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Forming disoriented chiral condensates through fluctuations

Dirk H. Rischke
RIKEN-BNL Research Center, Physics Department, Brookhaven National Laboratory, Upton, New York 11973

~Received 17 June 1998!

Using the influence functional formalism, classical equations of motion for theO(N) model are derived in
the presence of a heat bath, in both the symmetric phase as well as the phase of spontaneously broken
symmetry. The heat bath leads to dissipation and fluctuation terms in the classical equations of motion, which
are explicitly computed to lowest order in perturbation theory. In the broken phase these terms are found to be
large for thes field, even at zero temperature, due to the decay processs→pp, while they are small for the
p fields at temperatures belowTc.160 MeV. It is shown that in large volumes the presence of dissipation
and fluctuations suppresses the formation of disoriented chiral condensates~DCC’s!. In small volumes, how-
ever, fluctuations become sufficiently large to induce the formation of DCC’s even if chiral symmetry has not
been restored in the initial stage of the system’s evolution.@S0556-2813~98!02810-6#

PACS number~s!: 25.75.2q, 11.30.Qc, 11.30.Rd, 12.39.Fe
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I. INTRODUCTION AND CONCLUSIONS

At vanishing net-baryon number density and temperatu
aboveTc.160 MeV, lattice calculations of quantum chro
modynamics predict the existence of a phase of nuclear m
ter where quarks and gluons are deconfined and chiral s
metry is restored@1#. One of the primary goals of relativisti
heavy-ion physics is to create and study this phase in nuc
collisions @2#.

The formation of a so-called disoriented chiral condens
~DCC! has been proposed as a possible signature for
restoration of chiral symmetry@3#. The idea is the following:
in the phase where chiral symmetry is restored the qu
condensate vanishes,^q̄q&.0. If at all, in a heavy-ion colli-
sion this state can only be transiently created. Once the
tem cools belowTc , chiral symmetry is spontaneously bro
ken and the system has to evolve back into the true gro
state wherê q̄q&Þ0. If in the course of this evolution the
pseudoscalar condensate^q̄tg5q& assumes nonvanishin
values ~instead of remaining zero, as in the ground sta!,
one speaks of a disoriented chiral condensate.

This mechanism becomes physically most transparen
the framework of theO(4) model. One identifiesf1

;^q̄q&, f i;^q̄t ig5q&, i 52,3,4, and spontaneously broke
symmetry is realized by a potentialU(f) which looks like a
~tilted! ‘‘mexican hat,’’ with minimum atf5( f p ,0) for T
50. For increasingT, the ‘‘hat’’ becomes shallower and th
minimum moves towards the origin, such thatf→0 for T
→Tc , and chiral symmetry is restored. The creation
DCC’s is most likely in the so-called ‘‘quench scenario’’@4#.
Here, it is assumed that, after restoration of chiral symme
the system cools instantaneously toT50. If the fieldsf are
assumed to follow classical equations of motion in the
tential U(f), the evolution of the system can be visualiz
as ‘‘rolling down’’ from the initial state with restored chira
symmetry,f50, into the true ground statef5( f p ,0). If
that happens on a ‘‘path’’ wheref iÞ0, i 52,3,4, the chiral
condensate becomes ‘‘disoriented.’’

The ratio R of neutral pions to the sum of neutral an
charged pions was suggested as experimental observabl@3#.
PRC 580556-2813/98/58~4!/2331~27!/$15.00
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If a single domain of DCC is formed, the probabilityP(R)
;1/AR, which is drastically different from the case whe
pions are emitted in a statistically independent mann
P(R);d(R21/3) ~for large, isospin-symmetric systems!.

The formation and decay of DCC’s has been studied i
variety of approaches over the last couple of years@5#, and
the original idea has undergone several refinements. One
vious effect that has an influence on DCC formation
heavy-ion collisions is the presence of a background o
multitude of other particles. Most of these are pions w
typical transverse momenta on the order of a couple of h
dred MeV@6#. In @7# it was assumed that these pions cons
tute a background~‘‘heat bath’’! of unobserved, thermalized
degrees of freedom. Their presence leads to tempera
dependent dissipation and fluctuation terms in the class
equations of motion which correspond to four-particle int
actions between classical fields and particles in the heat
and can be rigorously derived@8# ~cf. also@9#! via the influ-
ence functional formalism@10#. For a typical~average! tem-
perature evolution in a heavy-ion collision it was then stu
ied in @7#, how DCC’s form in an expanding system which
in contact with this~steadily cooling! heat bath of particles
The main result was that, on the average, dissipation
fluctuation tend to suppress the formation of DCC’s. Ho
ever, fluctuations grow;1/AV for V→0. Thus, in small
volumes and in a single event, the fluctuations can be la
enough to destabilize the system and actually enhance
likelihood to form a DCC.

The authors of@7# made two approximations. The firs
was to compute the dissipation terms in the chirallysymmet-
ric phase and then to use them for the evolution of the s
tem in the phase where chiral symmetry is spontaneou
broken. This leads to considerable simplifications, since
the symmetric phase these terms are straightforward ge
alizations of results obtained previously inf4 theory@8#. For
dissipation arising from four-particle interactions which a
present both in the symmetric and the broken phase,
approximation is probably justified in the initial stage of th
evolution, where temperatures are high and close toTc . It
becomes questionable at smaller temperatures due to the
that not all particles have the same mass in the broken p
2331 © 1998 The American Physical Society
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~the s is heavy, while thep’s are light!.
There is, however, another reason to reconsider this

proximation at temperatures belowTc . In the broken phase
the structure of the underlying Lagrangian is fundamenta
different: there are additional three-particle interactions.
will be shown in detail in the following, this has the cons
quence that, while the dissipation is;l2 in the symmetric
phase and of equal magnitude for all fieldsfa , a
51, . . . ,4,dissipative corrections arise already tofirst order
in l in the broken phase, and are of sizable magnitude for
s degree of freedom and rather small for pions. The form
correspond physically to the decay of as into two p ’s ~cf.
also@11#!, and are nonvanishing even atT50. Therefore, the
dissipation coefficients belowTc are different from an ex-
trapolation of the results obtained in the symmetric phas

The second approximation made in@7# was to infer the
variance of the fluctuation termsja , a51, . . . ,4, from the
dissipation coefficienth via

^ja~ t !jb~ t8!&5
2Th

V
d~ t2t8!dab . ~1!

Apart from the fact that this equation does not account
different dissipation coefficients fors and p’s, one has to
note that the factor 2T stems from the high-temperature~i.e.,
classical! limit of a more general expression~cf. @8# and
below!. For temperaturesT smaller than the typical mas
scale of the theory, i.e., forT,mp.Tc , one therefore ex-
pects sizable deviations from Eq.~1!. In particular, whenever
h happens to be finite atT50 ~which, as mentioned abov
and shown below, is indeed the case for thes field in the
broken phase!, Eq. ~1! predicts that fluctuations vanish eve
in the presence of dissipation, in contradiction to t
dissipation-fluctuation theorem.

The aim of this paper is to make a first step toward
consistent treatment of dissipation and fluctuation in
framework of theO(4) model in the phase where chir
symmetry is broken. The outline of the paper, as well as
main results and conclusions are as follows. In Sec. II,
derivation of the influence functional is presented for a s
tem of N real-valued scalar fieldsf1 , . . . ,fN . Short-
wavelength modes, i.e., those with ‘‘hard’’ momentauku
.kc , wherekc is an arbitrary momentum scale, are sep
rated from long-wavelength modes, i.e., those with ‘‘sof
momentauku<kc @12#, and the reduced density matrix for th
soft modes is obtained from the full density matrix by traci
over the hard degrees of freedom, which thus are though
constitute the unobserved background~‘‘heat bath’’! men-
tioned above. The influence functional enters as a phase
tor in the reduced density matrix. This section is a straig
forward generalization of the treatment in@8#. It serves
merely to introduce the notation, and can be skipped by re
ers familiar with the subject.

Section III contains the derivation of the classical equ
tions of motion for the soft fields by expanding the reduc
density matrix around its diagonal elements. The main
ference as compared to previous treatments of the sub
@8,13,14# is that functional derivatives of the influence fun
tional are expressed as averages over functional deriva
of the action characterizing the interaction between s
classical fields and the unobserved hard degrees of freed
p-
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This has the advantage that, in a perturbative computatio
the correction terms to the classical equations of motion
to some given ordern in the coupling constant, expectatio
values of the hard degrees of freedom have to be comp
only to ordern21. It is furthermore shown that for system
with more than one field degree of freedom, there can
cross correlations between the noise terms for differ
fields.

In Sec. IV, the general framework derived in the previo
sections is applied to theO(N) model in the symmetric case
The corrections to the classical equation of motion are fi
computed to orderl, where they only change the mass ter
in the classical equation of motion, and then also to orderl2,
where they lead to dissipation and fluctuations. The tre
ment is fairly cursory, since this case is rather similar tof4

theory@or, in other words, theO(1) case# discussed in detai
in @8#. The main focus is to demonstrate the applicability
the method developed in Sec. III. It is shown that the dam
ing coefficient agrees with previous results in the casesN
51 @8# andN54 @7#.

In Sec. V theO(N) model is discussed for the case
spontaneously broken symmetry. In this case, only corr
tions up to first order in the coupling constant are consider
but due to the presence of two interaction vertices in
Lagrangian~one proportional tol and the other proportiona
to l f p;l1/2), there is dissipation and fluctuation already
this order inl. In particular, the dissipation coefficient fo
the s field is shown to be large even atT50, hs.ms

.600 MeV. The physical process responsible for this is
decay of as into two p ’s. This has important consequenc
which are discussed in Sec. VI. On the other hand, the
sipation coefficient for thep fields is small for the tempera
ture range of interest, the reason being that scattering ofp
or s from the heat bath off a classicalp field is strongly
suppressed by phase space. ForT→0, as well as in the chira
limit mp→0 for arbitraryT, one even hashp→0. The clas-
sical equations of motion fors ’s and p ’s are derived and
studied in detail for thek50 modes of the classical fields.
is shown that the static solution for thes field corresponds to
the well-known shift of the vacuum ground state at fin
temperature. Moreover, the validity of Goldstone’s theor
at the classical level is checked.

In Sec. VI, arguments are presented that the formation
DCC’s is most likely in a quench scenario, i.e., atT50.
Numerical solutions of the equations of motion for the h
mogeneous modes of the fields at zero temperature are
presented, which show that, in large volumes, the large
sipation coefficient for thes field leads to a rapid damping
of oscillations of all classical fields, including the pions. T
formation of DCC’s seems thus not very likely in large sy
tems. In small volumes, on the other hand, the fluctuati
associated with the dissipation are large enough to disor
the pion fields and possibly lead to the formation of DCC
These results are in agreement with those found in@7#, ex-
cept that here they apply even atT50. This may have the
experimentally interesting implication that DCC’s are pe
haps formed more readily in collisions of lighter ions,
even inpp collisions ~which constitutes a possible explan
tion for the CENTAURO events@15#!, while they are pre-
sumably less likely to be formed in collisions of heavy ion
A definite conclusion, however, can only be drawn after p
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PRC 58 2333FORMING DISORIENTED CHIRAL CONDENSATES . . .
forming dynamical simulations including modes with finitek
and taking the overall expansion of the system into acco
@16#.

There is, however, another possible consequence of
results found here. As long as the volume is sm
;10 fm3, the disorientation of thep fields ~and possibly
DCC formation! becomes likely even if the system’s evol
tion starts near the true ground state~even small perturba
tions in thep fields suffice!. As a consequence, in sma
systems restoration of chiral symmetry does not seem to
necessary prerequisite to observe disorientation of clas
pion fields. It is, however, rather likely that this fluctuatio
induced phenomenon is related to ordinary fluctuations
finite volumes.

The results of the present work have to be viewed in
light of the following two comments:~a! the classical ap-
proximation works well in the limit of large occupation num
bers. For instance, in thermodynamical equilibrium this
achieved for modes with energyv!T. However, the lowest-
energy mode for~noninteracting! s particles hasv5ms

.600 MeV which is much larger than the temperature
the broken phase (T<Tc.160 MeV). Therefore, at least in
thermodynamical equilibrium, thes field should not seri-
ously be considered classically. In a sense, the expected
quantum corrections become manifest in the fluctuations
duced by the decays→pp as calculated in the presen
work. ~b! The dissipation and fluctuation terms are here co
puted to first order in perturbation theory. However, for
alistic parameters of theO(N) model the coupling constan
l.20, which renders the perturbative expansion uncont
lable. Future studies will have to improve on this point.

Possible other extensions of the present work are~a! the
inclusion of collisional interactions betweens ’s and p ’s
which are of order;l2 @17#, ~b! the study of long-
wavelength modes with finite momentak instead of the ho-
mogeneous modes only, as well as~c! the study of DCC
formation including these effects with a realistic temperat
evolution@16#. Units are\5c5kB51, and the metric tenso
is gmn5diag(1,2,2,2).

II. DERIVATION OF THE INFLUENCE FUNCTIONAL

Let us consider a quantum system ofN real-valued scalar
fieldsf5(f1 , . . . ,fN), characterized by a Lagrangian de
sity L(f). The Hamilton operatorĤ[*d3x H„f̂(x)…, H
[p•] tf2L, p[]L/](] tf), is assumed to have no ex
plicit time dependence. The time evolution of the dens
matrix reads

i ] tr̂5@Ĥ,r̂ #, ~2!

with initial condition r̂(t i)[r̂ i . The formal solution at time
t f is

r̂~ t f !5Û~ t f ,t i !r̂ i Û~ t i ,t f !, ~3!

where

Û~ t f ,t i ![exp$2 iĤ ~ t f2t i !%[Û†~ t i ,t f ![Û21~ t i ,t f !
~4!
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is the time evolution operator. Let us choose a basis$uf f&%
of eigenfunctions of the Schro¨dinger field operatorf̂ f(x). In
this basis, one finds for the density matrix element

r~f f ,f f8 ;t f !

[^f f ur̂~ t f !uf f8&

5E Df iDf i8r~f i ,f i8 ;t i !E
f i

f f
DfE

f i8

f f8Df8

3exp$ i ~S@f#2S@f8# !%, ~5!

where one has employed Eq.~3!, the completeness relation

15E Df i uf i&^f i u ~6!

@hereDf[)a51
N )xdfa(x)], and the path-integral represen

tation

^f f uÛ~ t f ,t i !uf i&[E
f i

f f
Df exp$ iS@f#%, ~7!

where Df[)a51
N ) t,xdfa(t,x), and S@f#

5* t i

t fdt*d3xL„f(t,x)…[* t i

t fd4xL„f(x)…. Note that it is cus-

tomary @8,13,14# to employ the closed-time-path formalism
@18# to simplify the right-hand side of Eq.~5!. Although this
is an elegant bookkeeping device, for the sake of clarity
shall continue to work in terms of the fieldsf andf8.

At each timet, a particular field component with 3 mo
mentumk has the Fourier representation

f~ t,k![E d3xe2 ik•xf~ t,x!. ~8!

Let us now separate ‘‘hard’’ from ‘‘soft’’ degrees of free
dom @8,12#. More precisely, let us define soft fields

w~ t,x![E d3k

~2p!3
eik•xf~ t,k!Q~kc2uku!, ~9!

and hard fields

F~ t,x![E d3k

~2p!3
eik•xf~ t,k!Q~ uku2kc!, ~10!

where kc is an arbitrary momentum scale separating h
from soft momentum modes. Obviously, the space span
by $uf&% is the product space spanned by$uw&% and $uF&%,
$uf&%5$uw&% ^ $uF&%. @This is most easily seen in the spa
of functionsf(t,k).] Also, f(x)5w(x)1F(x), andS@f#
5S@w#1S@F#1SI@w,F#, where SI@w,F# is the action
characterizing interactions between soft and hard fields.

The density matrix~5! then assumes the form
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r~w f ,F f ;w f8 ,F f8 ;t f !5E Dw iDF iDw i8DF i8 r~w i ,F i ;w i8 ,F i8 ;t i !E
w i

w f
DwE

F i

F f
DFE

w i8

w f8Dw8E
F i8

F f8DF8

3exp$ i ~S@w#1S@F#1SI@w,F#2S@w8#2S@F8#2SI@w8,F8# !%. ~11!

Let us now assume that the interactions between soft and hard fields vanish at the initial timet i . Then, the initial density
matrix r̂ i is block diagonal,r̂ i5 r̂ i

(w)
^ r̂ i

(F) , and

r~w i ,F i ;w i8 ,F i8 ;t i ![r~w!~w i ,w i8 ;t i !r
~F!~F i ,F i8 ;t i !. ~12!

The object of interest in the following is thereduceddensity matrixr (w)(w f ,w f8 ;t f) for the soft fields, which is obtained b
tracing ~11! over the degrees of freedom of the hard fields. This reduced density matrix has the form

r~w!~w f ,w f8 ;t f !5E Dw iDw i8r
~w!~w i ,w i8 ;t i !E

w i

w f
DwE

w i8

w f8Dw8exp$ i ~S@w#2S@w8#1SIF@w,w8# !%, ~13!

where theinfluence functional SIF@w,w8# is defined by@10#

exp$ iSIF@w,w8#%[E DF fDF iDF i8r
~F!~F i ,F i8 ;t i !E

F i

F f
DFE

F i8

F f
DF8exp$ i ~S@F#1SI@w,F#2S@F8#2SI@w8,F8# !%.

~14!

An obvious property of the influence functional~for real-valued scalar fields! is

SIF@w,w8#52SIF* @w8,w#. ~15!

For the proof, note that for any element of the~Hermitian! density matrix one hasr* (f,f8;t)[^fur̂(t)uf8&*
5^f8ur̂†(t)uf&[^f8ur̂(t)uf&[r(f8,f;t).

Another property is

SIF@w,w#50. ~16!

For the proof, note that inSIF , w plays the role of an external, and thus fixed, field. Defining the actionSw@F#[S@F#

1SI@w,F# for hard fields in the presence of this external fieldw, and a corresponding time evolution operatorÛw(t f ,t i) with
matrix elements

^F f uÛw~ t f ,t i !uF i&[E
F i

F f
DF exp$ iSw@F#%, ~17!

one then reverts in Eq.~14! the steps which led to Eq.~5!. Then, exp$iSIF@w,w#%5*DFfrw
(F)(Ff ,Ff ;tf)[ Tr r̂w

(F)(t f)[1, con-

sequently,SIF@w,w#[0. Here,r̂w
(F)(t f) is the density matrix for the hard degrees of freedom as it evolved from its initial v

r̂ i
(F) to the final timet f subject to the time evolution operatorÛw(t f ,t i). This evolution in general differs from the one whe

the external fieldw is absent.

III. DERIVATION OF CLASSICAL EQUATIONS OF MOTION FOR THE SOFT FIELDS

The classical equations of motion for the soft fieldsw are determined by expanding the phaseS@w#2S@w8#1SIF@w,w8# in
Eq. ~13! around field configurationsw[w8, i.e., where this phase vanishes according to Eq.~16!. Let us introduce

w̄[
1

2
~w1w8!, Dw[w2w8, ~18!

and expandS@w#2S@w8#1SIF@w,w8# to quadratic order inDw:

S@w#2S@w8#1SIF@w,w8#.E
t i

t f
d4xF dS@w̄#

dw̄~x!
1

1

2S dSIF@w,w8#

dw~x!
2

dSIF@w,w8#

dw8~x!
D

w5w85w̄
G •Dw~x!1

1

8Et i

t f
d4x d4y (

a,b51

N

Dwa~x!

3S d2SIF@w,w8#

dwa~x!dwb~y!
2

d2SIF@w,w8#

dwa~x!dwb8~y!
2

d2SIF@w,w8#

dwa8~x!dwb~y!
1

d2SIF@w,w8#

dwa8~x!dwb8~y! D
w5w85w̄

Dwb~y!. ~19!



na

e
th

f
e

-

y

e

q.
of

PRC 58 2335FORMING DISORIENTED CHIRAL CONDENSATES . . .
Previous derivations of classical equations of motion in
background of hard fields usually compute the functio
derivatives of the influence functional in Eq.~19! directly for
the specific system under consideration. However, th
functional derivatives can be further evaluated also in
general case. To this end, let us define an ‘‘n-point func-
tion’’:

A~F,F8![Fa1

n1~x1!Fa2

n2~x2!•••Fak

nk~xk!

3F8b1

m1~x18!F8b2

m2~x28!•••F8bl

ml~xl8!,

n5(
i 51

k

ni1(
j 51

l

mj , ~20!

of the fieldsF,F8. Here, ai and bj label components o
theseN-dimensional fields. Without loss of generality on
may assume thatt1>t2>••• and t18>t28>•••. Let us then
define the average ofA(F,F8) in the presence of the ‘‘back
ground field’’ w̄ as

^A~F,F8!&w̄

[E DF fDF iDF i8r
~F!~F i ,F i8 ;t i !E

F i

F f
DF

3E
F i8

F f
DF8exp$ i ~S@F#1SI@w̄,F#

2S@F8#2SI@w̄,F8# !%A~F,F8!. ~21!

Using the time evolution operator~17! ~with w[w̄), one
notices that this is equivalent to

^A~F,F8!&w̄[ Tr $r̂ w̄
~F!

~ t f !A~F̂,F̂8!%, ~22!

i.e., the usual expectation value of then-point functionA in
the ~in general, nonequilibrium! ensemble characterized b
the density matrixr̂ w̄

(F)(t f). Note that in this expectation
value all F fields aretime-ordered, while all F8 fields are
anti-time-ordered.

Writing SIF52 i ln exp$iSIF%, one now observes with th
definition ~14! and the property~16! of the influence func-
tional, and the definition of the average~21! that

dSIF@w,w8#

dw~x!
U

w5w85w̄

5K dSI@w̄,F#

dw̄~x!
L

w̄

, ~23a!

dSIF@w,w8#

dw8~x!
U

w5w85w̄

52K dSI@w̄,F8#

dw̄~x!
L

w̄

, ~23b!

d2SIF@w,w8#

dwa~x!dwb~y!
U

w5w85w̄
a
l

se
e

5K d2SI@w̄,F#

dw̄a~x!dw̄b~y!
L

w̄

1 i K dSI@w̄,F#

dw̄a~x!

dSI@w̄,F#

dw̄b~y!
L

w̄

2 i K dSI@w̄,F#

dw̄a~x!
L

w̄

K dSI@w̄,F#

dw̄b~y!
L

w̄

, ~23c!

d2SIF@w,w8#

dwa~x!dwb8~y!
U

w5w85w̄

52 i K dSI@w̄,F#

dw̄a~x!

dSI@w̄,F8#

dw̄b~y!
L

w̄

1 i K dSI@w̄,F#

dw̄a~x!
L

w̄

K dSI@w̄,F8#

dw̄b~y!
L

w̄

, ~23d!

d2SIF@w,w8#

dwa8~x!dwb8~y!
U

w5w85w̄

52K d2SI@w̄,F8#

dw̄a~x!dw̄b~y!
L

w̄

1 i K dSI@w̄,F8#

dw̄a~x!

dSI@w̄,F8#

dw̄b~y!
L

w̄

2 i K dSI@w̄,F8#

dw̄a~x!
L

w̄

K dSI@w̄,F8#

dw̄b~y!
L

w̄

. ~23e!

Since the fieldsw̄,F,F8 are assumed to be real-valued, E
~19! can be further simplified using symmetry properties
the average~21! with respect to exchange ofF↔F8, for
instance,

K dSI@w̄,F8#

dw̄~x!
L

w̄

[K dSI@w̄,F#

dw̄~x!
L

w̄

*
. ~24!

Then, Eq.~19! becomes

S@w#2S@w8#1SIF@w,w8#

.E
t i

t f
d4xE~x!•Dw~x!

1
i

2Et i

t f
d4xd4y (

a,b51

N

Dwa~x!Iab~x,y! Dwb~y!, ~25!

where

E~x!5
dS@w̄#

dw̄~x!
1R~x!, ~26a!

R~x![ReK dSI@w̄,F#

dw̄~x!
L

w̄

, ~26b!
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Iab~x,y![
1

2
Im K d2SI@w̄,F#

dw̄a~x!dw̄b~y!
L

w̄

2ReK dSI@w̄,F#

dw̄a~x!
L

w̄

ReK dSI@w̄,F#

dw̄b~y!
L

w̄

1
1

4K S dSI@w̄,F#

dw̄a~x!
1

dSI@w̄,F8#

dw̄a~x!
D

3S dSI@w̄,F#

dw̄b~y!
1

dSI@w̄,F8#

dw̄b~y!
D L

w̄

~26c!

are real-valued functions. Inserting this into expression~13!

and changing the integration variablesw,w8 to w̄,Dw, one
obtains

r~w!~ w̄ f ,Dw f ;t f !

.E Dw̄ iDDw ir
~w!~ w̄ i ,Dw i ;t i !E

w̄ i

w̄ fDw̄E
Dw i

Dw f
DDw

3expH i E
t i

t f
d4xE~x!•Dw~x!

2
1

2Et i

t f
d4xd4y (

a,b51

N

Dwa~x!Iab~x,y!Dwb~y!J . ~27!

The term quadratic inDw in the argument of the exponentia
can be rewritten introducing auxiliary fieldsj
5(j1 , . . . ,jN),

expH 2
1

2Et i

t f
d4xd4y (

a,b51

N

Dwa~x!Iab~x,y!Dwb~y!J
[E DjP@j,w̄# expH i E

t i

t f
d4xj~x!•Dw~x!J , ~28!

where

P@j,w̄#[N @w̄# expH 2
1

2Et i

t f
d4xd4y

3 (
a,b51

N

ja~x!I ab
21~x,y!jb~y!J ~29!

is a normalized Gaussian measure. Note thatP in general
depends onw̄ throughI. It is now possible to perform the
functional integration overDw ~except for the one att i) in
expression~27!, with the result

r~w!~ w̄ f ,Dw f ;t f !.E DjE Dw̄ iDDw ir
~w!~ w̄ i ,Dw i ;t i !

3E
w̄ i

w̄ fDw̄ P@j,w̄# d@E~x!1j~x!#.

~30!
This result means that, for timest i,t,t f , the functionald
function forces the fieldsw̄ to obey theclassical equations of
motion

2E~x![2
dS@w̄#

dw̄~x!
2R~x!5j~x!. ~31!

The condition 2dS@w̄#/dw̄(x)50 is the usual classica
equation of motion. The new termR characterizes the inter
actions of the soft, classical fieldsw̄ with the hard, unob-
served degrees of freedom. As it will become clear in
following, a part of these interactions is to be interpreted
dissipation. The associated fluctuating noise field is rep
sented byj on the right-hand side of the equations of moti
~31!. These equations of motion are therefore Langevin-ty
equations. Note that in general the noise is not white, sincI
need not be proportional tod(x02y0), and can be multipli-
cative, due to the dependence ofI on w̄ @8,14#. It should be
mentioned at this point that multiplicative noise terms a
treated slightly differently in Refs.@8,14# than in the presen
work. While here there is only one noise field with
w̄-dependent variance, in@8,14# different noise fields are in-
troduced withw̄-independent variances.

Another interesting aspect for systems with more than
field degree of freedom is that, sinceI is in general not
diagonal,Iab(x,y)Þ0 for aÞb, there can be correlation
between the noise terms in the equations of motion for t
different field componentsw̄a andw̄b . In the following, this
general formalism will be applied to theO(N) model, both
in the symmetric case as well as with spontaneously bro
symmetry.

IV. THE O„N… MODEL IN THE SYMMETRIC CASE

The Lagrangian of theO(N) model is

L~f!5
1

2
~]m f•]m f2m2f•f!2

l

N
~f•f!2, ~32!

wheref5(f1 ,f2 , . . . ,fN) is an N-dimensional vector of
real-valued scalar fields.

In the symmetric case,m2.0. The vacuum state of the
model is at the minimum of the potential

U~f![
m2

2
f•f1

l

N
~f•f!2, ~33!

which isfvac50. Decomposing the fieldf according to Eqs.
~9! and ~10!, the action corresponding to interactions b
tween soft and hard fields reads

SI@w,F#52
2l

N E
t i

t f
d4x@2w~x!•w~x!w~x!•F~x!

1w~x!•w~x!F~x!•F~x!12@w~x!•F~x!#2

12w~x!•F~x!F~x!•F~x!#. ~34!
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Consequently,

K dSI@w̄,F#

dw̄a~x!
L

w̄

52
4l

N
@2w̄a~x!w̄~x!•^F~x!&w̄1w̄a~x!^F~x!•F~x!&w̄1w̄~x!•w̄~x!^Fa~x!&w̄12w̄~x!•^F~x!Fa~x!&w̄

1^F~x!•F~x!Fa~x!&w̄#, ~35a!

K d2SI@w̄,F#

dw̄a~x!dw̄b~y!
L

w̄

52
4l

N
@2dabw̄~x!•^F~x!&w̄1dab^F~x!•F~x!&w̄12w̄a~x!^Fb~x!&w̄12w̄b~x!^Fa~x!&w̄

12^Fa~x!Fb~x!&w̄#d~4!~x2y!. ~35b!

In the following, the averages on the right-hand side will be computed perturbatively in the coupling constantl. The
expansion in powers ofl of the exponential in the integrand of Eq.~21! reads

exp$ i ~S@F#1SI@w̄,F#2S@F8#2SI@w̄,F8# !%.exp$ i ~S0@F#2S0@F8# !%F12 i
l

NEt i

t f
d4y$4w̄~y!•w̄~y!w̄~y!•@F~y!2F8~y!#

12w̄~y!•w̄~y!@F~y!•F~y!2F8~y!•F8~y!#14@w̄~y!•F~y!#2

24@w̄~y!•F8~y!#214w̄~y!•@F~y!F~y!•F~y!2F8~y!F8~y!•F8~y!#

1@F~y!•F~y!#22@F8~y!•F8~y!#2%1O~l2!G , ~36!
e
in

al
e
ti

a

een
-

ght-
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ds
whereS0@F# is the action for noninteracting hard fields. Th
quartic self-interaction term of the hard fields has been
cluded in the perturbative treatment ofSI . Let us define an
averagê &0 in analogy to Eq.~21!, whereS@F#1SI@w̄,F#

2S@F8#2SI@w̄,F8# is replaced byS0@F#2S0@F8#. If we
additionally assume the initial density matrixr̂ i

(F) to be of

the formr̂0
(F)[exp$2Ĥ0 /T%/Z, this average is then the usu

thermal average in a noninteracting system at temperaturT.
Since this average involves a Gaussian measure in func
space, the average~21! of an arbitrary n-point function
A(F,F8) vanishes for oddn and can be decomposed into
sum over products of two-point functions for evenn. These
two-point functions are@19#

^Fa~x!Fb~y!&0[Tr $r̂0
~F!T„F̂a~x!F̂b~y!…%

[dabD11~x2y!

[dab@D.~x2y!Q~x02y0!

1D,~x2y!Q~y02x0!#, ~37a!

^Fa~x!Fb8~y!&0[Tr $r̂0
~F!F̂a~x!F̂b8~y!%[dab D,~x2y!,

~37b!

^Fa8~x!Fb~y!&0[Tr $r̂0
~F!F̂a8~x!F̂b~y!%[dabD.~x2y!,

~37c!

^Fa8~x!Fb8~y!&0[Tr $r̂0
~F!T̃„F̂a8~x!F̂b8~y!…%

[dabD22~x2y!

[dab@D,~x2y!Q~x02y0!
-

on

1D.~x2y!Q~y02x0!#, ~37d!

whereT stands for time ordering,T̃ for anti-time ordering,
and where translational invariance in space time has b
assumed. The functionsD. andD, have the Fourier repre
sentation

Di~ t,x!5E d3k

~2p!3
Q~ uku2kc!e

ik•xDi~ t,k!, i 5. or ,,

~38!

where

D.~ t,k![
1

2Ek
$@11n~Ek!#e2 iEkt1n~Ek!eiEkt%,

D,~ t,k![D.~2t,k!. ~39!

Here, n(x)[(ex/T21)21 is the Bose-Einstein distribution
function, andEk[(k21m2)1/2.

A. Interactions between soft and hard fields to first order inl

To determine the interaction termR, Eq. ~26b!, to order
l, one needs to compute the expectation values on the ri
hand side of Eq.~35a! only to orderl051, since there is
already an overall factor ofl on the right-hand side. This
means that the averages^ &w̄ on the right-hand side can b
replaced bŷ &0 . This simplification can be traced back t
the fact that the functional derivatives of the influence fun
tional in Eq. ~19! were rewritten in terms of averages ov
functional derivatives ofSI , cf. Eq. ~23!, which itself is al-
ready of orderl. Evaluation of the averages therefore yiel
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^Fa~x!&w̄→^Fa~x!&050, ~40a!

^Fa~x!Fb~x!&w̄→^Fa~x!Fb~x!&05dabD11~0!,
~40b!

^Fa~x!Fb
2~x!&w̄→^Fa~x!Fb

2~x!&050. ~40c!

Thus,

Ra~x!52
4~N12!l

N
ReD11~0! w̄a~x!. ~41!

With Eqs.~37a!, ~38!, and~39! one derives

D11~0!5E d3k

~2p!3
Q~ uku2kc!

1

2Ek
@112n~Ek!#.

~42!

This expression diverges, due to the vacuum contribu
corresponding to the 1 in brackets. The divergence can
removed in the standard way, for instance by introducing
appropriate counterterm in the Lagrangian. In the followin
it is implied that, wherever necessary, such divergences h
been removed accordingly. Note that for massless parti
and in the limitkc→0:

E d3k

~2p!3

1

Ek
n~Ek!5

T2

12
. ~43!

Since expression~42! is real valued, one obtains for the lef
hand side of the classical equation of motion for the fi
componentw̄a :

Ea~x!52Fh1m2~T!1
4l

N
w̄~x!•w̄~x!G w̄a~x!. ~44!

Here,

m2~T!5m21
4~N12!l

N
D11~0! ~45!

is the usual thermal mass~squared! to first order inl. The
term @m2(T)2m2#w̄a(x) can be graphically depicted as
Fig. 1. In this and the following graphs, external legs cor
spond to classical fieldsw̄a , while internal lines correspond
to propagatorsD11 of hard modes. The thin external leg o
the left side of the vertex has no correspondence in the c
sical equation of motion, it corresponds to a factorDwa(x)
multiplying Ea(x) in the argument of the exponential fun

FIG. 1. The orderl contribution to the thermal mass.
n
be
n
,
ve
es

-

s-

tion in Eq. ~27!. It is included here to show that the intera
tion in principle involves four particles.

The result~44! means that to first order inl, the only
effect of the presence of the hard modes~the heat bath! is a
modification of the mass term in the classical equation
motion for the soft fields. There is obviously no dissipati
to this order inl. Consequently, the fluctuating fieldja has
to vanish, too. This is verified by explicitly computin
Iab(x,y). One first notes that the last two terms in Eq.~26c!
are of orderl2 and thus can be neglected to first order inl.
With Eq. ~35b!, the remaining term yields

Iab~x,y!52dab

4~N12!l

2N
Im D11~0!d~4!~x2y!,

~46!

which obviously vanishes, since expression~42! is real val-
ued. Therefore, to first order inl, the introduction of a fluc-
tuating noise fieldj via Eq. ~28! is obsolete. This also im-
plies that, to this lowest order inl, the classical fieldw̄(x)
has no means to equilibrate with the background of ha
modes. One has to go to the next higher order inl to achieve
this.

B. Interactions between soft and hard fields
to second order inl

To second order inl, the expectation values on the righ
hand side of Eq.~35! have to be evaluated to orderl. The
result~neglecting terms which vanish on account of mome
tum conservation! is

^Fa~x!&w̄52 i
4l

N E
t i

x0
d4y@D.~x2y!2D,~x2y!#

3w̄~y!•w̄~y!w̄a~y!, ~47a!

^Fa~x!Fb~x!&w̄5dabD11~0!

2 i
4l

N E
t i

x0
d4y@D.

2 ~x2y!2D,
2 ~x2y!#

3@dabw̄~y!•w̄~y!12w̄a~y!w̄b~y!

1dab~N12!D11~0!#, ~47b!

^Fa~x!Fb
2~x!&w̄52 i

8l

N
~112dab!E

t i

x0
d4y@D.

3 ~x2y!

2D,
3 ~x2y!#w̄a~y!. ~47c!

In Eq. ~47c! a term was omitted which vanishes on accou
of momentum conservation in the expressi
*d4xE(x)•Dw(x). The left-hand side of the equation of mo
tion ~31! is then

Ea~x!52Fh1m2~T!1
4l

N
w̄~x!•w̄~x!G w̄a~x!

1S 4l

N D 2

(
i 51

3

T a
~ i !~x!, ~48!
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where

T a
~1!~x![ i E

t i

x0
d4y@D.~x2y!2D,~x2y!#

3@w̄~x!•w̄~x!w̄a~y!12w̄a~x!w̄~x!•w̄~y!#

3w̄~y!•w̄~y!, ~49a!

T a
~2!~x![ i E

t i

x0
d4y@D.

2 ~x2y!2D,
2 ~x2y!#

3@~N14!w̄a~x!w̄~y!•w̄~y!

14w̄~x!•w̄~y!w̄a~y!#, ~49b!

T a
~3!~x![ i E

t i

x0
d4y@D.

3 ~x2y!2D,
3 ~x2y!#2~N12!w̄a~y!,

~49c!

and where the thermal massm(T) is given by

m2~T!5m21
4~N12!l

N S 12 i
4~N12!l

N

3E
t i

x0
d4y@D.

2 ~x2y!2D,
2 ~x2y!# DD11~0!.

~50!

In Eqs. ~48!–~50!, use has been made of the fact th
D,* (x2y)[D.(x2y), and thus D.

n (x2y)2D,
n (x2y)

[2i Im D.
n (x2y), such that all expressions in these equ

tions are real-valued. ForN51 andl→g2/4!, Eqs. ~47!–
~50! reduce to the corresponding ones found in@8# in f4

theory. The termsT a
( i ) and the orderl2 thermal mass correc

tion are graphically depicted in Fig. 2. Since2 i @D.
n (x2y)

2D,
n (x2y)#52 ImD.

n (x2y)[2 ImD11
n (x2y) for x0

>y0 , in order to make this graphical correspondence i
implied that one has to take the imaginary part of any co
bination of propagators linking the space-time pointsx andy
in the diagrams of Fig. 2~as well as in the following figures!.
Since all external legs correspond to real-valued class
fields, however, this is equivalent to taking the imagina
part of thewholediagram. Note here the advantage of wor
ing with the functionsD instead ofG[ i D @8,14#, which
would require taking both real and imaginary parts of t
diagrams, depending on the number of internal lines.

The two graphs~a!,~b! correspond to the two terms in th
expression~49a!. A sum over the external legsb and c is
implied. Graphs~c!,~d! correspond to the two terms in th
integrand in Eq.~49b!. A sum over the external legsb is
implied. Figure 2~e! corresponds to expression~49c!. Fi-
nally, Fig. 2~f! is the second-order contribution to the the
mal mass@times w̄a(x)].

In order to study the time evolution of the classical m
mentum mode functionsw̄a(t,k), Eq. ~48! is Fourier trans-
formed with respect tox to obtain the classical equation o
motion for these modes:
t

-

s
-

al

-

-

@] t
21~Ek* !2#w̄a~ t,k!2S 4l

N D 2

(
i 51

3

T a
~ i !~ t,k!

1
4l

N E d3pd3q

~2p!6
Q~kc2upu!Q~kc2uqu!

3Q~kc2uk2p2qu!w̄~ t,p!•w̄~ t,q!

3w̄a~ t,k2p2q!

5ja~ t,k!. ~51!

Here Ek* [@k21m2(T)#1/2. In order to see how dissipatio
enters in the equation of motion~51!, one has to compute th
three termsT a

( i )(t,k), i 51,2,3. This calculation is rathe
similar to the one presented in@8# for f4 theory. The details
are therefore referred to Appendix A and only the main
sults are outlined here. From Eq.~49! it is obvious that the
time evolution of the classical fields prior to timet influences
the value of the field at timet. The equation of motion~51!
is therefore a so-calleddelay-differential equation. While
such integrodifferential equations can, in principle,
solved, it is much simpler to make an ansatz for the ti
evolution of the fieldsw̄(y) in the terms~49!, which renders
the equation of motion local in time. Such an ansatz is
so-called linear harmonic approximation@8#, cf. Appendix
A. In particular, for the termT a

(3)(t,k) one then obtains

T a
~3!~ t,k!522~N12!Q~kc2uku!

3FPE dv

2p

M3~v,k!

Ek2v
w̄a~ t,k!

1
M3~Ek ,k!

2Ek
] tw̄a~ t,k!G , ~52!

FIG. 2. ~a!,~b! The two terms inT a
(1) . A sum overb, c is im-

plied. ~c!,~d! The two terms inT a
(2) . A sum overb is implied. ~e!

The termT a
(3) . ~f! The orderl2 contribution to the thermal mass
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whereP stands for the principal value andM3(v,k) is the
Fourier transform ofM3(x)[D.

3 (x)2D,
3 (x), cf. Eq.

~A2c!. The first term represents a thermal mass correction
the field w̄a(t,k), while the second yields a damping ter
1h(k)] tw̄a(t,k) in the equation of motion~51!, where the
damping coefficient is

h~k![S 4l

N D 2

2~N12!
M3~Ek ,k!

2Ek
. ~53!

For N51 andl→g2/4!, this agrees with the result~52! of
@8#, noting that their functioniM (c)[g4M3/6 @cf. Eq. ~41!
of @8##. Fork50 andkc→0, the evaluation ofM3 simplifies
~cf. Appendix B! and yields

h[h~0!5S 4l

N D 23~N12!T2

32p3m
Li2~e2m/T!, ~54!

where Li2(x) is the dilogarithm@or Spence’s integral, cf. Eq
~B7!#. For f4 theory, i.e.,N51 andl→g2/4! the damping
coefficient is

hf4
5

g4T2

128p3m
Li2~e2m/T!, ~55!

which is twice the on-shell damping rate at zero momentu
computed to two-loop order inf4 theory@20#. The fact that
the damping coefficient is twice the damping rate was
plained in detail in@8#. For theO(N) model withN54,

hO~4!5
9l2T2

16p3m
Li2~e2m/T!, ~56!

in agreement with the result~4! of @7#. Note that in the large-
N limit, the damping coefficient vanishes;1/N.

V. THE O„N… MODEL WITH SPONTANEOUSLY
BROKEN SYMMETRY

The O(N) symmetry of the Lagrangian~32! is spontane-
ously broken toO(N21) by takingm2,0. Then, the poten-
tial ~33! assumes the well-known ‘‘Mexican hat’’ shap
with the chiral circleufvacu[ f p[(2m2N/4l)1/2 as global
minimum. Adding a small explicitly symmetry breakin
term Hf1 to the Lagrangian~32! ‘‘tilts the hat’’ in the f1
direction, such that the vacuum state isfvac5( f p ,0),
where now f p[(2m2N/4l)1/232 cos@a/3#/A3, cosa
5(HN/8l)/(2m2N/12l)3/2. The O(N21) symmetry is re-
stored takingH→0 such that cos@a/3#→A3/2.

Let us introduce new fieldss[f12 f p and p
[(f2 ,f3 , . . . ,fN), and corresponding masses:

ms
2[m21

12l f p
2

N
, mp

2 [m21
4l f p

2

N
. ~57!

Obviously, without explicit symmetry breaking (H50), the
pions are true Goldstone bosons,mp50. With these defini-
tions the Lagrangian~32! becomes~constant terms are omit
ted!:
or

,

-

L~s,p!5
1

2
~]ms]ms2ms

2s2!1
1

2
~]mp•]mp2mp

2 p•p!

2
4l f p

N
s~s21p•p!2

l

N
~s21p•p!2. ~58!

Taking N54, this is the Lagrangian of the linears model.
The parametersm2, l, andH of the original Lagrangian~32!
are related to the physical meson massesms

5600 MeV, mp5139 MeV, and the pion decay consta
f p593 MeV via m252(ms

223mp
2 )/2, l5N(ms

2

2mp
2 )/(8 f p

2 ), H5mp
2 f p . There are two types of interactio

vertices in the Lagrangian~58!, a three-particle vertex pro
portional tol f p and a four-particle vertex proportional tol.
Note that, sincef p;l21/2, the three-particle vertex is for
mally of orderl1/2.

Thes andp meson fields have the Fourier representat
@cf. Eq. ~8!#

s~ t,k!5E d3xe2 ik•xs~ t,x!,

p~ t,k!5E d3xe2 ik•xp~ t,x!, ~59!

and are decomposed into soft and hard modes as follow

s~ t,x!5E d3k

~2p!3
eik•xs~ t,k!Q~kc2uku!,

S~ t,x!5E d3k

~2p!3
eik•xs~ t,k!Q~ uku2kc!, ~60a!

p~ t,x!5E d3k

~2p!3
eik•xp~ t,k!Q~kc2uku!,

P~ t,x!5E d3k

~2p!3
eik•xp~ t,k!Q~ uku2kc!. ~60b!

~The use of small letters is from now on reserved for the s
fields, the hard fields are denoted by capital letters.!

The interaction between soft and hard fields is given
the action

SI@s,S,p,P#[SI
~l f p!

@s,S,p,P#1SI
~l!@s,S,p,P#,

~61!

where

SI
~l f p!

@s,S,p,P#52
4l f p

N E ~@3s21p•p#S

12@s1S#p•P1s@3S21P•P# !,

~62!

and
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SI
~l!@s,S,p,P#52

l

NE ~4@s21p•p#@sS1p•P#12@3s21p•p#S212@s21p•p#P•P14@2sS1p•P#p•P

14@sS1p•P#@S21P•P# !. ~63!

Therefore,

K dSI@s̄,S,p̄,P#

ds̄~x!
L

s̄,p̄

52
4l f p

N
$6s̄~x!^S~x!&s̄,p̄12p̄~x!•^P~x!&s̄,p̄13^S2~x!&s̄,p̄1^P~x!•P~x!&s̄,p̄%

2
4l

N
$@3s̄2~x!1p̄~x!•p̄~x!#^S~x!&s̄,p̄12s̄~x!p̄~x!•^P~x!&s̄,p̄12p̄~x!•^S~x!P~x!&s̄,p̄

1s̄~x!@3^S2~x!&s̄,p̄1^P~x!•P~x!&s̄,p̄#1^S3~x!&s̄,p̄1^S~x!P~x!•P~x!&s̄,p̄%, ~64!

while

K dSI@s̄,S,p̄,P#

dp̄a~x!
L

s̄,p̄

52
8l f p

N
$p̄a~x!^S~x!&s̄,p̄1s̄~x!^Pa~x!&s̄,p̄1^S~x!Pa~x!&s̄,p̄%

2
4l

N
$2p̄a~x!@s̄~x!^S~x!&s̄,p̄1p̄~x!•^P~x!&s̄,p̄#1@s̄2~x!1p̄~x!•p̄~x!#^Pa~x!&s̄,p̄

1p̄a~x!@^S2~x!&s̄,p̄1^P~x!•P~x!&s̄,p̄#12@s̄~x!^S~x!Pa~x!&s̄,p̄1p̄~x!•^P~x!Pa~x!&s̄,p̄#

1^S2~x!Pa~x!&s̄,p̄1^P~x!•P~x!Pa~x!&s̄,p̄%. ~65!
re
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f
-
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A. Interactions between soft and hard fields to first order inl

In this subsection, the expectation values^ &s̄,p̄ on the
right-hand side of Eqs.~64! and ~65! will be evaluated in
perturbation theory. Sincel5N(ms

22mp
2 )/(8 f p

2 ).20 for
N54 and realistic values of the parametersms ,mp , f p , this
is certainly not a controlled approximation scheme. The
fore, the following results have to be viewed only as the fi
but necessary, step to estimate the influence of an un
served background of hard modes in the classical equat
of motion for theO(N) model in the phase of spontaneous
broken symmetry.

To determine the interaction termsRs andRpa
in the

classical equations of motion~31! to first order inl, due to
the overall factors ofl f p;l1/2 andl in Eqs.~64! and ~65!
the expectation values in the terms proportional tol f p have
to be computed only to orderl f p , while those in the terms
proportional tol have to be computed only to order 1. Mo
explicitly, ^S(x)&s̄, p̄ , ^Pa(x)&s̄,p̄ , ^S2(x)&s̄,p̄ ,
^Pa

2(x)&s̄,p̄ , and ^S(x)Pa(x)&s̄,p̄ have to be computed u
to order l f p , while ^S3(x)&s̄,p̄ , ^S2(x)Pa(x)&s̄,p̄ ,
^S(x)Pa

2(x)&s̄,p̄ , ^Pa(x)Pb(x)&s̄,p̄ , and^Pa(x)Pb
2(x)&s̄,p̄

are required to order 1. For the latter, this of course me
that the averagê &s̄,p̄ can be replaced bŷ &0 , and as a
consequence, all expectation values vanish except
^Pa(x)Pb(x)&05dab^Pa

2(x)&0 . For the nonvanishing ex
pectation values one obtains

^S~x!&s̄,p̄52 i
4l f p

N E
t i

x0
d4y@D.

~s!~x2y!2D,
~s!~x2y!#

3@3s̄2~y!1p̄~y!•p̄~y!#, ~66a!
-
t,
b-
ns

s

or

^Pa~x!&s̄,p̄52 i
4l f p

N E
t i

x0
d4y@D.

~p!~x2y!2D,
~p!~x2y!#

32s̄~y!p̄a~y!, ~66b!

^S2~x!&s̄,p̄5D11
~s! ~0!2 i

4l f p

N E
t i

x0
d4y~@D.

~s!~x2y!#2

2@D,
~s!~x2y!#2!6s̄~y!, ~66c!

^Pa
2~x!&s̄,p̄5D11

~p! ~0!2 i
4l f p

N E
t i

x0
d4y~@D.

~p!~x2y!#2

2@D,
~p!~x2y!#2!2s̄~y!, ~66d!

and

^S~x!Pa~x!&s̄,p̄52 i
4l f p

N E
t i

x0
d4y@D.

~s!~x2y!D.
~p!~x2y!

2D,
~s!~x2y!D,

~p!~x2y!#2p̄a~y!. ~66e!

Again, as discussed above in the symmetric case, all exp
sions are real valued. For the left-hand side of the equatio
motion for the classicals field one therefore obtains
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Es~x!52Fh1ms
2~T!1

4l

N
@s̄2~x!1p̄~x!•p̄~x!#G s̄~x!

2
4l f p

N
@3s̄2~x!1p̄~x!•p̄~x!13D11

~s! ~0!

1~N21!D11
~p! ~0!#1S 4l f p

N D 2

(
i 51

3

T s
~ i !~x!, ~67!

where

T s
~1!~x!5 i E

t i

x0
d4y@D.

~s!~x2y!2D,
~s!~x2y!#6s̄~x!

3@3s̄2~y!1p̄~y!•p̄~y!#, ~68a!

T s
~2!~x!5 i E

t i

x0
d4y@D.

~p!~x2y!2D,
~p!~x2y!#

34p̄~x!•p̄~y!s̄~y!, ~68b!

T s
~3!~x!5 i E

t i

x0
d4y$18~@D.

~s!~x2y!#22@D,
~s!~x2y!#2!

12~N21!~@D.
~p!~x2y!#2

2@D,
~p!~x2y!#2!%s̄~y!, ~68c!

andms
2(T) is given by

ms
2~T!5ms

21
4l

N
@3D11

~s! ~0!1~N21!D11
~p! ~0!#. ~69!
The termsT s
( i ) and the thermal mass correction are grap

cally displayed in Fig. 3. The conventions are as before
Fig. 2. A dashed line represents a pion and a solid line as.
Thin solid lines do not have a correspondence in the class
equation of motion, they correspond to a factorDs(x) mul-
tiplying Es(x) in the phase of the reduced density mat
~27!. A filled dotted vertex corresponds to a four-partic
vertex l, a filled square vertex to a three-particle vert
l f p . Graphs ~a!,~b! correspond to the two terms in Eq
~68a!, graph~c! to ~68b!, graphs~d!,~e! to the two terms in
Eq. ~68c! and ~f!,~g! to @ms

2(T)2ms
2 #s̄(x).

A Fourier transformation with respect tox yields the clas-
sical equation of motion for the momentum mode functio
s̄(t,k) (uku<kc):

FIG. 3. ~a!,~b! The two terms inT s
(1) . A sum overa is implied.

~c! The termT s
(2) . A sum overa is implied. ~d!,~e! The two terms

in T s
(3) . ~f!,~g! Orderl contributions to the thermal mass.
d

@] t
21~Ek

~s!* !2#s̄~ t,k!1
4l f p

N
@3D11

~s! ~0!1~N21!D11
~p! ~0!#~2p!3d~3!~k!1

4l f p

N E d3p

~2p!3
Q~kc2upu!Q~kc2uk2pu!

3@3s̄~ t,p!s̄~ t,k2p!1p̄~ t,p!•p̄~ t,k2p!#1
4l

N E d3pd3q

~2p!6
Q~kc2upu!Q~kc2uqu!Q~kc2uk2p2qu!

3@s̄~ t,p!s̄~ t,q!1p̄~ t,p!•p̄~ t,q!#s̄~ t,k2p2q!2S 4l f p

N D 2

(
i 51

3

T s
~ i !~ t,k!5js~ t,k!. ~70!

Here,Ek
(s)* [@k21ms

2(T)#1/2. An explicit calculation of the termsT s
( i )(t,k) in the linear harmonic approximation is referre

to Appendix C.
For the classical pion fields one obtains

Epa
~x!52Fh1mp

2 ~T!1
4l

N
@s̄2~x!1p̄~x!•p̄~x!12 f ps̄~x!#G p̄a~x!1S 4l f p

N D 2

(
i 51

3

Tpa

~ i !~x!, ~71!

where

T pa

~1!~x!5 i E
t i

x0
d4y@D.

~s!~x2y!2D,
~s!~x2y!#2p̄a~x!@3s̄2~y!1p̄~y!•p̄~y!#, ~72a!
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T pa

~2!~x!5 i E
t i

x0
d4y@D.

~p!~x2y!2D,
~p!~x2y!#4s̄~x!s̄~y!p̄a~y!, ~72b!

T pa

~3!~x!5 i E
t i

x0
d4y@D.

~s!~x2y!D.
~p!~x2y!2D,

~s!~x2y!D,
~p!~x2y!#4p̄a~y!, ~72c!

and

mp
2 ~T!5mp

2 1
4l

N
@D11

~s! ~0!1~N11!D11
~p! ~0!#. ~73!

At first glance,mp(T) seems to be the thermal mass of soft~classical! pionic excitations. This, however, cannot be true, sin
in the chiral limit mp→0, the pions are massless Goldstone bosons, even at finite temperature@21#, whereasmp(T) as given
by Eq. ~73! is finite @cf. Eq. ~43!#. This apparent violation of Goldstone’s theorem will be resolved below.

The termsT pa

( i ) and the thermal mass correction are graphically displayed in Fig. 4. The notation is the same as in

Graphs~a!,~b! correspond to the two terms in Eq.~72a!, graph ~c! to ~72b!, graph ~d! to ~72c! and ~e!,~f! to @mp
2 (T)

2mp
2 #p̄a(x).

Fourier transforming Eq.~71! with respect tox yields the classical equation of motion for the mode functionsp̄a(t,k):

@] t
21~Ek

~p!* !2#p̄a~ t,k!1
8l f p

N E d3p

~2p!3
Q~kc2upu!Q~kc2uk2pu!s̄~ t,p!p̄a~ t,k2p!1

4l

N E d3pd3q

~2p!6
Q~kc2upu!

3Q~kc2uqu!Q~kc2uk2p2qu!@s̄~ t,p!s̄~ t,q!1p̄~ t,p!•p̄~ t,q!#p̄a~ t,k2p2q!2S 4l f p

N D 2

(
i 51

3

T pa

~ i !~ t,k!5jpa
~ t,k!.

~74!

Here,Ek
(p)* [@k21mp

2 (T)#1/2. An explicit calculation of the termsT pa

( i ) (t,k) in the linear harmonic approximation is referre

to Appendix D.
For the variances of the noise terms one obtains with Eq.~26c! up to orderl:

Iss~x,y!5S 4l f p

N D 2

$18s̄~x!s̄~y!@D.
~s!~x2y!1D,

~s!~x2y!#12p̄~x!•p̄~y!@D.
~p!~x2y!1D,

~p!~x2y!#

19~@D.
~s!~x2y!#21@D,

~s!~x2y!#2!1~N21!~@D.
~p!~x2y!#21@D,

~p!~x2y!#2!%, ~75a!

Ispa
~x,y!5S 4l f p

N D 2

$6s̄~x!p̄a~y!@D.
~s!~x2y!1D,

~s!~x2y!#12p̄a~x!s̄~y!@D.
~p!~x2y!1D,

~p!~x2y!#%, ~75b!

Ipapb
~x,y!5S 4l f p

N D 2

$2p̄a~x!p̄b~y!@D.
~s!~x2y!1D,

~s!~x2y!#12dabs̄~x!s̄~y!@D.
~p!~x2y!1D,

~p!~x2y!#

12dab@D.
~s!~x2y!D.

~p!~x2y!1D,
~s!~x2y!D,

~p!~x2y!#%. ~75c!

FIG. 4. ~a!,~b! The two terms inT pa

(1) . A sum

overb is implied.~c! The termT pa

(2) . ~d! The term

T pa

(3) . ~e!,~f! Orderl contributions to the therma
mass.
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This confirms the existence of correlations between the n
fields js andjpa

as well as betweenjpa
andjpb

, aÞb, as

mentioned at the end of Sec. III. There also exists an obv
graphical representation for the variances. The differe
from the graphs of Figs. 3 and 4 is that one thick line on
vertex at space-time pointy is replaced by a thin line, corre
sponding to the second factorDs(y) or Dpb(y) in the phase
in Eq. ~27!. Also, due toD.

n (x)1D,
n (x)52 ReD11

n (x) one
has to take thereal instead of the imaginary part of th
respective diagrams.
a
nc

y

tio
se

s
e

e

B. Spatially homogeneous solutions of the classical equations
of motion

In the following, let us focus on the time evolution of th
zero-momentum mode functionss̄(t,0) andp̄a(t,0). For the
sake of simplicity, let us also take the limitkc→0, i.e., only
spatially homogeneous field configurations are considere
be classical, and let us assumet i→2`,t f→1`, to facilitate
Fourier transformations. Then, the explicit form of the fun
tions T s,pa

( i ) (t,k) given in Appendices C and D shows th

T s,pa

(1) (t,0)5T s,pa

(2) (t,0)50, while
T s
~3!~ t,0!522PE dv

2p

9M 2
~ss!~v,0!1~N21!M 2

~pp!~v,0!

ms2v
s̄~ t,0!22

9M 2
~ss!~ms ,0!1~N21!M 2

~pp!~ms ,0!

2ms
] ts̄~ t,0!,

~76!

and

T pa

~3!~ t,0!524PE dv

2p

M 2
~sp!~v,0!

mp2v
p̄a~ t,0!24

M 2
~sp!~mp ,0!

2mp
] tp̄a~ t,0!, ~77!

whereM 2
( i j )(v,k) is the Fourier transform ofM 2

( i j )(x)[D.
( i )(x)D.

( j )(x)2D,
( i )(x)D,

( j )(x), i , j 5s or p, cf. Eqs.~C1b! and
~C2b!. Using (2p)3d (3)(q)[Vdq,0

(3) , whereV is the total three-volume of the system, as well asV*d3p/(2p)3[(k for the

momentum integrals, and definings̄(t)[s̄(t,0)/V,p̄(t)[p̄(t,0)/V,js(t)[js(t,0)/V,jpa
(t)[jpa

(t,0)/V, one derives from

Eq. ~70! the classical equation of motion fors̄(t):

@] t
21m̃s

2~T!#s̄~ t !1
4l f p

N
@3D11

~s! ~0!1~N21!D11
~p! ~0!#1

4l f p

N
@3s̄2~ t !1p̄~ t !•p̄~ t !#1

4l

N
@s̄2~ t !1p̄~ t !•p̄~ t !#s̄~ t !

1hs] ts̄~ t !5js~ t !, ~78!

with

m̃s
2~T!5ms

2~T!12S 4l f p

N D 2

PE dv

2p

9M 2
~ss!~v,0!1~N21!M 2

~pp!~v,0!

ms2v
5ms

21
4l

N
@3D11

~s! ~0!1~N21!D11
~p! ~0!#

1
2

p2S 4l f p

N D 2F9E
ms

`

dE
AE22ms

2

ms
224E2

1

eE/T21
1~N21!E

mp

`

dE
AE22mp

2

ms
224E2

1

eE/T21
G , ~79!
t

-

be

-

on
where use has been made of Eqs.~69! and~C2b!, and diver-
gent terms have been removed by renormalization. The
parent singularity in the last integral poses no problem, si
it is integrable. The dissipation coefficient is~cf. Appendix
E!:

hs5S 4l f p

N D 2

2
9M 2

~ss!~ms ,0!1~N21!M 2
~pp!~ms ,0!

2ms

5S 4l f p

N D 2 N21

8pms
A12

4mp
2

ms
2

coth
ms

4T
. ~80!

The dissipation coefficienths corresponds to the imaginar
part of the diagram Fig. 3~e!, where the incoming~outgoing!
s particle is on-shell and at rest. Therefore, the dissipa
occurs physically due to the decay of thes into two p ’s
p-
e

n

@22#. The temperature dependence ofhs is shown in Fig. 5.
Note that even atT50, the dissipation coefficient does no
vanish. This is physically plausible, since even then as can
always decay into twop ’s. This means, however, that dis
sipation~and associated fluctuations! persisteven in the ab-
sence of a heat bath. In that case, the fluctuations have to
interpreted asquantumrather than thermal fluctuations.

For T50, and for the parameters of the linears model,
hs5591.45 MeV, which is on the orderms , and thus quite
large. In the chiral limit,mp→0 and atT50, the dissipation
coefficienths→3ms

3/(32p f p
2 )5745.26 MeV, which is even

larger. hs increases withT because of Bose-Einstein en
hancement of the final two-pion state at finiteT.

For the variance of the noise fieldjs(t) the so-called
‘‘white-noise’’ approximation is employed~cf. Appendix G!,
which is consistent with the linear harmonic approximati
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~A5! that made the equation of motion for thes field local in
time and led to the termhs] ts̄(t) in Eq. ~78!. The variance
of the noise fieldjs(t) becomes

^js~ t !js~ t8!&j5
1

V
d~ t2t8!hsms cothFms

2TG , ~81!

where^ &j denotes the average with respect to the Gaus
measure~29!. In the high-temperature limit, coth@ms/2T#
→2T/ms , and the variance coincides with what is know
from the classical fluctuation-dissipation relation, which
employed in most treatments of the subject@7#. However,
due toms@T for the range of temperatures of interest, th
limit is not really applicable. Moreover, it would predict th
the fluctuations vanish atT50, while the dissipation~80!

FIG. 5. The temperature dependence of the dissipation co
cient hs in the casemp5139 MeV ~solid! and in the chiral limit
mp50 ~dotted!.
n

persists. This certainly contradicts the fluctuation-dissipat
theorem. The more general expression~81! resolves this ap-
parent contradiction, since coth@ms/2T#→1 for T→0.
Physically, the fluctuations atT50 are quantum fluctuation
originating from the decay of thes into two p ’s.

For the equation of motion of the pionic modep̄a(t)
5p̄a(t,0)/V one obtains from Eq.~74!:

@] t
21m̃p

2 ~T!#p̄a~ t !1
8l f p

N
s̄~ t !p̄a~ t !

1
4l

N
@s̄2~ t !1p̄~ t !•p̄~ t !#p̄a~ t !

1hp] tp̄a~ t !5jpa
~ t !, ~82!

where

FIG. 6. The temperature dependence of the dissipation co
cient hp .

fi-
m̃p
2 ~T!5mp

2 ~T!14S 4l f p

N D 2

PE dv

2p

M 2
~sp!~v,0!

mp2v
5mp

2 1
4l

N
@D11

~s! ~0!1~N11!D11
~p! ~0!#

1
2

p2S 4l f p

N D 2F E
ms

`

dE
AE22ms

2

ms
424E2mp

2

ms
2

eE/T21
2E

mp

`

dE
AE22mp

2

~ms
222mp

2 !224E2mp
2

ms
222mp

2

eE/T21
G , ~83!
l
ture

e
he

d

x-
and ~cf. Appendix F!

hp5S 4l f p

N D 2

4
M 2

~sp!~mp ,0!

2mp

5S 4l f p

N D 2 ms
2

4pmp
3A12

4mp
2

ms
2

3
12exp@2mp /T#

12exp@2ms
2/2mpT#

3
1

exp@~ms
222mp

2 !/2mpT#21
. ~84!
Damping of pions arises due to the processespp→s and
ps→p, where onep and thes in the incoming channe
come from the heat bath of hard modes. The tempera
dependence ofhp is shown in Fig. 6. Note thathp is small
as compared tohs in the temperature range of interest. Th
reason is the larges mass which strongly suppresses t
phase space for the processespp→s andps→p ~remem-
ber that one pion is at rest!. Obviously, hp vanishes atT
50, because then there is no background of hardp ’s or s ’s.
It also vanishes in the chiral limitmp→0 for all tempera-
tures: truly massless Goldstone bosons are not dampe~at
least to first order inl and fork50). Correspondingly, the
associated noisejpa

has to vanish as well. This can be e
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plicitly seen from the expression for the variance ofjpa
(t) in

white-noise approximation~cf. Appendix G!:

^jpa
~ t !jpb

~ t8!&j5
1

V
dabd~ t2t8!hpmp cothFmp

2TG .
~85!

Finally, it should be mentioned that for the spatially hom
geneous solutions under consideration, cross correlations
tween different noise terms vanish~cf. Appendix G!.

C. Static, spatially homogeneous solutions of the classical
equations of motion

The equations of motion~78! and~82! have the following
interesting consequence. Let us consider a small perturba
(ds̄,dp̄) of the vacuum ground state (s̄,p̄)vac50 and let us
consider the equations of motion only to lowest order
l f p;l1/2. All terms of orderl as well as higher-order term
in ds̄ anddp̄ will be neglected. To this lowest order inl,
the variances of the noise terms vanish, cf. Eqs.~75!, thus
alsojs5jpa

[0, and the equations of motion have the so
tion

ds̄52
4l f p

Nms
2 @3D11

~s! ~0!1~N21!D11
~p! ~0!#, dp̄50.

~86!

This static solution corresponds to aconstant, temperature

dependent shiftof the ground states̄vac50→s̄vac5ds̄(T).
This shift is identical to the well-known change of th
vacuum ground state at finite temperatures@23#. To see this,
let us consider the chiral limitmp→0, where ~for N
54) l5ms

2/(2 f p
2 ), and let us assume thatT!ms , such

thatD11
(s) (0) may be neglected in comparison toD11

(p) (0) in
Eq. ~86!. Then one obtains with Eq.~43!:

f0
vac. f pS 12

T2

8 f p
2 D , ~87!

in agreement with Eq.~30! of @23#.
Let us now resolve the apparent contradiction of Go

stone’s theorem mentioned earlier. It has to be shown tha
the chiral limitmp→0, the mass parameter for the static a
homogeneous solution of Eq.~82! vanishes. In the presen
perturbative treatment, which is accurate to orderl, one may
employ the static solution~86! for the s andp fields in the
equation of motion~82! in all terms which are proportiona
to at least one power ofl f p;l1/2. As shown above, the
noise and fluctuation terms for thep field vanish in the chiral
limit. Thus, to orderl, one is left with the equation of mo
tion:

m̂p
2 ~T!p̄a50, ~88!

where
-
e-

on

-

-
in

m̂p
2 ~T![ lim

mp→0
H mp

2 1
4l

N FD11
~s! ~0!1~N11!D11

~p! ~0!

2
8l f p

2

Nms
2 @3D11

~s! ~0!1~N21!D11
~p! ~0!#

1
16l f p

2

N
PE dv

2p

M 2
~sp!~v,0!

mp2v G J . ~89!

In the limit mp→0, the last integral can be easily calculat
@cf. Eq. ~83!# to yield

m̂p
2 ~T!5

4l

N FD11
~s! ~0!1~N11!D11

~p! ~0!

2
8l f p

2

Nms
2 @3D11

~s! ~0!1~N21!D11
~p! ~0!#

1
16l f p

2

Nms
2 @D11

~s! ~0!2D11
~p! ~0!#G . ~90!

In the chiral limit, the coupling constantl→ms
2/(2 f p

2 ), and

all contributions to the thermal pion mass cancel,m̂p
2 (T)

→0, which completes the proof that Goldstone’s theor
remains valid. In other words, the vanishing ofm̂p(T) im-
plies that there exist nontrivial massless, static, homogene
solutions to the equation of motion~88!, which are, of
course, nothing but theN21 Goldstone bosons. Note tha
the above cancellation of terms is equivalent to the ar
ments presented in@21#.

VI. NUMERICAL SOLUTIONS

In this section, numerical solutions of the classical eq
tions of motion ~78! and ~82! are presented, to asse
whether DCC’s can form in the presence of dissipation a
fluctuation. First, note that the sign of the quantity

@mp
eff~ t,T!#25m̃p

2 ~T!1
8l f p

N
s̄~ t !1

4l

N
@s̄2~ t !1p̄~ t !•p̄~ t !#

~91!

determines the time evolution of the pion fields in the a
sence of fluctuations or dissipation. For@mp

eff(t,T)#2.0, the
pion fields simply perform oscillations with a constant am
plitude, while for@mp

eff(t,T)#2,0 their amplitude grows ex-
ponentially. This exponential growth leads to large amp
tude oscillations and, in turn, to a large number of pions i
given charge state~say p3[p0). The characteristic prob
ability to find the p field aligned in a certain direction in
isospin space leads to a probability for the ratioR of neutral
to all pions ofP(R);1/AR. This characteristic behavior wa
suggested as experimental signature for the formation
DCC’s @3#. Note that@mp

eff(t,T)#2 can be negative only if the

second term in Eq.~91!, i.e., thes̄ field, is large and nega
tive. An explicit calculation confirms that the mass parame
m̃p

2 (T), Eq. ~83!, is an increasing function ofT. Therefore,
exponential growth of the pion fields~and thus formation of
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DCC’s! is most likely ~and fastest! at T50. The following
considerations will therefore be restricted to the case of v
ishing temperature. In that case, however, there is no
bath. Dissipation and fluctuation arise solely from the de
s→pp.

The equations of motion~78!, ~82! are solved with a stan
dard fourth-order Runge-Kutta method. The time step wi
was chosen to beDt50.00232p/ms . The value of the fluc-
tuating fieldjs is a Gaussian random number with varian
hsms /(VDt) @24#. It is chosen at the beginning of each tim
step and kept fixed during the Runge-Kutta step.

In Fig. 7 the potential

U~s!5
ms

2

2
s21

4l f p

N
s31

l

N
s4 ~92!

is shown for N54, ms5600 MeV, and l5(ms
2

2mp
2 )/(2 f p

2 ), wheremp5139 MeV, f p593 MeV ~solid

FIG. 7. The potentialU(s) ~in units of f p
4 ) as function ofs ~in

units of f p). The solid line is formp5139 MeV and the dotted
line for the chiral limitmp50.
n-
at
y

h

line!. This function represents a cut through the poten
energy surface of the linears model atp50, cf. Eq. ~58!.
The absolute minimum, corresponding to the ground state
at s (1)50. There is another local minimum ats (2).
21.87f p , and a local maximum ats (3).21.13f p . In the
chiral limit, mp→0, s (2)→22 f p , while s (3)→0 ~cf. dot-
ted line!. Trajectories which are likely candidates for DC
formation obviously start ats,s (3), and small nonzero val-
ues ofp ~this is necessary because otherwisep50 remains
a solution throughout the system’s evolution!.

A representative candidate is shown in Fig. 8. In part~a!,

the time evolution ofs̄ andp̄ fields are shown for the initia

conditions s̄521.14f p ,p̄150.002f p ,p̄2520.001f p ,p̄3

50.001f p . The derivatives of the fields are taken to be ze
initially. Dissipation and fluctuation terms have also been
to zero for the solution shown in Fig. 8. One observes t

the s̄ field first ‘‘rolls’’ towards the minimums (2) of the
potential~92!. Since this minimum is unstable in the dire

tion of the p̄ fields, thes̄ field ‘‘rolls’’ on towards the ab-
solute minimums (1)50. During this process thep̄ fields
grow. This growth is characterized by negative values
@mp

eff(T)#2 or of sgn$@mp
eff(T)#2%ump

eff(T)u, as shown in part
~b! of Fig. 8. At this level, the evolution is conservative, an
the system continues to oscillate around the ground st
since there is no way to dissipate the ‘‘potential energ
associated with the chosen initial state. This potential ene
is simply converted into kinetic energy and vice versa in
course of the evolution. This also explains why the syst
periodically reaches the vicinity of the unstable minimu
s (2). This changes once dissipation and fluctuation is ta
into account~it would also change if we solved the equatio
of motion in expanding geometries@7,25#!. The large-
amplitude fluctuations of the pion fields make the obser
tion of DCC formation experimentally possible.

Figure 9~a! shows a sample trajectory including dissip
tion and fluctuation terms in a comparatively large volum
V51000 fm3 with the same initial conditions as in Fig. 8
Dissipation and fluctuations damp the oscillations of t
fields, and they settle into the ground state. The time sc
for this to happen is, for the sample trajectory shown he
-
FIG. 8. ~a! Classical trajectories without dis

sipation and fluctuations fors̄ ~solid!, p̄1 ~dot-

ted!, p̄2 ~dashed!, andp̄3 ~dash-dotted!, in units

of f p . Initial values are s̄521.14f p ,p̄1

50.002f p ,p̄2520.001f p ,p̄350.001f p . ~b!
The function sgn$@mp

eff#2% ump
effu ~in units of f p).
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FIG. 9. ~a! Trajectories with dissipation and

fluctuations for s̄ ~solid!, p̄1 ~dotted!, p̄2

~dashed!, and p̄3 ~dash-dotted!, in units of f p .
Initial values are the same as in Fig. 8, the vo
ume of the system isV51000 fm3. ~b! The
function sgn$@mp

eff#2%ump
effu ~in units of f p).
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about 10 fm. During this time, the pion fields oscilla
strongly. Therefore, DCC formation would still be obser
able, if the system were to decouple after the first 10 fm

This conclusion holds, however, only for theone particu-
lar trajectory shown in Fig. 9, i.e., for one particular choi
for the time evolution of the randomly fluctuating forcesjs .
For adifferentrandom sequence, the time scale for damp
could be larger or smaller. In a strict sense, one would h
to average over an ensemble of time evolutions forjs for a
given set of initial conditions for the fields@24#. The result of
such an averaging is, however, predictable: on the ave
the fluctuations tend to cancel, and the ensemble averag
s̄ and p̄ fields are constant in time. The assumed valu
depend, however, on the strength of the fluctuations,
sincejs;1/AV, on the volume of the system. In large vo
umes, the fluctuations are not strong enough to ‘‘kick’’ thes̄
field too far out of the ground state. On the other hand
small volumes the fluctuations may have enough strengt
let the s̄ field reach the unstable minimums (2). Therefore,
the ensemble average of thes̄ field decreases towards2 f p

as the volume of the system decreases~on the average, thes̄
g
e

ge
of

s
.,

n
to

field tends to be anywhere between the two minimas (1) and
s (2), i.e., on the average, close to2 f p). The ensemble av-
erages of the pion fields, however, are always zero@since the
potentialU(s,p) is symmetric with respect top→2p].

In Fig. 10 the time evolution of the fields is shown for
small volumeV510 fm3, for the same initial conditions
~and the same random sequence forjs) as in the previous
two figures. As discussed above, in this case fluctuations
large enough to drive the system out of the ground state

induce disorientation of thep̄ fields. One could speculat
that the formation of DCC’s is facilitated insmaller vol-
umes, i.e., it should be more likely to observe them in co
sions of lighter ions, or evenpp collisions. This could also
provide an explanation for the CENTAURO events@15#,
where heavy ions are not likely to play any role as collisi
partner. To confirm this, however, a more detailed investi
tion in an expanding geometry, with a realistic evolution f
the temperature in the collision, and including modes w
finite k ~to study domain formation! is necessary@16#.

The problem with large-scale fluctuations in small vo
umes is, however, that one does not necessarily need to
l-
FIG. 10. ~a! Trajectories with dissipation and

fluctuations for s̄ ~solid!, p̄1 ~dotted!, p̄2

~dashed!, and p̄3 ~dash-dotted!, in units of f p .
Initial values are the same as in Fig. 8, the vo
ume of the system isV510 fm3. ~b! The func-
tion sgn$@mp

eff#2%ump
effu ~in units of f p).
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FIG. 11. ~a! Trajectories with dissipation and

fluctuations for s̄ ~solid!, p̄1 ~dotted!, p̄2

~dashed!, and p̄3 ~dash-dotted!, in units of f p .

Initial values are s̄50, p̄150.002f p , p̄25

20.001f p , p̄350.001f p , the volume of the
system is V510 fm3. ~b! The function
sgn$@mp

eff#2%ump
effu ~in units of f p).
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restore chiral symmetry to observe them. In Fig. 11 a ti
evolution is shown in a volumeV510 fm3 for the
initial condition s̄50,p̄150.002f p ,p̄2520.001f p ,p̄3

50.001f p , i.e., the initial values of thep̄ fields are the same
as before, but thes̄ field is taken to be zero. The stron
fluctuationsjs drive thes̄ field out of the ground state, an
the small initial perturbations of the pion fields are strong
enhanced over a time scale of.10 fm to produce large-
amplitude oscillations~and thus DCC formation!. Note that
the s̄ field is always subject to these volume-dependent fl
tuations, but if one starts with the true ground state,s̄5p̄
50, as initial condition, the pion fields are not affected a
remain zero throughout the evolution of the system. The c
clusion would be that, in the presence of strong fluctuatio
DCC formation is not necessarily a signal for restoration
chiral symmetry, a small perturbation of the ground state
the p direction seems to suffice. However, it is likely th
this at first glance rather interesting phenomenon is ph
cally identical with ~and thus indistinguishable from! ordi-
nary fluctuations in finite volumes.
e

-

n-
s,
f
n

i-

Note that in principle there is a minimum volumeVmin
below which the dissipation coefficienths becomes zero: in
order to havehs.0, thes at rest has to be able to decay in
two pions with finite, but opposite momenta. The lowe
nonzero momentum state for a particle in a box of volu
V5L3 is k5(p/L,0,0). Energy conservation in the deca
process requires 2Ek

(p)[ms , or Lmin52p/Ams
224mp

2 , or
Vmin.12.68 fm3, i.e., the caseV510 fm3 considered above
is just on the order of the physically possible minimum vo
ume. In the present treatment, however, no attempt has b
made to take such finite-size effects into account in a rig
ous manner.
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APPENDIX A: EVALUATION OF THE INTERACTION TERMS IN THE O„N… SYMMETRIC CASE

In this appendix, the evaluation of the interaction termsT a
( i )(t,k) in linear harmonic approximation is presented for t

O(N) model in the symmetric case. Let us first define the functions

M1~x!5D.~x!2D,~x!, ~A1a!

M2~x!5D.
2 ~x!2D,

2 ~x!, ~A1b!

M3~x!5D.
3 ~x!2D,

3 ~x! ~A1c!

~called ‘‘memory kernels’’ in@8#!, such that with Eqs.~38! and ~39!:

M1~v,k!5Q~ uku2kc!
2p

2Ek
@d~v2Ek!2d~v1Ek!#, ~A2a!
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M2~v,k!52pE d3p

~2p!3
Q~ upu2kc!Q~ uk2pu2kc!

1

4EpEk2p
$„@11n~Ep!#@11n~Ek2p!#2n~Ep!n~Ek2p!…

3@d~v2Ep2Ek2p!2d~v1Ep1Ek2p!#1„@11n~Ep!#n~Ek2p!2n~Ep!@11n~Ek2p!#…

3@d~v2Ep1Ek2p!2d~v1Ep2Ek2p!#%, ~A2b!

M3~v,k!52pE d3pd3q

~2p!6
Q~ upu2kc!Q~ uqu2kc!Q~ uk2p2qu2kc!

1

8EpEqEk2p2q
$„@11n~Ep!#@11n~Eq!#@11n~Ek2p2q!#

2n~Ep!n~Eq!n~Ek2p2q!…@d~v2Ep2Eq2Ek2p2q!2d~v1Ep1Eq1Ek2p2q!#

13„@11n~Ep!#@11n~Eq!#n~Ek2p2q!2n~Ep!n~Eq!@11n~Ek2p2q!#…

3@d~v2Ep2Eq1Ek2p2q!2d~v1Ep1Eq2Ek2p2q!#%. ~A2c!

Note that all functions fulfill the symmetry relationMi(v,k)52Mi(2v,k). Then, Eqs.~49! can be written as

T a
~1!~x![(

b
@w̄~x!•w̄~x!dab12w̄a~x!w̄b~x!#E d3k

~2p!3
eik•xY b

~1!~x0 ,k!, ~A3a!

T a
~2!~x![(

b,c
@~N14!w̄a~x!dbc14w̄b~x!dac#E d3k

~2p!3
eik•xY bc

~2!~x0 ,k!, ~A3b!

T a
~3!~x![2~N12!E d3k

~2p!3
eik•xY a

~3!~x0 ,k!, ~A3c!

where~for t i→2`)

Y b
~1!~x0 ,k![E dv

2p
M1~v,k!E d3pd3q

~2p!6
Q~kc2upu!Q~kc2uqu!Q~kc2uk2p2qu!

3 i E
0

`

dte2 ivtw̄b~x02t,k2p2q!w̄~x02t,p!•w̄~x02t,q!, ~A4a!

Y bc
~2!~x0 ,k![E dv

2p
M2~v,k!E d3p

~2p!3
Q~kc2upu!Q~kc2uk2pu!i E

0

`

dte2 ivtw̄b~x02t,p!w̄c~x02t,k2p!, ~A4b!

Y a
~3!~x0 ,k![E dv

2p
M3~v,k!Q~kc2uku!i E

0

`

dte2 ivtw̄a~x02t,k!. ~A4c!

Further evaluation is possible by employing the so-called linear harmonic approximation@8# for the time evolution of the
classical fields:

w̄~ t2t,k!.cos~Ekt!w̄~ t,k!2
sin~Ekt!

Ek
] tw̄~ t,k!. ~A5!

This eliminates thet integrals over the history of the classical fields, rendering the final expressions local in time. Usi
symmetry ofMi underv→2v and the relation

E
0

`

dtei ~x2v!t5 iP
1

x2v
1pd~x2v!, ~A6!

whereP denotes the principal value, one obtains
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Y b
~1!~ t,k!.E d3pd3q

~2p!6
Q~kc2upu!Q~kc2uqu!Q~kc2uk2p2qu!H 2

1

4
PE dv

2p
M1~v,k!F 1

E11E21E32v
1

2

E11E22E32v

1
1

E12E22E32v G w̄b~ t,k2p2q!w̄~ t,p!•w̄~ t,q!1
1

4E2E3
PE dv

2p
M1~v,k!F 1

E11E21E32v

2
2

E11E22E32v
1

1

E12E22E32vG w̄b~ t,k2p2q!] tw̄~ t,p!•] tw̄~ t,q!1
1

2E1E3
PE dv

2p
M1~v,k!

3F 1

E11E21E32v
2

1

E11E22E32v
1

1

E12E21E32v
2

1

E12E22E32vG] tw̄b~ t,k2p2q!w̄~ t,p!•] tw̄~ t,q!

2
1

4E3
@M1~E11E21E3 ,k!2M1~E11E22E3 ,k!1M1~E12E21E3 ,k!2M1~E12E22E3 ,k!#

3w̄b~ t,k2p2q!w̄~ t,p!•] tw̄~ t,q!2
1

8E1
@M1~E11E21E3 ,k!12M1~E11E22E3 ,k!1M1~E12E22E3 ,k!#

3] tw̄b~ t,k2p2q!w̄~ t,p!•w̄~ t,q!1
1

8E1E2E3
@M1~E11E21E3 ,k!22M1~E11E22E3 ,k!

1M1~E12E22E3 ,k!#] tw̄b~ t,k2p2q!] tw̄~ t,p!•] tw̄~ t,q!J , ~A7!

whereE1[Ek2p2q ,E2[Ep ,E3[Eq . For N51, this expression reduces~up to a constant prefactor due to the differen
betweenM (e) andM1) to Eq. ~50! of @8#. Furthermore,

Y bc
~2!~ t,k!.E d3p

~2p!3
Q~kc2upu!Q~kc2uk2pu!H 2

1

2
PE dv

2p
M2~v,k!F 1

E11E22v
1

1

E12E22v G w̄b~ t,p!w̄c~ t,k2p!

1
1

2E1E2
PE dv

2p
M2~v,k!F 1

E11E22v
2

1

E12E22vG] tw̄b~ t,p!] tw̄c~ t,k2p!

2
1

4E1
@M2~E11E2 ,k!1M2~E12E2 ,k!#w̄b~ t,p!] tw̄c~ t,k2p!

2
1

4E2
@M2~E11E2 ,k!2M2~E12E2 ,k!#] tw̄b~ t,p!w̄c~ t,k2p!J , ~A8!
e

-

where E1[Ek2p ,E2[Ep . For N51, this is equivalent to
Eq. ~49! of @8#. ~There is a factor of 2 missing in front of th
last term of that equation.! Finally,

Y a
~3!~ t,k!.2Q~kc2uku!FPE dv

2p

M3~v,k!

Ek2v
w̄a~ t,k!

1
M3~Ek ,k!

2Ek
] tw̄a~ t,k!G , ~A9!

which is equivalent to Eq.~48! of @8#. Then, the final expres
sions for the functionsT a

( i )(t,k) read
T a
~1!~ t,k!.E d3pd3q

~2p!6
Q~kc2upu!Q~kc2uqu!

3(
b

@w̄~ t,p!•w̄~ t,q!dab

12w̄a~ t,p!w̄b~ t,q!#Y b
~1!~ t,k2p2q!,

~A10a!

T a
~2!~ t,k!.E d3p

~2p!3
Q~kc2upu!(

b,c
@~N14!w̄a~ t,p!dbc

14w̄b~ t,p!dac#Y bc
~2!~ t,k2p!, ~A10b!
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T a
~3!~ t,k!.2~N12!Y a

~3!~ t,k!. ~A10c!

APPENDIX B: THE DISSIPATION COEFFICIENT
IN THE O„N… SYMMETRIC CASE

In order to derive the dissipation coefficient~54! one has
to compute the functionM3(m,0). In the limit kc→0 and
for v5m.0, k50, one first observes that thed functions
corresponding to the decay of one particle into three and
reverse reaction@the second and third line in Eq.~A2c!# have
no support in this kinematic range. The only remaining co
tribution comes from the scattering of the particle at rest w
a particle from the heat bath of hard modes@the last two lines
in Eq. ~A2c!#. Since the particles from the heat bath a
supposed to be in thermal equilibrium,n(x)5@ex/T21#21,
the reaction rates observe the detailed balance criterion,
other words, with the energy-conservingd functions one can
rewrite the contribution from the reverse reaction in terms
a factore2v/T times the original reaction rate. Then,

M3~m,0!5
3p

4
~12exp@2m/T# !E d3pd3q

~2p!6

1

EpEqEp1q

3@11n~Ep!#@11n~Eq!#n~Ep1q!

3d~Ep1q1m2Ep2Eq!. ~B1!

@The lastd function in the last line of Eq.~A2c! has also no
support forv5m.0.] This integral is most easily evaluate
as follows. Let us first definep[upu, q[uqu, Ex

[Ax21m2. The angular integration~involving the angle be-
tweenp andq) is substituted by an integration overEp1q ,
with the JacobiandEp1q /dcos(p,q)5pq/Ep1q . This allows
for a simple evaluation of this integral with the help of thed
function:

M3~m,0!5
3

32p3
~12exp@2m/T# !E

0

`dpp

Ep
@11n~Ep!#

3E
0

`dqq

Eq
@11n~Eq!#n~Ep1Eq2m!

3Q~Ep1q1m2Ep2Eq!

3Q~Ep1Eq2m2Ep2q!. ~B2!

The Q functions are equivalent to the constraints

pq>~Ep2m!~Eq2m!>2pq. ~B3!
e

-
h

in

f

The right inequality is trivially fulfilled (Ep>m), while the
left is also true for all values ofp and q, since Ep

2<(p
1m)2. Therefore, theQ functions do not impose additiona
constraints on thep and q integrations and can be simpl
omitted. Introducing the dimensionless variablesa[m/T,
x[Ep /T, y[Eq /T, abbreviating N(x)[(ex21)21, and
noting that

@11N~y!#N~x1y2a!5N~x2a!
d

dy
ln

12e2y

ea2x2y21
,

~B4!

one arrives at

M3~m,0!5
3T2

32p3
~12e2a!E

a

`

dx@11N~x!#N~x2a!

3 ln
12e2x

12e2a
. ~B5!

Introducing t[e2a, substituting u5e2x, and then
z5(u2t)/(12u), one obtains the final result

M3~m,0!5
3T2

32p3
Li 2~e2m/T!, ~B6!

where

Li2~ t ![2E
0

1dz

z
ln~12zt! ~B7!

is the dilogarithm, or Spence’s integral.

APPENDIX C: THE INTERACTION TERMS
IN THE EQUATION OF MOTION FOR THE s FIELD

In analogy to Eqs.~A1! let us define

M 1
~ i !~x!5D.

~ i !~x!2D,
~ i !~x!, ~C1a!

M 2
~ i j !~x!5D.

~ i !~x!D.
~ j !~x!2D,

~ i !~x!D,
~ j !~x!,

i , j 5s or p. ~C1b!

The Fourier transforms are rather similar to those in E
~A2!:
M 1
~ i !~v,k!5Q~ uku2kc!

2p

2Ek
~ i !

@d~v2Ek
~ i !!2d~v1Ek

~ i !!#, ~C2a!

M 2
~ i j !~v,k!52pE d3p

~2p!3
Q~ upu2kc!Q~ uk2pu2kc!

1

4Ep
~ i !Ek2p

~ j ! $„@11n~Ep
~ i !!#@11n~Ek2p

~ j ! !#2n~Ep
~ i !!n~Ek2p

~ j ! !…

3@d~v2Ep
~ i !2Ek2p

~ j ! !2d~v1Ep
~ i !1Ek2p

~ j ! !#1„@11n~Ep
~ i !!#n~Ek2p

~ j ! !2n~Ep
~ i !!@11n~Ek2p

~ j ! !#…

3@d~v2Ep
~ i !1Ek2p

~ j ! !2d~v1Ep
~ i !2Ek2p

~ j ! !#%. ~C2b!
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Then, the termsT s
( i )(x) in the classical equation of motion for thes field read

T s
~1!~x![6s̄~x!E d3k

~2p!3
eik•xS ~1!~x0 ,k!, ~C3a!

T s
~2!~x![4(

a
p̄a~x!E d3k

~2p!3
eik•xS a

~2!~x0 ,k!, ~C3b!

T s
~3!~x![E d3k

~2p!3
eik•xS ~3!~x0 ,k!, ~C3c!

where~for t i→2`):

S ~1!~x0 ,k![E dv

2p
M 1

~s!~v,k!E d3p

~2p!3
Q~kc2upu!Q~kc2uk2pu!i E

0

`

dte2 ivt@3s̄~x02t,k2p!s̄~x02t,p!

1p̄~x02t,k2p!•p̄~x02t,p!#, ~C4a!

S a
~2!~x0 ,k![E dv

2p
M 1

~p!~v,k!E d3p

~2p!3
Q~kc2upu!Q~kc2uk2pu!i E

0

`

dte2 ivtp̄a~x02t,p!s̄~x02t,k2p!, ~C4b!

S ~3!~x0 ,k![2E dv

2p
@9M 2

~ss!~v,k!1~N21!M 2
~pp!~v,k!#Q~kc2uku!i E

0

`

dte2 ivts̄~x02t,k!. ~C4c!

In the linear harmonic approximation~A5! these terms become

S ~1!~ t,k!.E d3p

~2p!3
Q~kc2upu!Q~kc2uk2pu!H 2

3

2
PE dv

2p
M 1

~s!~v,k!F 1

E1
~s!1E2

~s!2v
1

1

E1
~s!2E2

~s!2v
G

3s̄~ t,p!s̄~ t,k2p!1
3

2E1
~s!E2

~s!
PE dv

2p
M 1

~s!~v,k!F 1

E1
~s!1E2

~s!2v
2

1

E1
~s!2E2

~s!2v
G] ts̄~ t,p!] ts̄~ t,k2p!

2
1

2
PE dv

2p
M 1

~s!~v,k!F 1

E1
~p!1E2

~p!2v
1

1

E1
~p!2E2

~p!2v
G p̄~ t,p!•p̄~ t,k2p!

1
1

2E1
~p!E2

~p!
PE dv

2p
M 1

~s!~v,k!F 1

E1
~p!1E2

~p!2v
2

1

E1
~p!2E2

~p!2v
G] tp̄~ t,p!•] tp̄~ t,k2p!

2
3

2E2
~s!

@M 1
~s!~E1

~s!1E2
~s! ,k!2M 1

~s!~E1
~s!2E2

~s! ,k!#] ts̄~ t,p!s̄~ t,k2p!

2
1

2E2
~p!

@M 1
~s!~E1

~p!1E2
~p! ,k!2M 1

~s!~E1
~p!2E2

~p! ,k!#] tp̄~ t,p!•p̄~ t,k2p!J , ~C5a!

S a
~2!~ t,k!.E d3p

~2p!3
Q~kc2upu!Q~kc2uk2pu!H 2

1

2
PE dv

2p
M 1

~p!~v,k!F 1

E1
~s!1E2

~p!2v
1

1

E1
~s!2E2

~p!2v
G

3p̄a~ t,p!s̄~ t,k2p!1
1

2E1
~s!E2

~p!
PE dv

2p
M 1

~p!~v,k!F 1

E1
~s!1E2

~p!2v
2

1

E1
~s!2E2

~p!2v
G] tp̄a~ t,p!] ts̄~ t,k2p!

2
1

4E1
~s!

@M 1
~p!~E1

~s!1E2
~p! ,k!1M 1

~p!~E1
~s!2E2

~p! ,k!#p̄a~ t,p!] ts̄~ t,k2p!

2
1

4E2
~p!

@M 1
~p!~E1

~s!1E2
~p! ,k!2M 1

~p!~E1
~s!2E2

~p! ,k!#] tp̄a~ t,p!s̄~ t,k2p!J , ~C5b!
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S ~3!~ t,k!.22Q~kc2uku!F PE dv

2p

9M 2
~ss!~v,k!1~N21!M 2

~pp!~v,k!

Ek
~s!2v

s̄~ t,k!

1
9M 2

~ss!~Ek
~s! ,k!1~N21!M 2

~pp!~Ek
~s! ,k!

2Ek
~s!

] ts̄~ t,k!G , ~C5c!
r

f

line

f

u-

of
whereE1
( i )5Ek2p

( i ) and E2
( i )5Ep

( i ) . The final expressions fo
T s

( i )(t,k) are

T s
~1!~ t,k!.6E d3p

~2p!3
Q~kc2upu!s̄~ t,p!S ~1!~ t,k2p!,

~C6a!

T s
~2!~ t,k!.4E d3p

~2p!3
Q~kc2upu!(

a
p̄a~ t,p!S a

~2!~ t,k2p!,

~C6b!

T s
~3!~ t,k!.S ~3!~ t,k!. ~C6c!

SinceM 1
( i )(v,0)[0, cf. Eq.~C2a!, it follows from relations

~C5! and ~C6! that for kc→0, T s
(1)(t,0)5T s

(2)(t,0)[0.

APPENDIX D: THE INTERACTION TERMS
IN THE EQUATION OF MOTION FOR THE p FIELD

The interaction terms in the equation of motion for thep̄
field are

T pa

~1!~x![2p̄a~x!E d3k

~2p!3
eik•xP ~1!~x0 ,k!, ~D1a!

T pa

~2!~x![4s̄~x!E d3k

~2p!3
eik•xP a

~2!~x0 ,k!, ~D1b!

T pa

~3!~x![E d3k

~2p!3
eik•xP a

~3!~x0 ,k!, ~D1c!

where P (1)(x0 ,k)[S (1)(x0 ,k), and P a
(2)(x0 ,k)

[S a
(2)(x0 ,k), cf. Eqs.~C4a! and ~C4b!, while

P a
~3!~x0 ,k![4E dv

2p
M 2

~sp!~v,k!Q~kc2uku!

3 i E
0

`

dte2 ivtp̄a~x02t,k!. ~D2!

In linear harmonic approximation we therefore obtain:

T pa

~1!~ t,k!.2E d3p

~2p!3
Q~kc2upu!p̄a~ t,p!S ~1!~ t,k2p!,

~D3a!
T pa

~2!~ t,k!.4E d3p

~2p!3
Q~kc2upu!s̄~ t,p!S a

~2!~ t,k2p!,

~D3b!

T pa

~3!~ t,k!.24Q~kc2uku!F PE dv

2p

M 2
~sp!~v,k!

Ek
~p!2v

p̄a~ t,k!

1
M 2

~sp!~Ek
~p! ,k!

2Ek
~p!

] tp̄a~ t,k!G . ~D3c!

Again, sinceM 1
( i )(v,0)[0, cf. Eq.~A2a!, it follows for kc

→0 thatT pa

(1)(t,0)5T pa

(2)(t,0)[0.

APPENDIX E: THE DISSIPATION COEFFICIENT
FOR THE s FIELD

The dissipation coefficienths in the classical equation o
motion for s̄(t), Eq. ~78! is defined by

hs[S 4l f p

N D 2

2
9M 2

~ss!~ms ,0!1~N21!M 2
~pp!~ms ,0!

2ms
,

~E1!

whereM 2
( i j )(v,k) is given by Eq.~C2b!. M 2

(ss)(ms ,0)
describes the decay of as at rest into twos ’s @and the
reverse reaction, corresponding to the second and third
of Eq. ~C2b!#, and the absorption of as by a s at rest,
producing as @corresponding to the fourth and fifth line o
Eq. ~C2b!#.

However, as at rest cannot decay into twos ’s by energy
conservation~similarly, two s ’s cannot annihilate to form
one!, and also the absorption of as by as at rest, producing
a s, is also impossible. Therefore,M 2

(ss)(ms ,0)[0. Math-
ematically, this is immediately obvious inspecting the arg
ments of thed functions in Eq.~C2b! with v[ms ,k50.

Similar arguments prevent the absorption of ap by as at
rest, producing ap, but the decay of a heavys at rest into
two light p ’s ~and the corresponding reverse reaction
pp→s) is always possible~providedms.2mp). Therefore
~utilizing detailed balance, and taking the limitkc→0),

M 2
~pp!~ms ,0!52p~12exp@2ms /T# !

3E d3k

~2p!3
@2Ek

~p!#22@11n~Ek
~p!!#2

3d~ms22Ek
~p!!
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5
1

8p
A12

4mp
2

ms
2

11exp@2ms/2T#

12exp@2ms/2T#
. ~E2!

Note that this expression is nonzero even at vanishing t
perature. The dissipation coefficient becomes

hs5S 4l f p

N D 2 N21

8pms
A12

4mp
2

ms
2

coth
ms

4 T
. ~E3!

APPENDIX F: THE DISSIPATION COEFFICIENT
FOR THE p FIELD

The dissipation coefficienthp in the classical equation o
motion for p̄a(t), Eq. ~82!, is defined by
-

hp[S 4l f p

N D 2

4
M 2

~sp!~mp ,0!

2mp
, ~F1!

whereM 2
( i j )(v,k) is the Fourier transform ofM 2

( i j )(x),
Eq. ~C2b!. M 2

(sp)(mp ,0) describes the decay of ap at
rest into a p and a s @and the reverse reaction, corre
sponding to the second and third line of Eq.~C2b!#, and the
absorption of ap or s by ap at rest, producing as or ap,
respectively@corresponding to the fourth and fifth line of Eq
~C2b!#.

The decay of ap into s andp and the reverse process
kinematically forbidden. The remaining contribution rea
with detailed balance~and taking the limitkc→0):
M 2
~sp!~mp ,0!52p~12exp@2mp /T# !E d3k

~2p!3

11n~Ek
~s!!

2Ek
~s!

n~Ek
~p!!

2Ek
~p!

d~Ek
~p!1mp2Ek

~s!!

5
1

8p

ms
2

mp
2A12

4mp
2

ms
2

12exp@2mp /T#

12exp@2ms
2/2mpT#

1

exp@~ms
222mp

2 !/2mpT#21
. ~F2!

The dissipation coefficient therefore becomes

hp5S 4l f p

N D 2 ms
2

4pmp
3A12

4mp
2

ms
2

12exp@2mp /T#

12exp@2ms
2/2mpT#

1

exp@~ms
222mp

2 !/2mpT#21
. ~F3!

This expression vanishes atT50 and in the limitmp→0.

APPENDIX G: THE VARIANCES OF THE NOISE FIELDS

The variances of the noise fields are given by Eqs.~75!. In order to evaluate them, let us define in analogy to Eqs.~C1! the
‘‘noise kernels’’

N 1
~ i !~x![D.

~ i !~x!1D,
~ i !~x!, ~G1a!

N 2
~ i j !~x![D.

~ i !~x!D.
~ j !~x!1D,

~ i !~x!D,
~ j !~x!, i , j 5s or p. ~G1b!

Their Fourier transforms are quite similar to those ofM 1
( i ) andM 2

( i j ) :

N 1
~ i !~v,k!5Q~ uku2kc!

2p

2Ek
~ i !

@112n~Ek
~ i !!#@d~v2Ek

~ i !!1d~v1Ek
~ i !!#, ~G2a!

N 2
~ i j !~v,k!52pE d3p

~2p!3
Q~ upu2kc!Q~ uk2pu2kc!

1

4Ep
~ i !Ek2p

~ j ! $„@11n~Ep
~ i !!#@11n~Ek2p

~ j ! !#1n~Ep
~ i !!n~Ek2p

~ j ! !…

3@d~v2Ep
~ i !2Ek2p

~ j ! !1d~v1Ep
~ i !1Ek2p

~ j ! !#1„@11n~Ep
~ i !!#n~Ek2p

~ j ! !1n~Ep
~ i !!@11n~Ek2p

~ j ! !#…

3@d~v2Ep
~ i !1Ek2p

~ j ! !1d~v1Ep
~ i !2Ek2p

~ j ! !#%. ~G2b!

Using the fact that the hard modes are distributed according to the Bose-Einstein distribution functionn(E)5(eE/T21)21,
one can show that@cf. Eq. ~66! of @8##

N 1
~ i !~v,k![M 1

~ i !~v,k!cothF v

2TG , ~G3a!
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N 2
~ i j !~v,k![M 2

~ i j !~v,k! cothF v

2TG . ~G3b!

For the Fourier transforms ofIab(x,y) one therefore derives (t i→2`,t f→1`):

Iss~k0 ,k;q0 ,q![E
t i

t f
d4xd4yei ~k0x02k•x1q0y02q•y!Iss~x,y!5S 4l f p

N D 2H E dp0 d3p

~2p!4
Q~kc2upu!Q~kc2uk1q2pu!

3F18s̄~p0 ,p!N 1
~s!~k02p0 ,k2p!s̄~k01q02p0 ,k1q2p!

12(
a

p̄a~p0 ,p!N 1
~p!~k02p0 ,k2p!p̄a~k01q02p0 ,k1q2p!G

1~2p!4d~k01q0!d~3!~k1q!@9N 2
~ss!~k0 ,k!1~N21!N 2

~pp!~k0 ,k!#J , ~G4a!

Ispa
~k0 ,k;q0 ,q!5S 4l f p

N D 2E dp0 d3p

~2p!4
Q~kc2upu!Q~kc2uk1q2pu!

3@6s̄~p0 ,p!N 1
~s!~k02p0 ,k2p!p̄a~k01q02p0 ,k1q2p!

12p̄a~p0 ,p!N 1
~p!~k02p0 ,k2p!s̄~k01q02p0 ,k1q2p!#, ~G4b!

Ipapb
~k0 ,k;q0 ,q!5S 4l f p

N D 2H E dp0d3p

~2p!4
Q~kc2upu!Q~kc2uk1q2pu!

3@2p̄a~p0 ,p!N 1
~s!~k02p0 ,k2p!p̄b~k01q02p0 ,k1q2p!

12dabs̄~p0 ,p!N 1
~p!~k02p0 ,k2p!s̄~k01q02p0 ,k1q2p!#

12dab~2p!4d~k01q0!d~3!~k1q!N 2
~sp!~k0 ,k!J . ~G4c!

The focus of interest are the spatially homogeneous noise terms,k5q50. For this case, all integrals vanish in these expr
sions due to the fact thatN 1

( i )(v,k) is proportional toQ(uku2kc), cf. Eq. ~G2a!. This has the further consequence that
cross correlations between the noise fields vanish,Iab;dab . Using (2p)3d (3)(k1q)[Vdk1q,0

(3) one arrives at

Iss~k0 ,0;q0 ,0!5V2pd~k01q0!S 4l f p

N D 2

@9N 2
~ss!~k0 ,0!1~N21!N 2

~pp!~k0 ,0!#, ~G5a!

Ipapb
~k0 ,0;q0 ,0!5dabV2pd~k01q0!S 4l f p

N D 2

2N 2
~sp!~k0 ,0!. ~G5b!

For the variance of the noise fieldsjs(t) andjpa
(t) one therefore obtains

^js~ t !js~ t8!&j[ K js~ t,0!

V

js~ t8,0!

V L
j

5E dk0 dq0

~2p!2
ei ~k0t1q0t8!K js~2k0 ,0!

V

js~2q0 ,0!

V L
j

5E dk0dq0

~2p!2
ei ~k0t1q0t8!

1

V2
Iss~k0 ,0;q0 ,0!

5E dk0

2p
eik0~ t2t8!

1

VS 4l f p

N D 2

@9N 2
~ss!~k0 ,0!1~N21!N 2

~pp!~k0 ,0!#, ~G6a!

^jpa
~ t !jpb

~ t8!&j5dabE dk0

2p
eik0~ t2t8!

1

VS 4l f p

N D 2

2N 2
~sp!~k0 ,0!. ~G6b!
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Here, ^ &j is the average with respect to the Gaussian measure~29!. Further evaluation is simplified by approximatin
N 2

(ss)(k0 ,0).N 2
(ss)(ms ,0), N 2

(pp)(k0 ,0).N 2
(pp)(ms ,0), N 2

(sp)(k0 ,0).N 2
(sp)(mp ,0), i.e., taking the energyk0 to be the

on-shell energy~i.e., sincek50 for boths andp fields, the mass! of the respective particle. This approximation is consist
with the linear harmonic approximation which puts the energy in theM2 functions on-shell. The consequence is that thek0
integral can be performed, yielding with Eqs.~G3!, ~E1!, and~F1!

^js~ t !js~ t8!&j.d~ t2t8!
1

V
mshscothFms

2TG , ~G7a!

^jpa
~ t !jpb

~ t8!&j.dabd~ t2t8!
1

V
mphpcothFmp

2TG . ~G7b!

The d function corresponds to white noise. Therefore, this approximation will be called ‘‘white-noise’’ approximation.
.
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