§E] 5S|[§,g]
background of hard fields usually compute the functional ={ —————) +i — —
derivatives of the influence functional in EG.9) directly for Sea(X)den(Y) | O0pa(X)  Sep(y)
the specific system under consideration. However, these

functional derivatives can be further evaluated also in the | 6Se, @] 5S¢, ®]
general case. To this end, let us define amgbint func- - — — _ (230
fion™ S¢a(X) Sen(y) [
2 ’
AD, D) =0 (x) D 2(x,) - - - D(x,) Srlee’]
—_— 1 2 k !
O@a(X) Sep(y) oo'-g
rMy, 7 AL YO A ALV
X P bl(Xl)q’ bz(XZ) X bl(X|),
o :—|< 5S¢, P] 5S[e. P’ ]>
:2 n.+2 m: (20) 5(Pa(x) 5€0b(y) .
_ i K
i=1 j=1 _ _

i 0S¢, @] 0S¢, P’'] (230
of the fields®,®’. Here, a; and b; label components of S¢@a(X) Sep(y) |-
theseN-dimensional fields. Wlthout loss of generality one €
may assume that=t,=>--- andt;=t;=--.-. Let us then 25 ,
define the average @(®,®") in the presence of the “back- rle.e']
ground field” ¢ as 002 0ep(Y) |,y g
(A2, 2")e __< S, '] > +i<53[§,9'] 55.[27,9']>

o, S¢a(X)dep(Y) [ Sea(x)  beuly) [
Ef D®DPDP! p' (D, D/ ;ti)f DO — —
@, - <5S|[£,9’]> <53|[£,9’]> 30
S5¢a(X) Sen(y) |

qu‘)fan'exp{i(S[q>]+s,[¢T,q>]
o T - -

, — ., , Since the fieldsp,®,®' are assumed to be real-valued, Eq.
—HP']-Sle. Q' DIA(R, D). (2D (19 can be further simplified using symmetry properties of
the averagg21) with respect to exchange @b —®’, for
Using the time evolution operatdi7) (with ¢=¢), one instance,
notices that this is equivalent to o

5S[e, &' 5S[e,®]\ "
AD. D))= Trin® b o < '[—E_]> E< '[—£_1> : (24)
(AP, @)= Tr{p,  (t)A(®,P")}, (22 So(x) |- de(x) [

i.e., the usual expectation value of thepoint functionAin  Then Eq(19) becomes
the (in general, nonequilibriumensemble characterized by

the density matr|Xp( )(t) Note that in this expectation Sel-Se' 1+ Sele¢']
value all ® fields aretlme ordered while all @’ fields are

anti-time-ordered

Writing Sie = —i Inexp{iS}, one now observes with the ~ ftfd“xg(x)ﬂcp(x)
definition (14) and the property16) of the influence func- ti - -
tional, and the definition of the averag2l) that - N
f
_ +5 f dixdy 3 Aea()Zan(Xy) Agu(y), (25)
5Sele '] _ < 531[2’9]> (233 ti "
o0(X) |,y Se(x) [ where
58Sl ¢’ 5S[o,®’ o9 ¢]
Selel)  __[Bled} oy E00="—2+ R(x), (26a
de'(X) | _._Z op(x) [ — op(X)
2 : 5S[ @,
oSl '] R(X)ERQ< —I[—£ _]> ) (26b)
8a(X)Seu(Y) |, = - de(x) |

L= =@
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5S¢, @] >
S¢a(X) dep(y)

.
<5S.[qo,<1>]> <5S|[¢> d>1>
—Re
S@a(X) Sep(y)
1< ( 5S¢, ®] . 58.@@])

A\ sax)  Sea(x)

4
5S 0, ®'
e, @] 55,[_£,9])> 260
Seu(Y) Sep(y) —

1
Iab<x,y>E§|m<

are real-valued functions. Inserting this into expressit®)

and changing the integration variablese’ to ¢,A¢, one
obtains

("D)(EfyAff;tf)

_ _ z _ (Ag,
‘—“f DeiDAgip'®(¢;,Agiit) |- Do DAsD

@i Ag;
XeXp{iftfd4X5(X)'A(P(X)
t - -
N
(4% 4
_Ef d*xdty > Asoa(X)Iab(x,y)Acpb(y)]- 27
tj a,b=1

The term quadratic ik ¢ in the argument of the exponential
can be rewritten introducing auxiliary fields &

:(é:]_y LRC vgN)r
1(t N
exp — 5 f dixdly 2 Aea(X)Zap(X,y)A@p(y)
tj a,b=1
— ts
= J DEPLE o] exp{i ft | d4X§(X)~A£(X)}, (28)

where

_ _ 1t

Pl e]=N¢] exp{ - EJt_fdAXdAY

N
x 2 §a<x>zab1<x,y)fb<y)] (29
is a normali_zed Gaussian measure. Note tah general
depends onp throughZ. It is now possible to perform the

functional integration oveA ¢ (except for the one &) in
expression(27), with the result

(g gt = [ De[ DEDAEA (@ gt

x | “Dg Pl&g] AEX)+EX)].
@i

(30

This result means that, for timés<t<t;, the functionals

function forces the field§to obey theclassical equations of
motion

-
—E()=— ﬂ—@xh (). (31)
Se(X)

The condition — 6 ¢]/8¢(x)=0 is the usual classical
equation of motion. The new ter® characterizes the inter-

actions of the soft, classical fields with the hard, unob-
served degrees of freedom. As it will become clear in the
following, a part of these interactions is to be interpreted as
dissipation. The associated fluctuating noise field is repre-
sented by on the right-hand side of the equations of motion
(31). These equations of motion are therefore Langevin-type
equations. Note that in general the noise is not white, since
need not be proportional t6(xy—Y,), and can be multipli-

cative, due to the dependenceZobn ¢ [8,14]. It should be
mentioned at this point that multiplicative noise terms are
treated slightly differently in Ref§8,14] than in the present
work. While here there is only one noise field with a
p-dependent variance, [18,14] different noise fields are in-
troduced withe-independent variances.

Another interesting aspect for systems with more than one
field degree of freedom is that, sin@eis in general not
diagonal,Z,,(x,y) #0 for a#b, there can be correlations
between the noise terms in the equations of motion for two
different field componentg, and ¢, . In the following, this
general formalism will be applied to th@(N) model, both
in the symmetric case as well as with spontaneously broken
symmetry.

IV. THE O(N) MODEL IN THE SYMMETRIC CASE
The Lagrangian of th®(N) model is

1 2 A 2
L(9)=5(0, -0 g~ 2. )= (- #)%, (32

where ¢=(¢1,¢,, . .. ,pyN) is anN-dimensional vector of
real-valued scalar fields.

In the symmetric casen®>0. The vacuum state of the
model is at the minimum of the potential

m2

U(d)="56 ¢+ (8 &) 33

Z| >

which is ¢"%°= 0. Decomposing the fielgh according to Egs.
(9) and (10), the action corresponding to interactions be-
tween soft and hard fields reads

2N ('t 4
Sle, @)=~ Wﬁ. d™X[2¢(X) - @(X) 9(X) - P(X)

+ 0(X) e(X)D(X)- D(X) + 2L £(X)- D(X)]?
+2¢(x)- D) D(X)- B(X)]. (39
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Consequently,
5S[e,®] an _
Sodx) ==y [2ea®)e(x)- (P (X))o @a(X){(P(X)- P (X)) g+ @(X) - @(X){(Pa(X)) g+ 20(X) - (P(X)Po(X) )y
H(P(X)- P(X)P (X)) o], (359
Sl e, ®] A
— = [25abso(x) (D(X)) g+ San{ P(X) - P (X)) g+ 20a(X)(Pp(X) g+ 20p(X)N(Pa(X)) g
5<pa(X)5<pb(y)

+2(D o (X)Pp(X) o] 8 (x—y). (35b)

In the following, the averages on the right-hand side will be computed perturbatively in the coupling constane
expansion in powers of of the exponential in the integrand of E@1) reads

— — A f — -
eXp{i(S[Q]Jr51[219]—5[9']—Sq[f@']ﬂzexp{i(so[@—So[?'])}{l—i Nf: d*y{4e(y)- e(y)e(y)-[2(y) =2 (y)]

+20(y) @(Y)[P(y)- P(y)—P'(y)- @' (y)]+4[ o(y) - P(y)]?
—4[o(y)- ' (y) P+ 4e(y) - [P(Y)P(Y)- D(y)— D' (y)P'(y) ' (y)]

+[9(Y)9(y)]2—[9'(w~2’(Y)]2}+0(>\2)}, (36)

whereSy[ @] is the action for noninteracting hard fields. The +D-(X=Y)O(yo—Xo)], (370
quartic self-interaction term of the hard fields has been in-

cluded in the perturbative treatment 8f. Let us define an  whereT stands for time orderingl for anti-time ordering,
average( )o in analogy to Eq(21), where§ @]+ S[¢,P] and where translational invariance in space time has been
—S®']-S[e, '] is replaced byS,[®]—S[®']. If we  assumed. The functior3.. andD . have the Fourier repre-

additionally assume the initial density matif® to be of ~ Sentation
the formp{*)=exp{—H,/T}/Z, this average is then the usual f 4

thermal average in a noninteracting system at temperdture D;(t,x)=

O (|k|—ky)e'**Di(t,k), i=> or <,
Since this average involves a Gaussian measure in function )?

space, the averag&l) of an arbitrary n-point function (39
A(®,®") vanishes for odeh and can be decomposed into a h
sum over products of two-point functions for evenThese where
two-point functions ar¢19] 1
A A A D-(t,k)= {[1+n(Ek)]e B+ n(E,) B},
(D) Po(V)o=Tr{pg" T(®a(x)Ps(y))}
=5.,D 1+ (X—Y) D_(t,k)=D-(—t,k). (39)
= Sp[ D= (X—Y)O (X0~ Yo) Here, n(x)=(e¥"—1)"! is the Bose-Einstein distribution

i — (124 2y 12
+D_(X—y)O(Yo—xo)], (37 function, andg, = (k“+ m*)~~

A - A. Int ti t ft hard fields to first in\
<q)a(X)<Dt,,(Y)>oETr{PB®)®3(X)®6(Y)}E5abD<(X—y), nteractions between soft and hard fields to first order in

(37b To determine the interaction ter®, Eq. (26b), to order
N\, one needs to compute the expectation values on the right-
~ ~ ~ . 0_ . .
<(D;(X)(I)b(y)>05'|’r{pgb)q)é(x)q)b(y)}z5abD>(X_y), hand side of Eq(359 only to orderA®=1, since there is

(370 already an overall factor af on the right-hand side. This
means that the average$, on the right-hand side can be
ey s, replaced b . This simplification can be traced back to
(RaOPY(Y))o=Tr{pg" T(DL0) Py} thg fact tha){<t>r$e functiona?derivatives of the influence func-
=8,,D__(X—Y) tional in Eg. (19 were rewritten in terms of averages over
functional derivatives of5,, cf. Eq. (23), which itself is al-
=3[ D<(X—Y)O(Xo—Yo) ready of ordeir. Evaluation of the averages therefore yields
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tion in Eq.(27). It is included here to show that the interac-
tion in principle involves four particles.

The result(44) means that to first order in, the only
effect of the presence of the hard mod#ds heat bathis a
modification of the mass term in the classical equation of
motion for the soft fields. There is obviously no dissipation
to this order in\. Consequently, the fluctuating fiek} has
to vanish, too. This is verified by explicitly computing

X Zap(X,y). One first notes that the last two terms in E260)
FIG. 1. The ordei contribution to the thermal mass. are of orden\? and thus can be neglected to first ordeiin
With Eg. (35b), the remaining term yields

<<I>a(x)>;—><<1)a(x)>o=0, (409 T..(xy) 5 4(N+2)7\| b (0)5<4)( )
p(X,Y)= = Oqp— 5 IM X=Y),
(Da(X)PL(X))g—{Pa(X)Pp(X))0= 82D 1 1+ (0), ) ®2N o
(40b (46)
B _(X)DP2(X)) (D (X)PZX))n=0. 400 which obviously vanishes, since expressid@) is real val-
(a0 PH00) = (PO PE(X))o (409 ued. Therefore, to first order ik, the introduction of a fluc-
Thus, tuating noise field¢ via Eq. (28) is obsolete. This also im-

plies that, to this lowest order in, the classical fieIdE(x)

has no means to equilibrate with the background of hard
modesOne has to go to the next higher ordeiito achieve
this.

4(N+2)

A —
Ra(¥)=———yReD++(0) ¢a(x). (41)

With Egs. (373, (38), and(39) one derives
B. Interactions between soft and hard fields

®(|k|—kc)%[l+2n(Ek)]. to second order in\
k To second order iin, the expectation values on the right-
(420 hand side of Eq(35) have to be evaluated to order The
Igesult(neglecting terms which vanish on account of momen-
m conservationis

3

0. (0-

(2m)*

This expression diverges, due to the vacuum contributio
corresponding to the 1 in brackets. The divergence can btéJ
removed in the standard way, for instance by introducing an AN (%o
appropriate counterterm in the Lagrangian. In the following, — (®,(x)),=—1i WJ d*y[D-(x—y)—D_(x—Y)]
it is implied that, wherever necessary, such divergences have ti

been removed accordingly. Note that for massless particles

and in the limitk,—0: X @(y)- e(Y)@aly), (473
dk 1 T2 (Po(X)Pp(X))g= apD 4 +(0)
f (2m)? E_kn(Ek)Zl_Z' (43

AN (%o 4 9 2
_|W N d y[D>(X_y)_D<(X_Y)]
Since expressiof¥2) is real valued, one obtains for the left- '

hand side of the classical equation of motion for the field X[ San@(Y) - @(Y) +20(Y) op(Y)
componentza: +8,(N+2)D,,(0)], (47D
AN— - |—
E(x)=—|0O+m?(T)+ WE(X)'E(X) Pa(X). (44 5 8\ X0 4 3
(@ L0DF0)=—i g (1+260) | a4y DL (x-y)

Here, — |

—D2(x=y)Iea(y): (479

2 4(N+2)\
m(T)=m"+ N D..(0) (45 In Eg. (470 a term was omitted which vanishes on account

of momentum conservation in the expression
is the usual thermal magsquaredi to first order inx. The  [d*x&(xX) - Ag(x). The left-hand side of the equation of mo-
term [m%(T) —m?]p,(x) can be graphically depicted as in tion (31) is then
Fig. 1. In this and the following graphs, external legs corre-
spond to classical fieldg,, while internal lines correspond Ea(x)=—
to propagator® , , of hard modes. The thin external leg on
the left side of the vertex has no correspondence in the clas-
sical equation of motion, it corresponds to a factap,(x) +
multiplying £,(x) in the argument of the exponential func-

2 M~ o) | 0.
LH+mi(T) + e(X)- 2(X) [¢a(X)

a2
N 2 Ta0, (49
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where

T00=i [ YD (x-y)~D-(x-y)]

X[@(X)- @(X) @a(Y) +2¢a(X) @(X)- o(y)]

X (y)- @(y), (499
Xo
7*az><x>zij d*y[D2(x—y)—D2(x—Y)]
t
X[(N+4)@a(x)(y)- @(y)
+40(X)- @(y)@a(Y)], (49b)

79001 [ “ay[D2 (x-y) - DLy 12(N+ gy,
| (499

and where the thermal mas¥T) is given by
4(N+2)\ |
N T

% [ “aty02 -y -D2 -y B 0).

AN+ 2)\
"N

m3(T)=m?+

(50

In Egs. (48)—(50), use has been made of the fact that
DX(x—y)=D-(x—y), and thus DL(x—y)—DI(x—y)

=2i ImDZ(x—y), such that all expressions in these equa-

tions are real-valued. FAN=1 and\—g?/4!, Egs.(47)—
(50) reduce to the corresponding ones found&} in ¢*
theory. The termg{" and the ordek? thermal mass correc-
tion are graphically depicted in Fig. 2. Sinee[DZY(x—y)
DL (x—y)]=2ImDZ(x—y)=2ImD" , (x—y) for Xq

FORMING DISORIENTED CHIRAL CONDENSATE . ..

b c a c
(a) (b)
a b b b
b a
(©) (@
N ®
N\__/ Y : Y

(e)

FIG. 2. (a),(b) The two terms in7{" . A sum overb, ¢ is im-
plied. (c),(d) The two terms in7t?) . A sum overb is implied. (e)
The term7¢? . (f) The order\? contribution to the thermal mass.

— a2
[a$+<E¢>2]qoa<t.k)—(W) 2, T2tk

4\ ( dpd3q

NJ (2m)®

®(kc_|p|)®(kc_|q|)

X0 (k.—|k—p—a|)e(t,p)- ¢(t,q)
X @a(t,k—p—q)
=§a(tvk)-

Here Ef =[k?+m?(T)]Y2 In order to see how dissipation
enters in the equation of motidb1), one has to compute the

(51)

=Yy, in order to make this graphical correspondence it iy ee terms?ﬂ)(t,k), i=1,2,3. This calculation is rather

implied that one has to take the imaginary part of any com
bination of propagators linking the space-time poitndy
in the diagrams of Fig. 2as well as in the following figurgs

similar to the one presented [i8] for ¢* theory. The details

are therefore referred to Appendix A and only the main re-
sults are outlined here. From E@L9) it is obvious that the

Since all external legs correspond to real-valued classicg|ye eyolution of the classical fields prior to tiréfluences
fields, however, this is equivalent to taking the imaginaryia value of the field at time. The equation of motio51)

part of thewholediagram. Note here the advantage of work-
ing with the functionsD instead ofG=i D [8,14], which

would require taking both real and imaginary parts of the

diagrams, depending on the number of internal lines.

The two graphga),(b) correspond to the two terms in the
expression(49g. A sum over the external legs andc is
implied. Graphs(c),(d) correspond to the two terms in the
integrand in Eq.(49b. A sum over the external legs is
implied. Figure 2e) corresponds to expressiad9¢). Fi-
nally, Fig. Zf) is the second-order contribution to the ther-
mal masdtimes ¢,(x)].

In order to study the time evolution of the classical mo-
mentum mode functions,(t,k), Eq. (48) is Fourier trans-

formed with respect tx to obtain the classical equation of
motion for these modes:

is therefore a so-calledelay-differential equationWhile
such integrodifferential equations can, in principle, be
solved, it is much simpler to make an ansatz for the time
evolution of the fieldsp(y) in the terms(49), which renders
the equation of motion local in time. Such an ansatz is the
so-called linear harmonic approximati¢8], cf. Appendix

A. In particular, for the termﬂae’)(t,k) one then obtains

TI(t,k)=—2(N+2)0 (k. —|k|)

P do Mz(w,k)— "
“|P) 27 Epmw #tW
Ms(Ex.K)

a@(t,k)}, (52)

2E,
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whereP stands for the principal value antf;(w,k) is the 1 1

Fourier transform of My(x)=D3(x)—D3(x), cf. Eq. Llom)=5(d00 0= m§02)+§(3ﬂ77‘ I a—mZar- )
(A2c). The first term represents a thermal mass correction for

the field Za(t,k), while the second yields a damping term B AN,

T ] ) . o(o?+ - ﬂ)—A(O'Z'f'ﬂ'- w2 (58
+ 5(K) d,04(t, k) in the equation of motiori51), where the N N
damping coefficient is
Taking N=4, this is the Lagrangian of the linear model.
2 Ms(Ey k) The parametem?, \, andH of the original Lagrangia32)
”(k)z(ﬁ) 2(N+2)2—Ek' (53 are related to the physical meson masses,
=600 MeV, m,=139 MeV, and the pion decay constant

For N=1 and\—g?/4!, this agrees with the resul62) of  f,=93 MeV via m?=—(m2—-3m2)/2, \=N(m2

[8], noting that their function M (©=g* M,/6 [cf. Eq. (41) —m?)/(8f2), H=m?f_. There are two types of interaction

of [8]]. Fork=0 andk.— 0, the evaluation ofM5 simplifies  vertices in the Lagrangia(b8), a three-particle vertex pro-

(cf. Appendix B and yields portional tox f . and a four-particle vertex proportional xo
Note that, sincef ,~\ Y2, the three-particle vertex is for-

AN\ZB(N+2)T2 mally of ordera?,
7=10=| | —a5a. e ™) (54) The ¢ and 7+ meson fields have the Fourier representation
327°m

[cf. Eq.(8)]

where Li(x) is the dilogarithnor Spence’s integral, cf. Eq.

(B7)]. For ¢* theory, i.e,N=1 and\—g?4! the damping U(t,k):f dixe KXo (1,X),

coefficient is

s 9T Li (e~ ™T) (55) m(t,k)= f d®xe™ " Xar(t,x) (59
7 1282%m 2 ’

which is twice the on-shell damping rate at zero momentum@nd are decomposed into soft and hard modes as follows:

computed to two-loop order igp* theory[20]. The fact that .
the damping coefficient is twice the damping rate was ex- o dk
plained in detail in8]. For theO(N) model withN=4, o(t,x)= —(277)36' “o(t,k) O (k.—|k|),

OA\2T2

04 = Li,(e~™T), 56 dk
7 167°m 2 ) (56 E(t,x)zf 5 )3e'k‘xa(t,k)®(|k|—kc), (603
a
in agreement with the resui#) of [7]. Note that in the large-
N limit, the damping coefficient vanishes1/N. d3k .
m(t0- | e a0 ke k),
r

V. THE O(N) MODEL WITH SPONTANEOUSLY

BROKEN SYMMETRY 3

d’k .
The O(N) symmetry of the Lagrangia(82) is spontane- H(t,X)=J s€ *m(t,k)O(|k|—ke). (60D
ously broken taO(N—1) by takingm?<0. Then, the poten- (2)

tial (33) assumes the well-known “Mexican hat” shape, )
with the chiral circle| "3 =f_=(—m?N/4\)Y2 as global (The use of small letters is from now on reserved for the soft

minimum. Adding a small explicitly symmetry breaking fields, the hard_ fields are denoted by capite}l Ietle_rs. _
term He, to the Lagrangian32) “tilts the hat” in the ¢, The interaction between soft and hard fields is given by

direction, such that the vacuum state @°=(f, ,0), theaction
where now f_=(—m?N/4\)Y2x 2 coqa/3]/\/3, cosa )
—(HN/8\)/(— m?N/12\)%2 The O(N—1) symmetry is re- S[o.2, 7w M=5""[0,3, 7 0]+SM[ 0,3, m11],
stored takingH —0 such that cds/3]— \/3/2. (61)
Let us introduce new fieldso=¢,—f, and =
=(¢y,¢3, ...,0y), and corresponding masses: where
2 2
R L T T I Tt B FIEXC

2
Obviously, without explicit symmetry breakingd=0), the +2[o+ 2] I+ o337+ I 11]),
pions are true Goldstone bosoms,=0. With these defini- (62
tions the Lagrangiaf32) becomegconstant terms are omit-

ted): and
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A
SM[e, 3, I =— Nj (4 0%+ w02+ 7 M+ 2[30%+ 7 7|22+ 2[ 0%+ 7 w |- T+ 4[ 203 + 7r- T 7 11

+4[ o3+ T[S2+11-10)). (63)
Therefore,
<M> - 2700 - ()Y 57+ 3(S200) 5+ (THX) - TH0) ) 7
50’(X) P ' ’ ' '
4\ — — — — — —
- W{[302(X)+ 7(X) - 7(X) (2 (X)) 5 7+ 20(X) 7(X) - (TL(X) ) 5 7+ 27(X) - (2 (X)IL(X) ) 5.
+a(X)[3(Z2(X) g 7+ (TIX) - TLX) Yo 7]+ (300 Vo mH (S OTI(X) - TI(X) )5 1) (64)
while
<M> =— vt OO0 g 7 (S () TTH(X)) 5 7
Oma(X) e ' ' Y

725 Np— —
—W{Zﬂa(x)[o(x)@(x)ﬁ#ﬂ'(X ) (TH(X)) g, 71+ [ 0200 + (%) - 700 K Ta(X) )5 7

+ (O 2(X)) g+ (THX) - TI(X) g 7]+ 2L s OO(E ()T o(X) Y 77(X) - (TL() T (X)) 5 7]
+ (S22 o(X) Yot (TI(X) - TI() T 5(X) Y b (65)

A. Interactions between soft and hard fields to first order inA CANF_ (%o A - -
In this subsection, the expectation valugs; ; on the <Ha(x)>‘f'7f__'Tft_ dy[D(x=y) =D (x=y)]
right-hand side of Eqs(64) and (65) will be evaluated in '
perturbation theory. Sinca =N(m2—m?2)/(8f2)=20 for X 20 (y)ma(y), (66b)
N=4 and realistic values of the parametars,m_,f ., this
is certainly not a controlled approximation scheme. There-
fore, the following results have to be viewed only as the first, ANF (%o
but necessary, step to estimate the influence of an unob- (Ez(x)>;;—D(") (0)— N ”f d"’y([D(;’)(x—y)]2
served background of hard modes in the classical equations ti
of motion for theO(N) model in the phase of spontaneously
broken symmetry.
To determine the interaction ternf8, and R, in the

classical equations of motiaf31) to first order in\, due to

the overall factors ok f .~\Y2 and\ in Egs.(64) and(65) (T12(x)) 5 7=D ™) (0) — i
the expectation values in the terms proportional fqg have

to be computed only to ordexf ., while those in the terms (m oo
proportional tox have to be computed only to order 1. More —[DZ(x=y)1%)2a(y), (66
eXp|ICIt|y, <2(X)>IT T <Ha(x)>(r T <22(X)>(r T

(TI2(X)) 5 7> and(3(x)T,(x)), » have to be computed up

to order Af,, while (33(x)); 7, (Ez(x)Ha(x)>U —, and
(SOOI (Ma() (X)) 7 and(TLL()TIA(X) )y

are required to order 1. For the latter, this of course means

that the averagé ), can be replaced by),, and as a S (OTL(0)) 5=
consequence, all expectation values vanish except fo$
(TL(X)TIp(X) o= Barn(TT12(X))o. For the nonvanishing ex- _
pectation values one obtains —D(x—y)DT(x—y)]2m,(y). (668

—[DY(x—y)]?)60(y), (660

y([DT(x—y)]?

y[DY(x—y)D™(x—y)

—— m 4 (v _\)—D)(y_
(200)om "N fti dy[D(x—y) = DI(x=y)] Again, as discussed above in the symmetric case, all expres-
o L sions are real valued. For the left-hand side of the equation of
X[302(y)+ m(y)- m(y)], (663 motion for the classicad field one therefore obtains
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’ 4N — — —
E,X)=—|O+m(T)+ W[O'Z(X)+77(X)~7T(X)] a(X)
anf, — -
2(x)+ m(x) - m(x) + 3D (0)
2 3
H(N-1)D 01+ )2 5 (x),  (67)
where

T (x)=i f 44y D@ (x—y)— D (x—y)]6a(x)
t

X[302(y) + m(y)- m(y)], (683
T2 (x) =i f a4y D (x—y)— D (x—y)]
t
X4m(x)- m(y)o(y), (68b)

T3 =i f 44y 18D (x— y) ]2~ DY (x—y)])
tj
+2(N=1)([D(x—y)]?

~[DP(x—y)1A)}a(y), (680)

andm?(T) is given by

m2(T)= m+ [SD(") 0)+(N-1)D\") (0)]. (69)

DIRK H. RISCHKE

[a?+<E<k">*>2]E<t,k>+4 “[3D{)(0)+(N—-1)D

- _ _ _ ANf
X[o(t,p)o(t,q)+w(t,p)~ﬂ(t,q)]a(t,k—p—q)—( N

D (012359 (k) + o™
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s a2 a. »sa
4 AN 4
‘ -
=l e
~a
(a) (b) ©

(@) (e)
AR
Q »
A s

x X

® ®

FIG. 3. (a),(b) The two terms if7{") . A sum overa is implied.
(c) The term7{? . A sum overa is implied. (d),(e) The two terms
in 7). (f),(g) Order\ contributions to the thermal mass.

The terms7{) and the thermal mass correction are graphi-
cally displayed in Fig. 3. The conventions are as before in
Fig. 2. A dashed line represents a pion and a solid liee a
Thin solid lines do not have a correspondence in the classical
equation of motion, they correspond to a fackar(x) mul-
tiplying £.(x) in the phase of the reduced density matrix
(27). A filled dotted vertex corresponds to a four-particle
vertex \, a filled square vertex to a three-particle vertex
Nf,.. Graphs(a),(b) correspond to the two terms in Eq.
(68a), graph(c) to (68b), graphs(d),(e) to the two terms in
Ed. (680 and (f),(g) to [m5(T)—m3]a(X).

A Fourier transformation with respect xoyields the clas-
sical equation of motion for the momentum mode functions

a(t,k) (Jk|<ko):

kc_|p|)(kc_|k_p|)

f.[ d
N f(277)3(

- - — — 4\ ( d3pd3q
X[3o(t,p)o(t,k—p)+ a(t,p)- =(t,k—p)]+ Wf (

5 O(ke—[p))O(k—[a))® (ke —|k—p—a])

2 3
) 2, TPt =£,(k). (70)

Here, E(" =[k2+m2(T)]¥2 An explicit calculation of the term@{)(t,k) in the linear harmonic approximation is referred

to Appendix C.
For the classical pion fields one obtains

, A\
£, (0=~ 0+m(T)+

where

TR (X =i f:(’d“y[D;")(x—y) DL (x—y)12ma()[302(y) + m(y) - m(y)],

[02(X) + 7(x) - 7(x) + 2f o (X)]

ma(X)+

f\e
N”) 2, 77(x), (7D)

(729
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as : a. +b \.-
. N 4 /
. N e
e X y /x y\ . -t ~
/, // \s b x y \. a

@ ® © FIG. 4. (a),(b) The two terms in7'}) . A sum
overb is implied.(c) The term?’ﬁf: . (d) The term
RN 7*7,3; (e),(f) Order\ contributions to the thermal
77777 m__ Q_ ”3_._2_ mass.
XM7Y x x
(d) (e) (4]
[0 T T ) g\ —
7200=i [ 4D (x-y) - D (x=y) 1ag(x)0(y) ma(y). (72
X —
7000 =1 | YD (x-y)D I (x-y) - D (x-y) DL x—y) Jam(y), (729
a t|
and
2 2 4\ (o) ()
mw(T)me+W[D++(O)+(N+1)D++(0)]. (73

At first glance,m,(T) seems to be the thermal mass of gofassical pionic excitations. This, however, cannot be true, since
in the chiral limitm_— 0, the pions are massless Goldstone bosons, even at finite tempg2afusehereasn(T) as given
by Eq.(73) is finite [cf. Eq.(43)]. This apparent violation of Goldstone’s theorem will be resolved below.

The terms’]ﬂ: and the thermal mass correction are graphically displayed in Fig. 4. The notation is the same as in Fig. 3.
Graphs(a),(b) correspond to the two terms in E¢72a, graph(c) to (72b), graph(d) to (72¢ and (e),(f) to [me(T)
—m2]ma(x). B

Fourier transforming Eq.71) with respect tax yields the classical equation of motion for the mode functienét,k):

% — 8)\f,n. d3p _ _ AN d3pd3q
[+ (B 2Tt + = f(Zw)3®(kc—|p|>®(kc—|k—p|>o<t,p>wa<t,k—p>+Wf s Ol el

_ o a2
x@(kc—|q|>®<kc—|k—p—q|>[a<t.p>a<t,q>+w(t,p>'w(t,q)]waa,k—p—q)—( s ); TO(LK) = £, (1K),

(74)

Here, E{™" =[k2+m2(T)]Y2 An explicit calculation of the termg{)(t,k) in the linear harmonic approximation is referred
to Appendix D.
For the variances of the noise terms one obtains with(Z6c) up to order:

Tyo(X,y)=

M) T D () ) - VD™ (m)
N | 118 a()[DZ(x—y) + DI (x=y) [+ 2a(x) - #(y) [P (x—y) + DI (X—y) ]

+9([DY (x—y)>+[D(x—y)]?)+(N—-1)([D(x—y)]?+[ D™ (x—y)1?)}, (758

AN, L (o) (o) - P () ()
Lo, (XY)=| = | 160(X)Ta(Y)[DZ(Xx=y)+ DI (x=y) ]+ 2ma(X) o (y)[DZ(x=y) + DI (x=y)];, (75D

S (o) (o) S (X) o (m) ()
N | 127 mp(Y)[DZ(X—y) + DI (X—y) ]+ 2850 (X) o (y)[DX(X—y) + DI (x—y)]

T, . (Xy)=

+28,,[D (x—y)D T (x—y)+ D (x—y)D ™ (x—y)1}. (750
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This confirms the existence of correlations between the noiseB. Spatially homogeneous solutions of the classical equations
fields &, and gﬁa as well as betweelgﬁiwa and gﬂb, a#h, as of motion

mentioned at the end of Sec. Ill. There also exists an obvious In the following, let us focus on the time evolution of the
graphical representation for the variances. The differenceero-momentum mode function_s{t,O) and;a(t,O). For the
from the graphs of Figs. 3 and 4 is that one thick line on thesake of simplicity, let us also take the linkf—0, i.e., only
vertex at space-time pointis replaced by a thin line, corre- spatially homogeneous field configurations are considered to
sponding to the second factawr(y) or Amy(y) in the phase be classical, and let us assuffte: —o,t— +, to facilitate

in Eq. (27). Also, due toD” (x) + D" (x) =2 ReD" , (X) one Fourier transformations. Then, the explicit form of the func-
has to take theeal instead of the imaginary part of the tions 7. (t,k) given in Appendices C and D shows that

respective diagrams. T;La(t,0)=7'(f]37a(t,0)=0, while
|
dw OIM Y (@,0)+(N=1)M 5™ (0,0 MY (m,,00+(N-1)M ™ (m,,00 —
T3(t,00=— 2P | o ( ( (@0 -2 M2 (N=D M 9,0(1,0),
v 27 m,— w 2m,
(76)
and
MY (,0) ME(m, 00 —
3t 0y — do M3 " (@,0)— 2 e
T (1,0)=—4P | 5— — m4(t,0)— 4 T dya(t,0), 77

where M §D(w,k) is the Fourier transform aM 9 (x)=D(x)DW(x) - DD (x)DY(x), i,j=0 or =, cf. Egs.(C1b) and
(C2b). Using (2m)®5®)(q)=V 453}, whereV is the total three-volume of the system, as wel\gai*p/(27)3=3, for the
momentum integrals, and definirag{t)zcr(t,O)/V,n-(t)Ew(t,O)/V,g,,(t)Ego(t,O)/V,gwa(t)Egwa(t,O)/V, one derives from
Eq. (70) the classical equation of motion f@Tr(t):

[+ T2(T)]a(t) Mty

(m) 2 e AN —, TN T
D) (0)+(N—1)D{™ (0)] (t)+ﬂ(t)'ﬂ(t)]+ﬁ[0 () +a(t) - 7(t) Jo(t)

+ n(fat;(t) = go’(t)! (78)
with

m2(T)=m2(T)+2

Al

IMY ) (0,00+(N—-1)M (0,0
AN, ) p [do IMET (0.0 (NZD M0 , 4 [3D )(0)+(N—1)D{™)(0)]

2 m,— w

1 jdcm 1

f dEm 4E2 BIT_ 1 (N-1) m2—4E2 eT—1]

(79

where use has been made of E@®) and(C2b), and diver- [22]. The temperature dependencesgfis shown in Fig. 5.
gent terms have been removed by renormalization. The afNote that even aT =0, the dissipation coefficient does not
parent singularity in the last integral poses no problem, sincganish. This is physically plausible, since even then ean

it is integrable. The dissipation coefficient (ISf Appendix a|WayS decay into twar’s. This means, however, that dis-
E): sipation(and associated fluctuationgersisteven in the ab-
sence of a heat batlin that case, the fluctuations have to be
interpreted agjuantumrather than thermal fluctuations.

(4“#)229/\4 %9)(m,,0)+(N—1)M ™™ (m,,0)
No=

N 2m, For T=0, and for the parameters of the linearmodel,
7,=591.45 MeV, which is on the orden,, and thus quite

_ ( 4)\f7)2 N-1 1 4mz - m, go  'arge. In the chiral limitm,—0 and afT =0, the dissipation
"N/ 8mm, ' (80) coefficientr,— 3m3/(327f2) =745.26 MeV, which is even

larger. 5, increases withT because of Bose-Einstein en-
The dissipation coefficieny,, corresponds to the imaginary hancement of the final two-pion state at finfte
part of the diagram Fig.(8), where the incomingoutgoing For the variance of the noise fielgl,(t) the so-called
o particle is on-shell and at rest. Therefore, the dissipatioffwhite-noise” approximation is employe(tf. Appendix G,
occurs physically due to the decay of theinto two #'s  which is consistent with the linear harmonic approximation
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FIG. 5. The temperature dependence of the dissipation coeffi-
cient n,. in the casan,=139 MeV (solid) and in the chiral limit
m_=0 (dotted.

FIG. 6. The temperature dependence of the dissipation coeffi-
cientn,..

persists. This certainly contradicts the fluctuation-dissipation
(A5) that made the equation of motion for thefield local in  theorem. The more general expressif) resolves this ap-
time and led to the termy, d,o(t) in Eq. (78). The variance ~Parent contradiction, since cdtm,/2T]—1 for T—0.
of the noise fieldé,(t) becomes Pr_ly.s|cally, the fluctuations dt=0 are quantum fluctuations
7 originating from the decay of the into two #’s.

1 m, _For the equation of motion of the pionic modE,(t)
(€o(DE, (1)) =g 8(t—t") oM, COt"{ﬁ , (81 =7,(t,0/V one obtains from Eq(74):
~ — ) P

where( ), denotes the average with respect to the Gaussian [c?t2+ mi(T)]Tra(t)Jr TU(UWa(t)
measure(29). In the high-temperature limit, cofim,/2T]
—2T/m,, and the variance coincides with what is known an _—, - - —
from the classical fluctuation-dissipation relation, which is + o O+ a(t) - a(t) ] ma(t)
employed in most treatments of the subjgél. However,
due tom,>T for the range of temperatures of interest, this + ()= £x (1), (82

limit is not really applicable. Moreover, it would predict that
the fluctuations vanish at=0, while the dissipatior(80) where

=m2+ 41[D&01<0>+<N+1>D&71<0>]

~ ANFL\2 [ do MY(0,0
m(T)=mZ(T)+4 ) PJ o Mo 0.9

N 27 M- ™ N
2 (4)\f77)2 fw E2-mZ m? foc E2—m2 m2—2m> 3
+ —_ - L]
w2\ N m, mi—4E’m? e"¥T—1 Jm, (mi-2m2)?—4E?m2 efT-1
|
and (cf. Appendix B Damping of pions arises due to the processes— o and
wo— 1, where oner and theo in the incoming channel
anf_\2 MY™(m,,0) come from the heat bath of hard modes. The temperature
7=~ 7N 4 m dependence ofy,. is shown in Fig. 6. Note thay,, is small
5 2 r > as compared tay,, in the temperature range of interest. The
:(4”# my B 4mz, reason is the larger mass which strongly suppresses the
N 477mf; mi phase space for the processes— o and wo— 7 (remem-

ber that one pion is at restObviously, 7, vanishes afl
=0, because then there is no background of hador ¢’s.
1—exd —m2/2m,_T] It also vanishes in the chiral limin,—0 for all tempera-

1 tures: truly massless Goldstone bosons are not dartgted
. (84) least to first order i\ and fork=0). Correspondingly, the
exd (mj—2mZ)/2m,T] -1 associated nois¢, has to vanish as well. This can be ex-

l-exd—m_/T]
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plicitly seen from the expression for the varianceggg(t) in
white-noise approximatiofcf. Appendix G:

m,
mcot—

1
<§Wa(t)§wb(t’)>§:v5ab5(t_t,)777r 2T

(89

Finally, it should be mentioned that for the spatially homo-
geneous solutions under consideration, cross correlations b
tween different noise terms vanigtf. Appendix G.

C. Static, spatially homogeneous solutions of the classical
equations of motion

The equations of motiof78) and(82) have the following

mterestlng consequence. Let us consider a small perturbation

(8o, 8m) of the vacuum ground stater(w)'® =0 and let us
consider the equations of motion only to lowest order in
A ~\Y2 All terms of orden as well as higher-order terms

in o and 8 will be neglected. To this lowest order i,
the variances of the noise terms vanish, cf. Ed@%), thus
alsoé,= 5,7350, and the equations of motion have the solu-

tion

So=— Sw=0.

[SD“” (0)+(N-1)D'.(0)],

(86)

This static solution corresponds to eonstant, temperature-

dependent shifof the ground stater'®°=0— ¢¥%°= 5o(T).
This shift is identical to the well-known change of the
vacuum ground state at finite temperatur23]. To see this,
let us consider the chiral limitm,—0, where (for N
=4) A\=m?2/(2f2), and let us assume that<m,, such
thatD{?) (0) may be neglected in comparison@4™ (0) in
Eq. (86). Then one obtains with Eq43):

2

1_T_)

8f2 67

\c/)ac~ f (

in agreement with E¢(30) of [23].

Let us now resolve the apparent contradiction of Gold-
stone’s theorem mentioned earlier. It has to be shown that i
the chiral limitm_— 0, the mass parameter for the static and
homogeneous solution of E¢82) vanishes. In the present
perturbative treatment, which is accurate to ofdeone may
employ the static solutiofB6) for the o and  fields in the
equation of motion82) in all terms which are proportional
to at least one power aff_~\Y2 As shown above, the
noise and fluctuation terms for thefield vanish in the chiral
limit. Thus, to order\, one is left with the equation of mo-
tion:

: (88)

m2(T)m,=0

where
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m2(T)=lim D)(0)+(N+1)D{")(0)

m,—0

N

4\
[ m2+

f2
—[3D).(0)+(N-1)D{"(0)]

e- ]
In the limit m_,— 0, the last integral can be easily calculated
[cf. Eq.(83)] to yield

161 f2
N

do MY (w,0)
27 m,

+ (89

—w

“~y 4N
mZ(T)= | P14 (0)+(N+1)D7) (0)
f2
—— 3D (0)+(N-1)D{")(0)]
2
+——[D.(0)-D7(0)]]. (90

o

In the chiral limit, the coupling constait—m?/(2f2), and

all contributions to the thermal pion mass canoiaE,(T)

—0, which completes the proof that Goldstone’s theorem
remains valid. In other words, the vanishing rof,(T) im-

plies that there exist nontrivial massless, static, homogeneous
solutions to the equation of motiofB8), which are, of
course, nothing but th&l—1 Goldstone bosons. Note that
the above cancellation of terms is equivalent to the argu-
ments presented ir21].

VI. NUMERICAL SOLUTIONS

In this section, numerical solutions of the classical equa-
tions of motion (78) and (82) are presented, to assess
whether DCC’s can form in the presence of dissipation and
fluctuation. First, note that the sign of the quantity

8N f.— 4\
T)+—o(t)+—[02(t)+w t)- ()]
(91

[meff(t T)]Z_

determines the time evolution of the pion fields in the ab-
.sence of fluctuations or dissipation. F[ame“(t T)]2>0, the
Blon fields simply perform oscillations with a constant am-
plitude, while for[m®(t,T)]2<0 their amplitude grows ex-
ponentially. This exponential growth leads to large ampli-
tude oscillations and, in turn, to a large number of pions in a
given charge statésay m3=m(). The characteristic prob-
ability to find the 7r field aligned in a certain direction in
isospin space leads to a probability for the r&iof neutral

to all pions ofP(R)~ 1/\/R. This characteristic behavior was
suggested as experimental signature for the formation of
DCC's[3]. Note thaf m¢"(t,T)]? can be negative only if the

second term in E(91), i.e., theo field, is large and nega-
tive. An explicit calculation confirms that the mass parameter
m2(T), Eq.(83), is an increasing function ¢f. Therefore,
exponential growth of the pion fieldand thus formation of
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01— — — T line). This function represents a cut through the potential
energy surface of the linear model atw=0, cf. Eq.(58).

The absolute minimum, corresponding to the ground state, is
at o=0. There is another local minimum a&(®=
1 —1.87 ., and a local maximum atr®=—1.13_. In the
chiral limit, m,—0, ¢®——2f_, while ¢‘®—0 (cf. dot-
ted ling. Trajectories which are likely candidates for DCC
formation obviously start ar<¢(®), and small nonzero val-
. ues ofr (this is necessary because otherwise 0 remains
a solution throughout the system’s evolution

A representative candidate is shown in Fig. 8. In gart
the time evolution ofr and r fields are shown for the initial
] conditions o=-1.14 _,7,=0.00% ,,m,=—0.00% _, 5
=0.001 ,. The derivatives of the fields are taken to be zero
initially. Dissipation and fluctuation terms have also been set
to zero for the solution shown in Fig. 8. One observes that

0, s A 5 ] the o field first “rolls” towards the minimumo® of the
G/fn potential (92). Since this minimum is unstable in the direc-

tion of the r fields, theo field “rolls” on towards the ab-

solute minimuma)=0. During this process ther fields
grow. This growth is characterized by negative values of
[me(T)]2 or of sg[me"(T)1%}|me"(T)|, as shown in part
DCC's) is most likely (and fastestat T=0. The following  (b) of Fig. 8. At this level, the evolution is conservative, and
considerations will therefore be restricted to the case of vanthe system continues to oscillate around the ground state,
ishing temperature. In that case, however, there is no heaince there is no way to dissipate the “potential energy”
bath. Dissipation and fluctuation arise solely from the decayssociated with the chosen initial state. This potential energy
o— T, is simply converted into kinetic energy and vice versa in the
The equations of motio(¥8), (82) are solved with a stan- course of the evolution. This also explains why the system
dard fourth-order Runge-Kutta method. The time step widthperiodically reaches the vicinity of the unstable minimum
was chosen to bat=0.002< 27/m,,. The value of the fluc- o(®. This changes once dissipation and fluctuation is taken
tuating field&, is a Gaussian random number with varianceinto accouniit would also change if we solved the equations
n,m,/(VAt) [24]. It is chosen at the beginning of each time of motion in expanding geometrief7,25)). The large-

—— m,=139 MeV

10 |

Uo)t*

FIG. 7. The potentiaU (o) (in units of f4) as function ofo (in
units of f ). The solid line is form,=139 MeV and the dotted
line for the chiral limitm_=0.

step and kept fixed during the Runge-Kutta step. amplitude fluctuations of the pion fields make the observa-
In Fig. 7 the potential tion of DCC formation experimentally possible.
) Figure 9a) shows a sample trajectory including dissipa-
m, 4NT 3 Ny tion and fluctuation terms in a comparatively large volume
U(o)=—5 o+t 7 92 \y=1000 fn? with the same initial conditions as in Fig. 8.

Dissipation and fluctuations damp the oscillations of the
is shown for N=4, m,=600 MeV, and A=(m> fields, and they settle into the ground state. The time scale
—me)/(foT), wherem_ =139 MeV, f =93 MeV (solid for this to happen is, for the sample trajectory shown here,

15 initial values (in unilts off): 0=-1.14, 7:1TO.002, n,=-0.001, 1r|3=0.001
1.0
0.5
0.0
-0.5
-1.0
-1.5
-2.0
-2.5

o.m [f

FIG. 8. (a) Classical trajectories without dis-
sipation and fluctuations fos (solid), 7, (dot-
ted, 7, (dashedl and w5 (dash-dottel in units
of f,_. Initial values are o=-1.14f,_ m;
=0.002f ., m,=—0.001f _,m3=0.001f . (b)
The function sgff m¢™]2} |m®| (in units of f ).
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FIG. 9. (a) Trajectories with dissipation and

20} v=1000fm’ ] fluctuations  for o (solid), m, (dotted, r,
2.5 ’ ‘ ’ (dashed] and 75 (dash-dottey in units of f_ .
g (b) ] Initial values are the same as in Fig. 8, the vol-
> ] ume of the system i8/=1000 fn?. (b) The
1 /\/\A/\//\/\A’M/\/\/\/\«N\/\ [\’\/V function sgi[me™2}|me"| (in units of ).
=0 y
g -1 V ]
K] ]
-3 .
-4
-5 1 L 1

30

40

20
t [fm]

about 10 fm. During this time, the pion fields oscillate field tends to be anywhere between the two miniméd and

strongly. Therefore, DCC formation would still be observ- (2 j.e., on the average, close tof ). The ensemble av-

able, if the system were to decouple after the first 10 fm. erages of the pion fields, however, are always fsimce the
This conclusion holds, however, only for thee particu-  potentialU (o, ) is symmetric with respect tar— — 7.

lar trajectory shown in Fig. 9, i.e., for one particular choice |4 Fig. 10 the time evolution of the fields is shown for a
for the time evolution of the randomly fluctuating forc&s.

For adifferentrandom sequence, the time scale for dampin
could be larger or smaller. In a strict sense, one would hav

to average over an ensemble of time evolutions&pfor a
given set of initial conditions for the field24]. The result of

such an averaging is, however, predictable: on the averad

T3

small volumeV=10 fm?, for the same initial conditions

nd the same random sequence §gf as in the previous
o figures. As discussed above, in this case fluctuations are

large enough to drive the system out of the ground state and

pduce disorientation of ther fields. One could speculate

the fluctuations tend to cancel, and the ensemble averages @t the formation of DCC's is facilitated ismaller vol-

o and = fields are constant in time. The assumed valueé’,mes’ €.,
depend, however, on the strength of the fluctuations, i.e

since&,~1/\V, on the volume of the system. In large vol-

umes, the fluctuations are not strong enough to “kick” the
field too far out of the ground state. On the other hand, i
small volumes the fluctuations may have enough strength tt

let the o field reach the unstable minimupd?. Therefore,

the ensemble average of thefield decreases towardsf .
as the volume of the system decrea@asthe average, the

o.m [f

initial values (in units of ): 6=-1.14, n,=0.002, n,=-0.001, ©,=0.001

it should be more likely to observe them in colli-

sions oflighter ions, or everpp collisions. This could also

provide an explanation for the CENTAURO everjts5],
where heavy ions are not likely to play any role as collision
’_ﬁhartner. To confirm this, however, a more detailed investiga-

jon in an expanding geometry, with a realistic evolution for
e temperature in the collision, and including modes with
finite k (to study domain formationis necessary16].

The problem with large-scale fluctuations in small vol-
umes is, however, that one does not necessarily need to first

FIG. 10. (a) Trajectories with dissipation and
fluctuations for o (solid), m, (dotted,

’ ‘ ’ (dashed] and 75 (dash-dottey] in units of f .

g F 0 ] Initial values are the same as in Fig. 8, the vol-

5 ume of the system i¥=10 . (b) The func-

1 m\ (\ /\r\ M\ MA h tion sgr{[me )2} meM| (in units of f ).
PR U
ek il

.3 .

-4

-5 1 L 1
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5 initial values (in units of f): 6=0, x,=0.002, ©,=-0.001, ,=0.001

o.m [fd

FIG. 11. (a) Trajectories with dissipation and
fluctuations for o (solid, m; (dotted, >
(dasheg, and 75 (dash-dottey] in units of f ..
) ] Initial values are =0, ;1=0.002f7,, ;2=

3 —0.001f ., w3=0.001f_, the volume of the

f T\ m m A ﬂ(\ system is V=10fm?. (b) The function
= sg{[meM2}|me" (in units of f ).
At i

.2 L

-3 .

4L

-5 1 L 1

0 10 20 30 40

t [fm]

restore chiral symmetry to observe them. In Fig. 11 a time Note that in principle there is a minimum volum&,,
evolution is shown in a volumevV=10 fm® for the below which the dissipation coefficient, becomes zero: in
initial  condition o=0,m,=0.00% ., 7,= —0.00% ., 75 order to havep,>0, theo at rest has to be able to decay into
=0.00% ., i.e., the initial values of ther fields are the same two pions with finite, but opposite momenta. The lowest
™ nonzero momentum state for a particle in a box of volume
as before, but ther field is taken to be zero. The strong v=_3 is k=(#/L,0,0). Energy conservation in the decay
fluctuationsé,, drive theo field out of the ground state, and process requiresEX™=m,, or Lyn=2m/\/m2—4mZ, or
the small initial perturbations of the pion fields are stronglyV,,;,=12.68 fn¥, i.e., the cas&/=10fm® considered above
enhanced over a time scale ef10 fm to produce large- is just on the order of the physically possible minimum vol-
amplitude oscillationgand thus DCC formation Note that ume. In the present treatment, however, no attempt has been

the o field is always subject to these volume-dependent flucinade to take such finite-size effects into account in a rigor-

tuations, but if one starts with the true ground staies = ous manner.
=0, as initial condition, the pion fields are not affected and

remain zero throughout the evolution of the system. The con-

clusion would be that, in the presence of strong fluctuations, The author thanks C. Greiner, M. Gyulassy, U. Heinz, E.
DCC formation is not necessarily a signal for restoration oflancu, S. Jeon, J. Kapusta, T.D. Lee, S. Leupold, L. McLer-
chiral symmetry, a small perturbation of the ground state irran, R. Pisarski, K. Rajagopal, and D. Son for valuable dis-
the #r direction seems to suffice. However, it is likely that cussions, C. Greiner, B. Mer, R. Pisarski, and K. Rajago-
this at first glance rather interesting phenomenon is physipal for a critical reading of the manuscript and suggestions,
cally identical with (and thus indistinguishable fronordi-  and Columbia University’s Nuclear Theory Group for access
nary fluctuations in finite volumes. to their computing facilities.
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APPENDIX A: EVALUATION OF THE INTERACTION TERMS IN THE  O(N) SYMMETRIC CASE

In this appendix, the evaluation of the interaction ter‘i‘fQB(t,k) in linear harmonic approximation is presented for the
O(N) model in the symmetric case. Let us first define the functions

M(x)=D=(x) =D (x), (Ala)
M;(x)=DZ(x)—D2(x), (A1b)
Ma(x)=D2(x)—D3(x) (Alc)

(called “memory kernels” in[8]), such that with Eqs(38) and (39):

Mi(o,k)=0([K| - C)ZE [8(0—E)—d(w+EQ], (A22)
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d®p 1
Mz(w,k)ZZWJ (277)3®(|p|_kc)®(|k_p|_kc)m{([l"'n(Ep)][l+n(Ekfp)]_n(Ep)n(Ek—p))
><[5(0"_Ep_ Ek—p)_é(w+Ep+ Ek—p)]+([1+n(Ep)]n(Ek—p)_n(Ep)[1+n(Ek—p)])
X[6(w—Ep+Ex_p)—8(0+E,— Ek,p)]}, (A2b)
B d3pd3q
Ma(w,k)—ZWf (2m) ®(|p|_kc)®(|q|_kc)®(|k_p_q|_kc)m{([l+n(Ep)][l+n(Eq)][l'}'n(Ekfpfq)]

—N(EN(EQN(Ex—p- ) 8(w—Ep—Eq—Ey—p_q) — S+ Ep+Eq+Ey_p_g)]
+3([1+n(Ep)][1+n(Eq)]n(Ekfpfq)_ n(Ep)n(Eq)[1+ n(Ekfpfq)])
X[8(w—Ep—Eq+E¢_p_q)— w+E,+Eq—Ex_p_o) 1} (A2c)

Note that all functions fulfill the symmetry relatioM;(w,k) = — M;(— w,k). Then, Eqs(49) can be written as

d3k

T00=3 [600- 2005+ 20a00 0001 | S 00, (A3
72 o o d*k ik-xv,(2)
a (X)E; [(N+4)‘Pa(x)5bc+4‘Pb(X)5ac]J’ (277)39 ybc(XO-k)- (A3b)
d’k .
3) — ik-xv7(3)
T4 (x)_z(N+2)f 23 YI(x0,k), (A30)
where(for t;— —)

Yy (x k)=fd_“’M k fdspdsq@) ko—|p) O (ke—|a))®(ke—|k—p—q])

b(o’_277 1(w,K) (2,”_)6 (ke—Ip (ke—1d]) O (k¢ pP—q
Xi J:dre*‘%buo—r,k—p—q@(xo—np)-E(xo—T,q), (A4a)

d dp - —
yifc)(x@.k)ffﬁf\/lz(w,k)f (27)3®(kc—|p|)®(kc—Ik—pI)lfo dre™"“op(Xo— 7,p) pc(Xo— 7,K—=p), (A4b)

d oc o

Y 00.0)= [ Gl KBk~ KD [ “dre g xo— 7). (ado)

Further evaluation is possible by employing the so-called linear harmonic approxin@fiéor the time evolution of the
classical fields:

— — sin(Ey7) —
@(t—7,K)=cog Ex7) p(t,k)— E, dre(t,K). (A5)

This eliminates ther integrals over the history of the classical fields, rendering the final expressions local in time. Using the
symmetry of M; undero— — w and the relation

o 1
JO dre'“—w)f:ipmwa(x—w), (AB)

whereP denotes the principal value, one obtains
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Ytk P4 o k. o Ok O (ko— |k 1PJ do K 2
(t,k)= 28 (ke= PN O (ke=[d) O (ke [k=p=dl)| = 7P | 5-Mi(w.k) ETE, Ei—o ETE,_Eiw
itk — — 1 Pf de ‘
+—E1_E2_E3_w ep(t, —p—Q)g(t,p)-g(t,Q)+—4E2E3 > Ma(w.k) B E, o

2 1 — — — 1 do
_E1+ E2_E3_w + El_EZ_Es_w:|¢b(tak_p_q)5t£(tvp)atf(tvq)—’_ 2E1E3Pf ZMl(ka)

1 1 1
X - + -
E.t+E;+E;—w E+E;—Eg—w  E;—E,+E;—w E;—E,—Eq— }‘*‘Pb(tk P=Qe(tp)- de(t,a)

1
_4_E3[M 1(E1+Ex+E3z, k)= M (E;+E;—E3, k) + M (E;—Ep+E3 K) — My (E;—E;—Ej3,K) ]
X @p(t,k—p— Q)<P(t p)- 3t<P(t q)-— [M (E1+Eo+E3z, k) +2M(Eq+E;—E3,K) + My (E;—E;—Ej,K) ]
_ _ _ 1
X drpp(t,k—p—a)o(t,p)- ¢(t,q) + ﬁ[Ml(El+ E,+E;3,k)—2My(E;+E;—E3,k)
1E2E3

+ My(E;—Ep—Eg, k) 10ip(t,k—p— @) dio(t,p) - dr(t,0) | , (A7)

whereE=E,_, 4,E,=E,,E3=E,. For N=1, this expression reducésap to a constant prefactor due to the difference
betweenM (® and M;) to Eq. (50) of [8]. Furthermore,

O (ko |k VDS L etk
DO lk=p){ = 5P [ 5oMato) e—o+ g Pt PIP(tk—P)

1 PJ do ‘ 1 1 . —
+2E1E2 EMZ(“” ) E,4E,-0 E;-E,—w drpp(t,p)drpc(t,k—p)

1 _ _
_4_|51[M2(E1+E2’k)+M2(E1_EL")]‘Pb(LPWt‘Pc(t.k—p)

1 — —
- 4_E2[M2(E1+ EZak)_MZ(El_Eka)]atQDb(tvp)‘Pc(t-k_p)] ; (A8)

where E;=E,_,,E,=E,. For N=1, this is equivalent to d3pd3q
Eq. (49) of [8]. (There is a factor of 2 missing in front of the ﬁl)(t,k)zf 5
last term of that equationFinally, (2m)

®(kc_|p|)®(kc_|Q|)

be [o(t,p)- @(t,0) Sap

k)—
yS)(t,k):—@(kC—lkl)[P ‘”M«paa k) - = o
2m By +2¢,(t,p) eu(t, IV (t,k—p—0),
M3(Ey k) — (A10a
+3;Tt)atcpa(t,k>}, (A9)

2 d°p —
Tk~ [ @l P [(N+4)(tp)

which is equivalent to Eq.48) of [8]. Then, the final expres- )
sions for the functiong{(t,k) read +40p(1,p) ac V2 (t.k—p), (A10b)
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7*6‘3)(t,k):2(N+Z)yf,f)(t,k). (A10c)  The right inequality is trivially fulfilled €,=m), while the
left is also true for all values op and g, since E2<(p
+m)2. Therefore, theéd functions do not impose addmonal
constraints on the and g integrations and can be simply
omitted. Introducing the dimensionless variabeEsm/T,

In order to derive the dissipation coefficigii4) one has x=E,/T, y=E,/T, abbreviatingN(x)=(e*— 1)1 and
to compute the function\V3(m,0). In the limit k,—0 and  noting that
for «=m>0, k=0, one first observes that th& functions
corresponding to the decay of one particle into three and the 1-e™Y
reverse reactiofthe second and third line in E¢A2c)] have [1+N(y)IN(x+y—a)=N(x— a)_lnTy_l’
no support in this kinematic range. The only remaining con- € (B4)
tribution comes from the scattering of the particle at rest with
a particle from the heat bath of hard moditee last two lines  gne arrives at
in Eq. (A2c)]. Since the particles from the heat bath are
supposed to be in thermal equilibrium(x)=[e¥T—1]"1, 372 "
the reaction rates observe the detailed balance criterion, orin  M4(m,0)= 3(1—e‘5‘)f dX[1+N(x)IN(x—a)
other words, with the energy-conservidgunctions one can T a
rewrite the contribution from the reverse reaction in terms of

APPENDIX B: THE DISSIPATION COEFFICIENT
IN THE O(N) SYMMETRIC CASE

a factore T times the original reaction rate. Then, Xml_eix_ (B5)
1-e2
3 1
Ms(m,0)= _(1 exd — m/T])f 277_)6 EpEqEp-q Introducing t=e™? substituting .u=e*X, and then
z=(u—t)/(1—u), one obtains the final result
X[1+N(Ep)I[1+N(Eg)IN(Epyq) )
3T
X (Ep+qtm—Ep—Ey). (B1) Mg(m,0)= ——Li(e"™T), (B6)
ar
[The lasté function in the last line of EqA2c) has also no
support foro=m>0.] This integral is most easily evaluated where
as follows. Let us first definep=|p|, q=|q|, E,
= x?+m?. The angular integratiofinvolving the angle be- Con ldz
i : : : Li,(t)y=— | —In(1—2zt) (B7)
tweenp andq) is substituted by an integration ovey,, ¢, 0 Z
with the JacobianlE, , ,/dcosp,q) =pd/E, 4. This allows
for a simple evaluation of this integral with the help of the s the dilogarithm, or Spence’s integral.
function:
3 ~dpp APPENDIX C: THE INTERACTION TERMS
Ms(m,0)= _[1+n( p)] IN THE EQUATION OF MOTION FOR THE o FIELD
In analogy to Eqs(Al) let us define
=dqq . . .
X O—[1+n(E )IN(Ep+Eq—m) MPx)=DV(x)-DV(x), (Cla
XO(Epiqtm—E,—Ey) M5 (x)=bY(x)D(x)-DY ()DL (x),
XO(Ep+Eq—m—E,_). (B2) ij=cor (C1b

The ® functions are equivalent to the constraints i o .
The Fourier transforms are rather similar to those in Egs.

pg=(E,—m)(Eq—m)=—pq. (B3) (A2):

M P (w,k)=0(lk|—k )2—77.[5((,)—E“>)— S(w+EM)] (C2a
1 ’ c 2E(|) k k /s
k

. d? 1 .
M(z'”(w,k)=2wf (27:;3@(|p|_kc)@(|k_p|_kc)m{([lJrn(Eg))][lJrn(E(”p)] n(EY)n(EY )
k_

X[8(w—EY—EY )= 8(w+EY +EY )1+ ((1+nEN) INEL ) —n(E)[1+n(EY ))
( (

EV-EL )1} (C2b

X[8(w—EY+EY ) - 8(w+E]
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Then, the term&{(x) in the classical equation of motion for thefield read

_ 3
Tol)(x)E&r(X)f(:W)3e'k'xs<1)(xo,k), (C3a
_ d3k
Tf)(x)z4§ wa(x)fwe'k'xsff)(xo,k), (C3b)
3
71,3>(x)sf %emsw(xc,k), (C30

where(for t;— —):

do d3p o . _ _
(1) = | ZZrq(0) _ k- ; —iwT _ _ _
S 1(x0,k)—f 7M1 (w,k)f (277)3®(kc Ip) O (ke— |k p|)|fO dre "3 (Xo— 7,k—p)o(Xg— 7,p)
+(xo— 7.k—p)- (X0~ 7.p)], (C43
S (x k)=Jd—wM(”)(w k)f ¢ O (ke—|p)) O (ke—|k— |)ifwd7-e"‘”;(x —7.p)o(Xo— 7.k—p), (C4b
a 0 = 271_ 1 ’ (277)3 C p C p 0 a\™0 vp 0 ’ p ’
do Y
S<3>(x0,k)szj2—[9M<2‘"’>(w,k)+(N—1)M<2””>(w,k)]®(kc—|k|)|f dre "g(xo— 7,K). (C40
w 0

In the linear harmonic approximatidi\b) these terms become

d3p . 1
(2) Ef+EY-w EY-EY)-w

3 d
s<1><t,k>=f @(kc—lpb@(kc—lk—pl){ —gpf 5 ME(0,K)

3

1
I EY -0 EY-EY-w

dio(t,p)dio(t,k—p)

X a(t,pa(tk S Pfde“’) k
o(t,p)o(t, P)+W > M1 (w,k) =

1 do (@) _ _
_EPJEMl (w!k) ﬂ(tip)ﬂ(t!k_p)

_|._
E”+E"—w E"-Ey—w

L1
2E{"EL"

do (@) — _
PJEMI (w,k) dya(t,p) - ym(t,kK—p)

E+Ey"—w E{"-Ey-w

2E((r)[M&U)(E(fr)‘FE(zg),k)_M(lg)(E(lg)_E(zg),k)]at;(tp);(t,k—p)
2

~ S M BT EY )~ MY (B - B ,k>]at¥<t,p>;<t,k—p>] , (C53
2

. 1
EV+E"—w Ef-EY-w

d® 1 _(d
S?(t,k)zj (2:;3®<kc—|pl>®<kc—|k—p|>[—EpfﬁMWw,k)

dyma(t,p)dra(t,k—p)

Ta(tp)a(tk ! Pj 90 P w0k
X ma(t,p)o(t, —p)+2E > M1 (0.K) =

E PHE -0 EY-EY -

~ e M BB ) M EY - By K1 ma(tp) gtk —p)
1

e M7 B HEST k)~ MYT(EY By k) Jama(t ot k= p)] , (C5b
2
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dw IM Y (@,k)+(N—=1)M 5™ (w,k)—

Pl 27

IMYP(E K)+(N=1)M(EL k)
+

0y a(t,k)

2E(”)

where E(li)=Ef<ilp andEY) = ES). The final expressions for

T70(t,k) are

3

T (tk)=6 | (s ‘;

7_[.3

O (ke—|p)o(t,p) SV (t,k—p),
(C6a

2 Ly d°p — 2)
T2 (t,k)=4 om) @(kc—|p|>§ To(L,P) S (t,k—p),

)3
(Cé6b

T73(t,k) =8 (t,k). (C60

SinceM {)(w,0)=0, cf. Eq.(C23), it follows from relations
(C5) and(C6) that fork,—0, 71)(t,0)=7{?(t,0)=0.

APPENDIX D: THE INTERACTION TERMS
IN THE EQUATION OF MOTION FOR THE & FIELD

The interaction terms in the equation of motion for the
field are

— d3k .
7*;>(x)52wa(x)f ek*p@(x,,k), (D1a)
a (2,”.)3
) _ K
7*7,>(x)z4a(x)f ek *p2(xs,k), (D1b)
a (277)3
73 k 3)
x)= | ——ek*pPB3(x,,k), Dic
m, (X) J(zw)3 a (Xo,K) (D1o)
where  PD(xo,k)=8M(x0,k), and PP (xo.k)
=53 (xo.k), cf. Egs.(C4a and(C4b), while
(3) do  (om
Pa (Xo,k)54 ZMZ (a),k)@(kc—||(|)
xiJO dre T (xo— 7,K). (D2)

In linear harmonic approximation we therefore obtain:

d® _
k=2 SO P TS Vit k-p)

)3
(D3a)

ao(t, k)} , (C50)

d? —
=4 [ Sk PRSPk,

(D3b)
do MY (w,k)—
3) - _ srre ’
TRtk ==40(k—[kD| P | 5~ TEEp L
M(Zaﬂn')(E(kﬂ')'k) .
Tatwa(tik) . (D30)

Again, sinceM (1i)(w,0)50, cf. Eq.(A2a), it follows for k.
-0 thatﬂ;;(t,0)=7<§:(t,0)zo.

APPENDIX E: THE DISSIPATION COEFFICIENT
FOR THE o FIELD

The diss_ipation coefficieny, in the classical equation of
motion for o(t), Eq.(78) is defined by

Noe=

(4>\f7,)2 OM¥N(m,,0)+(N—1)M ™ (m,,0)
2 :
N 2m,

(ED)

where M $(w,k) is given by Eq.(C2b. M ¥ (m, ,0)
describes the decay of @ at rest into twoo’s [and the
reverse reaction, corresponding to the second and third line
of Eq. (C2b)], and the absorption of a by a o at rest,
producing ao [corresponding to the fourth and fifth line of
Eq. (C2b].

However, ao at rest cannot decay into twd's by energy
conservation(similarly, two ¢’s cannot annihilate to form
oneg, and also the absorption ofeaby a o at rest, producing
a o, is also impossible. Thereford/ g””)(m(,,O)EO. Math-
ematically, this is immediately obvious inspecting the argu-
ments of thes functions in Eq.(C2b) with w=m, ,k=0.

Similar arguments prevent the absorption af &y ao at
rest, producing ar, but the decay of a heawy at rest into
two light #'s (and the corresponding reverse reaction of
7m— o) is always possibléprovidedm,>2m_). Therefore
(utilizing detailed balance, and taking the linkit—0),

MG (m,,00=2m(1—exd —m,/T])

d3k _ i
X f (277)3[29@] [1+n(E™)]?

X 8(m,—2EL™)
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: (FD)

4)\f7) 24/\/1 ™ (m, ,0)

2 _ =
1 4am 1+exd —m,/2T] N ( N >m

“sx V1 m2 1—exd —m,/2T]’ &2

ko

Note that this expression is nonzero even at vanishing tem-
perature. The dissipation coefficient becomes

where M ) (w,k) is the Fourier transform of\1§1)(x),

anf_\2N-1 am>  m, Eq. (C2b. M ™(m,,0) describes the decay of a at
’70:( N ) 87m 1- m2 COthﬁ- (E3) rest into a= and ao [and the reverse reaction, corre-
7 o sponding to the second and third line of EG2b)], and the
absorption of ar or o by a7 at rest, producing & or a ,
APPENDIX F: THE DISSIPATION COEFFICIENT respectivel)[corresponding to the fourth and fifth line of Eq
FOR THE  FIELD (C2b)].

o o _ _ _ The decay of ar into o and 7 and the reverse process is
The dissipation coefficienf, in the classical equation of kinematically forbidden. The remaining contribution reads
motion for 7,(t), Eq.(82), is defined by with detailed balancéand taking the limitk.— 0):

d®k 1+n(EY) n(E(™)
(2m)® 2EC  2E"

MY (m,,,00=27(1—exd — mw/T])f S(E™+m,—E”)

1m? am? 1—exd—m_/T] 1 2
87 m? m2 1—exg —m2/2m,T] exd (m2—2m2)/2m, T]-1
The dissipation coefficient therefore becomes
anf_\2 m? 4am? 1-exg-m,/T] 1
Nn= s V1 — 2 2 2 . (F3)
N/ 47m3 mZ 1—exd —m2/2m,T] exd (m>—2m2)/2m, T]—1

This expression vanishes &t=0 and in the limitm_—0.

APPENDIX G: THE VARIANCES OF THE NOISE FIELDS

The variances of the noise fields are given by E@S). In order to evaluate them, let us define in analogy to EQ3%) the
“noise kernels”

N (x)=DW(x)+ D (x), G13
NP 0=D(x)DY(x)+DLDY(X), ij=0or . (G1b

Their Fourier transforms are quite similar to those/df{) and M §1):
(i) 2m (i) (i) (i)
N (wak):®(|k|_kc)2E(i)[l+2n(Ek N[8(0—E)+o(o+E)], (G2a
k

, d3p
(ij) =
Ny (w,k) Z'n'f (2m)?
X[8(w—EY —EQ )+ 8(w+EY+EY )1+ (1+n(EY)In(EY ) +n(EF)[1+n(EY )])

O (|pl—ke) O ([k—p| ko) {1+ n(ENIL+nEL p)]+n(EIn(EL )

4EEY)
X[8(w—EY+EY )+ 8(w+EY—EY )1} (G2b

Using the fact that the hard modes are distributed according to the Bose-Einstein distribution fagEfjen(e®'™—1)"1,
one can show thdtcf. Eq. (66) of [8]]

(i) — g0 “
N (0, k) =M (0, k)coth =/, (G33
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(G3b

N (w,k)= M (w,k) Cotl'{z_l_}

For the Fourier transforms &f,,(x,y) one therefore derived;(~ —,t;— +®):

t _ AT \2[ [ dpyd®p
I,m(ko.k:qe,q)zLfd“xd“yé“‘oxo"'x*qoyoq'y)an(x,y):( N )U (ZO) O (ke—[pDO(ke—[k+q—pl)

X| 180(po,p)N” (ko— Po,k—p) a(Ko+ do— Po.k+q—p)

+2§ Ta(Po,PINT™(Ko— Po,k—p) ma(ko+ Go— po,k+q—p)}

+(2m)*8(Ko+ o) 8P (k+ ) [OINY (ko k) + (N— 1>N<2”><ko,k>]] : (G4a

ANF .\ [ dpyd3p
| [ RSP o lphod-kra-p)

Io’wa(kO ik;quq) =

X[60(pg, PN (ko= Po.k—p) Ta(ko+ Go— Po.k+G—p)

+21,(Po, PN (ko= Po.k—p)o(Ko+Go—Po.k+a—p)], (G4b)
T (Ko.K: _ (A fa)® fdp‘)dsp@ K O (K. —|k+
ﬁaﬂ'b( 0 !qO!q)_ N (277)4 (C |p|) (C | q p|)

X[ 277 4(Po,P)NT (Ko~ Po.k—P) mp(Ko+ do— Po.k+q—p)
+28,00(Po, PN (Ko—Po.k—p)o(Ko+ do— Po.k+d—p)]

+28a0(2m)*8(ko+ o) 8P (K+ QN ™ (kg ,K) | . (G40

The focus of interest are the spatially homogeneous noise té&rmg= 0. For this case, all integrals vanish in these expres-
sions due to the fact thav(l')(w,k) is proportional to® (|k| —k.), cf. Eq.(G23. This has the further consequence that all
cross correlations between the noise fields varfighs- 8, Using (2m)25®)(k+q)=V (), ; one arrives at

f 2
Z40(ko.0:00,0) = V27 6(Ko+ Qo) N") [ONE7)(kg, 00+ (N= )N (ko 0)], (G5a

4NF )2 (o
N 2N ™ (Kg,0). (G5b)

L, 7,(K0,0:00,0) = 65pV275(Ko+ o)

For the variance of the noise fields(t) and g,,a(t) one therefore obtains

’ _ f(,(t,O) go’(tlio) dkOqu i + ga’( kO,O) go’( q010)
(£, (D, (t >>§=< 2 >§ fm) <kotqt>< . :

dkod o 1
_ (kot+a0t") —_7 (K, ,0:0lq,0
f (277)2 V2 (ko,0;d0,0)

dko |k olt—t")

4>\f 0’0’) (7771')
271_ v [9./\/ (ko,0)+(N=1)N5"™(kg,0)], (G6a

ANf
(€ (D€ (1)) e=Bap f 200 ot ”V( N )2N”(ko 0. (G8b
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Here, () is the average with respect to the Gaussian mea8e Further evaluation is simplified by approximating
N (Ko, 00=N(m,,0), N (ko,00=N(m,,0), N (ky,00=N(m,,0), i.e., taking the energl, to be the
on-shell energyi.e., sincek=0 for botho and fields, the magsof the respective particle. This approximation is consistent

with the linear harmonic approximation which puts the energy inMig functions on-shell. The consequence is thatkhe
integral can be performed, yielding with Eq&3), (E1), and(F1)

<§rr(t)§0‘(t’)>§: 5(t_t,

1 m,
(€ (V€7 (1)) = Sapd(t—1t") vmwﬂwCOt"{ﬁ

! o G7
)v m, 77,COt ﬁ ’ ( a)

. (G7b

The 6 function corresponds to white noise. Therefore, this approximation will be called “white-noise” approximation.
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