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Electron-deuteron scattering in a current-conserving description of relativistic bound states:
Formalism and impulse approximation calculations

D. R. Phillips* and S. J. Wallace†

Department of Physics and Center for Theoretical Physics, University of Maryland, College Park, Maryland 20742-4111

N. K. Devine‡
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~Received 20 February 1998!

The electromagnetic interactions of a relativistic two-body bound state are formulated in three dimensions
using an equal-time~ET! formalism. This involves a systematic reduction of four-dimensional dynamics to a
three-dimensional form by integrating out the time components of relative momenta. A conserved electromag-
netic current is developed for the ET formalism. It is shown that consistent truncations of the electromagnetic
current and theNN interaction kernel may be made, order by order, in the coupling constants, such that
appropriate Ward-Takahashi identities are satisfied. A meson-exchange model of theNN interaction is used to
calculate deuteron vertex functions. Calculations of electromagnetic form factors for elastic scattering of
electrons by deuterium are performed using an impulse-approximation current. Negative-energy components of
the deuteron’s vertex function and retardation effects in the meson-exchange interaction are found to have only
minor effects on the deuteron form factors.@S0556-2813~98!05910-X#

PACS number~s!: 25.30.Bf, 24.10.Jv, 11.10.St
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I. INTRODUCTION AND SUMMARY OF RESULTS

Experiments being performed at the Thomas Jeffer
National Accelerator Facility~TJNAF! are designed to tes
our understanding of deuteron properties at spacelike
mentum transfers comparable to the nucleon mass. In bu
ing theoretical models of these processes, relativistic k
matics and dynamics would seem to be called for. Hen
considerable theoretical effort has been invested in constr
ing relativistic formalisms for the two-nucleon bound sta
that are based on an effective quantum-field-theory Lagra
ian. If the usual hadronic degrees of freedom appear in
Lagrangian, then this strategy can be used to obtain a log
extension of the standard nonrelativistic treatment of
two-nucleon system. The central goal of such an approac
to capture relativistic effects in the two-nucleon system.
the same time, for applications to electromagnetic physic
is critical to embed the Ward-Takahashi identities that im
current conservation for electromagnetic interactions in
theory.

This paper focuses on a three-dimensional~3D! formal-
ism that, in principle, is equivalent to the four-dimension
~4D! Bethe-Salpeter formalism. This approach has been
veloped in two recent papers@1,2#. We review the formalism
for relativistic bound states, and provide an extension t
ensures nonsingular behavior of the interaction in fram
where the total momentum of the bound system is nonz
We also construct the corresponding electromagnetic curr
Calculations of elastic electron-deuteron scattering are
formed based upon the impulse approximation and the
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sults for the observablesA, B, andT20 are presented.
The Bethe-Salpeter equation~BSE!

T5K1KG0T ~1.1!

for the four-dimensionalNN amplitudeT provides a theoret-
ical description of the deuteron that includes relativity. In E
~1.1!, K is the Bethe-Salpeter kernel, andG0 is the free two-
nucleon propagator. In a strict quantum-field-theory tre
ment, the kernelK includes the infinite set of two-particle
irreducibleNN→NN Feynman graphs. Numerical method
to calculate the 4Dt matrix of Eq. ~1.1!, with an infinite
kernel containing all crossed ladders, have been develo
and demonstrated for a simple scalar field theory by Ni
wenhuis and Tjon@3#.

For the two-nucleon system, such an application of
full effective quantum field theory of nucleons and mesons
not only impractical, it also is inappropriate because h
ronic degrees of freedom are not fundamental. Rather,
Bethe-Salpeter formalism serves as a theoretical framew
within which a relativistic effective interaction may be d
veloped. This is entirely analogous to the way that the Sch¨-
dinger equation serves as a framework for the developm
of a nonrelativistic potential that describes theNN phase
shifts. Since theNN interaction is an effective one, it is
equally appropriate to develop the relativistic effective int
action within an equivalent three-dimensional formalism th
is obtained from the four-dimensional Bethe-Salpeter f
malism via a systematic reduction technique.

In Ref. @1#, a 3D reduction of the Bethe-Salpeter forma
ism was developed such that the resulting equations invo
the same propagator as appears in the Salpeter equation@4#,

T15K11K1^G0&T1 . ~1.2!
2261 © 1998 The American Physical Society
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The three-dimensional propagator^G0& is obtained by inte-
grating over the time component of the relative momentu

^G0&5E dp0

2p
G0~p;P!. ~1.3!

The 3D kernel is defined by solving two coupled equatio

K15^G0&
21^G0KG&^G0&

21, ~1.4!

which is three-dimensional, and

G5G01G0~K2K1!G, ~1.5!

which is four dimensional. In fact, the condition~1.4! is ob-
tained by demanding that^G&5^G0&. ~See Ref.@1# for de-
tails. Other works which have considered a similar form
ism include Refs.@5–9#.! This formalism is systematic in th
sense that, given a perturbative expansion for the 4D ke
K, a perturbative expansion for the 3D kernelK1 can be
developed. However, it is necessary for^G0& to be invertible
in order for the 3D reduction to contain the full content
the 4D theory.

As mentioned above, whenG0 is the standard two-
particle propagator of the Bethe-Salpeter formalism,^G0& is
the 3D Salpeter propagator. For spin-1

2 particles it is

^G0&5
L1

1L2
1

P02e12e2

2
L1

2L2
2

P01e11e2

, ~1.6!

whereL6 are related to projection operators onto positiv
and negative-energy states of the Dirac equation,P0 is the
total energy of the two-body system, and

e i5~pi
21mi

2!1/2. ~1.7!

Here and throughout the paper, these single-particle ene
are to be understood as having an infinitesimal nega
imaginary part. This defines ouri e prescriptions. Note tha
for spin-12 particles, the equal-time propagator of the Salpe
equation is defined only on two of the four sectors of t
Dirac space of two particles. It is not invertible. Althoug
consistent equations can be projected out for the11 and
22 components, one must set the12 and 21 compo-
nents to zero for consistency. Consequently, the 3D red
tion does not have the full content of the 4D theory. If the 4
and 3D theories are to have the same dynamical content,
we must include graphs involving12 states, such as the th
time-orderedZ graph of Fig. 1, in both. This graph is no
contained in the ladder Bethe-Salpeter equation scatte
series.

The absence of this mechanism from the ladder Be
Salpeter equation is related to the fact that if we allow o

FIG. 1. One example of aZ graph which is not included in the
ladder Bethe-Salpeter equation scattering series.
,
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particle’s mass to tend to infinity, the propagator does
reduce to the Dirac propagator for the other particle. Con
quently, Eq.~1.2! does not possess the correct one-body lim
if any finite set of graphs is chosen forK1 .

If a scattering equation with a kernel which contains on
a finite number of graphs is to possess the correct one-b
limit, two distinct criteria must be satisfied. First the 3
propagator should limit to the one-body propagator for o
particle ~either Dirac or Klein-Gordon, depending upon th
spin! as the other particle’s mass tends to infinity. Second
either particle’s mass tends to infinity, the equation sho
become equivalent to one in which the interactionK1 is
static.

In fact, the lack of either of these properties in Eq.~1.2!
springs directly from the Bethe-Salpeter equation~1.1! not
having the correct one-body limit if the kernel does not
clude the infinite set of crossed-ladder graphs. As allude
above, solution of the Bethe-Salpeter equation with suc
kernel is impractical in theNN system. Nevertheless, th
desired properties may be obtained by using a 4D inte
equation forK to reorganize the contributions to the kern
of the Bethe-Salpeter equation as follows:

K5U1UGCK. ~1.8!

Given a suitable choice forGC , this equation defines a re
duced kernelU in terms of the original kernelK. The propa-
gatorGC is chosen so as to separate the parts of the kernK
that are necessary to obtain the one-body limits from
parts that are not. Once this is done,U may be truncated a
any desired order without losing the one-body limits. It
readily seen that the original kernelK may be eliminated in
favor of the reduced oneU so as to obtain the following 4D
equation for thet matrix, which is equivalent to Eqs.~1.1!
and ~1.8!:

T5U1UG0T, ~1.9!

where

G0[G01GC . ~1.10!

We are now in a position to remedy the defects of our p
vious three-dimensional reduction. Applying the same
reduction procedure as above to this new 4D equation p
duces

T15U11U1^G0&T1 , ~1.11!

where the 3D propagator is

^G0~P!&5
L1

1L2
1

P02e12e2

2
L1

1L2
2

2k2
02P01e11e2

2
L1

2L2
1

P022k2
01e11e2

2
L1

2L2
2

P01e11e2

,

~1.12!

and k2
0 is a parameter that arises from the eikonal appro

mation. This 3D propagator is found by integrating the fou
dimensional propagator over the time component of rela
momentum. In configuration space this action is equival
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to considering the propagator in which the two particles
volved are considered only on equal-time~ET! slices. Thus
this will be referred to as the ET propagator. It was deriv
for use with instant interactions by Mandelzweig and W
lace@10,11# with the choicek2

05P0/22(m1
22m2

2)/(2P0). It
has the correct one-body limits as either particle’s mass te
to infinity and has an invertible form. Meanwhile, the 3
kernelU1 is systematically defined by two equations that a
obtained from Eqs.~1.4! and ~1.5! by the substitutionsK
→U, K1→U1 , andG0→G0 .

Equation~1.11! is a 3D scattering equation that incorp
rates relativistic effects systematically and has the cor
one-body limit. Numerical calculations by Nieuwenhuis a
Tjon @3#, and in our previous paper@1#, suggest that the
three-dimensional equation with a lowest-order kernel p
vides a good approximation to the relevant physics of the
scattering series of ladders and crossed ladders.

Negative-energy states and thusZ graphs, such as the on
shown in Fig. 1, are included in the 3D formalism in a w
that is symmetrical with respect to interchange of parti
labels. When the terms in the propagator involvingL2

2 are
omitted, it takes a form that is very similar to the 3D prop
gator of the spectator formalism of Gross@12#, as derived
with particle 1 on mass shell. Correspondingly, when
terms in the propagator involvingL1

2 are omitted, the propa
gator is very similar to that of the spectator formalism, d
rived with particle 2 on mass shell. Indeed, in11 sectors,
Eq. ~1.12! is the same as either of these spectator propa
tors, and thus differences arise only because of the nega
energy states. Usually for theNN system, a symmetrized
form of the spectator propagator is used, and this is obta
by averaging the propagators derived with particle 1 and p
ticle 2 on mass shell@13#. However, because of averagin
the symmetrized spectator propagator is one half of the
propagator in12 and 21 states. A similar comparison
may be made with the BSLT quasipotential propagator
Blankenbecler and Sugar@14# and Logunov and Tavkhelidz
@7# that has been used in the work of Hummel and T
@15–17#. The BSLT propagator also has half the propagat
amplitudes of the ET propagator in12 and21 states. Be-
cause similar couplings to the12 and 21 states are
present in all of these approaches when similar mes
exchange interactions are used, we would expect the ro
negative-energy states to be larger when the ET propagat
used that when either the spectator propagator of Gros
the BSLT propagator of Hummel and Tjon is used.

A straightforward analysis of time-ordered perturbati
theory graphs for theNN t matrix in the static limit~see
Appendix A! shows that the leadingZ graphs involving the
intermediate12 and21 states are correctly given by th
ET propagator. Results based upon either the symmetr
Gross propagator or the BSLT propagator are too small b
factor of 2.

Our preference for the ET formalism is based on th
facts: it embeds the correct one-body limit foreitherparticle
as the mass of the other particle tends to infinity, it provid
the correct isoscalarZ-graph contributions to leading order i
1/M for the NN system, and the systematic 3D formalis
associated with it includes retardation effects without p
sessing the unphysical singularities that generally are pre
in quasipotential theories.
-
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For relativistic bound states, the 4D vertex functions
total momentumP obey

G~P!5U~P!G0~P!G~P!. ~1.13!

Equivalently, one may use the 3D vertex function that
obtained with the use of the ET propagator,

GET~P!5U1~P!^G0~P!&GET~P!. ~1.14!

Shortly, we shall need the relations of 4D vertex functions
the 3D ones, which is as follows:

G~P!5VR~P!GET~P!, ~1.15!

whereVR is defined by

VR~P!511@U~P!2U1~P!#G0~P!VR~P!. ~1.16!

A similar relation is needed for final states:

Ḡ~P!5ḠET~P!VL~P!, ~1.17!

VL~P!511VL~P!G0~P!@U~P!2U1~P!#. ~1.18!

In the spirit underlying the use of an effectiveNN inter-
action, the 3D interactionU1 is truncated at ‘‘lowest order’’
within a systematic expansion in powers of the coupling c
stant. This truncation violates Lorentz invariance, althou
the full 3D reduction formalism is equivalent to the 4D fo
malism and thus respects Lorentz invariance. For elec
magnetic matrix elements, the absorption of the virtual p
ton’s momentumQ causes the final state to have nonze
three-momentum, even if the initial state did not. Thus,
general, a dynamical boost is needed to obtain wave fu
tions in frames where the bound state has nonzero th
momentum. In our 3D formalism, the dynamical boost
embedded within the equations. Wave functions correspo
ing to nonzero three-momentum should be obtained strai
forwardly by solving the bound-state equation with the int
action appropriate to the moving frame. This differs from t
interaction in the c.m. frame because retardation correct
and Dirac spinors in the matrix elements depend upon
total momentum. The violation of Lorentz invariance caus
the total bound-state energyE(P) to differ from AMD

2 1P2.
For the deuteron, the effect is small and it may be comp
sated by a simple renormalization of the interaction that
effect, approximately takes into account the terms omit
whenU1 is truncated at lowest order.

In order to confront the predictions of this formalism wi
electron-scattering data we must derive a 3D reduction of
electromagnetic current that is consistent with the reduc
of the scattering equation. A clear 4D formalism for the cu
rent follows from coupling photons everywhere in the Beth
Salpeter Green’s function. This leads to the following gau
invariant 4D result for the photon’s interaction with the tw
nucleon system:
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ABS,m5Ḡ~P8!G0,m
g G~P!

1Ḡ~P8!G0~P8!Km
g ~Q!G0~P!G~P!, ~1.19!

whereP85P1Q, G0,m
g is a five-point function for inser-

tion of a photon of momentumQ and Lorentz indexm in the
free propagatorG0 , and Km

g is the five-point, two-nucleon
irreducible NN→NNg amplitude found by coupling the
photon to all charged-particle lines inside the Bethe-Salp
kernelK. A similar result holds for the 4D theory involving
GC ,

AET,m5Ḡ~P8!G 0,m
g G~P!1Ḡ~P8!G0~P8!Um

g ~Q!G0~P!G~P!,
~1.20!

whereG 0,m
g 5G0,m

g 1GC,m
g , andUm

g is the result of coupling
the photon to all internal lines of the reduced interactionU.
In order to develop a conserved current in the 4D the
based on Eq.~1.9!, we must constructGC,m

g , which is the
extra current required in order thatG 0,m

g satisfy a Ward-
Takahashi identity involvingG0 . Unfortunately, this is not
straightforward, since in general the variablek2

0 in GC de-
pends on the three-momentum of the intermediate state
we shall see in Sec. IV, we cannot simply use the stand
fermion electromagnetic currentgm , since this choice vio-
lates current conservation. In Sec. IV we construct the a
tional pieces of the current that restore current conservat
thereby obtaining a conserved currentG0,m

g for use with ver-
tex functions obtained from Eq.~1.13!.

In this paper, we develop an equivalent 3D form of t
current matrix elements for the equal-time formalism, ba
on an expansion of the formula

AET,m5ḠET~P8!^VL~P8!G 0,m
g VR~P!&GET~P!

1ḠET~P8!^G~P8!Um
gG~P!‹GET~P!. ~1.21!

The resultant reduction is consistent with the reduction u
to obtain the 3Dt matrix of Eq.~1.11! and the vertex func-
tion of Eq. ~1.14!. Furthermore, this reduction preserves t
two-body electromagnetic Ward-Takahashi identities wh
are present in the 4D theory. Quantities inside angular bra
ets are integrated over time components of relative mome
thus reducing them to a 3D form. This yields a consist
three-dimensional formalism that includes the effects of re
tivity systematically, has the correct one-body limits, a
maintains current conservation. We then apply this mach
ery to the calculation of electron-deuteron scattering in
impulse approximation.

Previous calculations of electron-deuteron scattering
Hummel and Tjon@15–17# have used instant interaction
and a form of the ET current. However, several approxim
tions were employed, such as the use of wave functi
based on the 3D quasipotential propagator of Blankenbe
and Sugar@14# and Logunov and Tavkhelidze@7#, approxi-
mate boost operators, and an electromagnetic current w
was conserved only in positive-energy states. Calculation
elastic electron-deuteron scattering also were performed
Devine and Wallace using an instant interaction and the
propagator of Mandelzweig and Wallace, Eq.~1.12!, with
the choice ofk2

0 given below equation@18#. In that work, a
er
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suitable conserved current was derived for use with ver
functions that included negative-energy components. In
paper, we extend these previous analyses by use of our
tematic 3D formalism with the improved choice ofk2

0 that is
needed when retardation effects are included.

It is easy to show that if the instant approximation is us
to reduce the four-dimensional equation~1.9! to the three-
dimensional ET equation, a particularly simple thre
dimensional conserved current exists. If we denote this c
rent by Ginst,m

g , then we may write the resulting Ward
Takahashi identity as

QmGinst,m
g ~p1 ,p2 ;Q!

5q2@^G0&~p1 ,p2 ;P0!2^G0&~p1 ,p21Q;P01Q0!#

1~1↔2!, ~1.22!

where (1↔2) indicates the part of the current proportion
to chargeq1 , with momenta and labels of the two particle
interchanged. Consequently, if we construct the current
trix element

Ainst,m5E d3p

~2p!3
Ḡ inst~p;P1Q!Ginst,m

g ~p,P;Q!G inst~p;P!,

~1.23!

whereG inst is the vertex function obtained from the boun
state equation corresponding to Eq.~1.14! with an instant
interaction chosen forU1 , then the result will be a conserve
impulse current. A similar instant analysis was performed
Devine and Wallace@19#. Our instant calculations differ
from those of Ref.@19# in that a slightly different choice for
k2

0 is made than was made by Wallace and Mandelzwe
This different choice fork2

0 is necessitated by the require
ment that the three-dimensional theory with retardatio
should not possess any unphysical singularities when ev
ated in a frame where the two-body system has large
mentum.

A first step beyond the instant approximation may be o
tained by replacing the vertexG inst, which is calculated with
instant one-boson-exchange~OBE! interactions, with the
vertexGET , calculated with the full retarded OBE interactio
obtained in the systematic ET formalism. In order to ma
tain current conservation our approach demands that in m
ing this change we should also replaceGinst,m

g by a signifi-
cantly more complicated objectG0,m

g . The resultant curren
matrix element, which we denoteAET,m , differs from Eq.
~1.23! by replacement of the subscript ‘‘inst’’ by the sub
script ‘‘ET’’ in the vertex functions and replacement o
Ginst,m

g by G0,m
g . This AET,m would satisfy current conserva

tion when retardations are included provided that we a
included the two-body currents, such as the one depicte
Fig. 2, which become necessary because of retardation
fects. This work is concerned primarily with displaying th
formalism and performing impulse approximation calcu
tions that explore the effects of retardation and negati
energy components in the vertex functions. Therefore,
use the simpler current^Ginst,m

g & with the ET vertex functions
as well as with the instant vertex functions. For elas
electron-deuteron scattering this is expected to be a v



u
-

r
to

tio
-
e

r
ct
t

es
o

at
es
tr

cu
n

he
e

n
on
m

tio
ne
in

s

on
th
te
n

ob
n
nt

,
di
e

a-
ntal
imi-
hat
ot.

po-
n

ably

la-
y
tates
b-
the
ve-

in

-
ner-
the
ses

n

PRC 58 2265ELECTRON-DEUTERON SCATTERING IN A CURRENT- . . .
good approximation to the use of the full ET current. Calc
lations wherê GC,m

g & is omitted from the instant current ma
trix element suggest that the total contribution of^GC,m

g & to
the observables is small. This is consistent with the interp
tation of^GC,m

g & as arising from the coupling of the photon
internal charged lines in the crossed-box graph:^GC,m

g & is a
two-body current, and therefore we would expect ita priori
to be small at the momentum transfers under considera
here. Sincê GC,m

g & itself makes a small contribution to ob
servables, using a form of it that only approximately satisfi
current conservation is expected to have an even smalle
fect on our numerical results. We expect that these effe
and the other effects of retardations we have neglected in
current, will only have a minor influence on observabl
Here our main goal is to examine the effect of retardation
the vertex functions and the role that negative-energy st
play in the calculation, and so we do not calculate th
additional effects. Work is in progress to include these ex
terms of the current that are derived in Sec. IV in the cal
lation. We are also calculating meson-exchange curre
such asrpg and vsg, which we do expect to influence
observables.

The first step in obtaining theoretical predictions for t
experimental observables in electron scattering on the d
teron is to find the vertex functionsG inst andGET . We take
the four-dimensional kernelU in Eq. ~1.9! to be the sum of
single-boson exchanges. The parameters for these excha
are taken from the Bonn-B OBE model, with the excepti
of the s-meson coupling, which we leave as a free para
eter. From the 4D kernelU1,OBE, an instant interactionU1,inst
is easily found, and a corresponding retarded interac
U1,ET can be defined by the systematic procedure outli
above. These two different interactions are then inserted
the bound-state equation derived from Eq.~1.14!. The
s-meson coupling is adjusted so that theNN bound-state
pole in the 3S1-3D1 channel appears at the deuteron ma
Once this is done, the deuteron vertex functionsG inst andGET
can be extracted. We calculate these two vertex functi
including the effects of negative-energy states and also in
approximation where only positive-energy states contribu

With vertex functions in hand and using the 3D curre
^Ginst,m

g &, we calculate the electron-deuteron-scattering
servablesA, B, andT20. The results from such a calculatio
are shown in Figs. 3, 4, and 5. We also show experime
data from Refs.@20–24# for A, from Refs.@22,23,25,26# for
B, and from Refs.@27–32# for T20. It should be pointed out
though, that a number of two-body effects, such as the
ferences betweenG inst,m

g andG 0,m
g that are needed to restor

FIG. 2. One example of a two-body current that is required
our formalism in order to maintain gauge invariance.
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current conservation and the usualrpg meson-exchange
current~MEC! contribution, should be added to our calcul
tions before they can be reliably compared to experime
data. One of the most interesting features is the close s
larity of the results based on the ET vertex functions t
include retardations and instant vertex functions that do n
We find that once thes coupling is renormalized atQ250
~as must be done to refit the deuteron binding after incor
rating the repulsive effects arising from meson retardatio!,
the deuteron properties in these two models are remark
similar.

For comparison, in Figs. 6, 7, and 8 we display calcu
tions forA, B, andT20, where the effects of negative-energ
states are removed. We see that the inclusion of these s
in the calculation makes little difference to any of the o
servables. However, comparing the different positions of
minima in Figs. 4 and 7 we see that including the negati
energy states in the calculation does shift the minimum inB

FIG. 3. The form factorA(Q2) for the deuteron. The dash
dotted line represents a calculation using a vertex function ge
ated using the instant interaction. Meanwhile, the solid line is
result obtained with the retarded ET vertex function. In both ca
both positive- and negative-energy sectors are included.

FIG. 4. The form factorB(Q2) for the deuteron, legend as i
Fig. 3.
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to somewhat largerQ2. A similar effect was observed by va
Ordenet al. @33# in calculations of electron-deuteron scatte
ing using the spectator formalism. However, note that he
in contradistinction to the results of Ref.@33#, the inclusion
of negative-energy states doesnot bring the impulse-
approximation calculation into agreement with the data.

The fact that negative-energy states seem to hav
smaller effect on observables in the ET analysis than in
spectator analysis of van Ordenet al. @33# is somewhat sur-
prising. As pointed out above, the ET propagator has tw
the negative-energy state propagation amplitude of the G
propagator. Thus, other differences between the ET
spectator models, not just differences in the role of negat
energy states in the two approaches, appear to be respon
for the differing results forB(Q2). The fact that the calcu
lation of Ref. @33# essentially agrees with the experimen
data forB(Q2) is not solely attributable to the Gross forma

FIG. 5. The tensor polarizationT20(Q
2) in electron-deuteron

scattering, legend as in Fig. 5.

FIG. 6. The form factorA(Q2) for the deuteron, as predicted b
three differentNN models. The dotted curve is the instant calcu
tion, the dash-dotted curve is the calculation using the TOPT in
action, and the solid curve is the result using a retarded ET in
action. All calculations are done with the contributions of negati
energy states dropped.
e,

a
e

e
ss
d

e-
ible

l

ism treatment of negative-energy states, since our res
show that negative-energy states have a much smaller ef

We also note that the inclusion of retardation moves
minimum in B a little higher inQ2 but otherwise has little
observable effect. Again, this additional effect is not enou
to bring the predictions of our model into line with the e
perimental data.

Finally, examining the tensor polarizationT20 we see that
all the different models produce results which are very sim
lar. This suggests that this observable is fairly insensitive
dynamical details of the deuteron model, at least up toQ2

54 GeV2.
We find that elimination of the approximations used

Hummel and Tjon produces only minor changes for the
perimentally measured quantitiesA, B, and T20, although
the precise location of the minimum in the magnetic fo
factor B does change when meson retardations are inclu
in the calculation. Nevertheless, there is little improvem
in the agreement of the impulse-approximation calculatio

-
r-
r-
-

FIG. 7. The form factorB(Q2) for the deuteron, legend as i
Fig. 6. Again, all calculations are done in the11 only approxima-
tion.

FIG. 8. The tensor polarizationT20(Q
2) in electron-deuteron

scattering, legend as in Fig. 6. All calculations are done using o
11 states.
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with the experimental data forB.
Comparing our results with those of a nonrelativis

impulse-approximation calculation of the same observab
~see, for instance, Ref.@34#! strengthens the conclusion o
previous authors that neither the consideration of relativi
kinematics for the nucleons and mesons nor the inclusio
negative-energy state effects improves the agreement
the experimental data. Of course, by definition, such a n
relativistic impulse-approximation calculation neglects bo
relativistic effects and two-body current contributions. I
deed, we see here that, as already found by Arnoldet al. @34#
and Zuilhof and Tjon@35#, including relativistic effects ac-
tually worsensthe agreement with the experimental da
The inclusion of these effects to all orders in ap/M expan-
sion, as done here and in Refs.@34,35#, doesnot lead to a
small correction which brings the theory into closer agr
ment with the experimental data. This suggests that the c
parative success of a simple nonrelativistic impul
approximation calculation is fortuitous. Dynamic
mechanisms beyond the impulse approximation appea
play a more important role in this reaction than one wo
conclude from the nonrelativistic calculation. Figures 3,
and 5 imply that onceQ2 gets above about 0.5 GeV2 two-
body current contributions become important. One exam
of such a two-body current would be meson-exchange
rent contributions, but it is also possible that other two-bo
currents are dynamically important in this regime.

The rest of this paper is devoted to a detailed descrip
of our formalism and to an explanation of technical deta
pertaining to our calculation that were omitted in the br
sketch of the calculations given here. In Sec. II we pres
our modified four-dimensional equation forGC with the cor-
rect one-body limit and incorporating a form of the eikon
approximation which is an improvement over that propos
in Ref. @1#. The new choice of the parameterk2

0 has been
found to be necessary, when retardations are included in
ET interaction, in order to avoid unphysical singulariti
when P is large. Our formalism for reductions to three d
mensions is then used to determine the lowest-order 3D
teractionU1 . In Sec. III we explain the various interaction
that are used in calculations of deuteron wave functio
These can be divided into two classes: instant interact
and ET interactions that include meson retardation. Wit
either of these classes, versions of the interactions are
structed that do and do not include the effects of negat
energy states, in order to display the role played by s
components of the deuteron wave function. Section IV d
cusses our 3D reduction of the electromagnetic current
maintains current conservation, including a detailed disc
sion of the way in which the gauging of the propagatorGC in
our modified four-dimensional equation is performed. T
ET currentG 0,m

g is derived and we discuss its connection
the simpler currentG inst,m

g that is used in the present calcul
tions. Section V presents details concerning the applica
of this formalism to the calculation of electromagnetic o
servables using the wave functions computed as discuss
Sec. III. Conclusions are presented in Sec. VI.

II. BOUND-STATE EQUATIONS WITH CORRECT
ONE-BODY LIMITS

A. Four-dimensional equation

As outlined in the Introduction, a simple four-dimension
equation may be obtained by employing a form of the ei
s
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nal approximation to reorganize the generalized lad
Bethe-Salpeter kernel, based upon the fact that we may
ways write the kernelK in the iterative form, Eq.~1.8!. The
question is, what are good choices forGC andU? To answer
this question, consider the lowest-order~in coupling con-
stant! parts of the kernelsK andU. Obviously, the second
order pieces must be the same, i.e.,

U ~2!5K ~2!. ~2.1!

Meanwhile, at fourth order, we obtain

K ~4!5U ~4!1U ~2!GCU ~2!. ~2.2!

Thus, in order that the expansion forU can be truncated a
second order without losing the one-body limit asm2→`,
the choice ofGC must be such that the last term captures
part of K (4) that is nonzero in that limit. Moreover, ifGC is
chosen in this way, the one-body limit will then be correct
matter the order at which the expansion ofU is truncated.

Consider the fourth-order contribution toK, i.e., the
crossed-box graph depicted~with momentum labels! in Fig.
9. In order to expressK (4) in the form~2.2!, it is necessary to
commute vertices until they appear in the same order a
K (2)GCK (2). In doing this commutator terms are collected
U (4). Once this is done, the part of the graph that takes on
iterative form is expressed as

K iter
~4!~k18 ,k28 ;k1 ,k2!5 i E d4p2

~2p!4
K ~2!~k282p2!d1~P2p2!

3d2~k21k282p2!K ~2!~p22k2!.

~2.3!

HereK (2) is the ladder Bethe-Salpeter kernel,P is the con-
served, total four-momentum

P5k11k25k181k28 , ~2.4!

and the propagatorsdi are given by

di~pi !5
L i

1~pi !

pi
02e i~pi !1 ih

2
L i

2~pi !

pi
01e i~pi !2 ih

, ~2.5!

where

e i~pi !5~pi
21mi

2!1/2, ~2.6!

FIG. 9. The crossed-box graph, showing the momentum lab
used in the text.
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L i
6~pi !5H 1

2e i~pi !
for spin-0 particles,

6e i~pi !g
02g i•pi1mi

2e i~pi !
for spin-1

2 particles,

~2.7!

andh is a positive infinitesimal.
In Eq. ~2.3! the argument of the functiond2 may be re-

written as

~k2
01k28

02p2
0 ,k21k282p2!. ~2.8!

Suppose that the zeroth component of the momentum of
ticle 2 is large. In particular, this will be the case ifm2
@m1 ~one-body limit!. In this case particle 2’s intermediat
and final-state three-momentum will be largely unaffected
the presence of particle 1, and so we may approximate th
components as unchanging,

k21k28'2p2 . ~2.9!

This is the eikonal approximation, and it rests upon forwa
scattering being the dominant mechanism of interaction.
deed, making the replacement~2.9! in Eq. ~2.3! will not af-
fect the value ofK iter

(4) in the limit m2→`.
This argument shows thatK iter

(4) may be approximately re
written as

K iter
~4!~k28 ,k2 ;P!

' i E d4p2

~2p!4
K ~2!~k282p2!d1~P2p2!d2~2k22p2!

3K ~2!~p22k2!, ~2.10!

with the four-component objectk2 defined by

k25S k2
01k28

0

2
,p2D . ~2.11!

In operator notation,

K iter
~4!'K ~2!GCK ~2!. ~2.12!

Now we are in a position to answer the question of how
chooseGC . Equation~2.10! shows that the choice

GC~p;P!5 id1~n1P1p!d2~2k22n2P1p!, ~2.13!

which we write symbolically as

GC5 id1d2
c , ~2.14!

will allow U to be truncated at second order while still yiel
ing a four-dimensional equation with the correct one-bo
limit. Here it is understood that when writingGC as a func-
tion of the four four-momentap18 , p28 , p1 , andp2 , we have

GC~p18 ,p28 ;p1 ,p2!

5 i ~2p!8d~4!~p182p1!d~4!~p282p2!d1~p1!

3d2~2k22p2!. ~2.15!
r-

y
se

d
-
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y

On the other hand, in writing Eq.~2.13! we have expressed
the result in terms of the center of mass and relative fo
momenta:

p15n1P1p, p25n2P2p, ~2.16!

n15
P21m1

22m2
2

2P2
, n25

P22m1
21m2

2

2P2
. ~2.17!

The propagatord2
c defined in Eq.~2.13! depends on the ze

roth components of the external momenta through the ze
component ofk2 . Thus the use of operator notation in E
~2.12! anticipates a suitable choice for these zeroth com
nents of external momenta.

In the case that particle 2 is extremely massive, it will n
be very far off its mass shell. The total energyP0 of the
system will be approximately the energy of particle 2, a
thus we choose

k2
05n2P0. ~2.18!

This choice was used in Ref.@1# because it leads to an inte
gral equation that satisfies both the criteria needed to ob
the correct one-body limitm2→`. It also is suitable for
equal-mass particles in the center-of-mass frame. Howe
in frames where the bound state has nonzero total mom
tum, the choice leads to an interaction that possesses
physical singularities.

A consideration of the singularities of the interactio
when the particles have equal masses suggests that the
ticles should be equally far off their mass shells in the int
mediate state. Hence, in that case we choose

k2
05

1

2
~P02e11e2!, ~2.19!

where, in an arbitrary frame,

e15e1~P/21p!, e25e2~P/22p!. ~2.20!

This choice is consistent with the eikonal approximation a
differs from that of Eq.~2.18! only whenPÞ0. Note that our
new choice fork2

0 depends not only on the external variabl
P0 andP, but also on the internal three-momentump. This
feature complicates the construction of a conserved curr

OnceU and theGC of Eq. ~2.13! are chosen, this define
an ‘‘improved’’ ladder BSE, which, in the two-body cente
of-mass frame, takes the form

G~p80,p8;s!5 i E d4p

~2p!4
U~p8,p!d1~n1P01p0,p!

3@d2~n2P02p0,2p!

1d2~2k2
02n2P01p0,2p!#G~p0,p;s!.

~2.21!

Because the choice ofk2
0 employed here agrees with that o

Ref. @1# in the limit m2→`, the proof given there now suf
fices to show that this equation becomes the appropriate
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body equation in the limitm2→`. For equal-mass particles
k2

0 is chosen as per Eq.~2.19!.
We make the choice~2.19! because it eliminates singu

larities that afflict the choice~2.18!. As observed in Ref.@1#
if the choice~2.18! is made fork2

0 , then Eq.~2.21! develops
a cut beginning at

2n2P052m21m. ~2.22!

If we attempt to solve the integral equation~2.21! in a frame
moving with large enough three-momentumP, then P0

5AMd
21P2 will become big enough to encounter this si

gularity. However, with the choice~2.19! the interaction
does not have this unphysical singularity.

The above arguments pertain to the one-body limit
which m2→`. Clearly we can interchange the labels on p
ticles 1 and 2 in order to obtain a propagatorid1

cd2 that is
motivated by a consideration of the limitm1→`. In the
propagatord1

c we choose, for the equal-mass case,

k1
05

1

2
~P01e12e2!. ~2.23!

In the casem15m2 , writing the propagator as in Eq
~2.14! treats the two particles asymmetrically. If they a
identical particles, this will lead to violations of the identica
particle statistics. To avoid this, we symmetrize the propa
tor GC , by choosing, instead ofid1d2

c , the form

G0[G01GC5
i

2
~d11d1

c!~d21d2
c!. ~2.24!

If the mass of particlen is taken to infinity, we use the choic
kn

05P0 in dn
c , while thek0 variable associated with the ligh

particle is chosen to be zero. This yields the one-body pro
gator for the light particle, multiplied by a delta function
the relative momentum, and a projection operator onto
positive-energy states of particlen. Meanwhile, the delta
function guarantees that the interaction will be static, and
both conditions necessary for the correct one-body limit
be present are satisfied. However, note that this formal p
erty does not apply to the case of practical interest for
work, m15m2 , since thenk1

0 and k2
0 are defined by Eqs

~2.23! and ~2.19!.
Symbolically we now write our ‘‘improved’’ ladder BSE

as

G5UG0G, ~2.25!

where here, and throughout this work,G0 is defined by Eq.
~2.24!.

We stress that what has been done here is to take ce
pieces of the Bethe-Salpeter kernelK and rewrite them as
K (2)GCK (2), K (2)GCK (2)GCK (2), etc. Consequently, Eq
~2.25! is equivalent to a Bethe-Salpeter equation in wh
graphs other than one-meson exchange are approxim
included in the kernel. Thus we expect that the solution
this equation may provide a better description of the dyna
ics of two-particle systems than the ladder BSE amplitu
Numerical calculations in a scalar field theory appear to s
port this @1#.
-

-
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e
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o
p-
is
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B. Summary of the reduction to three dimensions

The 3D reduction that was outlined in the Introductio
may now be applied to the 4D equation~2.25!. This yields
the following 3D equation for the bound-state vertex fun
tion GET :

GET5U1^G0&GET , ~2.26!

with ^G0& the three-dimensional propagator of Eq.~1.12!,
and the interactionU1 defined as the solution of the couple
equations

U15^G 0&
21^G0UG&^G 0&

21, ~2.27!

which is three dimensional, and

G5G01G0~U2U1!G. ~2.28!

Note once more that the solution forU1 is found by demand-
ing that ^G&5^G0&. Equations~2.26! and ~2.27! are exactly
equivalent to the 4D equation~2.25!. Inserting the choice
~2.19! for k2

0 and specializing to the case of equal-mass p
ticles gives

^G0~P!&5
L1

1L2
1

P02e12e2

2
L1

1L2
2

2e2
2

L1
2L2

1

2e1
2

L1
2L2

2

P01e11e2

,

~2.29!

which is a restatement of Eq.~1.12!. We note in passing tha
this is exactly the same expression as that found when
simpler expressioni ^d1(d21d2

c)& is calculated.
By using Eq.~2.26!, rather than Eq.~1.2!, we not only

have a consistent 3D reduction but we approximately inclu
the crossed-ladder graphs, particularly the ‘‘Z-graph’’ con-
tributions where one nucleon is in a positive-energy state
the other is in a negative-energy state.

For equal-mass particles in the center-of-mass frame,
~2.26! agrees with the quasipotential equations of Walla
and Mandelzweig@11#. However, in a quasipotential ap
proach the interaction in other frames should be obtained
boosting via a dynamical equation. This leads to unphys
singularities. The systematic ET formalism avoids these
essence, the ET formalism with a truncated interaction e
phasizes the elimination of unphysical singularities over
strict enforcement of Lorentz invariance.

The second-order 3D interactionU1
(2) is given by

^G0&U1
~2!^G0&5^G 0K ~2!G0&[A. ~2.30!

An explicit form forA can be computed for the case of OB
interactions of the form

K ~2!~q!5(
n

gn
2Vn~1!Vn~2!

q22mn
2

, ~2.31!

whereVn( i ) denotes the appropriate vertex operator for
interaction of thenth meson with nucleoni . If we write
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A5(
n

(
r1r18r2r28

L
1
r18L

2
r28

e181e28
An~r18r28←r1r2!Vn~1!Vn~2!

L1
r1L2

r2

e11e2
, ~2.32!

with ei5r in ik i
02e i andei85r i8n ik i8

02e i8 , then, for the exchange of mesonn, the factorsAn(r18r28←r1r2) can be written in
any rho-spin channel as

An~p8,p;P0,P!~r18r28←r1r2!5
gn

2

8vn
@F~vn1q0!1F~vn2q0!#, ~2.33!

where

F~v![
1

e11e282v
1

1

e181e22v
1

1

e11e182v
1

1

e21e282v
1

1

e11e282v
S e11e2

e21e282v
D 1

1

e181e22v
S e11e2

e11e182v
D

1S e181e28

e11e182v
D 1

e11e282v
1S e181e28

e21e282v
D 1

e181e22v
1

e181e28

e21e282v
S 1

e11e282v
1

1

e181e22v
D e11e2

e11e182v
,

~2.34!

and q05k18
02k1

0 . The key difference here from the calculation of Ref.@1# is that here the parameterk i
0 varies with the

intermediate-state momentum under consideration. For equal-mass particles,

k1
05

1

2
~P01e12e2!, k2

05
1

2
~P02e11e2!, ~2.35!

k18
05

1

2
~P01e182e28!, k28

05
1

2
~P02e181e28!. ~2.36!

The expression forA is easily converted into a result forU1
(2) using the inverse of the propagator^G0&. The result is expresse

in terms of matrix elements between initial and final states of anyr spin as follows:

U
1,ET
r18r28 ,r1r2~p8,p;P0,P!5(

n
@ ūr18~r18p18!Vn~1!ur1~r1p1!#@ ūr28~r28p28!Vn~2!ur2~r2p2!#An~p8,p;P0,P!~r18r28←r1r2!.

~2.37!

This is the full ET interaction including retardation effects. If one eliminates the retardation effects, the result is the
interaction defined by

U
1,inst
r18r28 ,r1r2~p8,p;P0,P!5(

n
@ ūr18~r18p18!Vn~1!ur1~r1p1!#@ ūr28~r28p28!Vn~2!ur2~r2p2!#S 2gn

2

vn
2 D . ~2.38!

Expanding the vertex functions in terms of Dirac spinors,

GET~p,P!5g1
0g2

0 (
r1r2

ur1~r1p1!ur2~r2p2!GET
r1r2~p,P!, ~2.39!

leads to the coupled equations that we solve,

GET
r1 ,r2~p,P!5 (

r18r28
E d3p8

~2p!3
U

1
r1r2 ,r18r28~p,p8;P0,P!^G 0&

r18r28~p8,P!GET
r18r28~p8,P!. ~2.40!

Here the propagator factorŝG 0&
r18r28 are ^G 0&

1151/(P02e182e28), ^G 0&
1251/2e28 , ^G 0&

2151/2e18 , and ^G 0&
22

521/(P01e181e28).
Two special cases of particular interest are the matrix element of the ET interaction between positive-energy spin
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U1,ET
11,11~p8,p;P0,P!5(

n
@ ū1~p18!Vn~1!u1~p1!#@ ū1~p28!Vn~2!u1~p2!#

3
gn

2

2vn
F 1

P02e182e22vn

1
1

2

P02e12e2

~P02e182e22vn!2
1

1

2

P02e182e28

~P02e182e22vn!2

1
1

2

~P02e182e28!~P02e12e2!

~P02e182e22vn!3
1~1↔2!G , ~2.41!

and the matrix element in positive-energy states omitting the effects ofGC ,

U1,TOPT
11,11~p8,p;P0,P!5(

n
@ ū1~p18!Vn~1!u1~p1!#@ ū1~p28!Vn~2!u1~p2!#

gn
2

2vn
F 1

P02e182e22vn

1~1↔2!G . ~2.42!
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This is the standard time-ordered perturbation theory~TOPT!
one-boson-exchange interaction. Diagrams for the one-p
exchange part of this interaction between positive-ene
nucleon states are shown in Fig. 10. There are additio
pieces in the ET interaction of Eq.~2.41! that arise fromGC ,
i.e., from the approximate inclusion of higher-order graphs
the crossed-ladder kernel, which is necessary to obtain
one-body limits.

III. CONSTRUCTION OF THREE-DIMENSIONAL
NUCLEON-NUCLEON INTERACTIONS

A number of different 3D two-body interactions may b
defined by including or not including retardation effects a
by including or not including the contributions of negativ
energy states. These different 3D interactions are used in
assessment of the significance of retardations and
negative-energy states in calculations of electromagnetic
servables. In this section we outline the development of
various interactions used in this work, in each case star
from a four-dimensional kernelK that is the sum of six
single-meson exchanges. The mesons are thep(138), the
s(550), the h(549), the r(769), the v(782), and the
d(983). The quantum numbers and masses of these me
and the cutoffs in the~monopole! form factors, as well as the
couplings for all but thes meson, are listed in Table I. Al
these parameters except for thes coupling are taken directly
from the Bonn-B fit to theNN phase shifts@36#. The s
coupling is varied so as to achieve the correct deuteron b
ing energy for each interaction considered.

We then use the techniques of the previous section
construct the following interactions, all of which are to b
used in the three-dimensional ET equation~2.40! ~note that
in calculating the 3D interaction we assume that the 4D
teraction contains no form factors and any dependenc
vertex factorsVn uponq0 is neglected; after calculating th
three-dimensional interaction we then insert monopole fo

FIG. 10. The two time-ordered perturbation-theory graphs
one-pion exchange.
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factors at all the vertices!: ~1! the ‘‘retarded ET’’ interaction,
given by Eq.~2.37!, with the choices~2.23! and~2.19! for k1

0

andk2
0 ; ~2! the instantNN interaction, defined by Eq.~2.38!;

and ~3! the second-order TOPTNN interaction defined by
Eq. ~2.42!. The first and second interactions are used in
two-body equation with the full ET Green’s function give
by Eq. ~2.40!, and also in an equation in which only the1
1 sector is retained. However, for the instant interaction,
follow the practice of Devine and Wallace@18# and switch
off by fiat couplings that involve flip of bothr spins, i.e.,
between the11 and22 sectors and between the12 and
21 sectors. A partial justification of this rule follows from
an analysis of the static limit of our 3D retarded interactio
which shows that all couplings to the22 states vanish as
1/M→0, while other couplings approach the instant for
Although the static limit for coupling of12 and21 sec-
tors approaches the standard instant form, we omit this c
pling in order to reproduce the previous results of Dev
and Wallace.

Since, as we have already discussed, the propag
^G0&

21 does not exist in the12 and 21 sectors, the
TOPT interactionU1,TOPT

11,11 is used with only11 sectors
retained in the equation.

Once a particular interaction is chosen, the integral eq
tion ~2.40! is solved for the bound-state energy. The meth
used involves seeking the energy at which the largest eig
value of the kernelU1^G0& is one. The eigenvalue is calcu
lated using the Malfliet-Tjon iteration procedure. Details
this method, the rho-spin basis chosen, and the way the

r

TABLE I. Meson quantum numbers, masses, cutoffs, and c
plings as taken from the Bonn-B model. Note that the numbe
brackets in ther row is ther-meson tensor coupling.

Meson JP T Mass~MeV! Cutoff ~MeV! g2/4p

p 02 1 138.03 1200 14.6
h 12 0 548.8 1500 5.0
r 11 1 769.0 1300 0.95~6.1!
v 11 0 782.6 1500 20.0
d 01 1 983.0 1500 3.1155
s 01 0 550.0 2000
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gular integrations are performed may be found in Ref.@19#.
In our calculations we used 40 quadratures in the radial
mentum and 8 in the integration over the polar angleu. In
the case of the two energy-dependent interactions nume
integration was used to perform the integration over the
muthal anglef. We found that 12 quadratures were suf
cient to achieve convergence.

In each calculation, thes coupling was adjusted to get th
correct deuteron binding energy, producing the results~accu-
rate to three significant figures! given in Table II. The value
given for the instant calculation with positive-energy sta
alone is that found in the original Bonn-B fit. In all othe
cases thes coupling must be adjusted to compensate for
inclusion of retardation, the effects of negative-energy sta
etc. We believe that this adjustment of the scalar coup
strength is sufficient to get a reasonable deuteron wave f
tion. However, one direction for future work is to refit th
meson-exchange parameters in these various different
tivistic NN interaction models to theNN scattering data.
From Table II we see that~with the exception of the TOPT
interaction! adjusting thes coupling to reproduce the ob
served deuteron binding leads to at most a 5% devia
from the Bonn-B value, thereby suggesting that other me
parameters would change only slightly if a more detailed
were performed.

Once the bound-state wave function in the center-of-m
frame has been determined in this fashion, it is a sim
matter to solve the integral equation~2.26! in any other
frame. As we shall explain below, we choose to calcul
electron-deuteron scattering in the Breit frame. Hence,
need to calculate the deuteron wave functions in frames w
total four-momentum (AMD

2 1P2,P). To do this, the interac-
tion is recalculated in the new frame using the rules giv
above, and then the integral equation is solved with this n
interaction. Because the formalism we use for reducing
four-dimensional integral equation to three dimensions isnot
Lorentz invariant if the potentialU1 is truncated at any finite
order in the coupling, we have calculated the eigenva
l(P) defined by

U1~P!^G0~P!&GET~P!5l~P!GET~P!, ~3.1!

for each of the five different interactions defined abo
Sincel(0)51, by construction, andP05AMD

2 1P2 is set in
accordance with Lorentz invariance, the deviation ofl from
1 indicates violation of Lorentz invariance in the interacti
U1 . The results of this test are shown in Fig. 11.

Figures 12 and 13 show results for theA and B form

TABLE II. Sigma coupling required to produce the correct de
teron binding energy in the five different models under consid
ation here.

Interaction States included gs
2/4p

Instant 11 8.08
TOPT 11 9.64
Retarded ET 11 8.39
Instant ET All 8.55
Retarded ET All 8.44
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factors with and without inclusion of the boost correctio
The solid lines show the results with a constant valuel
51, in which case the deuteron is overbound when cal
lated in the Breit frame. The dotted lines show results ba
on l(6Q/2) as determined from Fig. 11, such that the de
teron total energy isAMD

2 1Q/4 in the Breit-frame wave
functions, whereMD is the invariant mass. The results fo
T20 differ very little for these two cases and are not show
The results show that includingl so as to remove the viola
tion of Lorentz invariance decreasesA by about 10% atQ2

-
r-

FIG. 11. A plot showing the eigenvaluel of the homogeneous
integral equation~2.26!, as a function of the total three-momentu
of the two-body system, for different choices of the interactionU1 .
The dot-dashed~dotted! line is the result whenU1 is chosen to be
an instant interaction and all~only 11) states are included in the
calculation. The solid~long dashed! line is the result whenU1 is
chosen to be the retarded interaction defined by Eq.~2.33! and all
~only 11) states are included. Finally, the short-dashed line is
result from the TOPT interaction, calculated with11 states only.

FIG. 12. The form factorA(Q2) for the deuteron. The solid line
represents a calculation usingl51 and the dotted line shows
calculation usingl(6Q/2) in the Breit frame, such that the deu
teron energy corresponds to the invariant massMD . In both cases
only positive-energy sectors are included and an instant interac
is used.
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'25 fm22, and by about 30–40 % atQ25100 fm22. The
effects onB are comparable.

Referring back to Fig. 11, we note that adding mes
retardation to the formalism actuallyincreasesthe violation
of Lorentz invariance. This is a little surprising because
retardation effects, when expanded to orderP2/M2, repro-
duce the Poincare´ boost operator of Refs.@37,1#. We note
that if the Poincare´ boost operator of orderP2/M2 were ac-
tually sufficient in this calculation, and effects of higher o
der in 1/M were truly negligible, then the inclusion of thes
retardation effects should remove most of the violation
Lorentz invariance present in the instant analysis. This d
not happen. Finally, including negative-energy states in
formalism decreases the size of the violation of Lorentz
variance.

IV. CONSTRUCTION OF A CURRENT-CONSERVING
ELECTROMAGNETIC INTERACTION

In this section, we first review how a conserved elect
magnetic current is developed for the 4D Bethe-Salpeter

FIG. 13. The form factorB(Q2) for the deuteron. The solid line
represents a calculation usingl51 and the dotted line shows
calculation usingl(6Q/2) in the Breit-frame, such that the deu
teron energy corresponds to the invariant massMD . In both cases
only positive-energy sectors are included and an instant interac
is used.
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malism, and then show how a corresponding 3D curren
obtained from the 4D one. The emphasis is on satisfying
appropriate Ward-Takahashi identities. These reviews es
lish the procedure that is followed in subsequent subsect
in order to construct the electromagnetic current for the
and 3D formalisms involving the propagatorGC . The tricky
issue whenGC is present is the construction of addition
terms in the current to maintain current conservation. B
causeGC enters as a part of two-body interactions associa
with crossed graphs, the current associated with it is a t
body current. We construct the extra terms in the curr
required by the Ward-Takahashi identity, which is n
straightforward because the variablesk1

0 and k2
0 that we

choose depend on the three-momentum of the intermed
state. As we shall see below, this means that we cannot
the standard fermion electromagnetic currentgm because
such a choice would violate current conservation. We sh
that the Ward-Takahashi identity~WTI! may be recovered
by incorporating an additional term in the current. Th
yields the ET current referred to asG 0,m

g in the Introduction.
We then develop the corresponding 3D current for the f
malism involvingGC . Because the ET current has parts
tributable to two-body effects, we also develop a simp
current that is appropriate for use with instant interactio
G instm

g . This last-mentioned current is the one used in
calculations of this paper, which are based upon the impu
approximation. Although we do not use the full formalis
developed in this section for calculations in this paper,
results presented here are pertinent to future calculation
which two-body currents will be included.

A. Review of Ward-Takahashi identities in the 4D Bethe-
Salpeter formalism

We begin our discussion by reviewing the WTI for th
usual Bethe-Salpeter Green’s function. Consider the tw
body Green’s functionG that is the solution of the Bethe
Salpeter equation

G5G01G0KG, ~4.1!

where K is any BSE kernel. Define the two-body Green
function for the interaction of two free particles with a ph
ton of fixed momentumQ via

on
G0,m
g ~p1 ,p2 ,Q![G0~p1 ,p21Q!

3@2 i j m
~2!(Q2!d1

21~p1!]G0~p1 ,p2!1~1↔2!

5G0,m
g~2!~p1 ,p2 ,Q!1G0,m

g~1!~p1 ,p2 ,Q!. ~4.2!
1

i
-

Here, and throughout the rest of the paper, the nota
(1↔2) indicates that the momenta of the two particles m
be swappedand the labels exchanged. Therefore, the (1↔2)
pieces of any expression represent the photon couplin
whichever particle it did not couple in the first part of th
n
t

to

expression. An explicit example of this rule is the particle
coupling term of Eq. ~4.2!, which is G0,m

g(1)(p1 ,p2 ,Q)
5G0(p11Q,p2)@2 id2

21(p2) j m
(1)(Q2)#G0(p1 ,p2).

The free Green’s functionG0,m
g obeys a Ward-Takahash

identity. Now letGm
g be the Green’s function for the interac
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tion of one photon with the interacting two-particle syste
Note that in the two-nucleon system the chargesqi will in-
clude isospin operators, and so care must be exercise
ordering charges and isospin-dependent interactions.
may write the following equation for a current-conservi
Gm

g , by allowing the photon to be inserted anywhere on
right-hand side of Eq.~4.1!, and then rearranging the resu

Gm
g ~k18 ,k28 ;k1 ,k2 ;Q!

5E d4p1d4p2

~2p!8
G~k18 ,k28 ;p1 ,p21Q!

3@2 i j m
~2!~Q2!d1

21~p1!#G~p1 ,p2 ;k1 ,k2!1~1↔2!

1E d4p18d
4p28d

4p1d4p2

~2p!16
G~k18 ,k28 ;p18 ,p28!

3Km
g ~p18 ,p28 ;p1 ,p2 ;Q!G~p1 ,p2 ;k1 ,k2!. ~4.3!

Here Km
g is found by coupling the photon to every intern

charged line in the kernelK. @Note that there is an overa
delta functiond (4)(k181k282k12k22Q) on both sides of
this equation.# Using the WTI forG0,m

g , Eq. ~4.3!, and the
explicit form of Eq.~4.1! we find a WTI forGm

g ,

QmGm
g ~k18 ,k28 ;k1 ,k2 ;Q!5q2G~k18 ,k282Q;k1 ,k2!

2G~k18 ,k28 ;k1 ,k21Q!q2

1~1↔2!, ~4.4!

provided that

q2K~p18 ,p282Q;p1 ,p2!2K~p18 ,p28 ;p1 ,p21Q!q21~1↔2!

5QmKm
g ~p18 ,p28 ;p1 ,p2 ;Q!, ~4.5!

which is the WTI for the interaction current.~Similar identi-
ties are used in the construction of Ward-Takahashi ident
for the Gross—or spectator—formalism in Refs.@38,39#.!
The result~4.5! is completely general, and will always hol
if the two-body currentKm

g is constructed by coupling th
photon to every charged line in the kernelK.

Using the usual decomposition of the two-body Gree
function into a pole and a regular part gives the amplitude
tim
ve

e

.

in
e

e

s

s
r

interaction of the bound state with a photon of momentumQ
@40#. Expressing the result in terms of total and relative fo
momenta yields

Am~P,Q!5E d4p

~2p!4
Ḡ~p2Q/2;P8!G0,m

g~2!~p;P;Q!G~p;P!

1~1↔2!1E d4p8d4p

~2p!8
Ḡ~p8;P8!G0~p8;P8!

3Km
g ~p8,P8;p,P;Q!G0~p;P!G~p;P!, ~4.6!

whereP85P1Q andG(p;P) is the two-body vertex func-
tion corresponding to the bound state at four-moment
P25M2. From the WTI’s forG0

g
m andKm

g , and the bound-
state BSE,G5KG0G, it is then straightforward to show tha

QmAm~P,Q!50, ~4.7!

as required for current conservation.

B. Gauge invariance in a 3D reduction of the Bethe-Salpeter
formalism

In the context of a reduction to three dimensions, t
question is how to maintain gauge invariance when the
duction is made. In Sec. I we outlined the 3D reducti
method for the bound-state vertex arising from the solut
of the Bethe-Salpeter equation. This gives

G1~P!5K1~P!ŠG0~P!‹G1~P!, ~4.8!

where the dependence of quantities on the total fo
momentumP is indicated. The 4D vertex functionG and the
corresponding 3D oneG1 are related as follows:

G0~P!G~P!5G~P!G1~P!. ~4.9!

Moreover, the interactionK1 is defined so as to obey

^G0~P!&K1~P!^G0~P!&5^G0~P!K~P!G~P!&.
~4.10!

Inserting Eq. ~4.9! into Eq. ~4.6!, we find an entirely
equivalent expression for the current,
Am~P,Q!5E d4k8d4p8d4pd4k

~2p!16
Ḡ1~k8;P8!G~k8,p8;P8!@2 i j m

~1!~Q2!d2
21~n2P2p!d~4!~p82p2Q/2!

2 i j m
~2!~Q2!d1

21~n1P1p!d~4!~p82p1Q/2!1Km
g ~P8,p8;P,p;Q!#G~p,k;P!G1~k;P!. ~4.11!
-
-

st,
Because the vertex functions do not depend upon the
components of relative momenta, integrations o
k0 and k08 reduce this expression to a 3D one, which w
abbreviate as

Am5Ḡ1~P8!^G~P8!@Jm1Km
g #G~P!&G1~P!. ~4.12!
e
r

Now, given a result forG1 obtained by systematic expan
sion of K1 , the amplitudeAm also can be expanded system
atically in a way that maintains current conservation. Fir
note that we solve forK1 in accordance with Eq.~4.10!. This
leads to an infinite series forK1 . If the condition~4.10! is
imposed order by order in the expansion inK2K1 , the con-



e
if
le
n

-

th

in

to

t

d

t

Eq

th

if
-

by
lds
co-
n in

re
ged
s.

ed
e of
nal
ire
al-

ere
ged
-
c

rda-

-
ion

r

rrent
n
TI

t

PRC 58 2275ELECTRON-DEUTERON SCATTERING IN A CURRENT- . . .
dition definesK1 to the same order. Truncation of the kern
is necessary for a practical analysis and we must ask
corresponding 3D approximation for the current matrix e
ment ~4.12! exists that maintains the Ward-Takahashi ide
tities of the theory.It turns out that the current matrix ele
ment (Eq: 4.12) is conserved ifG(Jm1Km

g )G on the right-
hand side of Eq. (4.12) is expanded to a given order in
coupling constant and the kernel K1 used to defineG1 is
obtained from Eq. (4.10) by truncation at the same order
the coupling constant.

To effect this the right-hand side of Eq.~4.12! is split into
two pieces, one due to the one-body currentJm , and one due
to the two-body currentKm

g . Suppose now thatK1 has been
truncated at lowest order, i.e.,K15K1

(2) , and that Km
g

5Km
g(2) . Then, in theJm piece, we expand theG’s and retain

terms up to the same order inK (2)2K1
(2) . A piece from the

two-body current must be added to this. In that piece we s
this expansion ofG at zeroth order inK (2)2K1

(2) , i.e., write
G5G0 . Thus, we define our second-order approximation
Am , A m

(2) by

A m
~2!5Ḡ1~P8!^G0m

g &G1~P!

1Ḡ1~P8!^G0~P8!@K ~2!~P8!2K1
~2!~P8!#G0m

g &G1~P!

1Ḡ1~P8!^G0m
g @K ~2!~P!2K1

~2!~P!#G0~P!&G1~P!

1Ḡ1~P8!^G0~P8!Km
g~2!G0~P!&G1~P!. ~4.13!

To show thatA m
(2) is gauge invariant, it must be contracte

with the four-vectorQ. The WTI’s for G0m
g , Km

g , together
with the bound-state equation~4.8!, can be used to show tha

QmA m
~2!

52Ḡ1~P8!^G0~P8!@K ~2!~P8!2K1
~2!~P8!#G0~P8!&

3q1G1~P!1Ḡ1~P8!q1

3^G0~P!@K ~2!~P!2K1
~2!~P!#G0~P!&G1~P!1~1↔2!.

~4.14!

Thus, at second order in the coupling constant, with
~4.10! expanded at second order definingK1

(2) , the corre-
sponding amplitude for electromagnetic interactions of
bound state, as defined by Eq.~4.13!, obeys
l
a
-
-

e

p

o

.

e

QmA m
~2!50. ~4.15!

It is straightforward to check that the same result holds
Eq. ~4.10! for K1 is truncated at fourth order, while the one
body and two-body current pieces of Eq.~4.11! similarly are
expanded to fourth order. This defines a vertex functionA m

(4)

which obeysQmA m
(4)50. Thus, truncating the kernelK1 de-

fined by Eq.~4.10! and the electromagnetic vertex defined
Eq. ~4.12! at consistent order in the coupling constant yie
a current-conserving electromagnetic matrix element. A
variant extension of the formalism presented here is give
Ref. @2#.

In fact,A m
(2) includes contributions from diagrams whe

the photon couples to particles 1 and 2 while exchan
quanta are ‘‘in flight.’’ These contributions are of two kind
Firstly, if the four-dimensional kernelK is dependent on the
total momentum, or if it involves the exchange of charg
particles, then gauge invariance requires the presenc
terms representing the coupling of the photon to inter
lines inK. Second, even if gauge invariance does not requ
the presence of such terms in the four-dimensional form
ism, terms arise in the three-dimensional formalism wh
the photon couples to particles 1 and 2 while an exchan
particle is ‘‘in flight.’’ These must be included if our ap
proach is to contain a WTI.~See Fig. 2 for a diagrammati
interpretation of one such term.!

A special case of the above results occurs when reta
tion effects are omitted, i.e., when the kernelK15K inst is
chosen, and the bound-state equation~1.2! is solved to get
the vertex functionG15G inst. Then a gauge-invariant cur
rent is obtained by implementing the instant approximat
in the expression~4.13! in a way consistent with that in
which it was used in obtaining the Salpeter equation~1.2!.
Taking Eq.~4.13! and imitating the derivation of the Salpete
equation by replacingK by K inst leads to

Ainst,m~P,Q!5Ḡ inst~P8!^G0m
g &G inst~P!1Ḡ inst~P8!

3^G0~P8!&K inst
g

m^G0~P!&G inst~P!,

~4.16!

where we have also replaced the meson-exchange cu
kernelKm

g by the instant approximation thereto. By definitio
this instant meson-exchange current kernel obeys the W
~4.5!, but with the instant kernelK inst appearing on the right-
hand side. To show that Eq.~4.16! defines a gauge-invarian
matrix element we contract with the four-vectorQm and use
the Ward-Takahashi identities forJm andK instm

g . This gives
QmAinst,m~P,Q!5Ḡ inst~P8!q2^G0~P!2G0~P8!&G inst~P!1Ḡ inst~P8!

3^G0~P8!@q2K inst~P!2K inst~P8!q2#G0~P!&

3G inst~P!1~1↔2!. ~4.17!
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Using the bound-state equationG inst5K inst̂ G0&G inst, both at
total momentumP and at total momentumP8, then gives the
desired WTI

QmAinst,m~P,Q!50. ~4.18!

Note that if the four-dimensional interactionK does not de-
pend on the total momentumP, then the simple current

Ainst,m~P,Q!5Ḡ inst~P8!^G0,m
g ~P;Q!&G inst~P! ~4.19!

is gauge invariant.

C. Gauge invariance in the 4D formalism withGC

In this section we construct a conserved current for the
equation

G5UG0G. ~4.20!

In order to do this we rewrite the equation as two coup
equations, the first of which involves the Bethe-Salpeter k
nel K,

G5KG0G, ~4.21!

and the second of which defines the reduced interactionU,

K5U1UGCK. ~4.22!

From Eq.~4.6! we see that the gauge-invariant current for t
photon coupling to the bound state will contain a piece c
responding to the coupling of photon lines in all possib
ways insideK. This piece of the current is composed of tw
parts, as follows:

Km
g 5~11KGC!Um

g ~11GCK !1KGC,m
g K. ~4.23!

The Ward-Takahashi identities that are required to be sa
fied involve one forUm

g that takes the same form as Eq.~4.5!,
with K replaced byU,

q2U~p18 ,p282Q;p1 ,p2!2U~p18 ,p28 ;p1 ,p21Q!q21~1↔2!

5QmUm
g ~p18 ,p28 ;p1 ,p2 ;Q!. ~4.24!

The other involves the Green’s functionGC,m
g , representing

a photon coupling to the propagatorGC . This piece must be
constructed in accordance with the Ward-Takahashi iden

QmGC,m
g ~p1 ,p2 ,Q!5q2@GC~p1 ,p2!2GC~p1 ,p21Q!#

1~1↔2!. ~4.25!

When both of the WTI’s~4.24! and ~4.25! hold, then the
electromagnetic kernelKm

g will satisfy the WTI ~4.5!. In this
case the current appropriate to a photon insertion in the
propagator is

G0,m
g [G0,m

g 1GC,m
g , ~4.26!

and so, ifG obeys Eq.~4.20!, the amplitude
D

d
r-

r-

s-

ty

ee

Am~P,Q!5E d4p

~2p!4
Ḡ~p2Q/2;P8!G 0,m

g~2!~p;P;Q!G~p;P!

1~1↔2!1E d4p8d4p

~2p!8
Ḡ~p8;P8!G0~p8;P8!

3Um
g ~p8,P8;p,P;Q!G0~p;P!G~p;P! ~4.27!

will satisfy the current conservation condition~4.7!.
In order to implement this formalism, we must construc

currentGC
g

m that obeys Eq.~4.25!. Rather than immediately
tackling the full GC defined by Eq.~2.24! we first perform
this task for one term by considering the simple case
which the propagator isid1d2

c and the photon couples only t
particle 2. This is nontrivial because the choice of varia
k2

0 in d2
c in general depends on the three-momenta of b

particles. For instance, ifk2
0 is chosen as in Eq.~2.19! and

the particles are of equal mass, then thek2
0 which appears in

the propagatorGC(p1 ,p21Q) is ~for equal-mass particles!

k2
085

1

2
~P01Q02e11e28!, ~4.28!

whereP[p11p2 , ande285e2(p21Q). This is to be com-
pared to the case wherek2

0 is defined via Eq.~2.18!. In that
case thek2

0 appearing inGC(p1 ,p21Q) is, for equal-mass
particles,

k2
085

1

2
~P01Q0!, ~4.29!

and there is thus no dependence on the intermediate-
three-momenta of particles 1 and 2. As we shall see bel
the appearance of momenta in the choice~4.28! for k2

0 leads
to complications in the construction of a current obeying E
~4.25!.

To construct such a current, we first postulate the form

dc,m
g~2!~p2 ;Q![d2

c̃~p21Q! j c,m
~2! d2

c~p2!, ~4.30!

where we writed2
c̃ in order to indicate that the constraint o

k2
0 is different once the photon strikes particle 2. The W

for this current is then

Qm j c,m
~2! 5q2@d2

c̃~p21Q!212d2
c~p2!21#. ~4.31!

Constructing the right-hand side of this equation, for spin1
2

particles we obtain

q2@2~k” 282k” 2!2Q” #. ~4.32!

Using the form fork2 , Eq.~2.11!, and three-momentum con
servation,p285p21Q, we see that

d2
c̃~p21Q!212d2

c~p2!215@2~k2
082k2

0!22Q0#g2
01Q” .

~4.33!

Note that if we make the choice~2.18!, thenk2
08 is given by

k2
085n2(P01Q0) andk2

05n2P0, and so
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d2
c̃~p21Q!212d2

c~p2!215Q” 12~n221!Q0g2
0 .

~4.34!

This means that, in the Breit frame whereQ050, the usual
current j m

(2)5q2g2m satisfies the Ward-Takahashi identi
~4.31!.

However, when we use the formulas~4.28! and ~2.19! in
the case of equal-mass particles, note that

2~k2
082k2

0!5Q01
Q•~p281p2!

e21e28
, ~4.35!

thus implying that

d2
c̃~p21Q!212d2

c~p2!215Q” 2Q
p̂281 p̂2

e281e2

g20, ~4.36!

wherep̂285(e28 ,p28), p̂25(e2 ,p2). Consequently, the WT
~4.31! requires that we define the current

j c,m
~2! 5q2gm2 j̃ m

~2! , ~4.37!

where

j̃ m
~2!5q2

p̂2m8 1 p̂2m

e281e2

g20 ~4.38!

is the additional piece of the current that compensates for
dependence ofk2

0 on momentum. Note thatj c,0
(2)50 with this

choice of j c,m
(2) . Note also the identity

Qm j̃ m
~2!52~k1

082k1
0!q2g20. ~4.39!

Next we consider a second piece ofGC , namely, the
propagatorid1

cd2 , still in the situation where the photo
couples only to particle 2. Denote the freeNN→NNg

Green’s function corresponding to this situation bydm
c̃ . The

Ward-Takahashi identity which this Green’s function shou
obey is

Qmdm
c̃ ~p1 ,p2 ;Q!5 iq2@d1

c~p1!d2~p2!2d1
c̃~p1!d2~p21Q!#.

~4.40!
e

Note that here the propagatord1
c̃(p1)Þd1

c(p1), since the
change in the momentum of particle 2 after the impact of
photon leads to a change in the choice ofk1

0 that appears in

d1
c̃—in spite of particle 1 apparently being a spectator in t

interaction. Again, the simplest choice

dm
c̃ ~p1 ,p2 ;Q!5 id1

c~p1!d2~p21Q!q2g2md2~p2!
~4.41!

does not obey the Ward-Takahashi identity. However, if

constructdm
c̃ according to

dm
c̃ ~p1 ,p2 ;Q!5

i

2
$@d1

c~p1!1d1
c̃~p1!#d2~p21Q!

3q2g2md2~p2!1d1
c̃~p1! j̃ 2mg2

0g1
0d1

c~p1!

3@d2~p21Q!1d2~p2!#%, ~4.42!

then it does obey the WTI~4.40!. This can be shown as
follows. Contracting the right-hand side of Eq.~4.42! with
Qm gives

i

2
$@d1

c~p1!1d1
c̃~p1!#q2@d2~p2!2d2~p21Q!#

1d1
c̃~p1!q22~k1

082k1
0!g1

0d1
c~p1!@d2~p21Q!1d2~p2!#%.

But

2~k1
082k1

0!g105d1
c̃~p1!212d1

c~p1!21, ~4.43!

and so the Green’s function defined by Eq.~4.42! does in-
deed satisfy the WTI~4.40!.

It is now possible to combine the results forj c,m
(2) anddm

c̃ in
order to construct the 4D currentG0,m

g 5G0
g

m1GC
g

m corre-
sponding to the free Green’s function~2.24!. In this case the
relevant WTI~again, only writing explicitly the parts where
the photon couples to particle 2! is
QmG 0,m
g ~p1 ,p2 ;Q!5

i

2
q2@d1~p1!1d1

c~p1!#[d2~p2!1d2
c~p2!] 2

i

2
q2@d1~p1!1d1

c̃~p1!#[d2~p21Q!1d2
c̃~p21Q!] 1~1↔2!.

~4.44!

Using the forms already constructed forj 2m
c anddm

c̃ we discover that the 4D current in the formalism involvingGC is

G 0,m
g ~p1 ,p2 ;Q!5

i

4
$@2d1~p1!1d1

c~p1!1d1
c̃~p1!#@d2~p21Q!q2g2md2~p2!1d2

c̃~p21Q! j c,m
~2! d2

c~p2!#1d1
c̃~p1! j̃ 2mg2

0g1
0d1~p1!

3@d2~p2!1d2~p21Q!1d2
c~p2!1d2

c̃~p21Q!#%1~1↔2!, ~4.45!

and it obeys Eq.~4.44!.
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D. Reduction to 3D and the ET current

Having constructed a 4D current for the formalism i
volving GC that obeys the required Ward-Takahashi ident
we can apply the reduction formalism of Sec. IV B to obta
the currents corresponding to the 3D reduction of this
theory. To this end, we first note that the 4D vertex functio
are related to 3D onesGET by Eqs.~1.15! and ~1.17!. Using
these relations to rewrite the 4D current~1.21! in terms of the
3D vertex functions shows that

AET,m5Ḡ1,ET~P8!^VL~P8!G 0,m
g VR~P!&G1,ET~P!

1Ḡ1,ET~P8!^G~P8!Um
gG~P!&G1,ET~P!. ~4.46!

Here, Um
g denotes the interaction current obtained by co

pling the photon in all possible ways within the reduc
interactionU. In the same manner as discussed for the
version of the Bethe-Salpeter current, it is possible to ma
tain gauge invariance if the 3D interactionU1 is truncated at
some definite order in the coupling constant, while the
pansions forVLG0,m

g VR andGUm
gG similarly are truncated a

the same order in the coupling constant.
Because we truncate our effective interaction at sec

order, the corresponding conserved current in 3D form
obtained by use ofVR(2)511@U (2)2U1

(2)#G0 and a corre-
sponding expansion forVL(2) in Eq. ~4.46!. The result for
the 3D current,

A m
~2!5Ḡ1,ET~P8!^G 0,m

g &G1,ET~P!1Ḡ1,ET~P8!^G0~P8!@U ~2!

3~P8!2U1
~2!~P8!#G 0,m

g &G1,ET~P!1Ḡ1,ET~P8!

3^G 0,m
g @U ~2!~P!2U1

~2!~P!#G0~P!&G1,ET~P!

1Ḡ1,ET~P8!^G0~P8!Um
g~2!G0~P!&G1,ET~P!, ~4.47!

obeys the Ward-Takahashi identity~4.15!.
Note thatU (2)5K (2) andUm

g(2)5Km
g(2) are correct at sec

ond order in expansions in the coupling constant. Con
quently, if we are considering one-boson-exchange inte
tions, the only contributions toKm

g(2) that are necessary fo
gauge invariance come from the photon coupling to isov
tor exchange particles and from contact terms due to der
tive couplings of the mesons to the nucleon. Since these
rise to isovector structures, their contribution to electrom
netic scattering off the deuteron is, in fact, zero.

E. Impulse-approximation current based on the instant
approximation to ET formalism

Just as in the case of the Bethe-Salpeter equation, if
instant approximation is used to obtain from Eq.~2.25! the
three-dimensional equation that defines the vertex funct
then a corresponding gauge-invariant impulse current ca
constructed by replacingU by U inst everywhere in the ex-
pression~4.47!. Assuming that the interaction in the fou
dimensional equation does not depend on the total mom
tum, this leads to a particularly simple conserved curren

Ainst,m5Ḡ inst̂ G 0,m
g &G inst. ~4.48!
,
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At this point it appears that we must integrate the rat
complicated formula~4.45! over the zeroth component o
relative momentum in order to calculate^G 0,m

g &. However,
the result~4.45! for G 0,m

g was constructed in order to obe
Ward-Takahashi identities in the full four-dimension
theory. It is not, in fact, necessary to use the full result if w
are only concerned with maintaining WTI’s at the thre
dimensional level in the instant approximation. As remark
following Eq. ~1.12!, the simpler propagator̂d1(d21d2

c)&
provides the same result as^G0&. Thus, we may construct th
corresponding current

Ginst,m
g ~p1 ,p2 ;P,Q!5 i ^d1~p1!d2~p21Q! j m

~2!d2~p2!

1d1~p1!d2
c̃~p21Q! j c,m

~2! d2
c~p2!&

1~1↔2!. ~4.49!

When contracted withQm this gives

QmGinst,m
g ~p1 ,p2 ;Q!

5 iq2@^d1~p1!d2~p2!&2^d1~p1!d2~p21Q!&

1^d1~p1!d2
c~p2!&2^d1~p1!d2

c̃~p21Q!&#1~1↔2!

~4.50!

5q2@^G0&~p1 ,p2 ;P0!2^G0&~p1 ,p21Q;P01Q0!#

1~1↔2!. ~4.51!

Consequently, if a vertex functionG inst is constructed to be a
solution to Eq.~2.26!, then the current matrix element de
fined by

Ainst,m5E d3p

~2p!3
Ḡ inst~p2Q/2;P8!Ginst,m

g~2! ~p,P;Q!G inst~p;P!

1~1↔2! ~4.52!

obeys the current conservation condition~4.18!. The current
G inst,m

g is simpler than the full ET current and omits on
effects stemming from retardation in the current. Since
present calculations are designed to provide an assessme
the role of negative-energy states and retardation effect
the vertex functions, and these effects stemming from re
dation in the current are expected to be minor,G inst,m

g is used
in these calculations.

V. ELECTRON-DEUTERON SCATTERING:
IMPULSE-APPROXIMATION CALCULATIONS

Now we are in a position to calculate the deuteron el
tromagnetic form factorsA andB and the tensor polarization
T20. These are related to the charge, quadrupole, and m
netic form factors of the deuteron,FC , FQ , andFM , by the
following formulas:

A5FC
2 1

8

9
h2FQ

2 1
2

3
hFM

2 , ~5.1!
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B5
4

3
h~11h!FM

2 , ~5.2!

t2052A2
x~x12!1y/2

112~x21y!
, ~5.3!

where

x5
2hFQ

3FC
, ~5.4!

y5
2h

3 F1

2
1~11h!tan2S ue

2 D G S FM

FC
D 2

, ~5.5!

h52
Q2

4MD
2

, ~5.6!

whereQ2 is the square of the four-momentum transfer. F
elastic electron-deuteron scattering,Q is spacelike andh is
positive. In this work all plots and data are quoted at
electron angle ofue570°.

The deuteron form factorsFC , FQ , andFM are related to
the matrix elements of the currentAm discussed in the pre
vious section, taken between the three different magn
quantum number statesuM &5u11&, u0&, and u21& of the
deuteron as follows:

FC5
1

3A11he
~^0uA 0u0&12^11uA 0u11&!, ~5.7!

FQ5
1

2hA11he
~^0uA 0u0&2^11uA 0u11&!, ~5.8!

FM5
21

A2h~11h!e
^11uA1u0&. ~5.9!

Matrix elements ofAm are calculated in the Breit frame
with kinematics as shown in Fig. 14. In order to calcula
matrix elements such as those defined by Eq.~4.52! we re-
quire the vertex functions, or equivalently the wave fun
tions, in the frame where the total four-momentum isP
5(AMD

2 1Q2/4,Q/2). However, these are precisely th
wave functions calculated in Sec. III. Thus, we now take
wave functions constructed for the five different interactio
of Sec. III atP2 ranging from 0 to 25 fm22 and insert them
into the expression~4.52!. The explicit form of the three-
dimensional currentG inst,m

g is presented in Appendix B. In

FIG. 14. The kinematics of electron-deuteron scattering, fo
momentum transferQ5(0,Q), in the Breit frame.
r

n

ic

-

e
s

using any of the interactions obtained with only positiv
energy-state propagation we of course drop all pieces of
operatorG inst,m

g in negative-energy-state sectors.
The general form of a matrix element of the operatorAm ,

using the deuteron vertex-function decomposition develo
in Ref. @19#, is, for coupling only to particle 1,

^M 8uAmuM &5E d3p

~2p!3
@G

1
r18s18r2s2 ,M8~p1Q/2,P1Q!#*

3^G 0&
r18r2~p1Q/2;P1Q!

3J
1,m
r18s18r1s1r2s2^G0&

r1r2~p;P!

3G1
r1s1r2s2 ,M

~p;P!1~1↔2!, ~5.10!

with

^G 0&
r1r2~p;P!

[r1r2

1

1

2
~r11r2!P02e12e21

1

2
~r12r2!~e12e2!

~5.11!

and

J
1,m
r18s18r1s1r2s25r2ūr18s18~r18p18!Ĵ1,m

r18r1r2ur1s1~r1p1!,
~5.12!

where the form ofĴ
1,m
r18r1r2 is rho-spin dependent and is give

in Appendix B.
The single-nucleon currents used in these calculations

the usual one for extended nucleons, defined forn51 or 2
by

j ~n!,m5qnS gn
mF1

~n!~Q2!1
i

2MN
sn

mnQnF2
~n!~Q2! D .

~5.13!

The appearance of the factorF1 in the first term here implies
that the WTIQm j m5Q” is not satisfied. On the other hand,
pointed out by Gross and Riska@38# a current which obeys
the original WTI is

j WT
m 5gm1

1

2MN
smnQnF2~Q2!

1@F1~Q2!21#Fgm2Qm
gnQn

Q2 G . ~5.14!

The difference betweenj m and j WT
m is proportional toQm.

Therefore, for elastic electron-deuteron scattering in the B
frame only j 3 will be affected if we adopt the WTI-obeying
current j WT

m instead of the original extended-nucleon curre
j m. Recall that in the Breit framej 3 is formally constrained
by current conservation to be proportional toj 0, and is never
evaluated. Hence, it transpires that by formally adding
piece to the one-body currentj m we can obtain a one-bod
current for an extended object which still satisfiesQm j m

a
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5Q” and yet, in this calculation, leads to the same numer
results as Eq.~5.13!. We choose to parametrize the singl
nucleon form factorsF1 andF2 via the 1976 fits of Ho¨hler
et al. @41#. Choosing different single-nucleon form facto
does not affect our qualitative conclusions, although it h
some impact on our quantitative results forA, B, andT20.

Using such a one-body current the calculation descri
above conserves the electromagnetic current if the ve
function G1 is obtained using an instant potential. Howev
in all other circumstances it violates the Ward-Takaha
identities by omission of pieces that are required becaus
the inclusion of retardation effects in the calculation. Th
violation of the WTI’s comes from two sources.

First, in, for instance, the TOPT calculation, the pieces
the current coming from terms in Eq.~4.13! of the form

^G0~P8!~K ~2!2K1
~2!!G0~P!JmG0~P!&

are not included if Eq.~4.52! is applied. The inclusion of
these ‘‘in-flight’’ contributions to the current in our calcula
tions and the consequent restoration of current conserva
in the TOPT calculation will be the subject of a future pap
There these contributions, and meson-exchange curren
fects such as therpg and vsg MEC’s will be calculated.
Of course, similar ‘‘in-flight’’ pieces are missing from th
‘‘retarded ET’’ calculation.

Second, even if these ‘‘in-flight’’ pieces are included
the retarded ET calculation, the WTI’s will not hold. Piec
will still be missing from the current~4.52!. Specifically, we
need to use the more complicated form ofG 0,m

g given in Eq.
~4.45!. However, calculations wherêGC,m

g & is omitted from
the instant current matrix element suggest that the total c
tribution of ^GC,m

g & to the observables is small. Since^GC,m
g &

itself makes a small contribution to observables, using
form of it that only approximately satisfies current conser
tion is expected to have an even smaller effect on our
merical results.

VI. CONCLUSION

The ET formalism developed here provides a system
three-dimensional theory of electromagnetic interactions
volving relativistic bound states. This is achieved by in
grating over time components of relative momenta. For
propagator of the theory, this produces a form correspond
to zero relative time of the two particles. In order for th
formalism to incorporate theZ graphs that are expected in
quantum field theory, it is necessary for the propagato
include terms that come from crossed Feynman graphs.
predominant terms that are needed have been derived us
form of the eikonal approximation. This leads to the E
propagator. In this paper, we discuss a refined version of
ET propagator involving a different choice ofk2

0 from that of
Refs. @10,11#. This new choice ofk2

0 avoids the unphysica
singularities which otherwise occur in the three-dimensio
ET interaction when it is evaluated in a frame where
bound state has a large three-momentum.

Given a suitable choice for the ET propagator, one m
calculate the interaction and the electromagnetic currents
must be used with it. A full accounting of both the couplin
to negative-energy states and the role of retardations in
al
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interaction is thereby obtained.
When the electromagnetic currents are constructed in

3D theory the necessary Ward-Takahashi identities
clearly satisfied provided that one calculates both the
interaction and the electromagnetic current to all orde
However, this is neither practical nor, if an effective ha
ronic Lagrangian is being used, desirable. A truncation
both the interaction and the electromagnetic current
needed. It is nota priori evident that one may truncate th
expansion for the both the interaction and the electrom
netic current in a way that systematically maintains curr
conservation. We show that this can in fact be done in the
formalism.

Violations of Lorentz invariance occur when the intera
tion is truncated. For the range of momenta that arise
electron-deuteron scattering at TJNAFQ2 these violations
may be compensated for by the use of a renormalized in
action. It is found that the required renormalization typica
is no more than a few percent. Based upon this, we do
expect this violation of Lorentz invariance to have a sign
cant effect on results for electron-deuteron scattering.

Calculations have been performed for the impulse
proximation, in which we use an instant approximation f
the electromagnetic current. This current satisfies curr
conservation when used with deuteron vertex functions
are obtained with instant interactions. We also have used
simple current with vertex functions that include the full r
tardations obtained in the ET formalism.

Impulse-approximation results fall systematically belo
experimental data for the form factorsA and B for Q.3 –
4 fm21. This deficiency of the theoretical calculations
higher Q indicates that additional mechanisms beyond
impulse approximation should be significant. However,
existing tensor polarization data are reasonably well
scribed, and this is consistent with previous analyses
have shownT20 to be less sensitive to two-body currents.

The role of negative-energy states is found to be not v
large. Our impulse-approximation numerical results are
closer agreement with those of Hummel and Tjon@15–17#
than with those based upon the spectator formalism@33#.
Because the ET formalism incorporates the relevantZ graphs
in a preferable way, we are confident thatZ graphs play a
minor role in calculations that are based upon stand
boson-exchange models of theNN interaction. The role of
retardation corrections in the deuteron vertex functions a
is rather minor.

Further calculations are needed in order to incorporate
full ET current and the meson-exchange currents.
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APPENDIX A: LEADING EFFECTS IN 1/ M
OF TIME-ORDERED Z GRAPHS

Here we examine the fourth-order graphs for theNN t
matrix in the equal-time formalism and show that the con
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butions of order 1/M are correctly reproduced in the E
equation with instant interactions.

The fourth-order piece of the equal-time Green’s funct
is

^G0K ~2!G0K ~2!G0&1^G0K ~4!G0&, ~A1!

whereK is the full Bethe-Salpeter kernel. If we consider on
positive-energy states on the external lines, and decom
the internal nucleon lines according to the different rho sp
which are possible, we produce 48 graphs. However, if
restrict our attention to graphs which contribute at order 1M
or above, only the 12 graphs shown in Fig. 15 are relev
Of these, those on the first and third lines arise from the fi
iterative, part of expression~A1! while those on the secon
and fourth lines come from the crossed-box piece of
~A1!.

The external Green’s functions are now amputated,
the static limit of

T11→11
~4! 5^G0&11

21 @^G0K ~2!G0K ~2!G0&

1^G0K ~4!G0&#11→11^G0&11
21 ~A2!

is taken. In this limit the first two graphs in Fig. 15 a
infinitely enhanced, as they come from the iteration of
lowest-order interactionK1

(2) . Meanwhile, the next four
graphs give energy denominators

2
1

v1

1

v11v2

1

v2
2

1

v2

1

v11v2

1

v1
22

1

v1

1

v11v2

1

v1
,

~A3!

where v1 (v2) is the energy of the first~second! meson
emitted from nucleon one. These graphs do not vanish in
limit M→`. They correspond to a shorter-range interact
than K1

(2) , and are formally part of the fourth-order thre
dimensional kernelK1

(4) . Their effects are usually subsume

FIG. 15. The graphs which contribute to the three-dimensio
NN t matrix at fourth order in the coupling, up to order 1/M . The
graphs on the first and third lines come from theNN Feynman box
graph and those on the second and fourth lines come from theNN
Feynman crossed-box graph.
se
s
e

t.
t,

.

d

e

e
n

into K1
(2) through the fitting of the parameters in that inte

action to theNN scattering data.
The contribution of the remaining six graphs begins

order 1/M . At that order they give energy denominators
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Including the appropriate spinors and factors to obtain
full expression shows that the sum of these graphs yield

g4ū1
1V1~1!u1

2ū2
1V1~2!u2

1ū1
2V2~1!u1

1ū2
1V2~2!u2

1

3S 2
1

v1
2D S 2

1

2M D S 2
1

v2
2D , ~A5!

whereVi( j ) is the vertex for the interaction of mesoni with
nucleonj . Note that in writing this expression we have tak
some liberties with the ordering of these vertices. Howev
the error that this produces is of higher order in 1/M . To
order 1/M , Eq. ~A5! reproduces the11→11 matrix ele-
ment of the iteration of the instant interaction using t
21 sector of the ET propagator:

ū1
1ū2

1K inst
~2!

L1
2L2

1

22M
K inst

~2!u1
1u2

1 . ~A6!

Similarly, the 1↔2 version of expression~A6! gives the six
fourth-order particle-2Z graphs correctly to order 1/M .

Thus we see that using the ET propagator with an ins
interaction correctly reproduces the 1/M pieces of the fourth-
orderZ graphs in the scattering series. By contrast, the Gr
or BSLT propagator with an instant interaction would yield
fourth-orderZ-graph contribution which is only half the cor
rect size.

APPENDIX B: EXPLICIT FORM OF THE IMPULSE-
APPROXIMATION CURRENT

In this appendix we present the explicit form of th
impulse-approximation current which yields a curren
conserving calculation if vertices obtained using an inst
interaction are considered. Recall that

Ginst,m
g ~p1 ,p2 ;P,Q!5 i ^d1~p11Q! j m

~1!d1~p1!d2~p2!

1d1
c̃~p11Q! j c,m

~1! d1
c~p1!d2~p2!&

1~1↔2!. ~B1!

Inserting the forms of the propagators and performing
integrals over relative momenta we arrive at a form which

most easily expressed in terms of the quantityĴ
m

r18r1r2 , as
written in Eq.~5.10!. In rho-spin-conserving sectors it is

Ĵm
r1r1r25 j m2~12dr1r2

! j̃ m , ~B2!
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where j̃ m is the object defined for nucleon 2 in Eq.~4.38!. In our calculation thej̃ m defined there is multiplied byF1(Q2) in
order to take into account the extended-nucleon structure. Likewise,j m is the usual extended-nucleon current~5.13!.

Meanwhile, in rho-spin changing sectors we have

Ĵm
2115F122

k2
082e2

Q01e11e18
1

P02e12e2

Q01e11e18
1

P02e12e2

Q012~k1
02k1

08!2e12e18
G j m2

P02e12e2

Q012~k1
02k1

08!2e12e18
j̃ m , ~B3!

Ĵm
1215F112

k2
02e2

Q02e12e18
2

P082e182e2

Q012~k1
02k1

08!1e11e18
2

P082e182e2

Q02e12e18
G j m1

P082e182e2

Q012~k1
02k1

08!1e11e18
j̃ m , ~B4!

Ĵm
2125F112

k2
01e2

Q01e11e18
2

P081e181e2

Q012~k1
02k1

08!2e12e18
2

P081e181e2

Q01e11e18
G j m1

P081e181e2

Q012~k1
02k1

08!2e12e18
j̃ m , ~B5!

Ĵm
1225F122

k2
081e2

Q02e12e18
1

P01e11e2

Q02e12e18
1

P01e11e2

Q012~k1
02k1

08!1e11e18
G j m2

P01e11e2

Q012~k1
02k1

08!1e11e18
j̃ m . ~B6!

These reduce to the formulas of Devine and Wallace@18# if the appropriate limits are taken. Note that in11 states the curren
Ĵm is just the usual single-nucleon current~5.13!.
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