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Electron-deuteron scattering in a current-conserving description of relativistic bound states:
Formalism and impulse approximation calculations
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The electromagnetic interactions of a relativistic two-body bound state are formulated in three dimensions
using an equal-tim¢ET) formalism. This involves a systematic reduction of four-dimensional dynamics to a
three-dimensional form by integrating out the time components of relative momenta. A conserved electromag-
netic current is developed for the ET formalism. It is shown that consistent truncations of the electromagnetic
current and theNN interaction kernel may be made, order by order, in the coupling constants, such that
appropriate Ward-Takahashi identities are satisfied. A meson-exchange modeNd{ theeraction is used to
calculate deuteron vertex functions. Calculations of electromagnetic form factors for elastic scattering of
electrons by deuterium are performed using an impulse-approximation current. Negative-energy components of
the deuteron’s vertex function and retardation effects in the meson-exchange interaction are found to have only
minor effects on the deuteron form factof§0556-28188)05910-X]

PACS numbes): 25.30.Bf, 24.10.Jv, 11.10.St

I. INTRODUCTION AND SUMMARY OF RESULTS sults for the observable&, B, andT,q are presented.
The Bethe-Salpeter equatidBSE)

Experiments being performed at the Thomas Jefferson
National Accelerator Facilitf TINAF) are designed to test
our understanding of deuteron properties at spacelike mo-
mentum transfers comparable to the nucleon mass. In build-
ing theoretical models of these processes, relativistic kinefor the four-dimensionaN N amplitudeT provides a theoret-
matics and dynamics would seem to be called for. Hencecal description of the deuteron that includes relativity. In Eq.
considerable theoretical effort has been invested in constructl.l), K is the Bethe-Salpeter kernel, a@g is the free two-
ing relativistic formalisms for the two-nucleon bound statenucleon propagator. In a strict quantum-field-theory treat-
that are based on an effective quantum-field-theory Lagrangnent, the kerneK includes the infinite set of two-particle
ian. If the usual hadronic degrees of freedom appear in théreducibleNN—NN Feynman graphs. Numerical methods
Lagrangian, then this strategy can be used to obtain a logic4® calculate the 40 matrix of Eq. (1.1), with an infinite
extension of the standard nonrelativistic treatment of the€rnel containing all crossed ladders, have been developed
two-nucleon system. The central goal of such an approach @nd demonstrated for a simple scalar field theory by Nieu-
to capture relativistic effects in the two-nucleon system. Afvenhuis and Tjori3]. o
the same time, for applications to electromagnetic physics, if For the two-nucleon system, such an application of the

is critical to embed the Ward-Takahashi identities that imply ull effective quantum field theory of nucleons and mesons is

current conservation for electromagnetic interactions in th&ot_only impractical, it also is inappropriate because had-
theory. ronic degrees of freedom are not fundamental. Rather, the

d . . Bethe-Salpeter formalism serves as a theoretical framework
This paper focuses on a three-dimensiofgd) formal- P

ism that. i incile. | valent to the four-di . Iwithin which a relativistic effective interaction may be de-
ISm that, in principlé, 1S equivalent to the tour-dimensiona veloped. This is entirely analogous to the way that the Schro
(4D) Bethe-Salpeter formalism. This approach has been d

) | - Qiinger equation serves as a framework for the development
veloped in two recent papef$,2]. We review the formalism ¢ 5 nonrelativistic potential that describes tNN phase

for relativistic bound states, and provide an extension thainiss Since theNN interaction is an effective one. it is
ensures nonsingular behavior of the interaction in framegq a|ly appropriate to develop the relativistic effective inter-
where the total momentum of the bound system is NoNZerq,iqn within an equivalent three-dimensional formalism that
We also construct the corresponding electromagnetic currens gptained from the four-dimensional Bethe-Salpeter for-
Calculations of elastic electron-deuteron scattering are petz 5iism via a systematic reduction technique.

formed based upon the impulse approximation and the re- |, Ref. [1], a 3D reduction of the Bethe-Salpeter formal-

ism was developed such that the resulting equations involve
the same propagator as appears in the Salpeter equidtion

T=K+KG,T (1.2
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particle’s mass to tend to infinity, the propagator does not
reduce to the Dirac propagator for the other particle. Conse-
quently, Eq(1.2) does not possess the correct one-body limit
if any finite set of graphs is chosen fi; .

If a scattering equation with a kernel which contains only
a finite number of graphs is to possess the correct one-body

FIG. 1. One example of Z graph which is not included in the liMit, two distinct criteria must be satisfied. First the 3D
ladder Bethe-Salpeter equation scattering series. propagator should limit to the one-body propagator for one

particle (either Dirac or Klein-Gordon, depending upon the

The three-dimensional propagat@®,) is obtained by inte- spin as the other particle’s mass tends to infinity. Second, as

grating over the time component of the relative momentumegither particle’s mass tends to infinity, the equation should
become equivalent to one in which the interactign is

dpg static.
(Go)= ﬁGO(p;P)' 1.3 In fact, the lack of either of these properties in Et}.2)
springs directly from the Bethe-Salpeter equati@rl) not
The 3D kernel is defined by solving two coupled equationshaving the correct one-body limit if the kernel does not in-
clude the infinite set of crossed-ladder graphs. As alluded to
K1=(Go) (GoKG)(Go) ™™, (1.4 above, solution of the Bethe-Salpeter equation with such a
kernel is impractical in theNN system. Nevertheless, the
desired properties may be obtained by using a 4D integral
_ _ equation forK to reorganize the contributions to the kernel
G=Got Go(K—KyG, @9 fthe Bethe-Salpeter equation as follows:

which is three-dimensional, and

which is four dimensional. In fact, the conditigh.4) is ob- _
tained by demanding tha)=(G). (See Ref[1] for de- K=U+UGcK. (18
tails. Other works which have considered a similar formal-Gjyen g suitable choice fdBc, this equation defines a re-
ism include Refs[5-9].) This formalism is systematic in the 4 ,ced kerneU in terms of the original kernef. The propa-

sense that, givgn a perturbative expansion for the 4D kem‘ﬂatorGC is chosen so as to separate the parts of the kénel

K, a perturbative expansion for the 3D kerr€] can be  {hat are necessary to obtain the one-body limits from the

developed. However, it is necessary {@) to be invertible a5 that are not. Once this is doémay be truncated at

in order for the 3D reduction to contain the full content of any desired order without losing the one-body limits. It is

the 4D theory. . readily seen that the original kerni§lmay be eliminated in
As mentioned above, whefg, is the standard two- fayor of the reduced one so as to obtain the following 4D

particle propagator of the Bethe-Salpeter formali¢®) i equation for thet matrix, which is equivalent to EqgL.1)

the 3D Salpeter propagator. For sgiparticles it is and(1.9):
ATAS ATA, T=U+UG,T, (1.9
P — €17 € P +61+€2 Where
where A* are related to projection operators onto positive- Go=Go+Ge. (1.10
and negative-energy states of the Dirac equati®fhjs the
total energy of the two-body system, and We are now in a position to remedy the defects of our pre-
T vious three-dimensional reduction. Applying the same 3D
&=(pj +mi)~~ (1.7 reduction procedure as above to this new 4D equation pro-

duces
Here and throughout the paper, these single-particle energies

are to be understood as having an infinitesimal negative T1=U1+U(Go) Ty, (1.11
imaginary part. This defines oule prescriptions. Note that

for spin particles, the equal-time propagator of the Salpetetvhere the 3D propagator is

equation is defined only on two of the four sectors of the

Dirac space of two particles. It is not invertible. Although Go(PY) = AfA; ATA,

consistent equations can be projected out for-the and {Go(P))= PO e —e, 2k9—PO4 e +e
1 2 2 1 2

— — components, one must set the— and —+ compo-

nents to zero for consistency. Consequently, the 3D reduc- AIA; ATAS

tion does not have the full content of the 4D theory. If the 4D - 0 - ,

and 3D theories are to have the same dynamical content, then PP-2ikpte1te; Ptrete

we must include graphs involving — states, such as the the (1.12

time-orderedZ graph of Fig. 1, in both. This graph is not

contained in the ladder Bethe-Salpeter equation scatteringnd <3 is a parameter that arises from the eikonal approxi-

series. mation. This 3D propagator is found by integrating the four-
The absence of this mechanism from the ladder Bethedimensional propagator over the time component of relative

Salpeter equation is related to the fact that if we allow onenomentum. In configuration space this action is equivalent
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to considering the propagator in which the two particles in- For relativistic bound states, the 4D vertex functions at
volved are considered only on equal-tit€T) slices. Thus total momentunP obey

this will be referred to as the ET propagator. It was derived

for use with instant interactions by Mandelzweig and Wal- —

lace[10,11] with the choicexd=P%2—(m2—m2)/(2P%). It TP =U(P)G(PIT(P). (113

has the correct one-body limits as either particle’s mass ten . . .
to infinity and has an invertible form. I\El)eanwhile, the 3DdI§'qU|_vaIently, one may use the 3D vertex function that is
kernelU, is systematically defined by two equations that areObtalned with the use of the ET propagator,
obtained from Eqgs(1.4) and (1.5 by the substitution&K
—U, K;—U;, andGy—G,. Fer(P)=U1(P){(Go(P))Tex(P). (1.14

Equation(1.1)) is a 3D scattering equation that incorpo-
rates relativistic effects systematically and has the correchortly, we shall need the relations of 4D vertex functions to
one-body limit. Numerical calculations by Nieuwenhuis andthe 3D ones, which is as follows:

Tjon [3], and in our previous papdr], suggest that the
three-dimensional equation with a lowest-order kernel pro-
vides a good approximation to the relevant physics of the full
scattering series of ladders and crossed ladders.

Negative-energy states and thfigraphs, such as the one WhereQR is defined by
shown in Fig. 1, are included in the 3D formalism in a way
that is symmetrical With_ respect to interchange_ oj particle QR(P)=1+[U(P)—U,(P)]Go(P)QR(P). (1.16
labels. When the terms in the propagator involvikg are
omitted, it takes a form that is very similar to the 3D propa-
gator of the spectator formalism of GrogR?], as derived
with particle 1 on mass shell. Correspondingly, when the o o
terms in the propagator involving; are omitted, the propa- I'(P)=Te(P)QY(P), .19
gator is very similar to that of the spectator formalism, de-
rived with particle 2 on mass shell. Indeed, i+ sectors,

Eqg. (1.12 is the same as either of these spectator propaga-
tors, and thus differences arise only because of the negative-
energy states. Usually for theN system, a symmetrized  In the spirit underlying the use of an effectidN inter-
form of the spectator propagator is used, and this is obtainedction, the 3D interactiotJ, is truncated at “lowest order”

by averaging the propagators derived with particle 1 and pawithin a systematic expansion in powers of the coupling con-
ticle 2 on mass she[l13]. However, because of averaging, stant. This truncation violates Lorentz invariance, although
the symmetrized spectator propagator is one half of the Ethe full 3D reduction formalism is equivalent to the 4D for-
propagator in+— and —+ states. A similar comparison malism and thus respects Lorentz invariance. For electro-
may be made with the BSLT quasipotential propagator ofmagnetic matrix elements, the absorption of the virtual pho-
Blankenbecler and Sugft4] and Logunov and Tavkhelidze ton’s momentumQ causes the final state to have nonzero
[7] that has been used in the work of Hummel and Tjonthree-momentum, even if the initial state did not. Thus, in
[15—17. The BSLT propagator also has half the propagatiorgeneral, a dynamical boost is needed to obtain wave func-
amplitudes of the ET propagator-in— and— + states. Be- tions in frames where the bound state has nonzero three-
cause similar couplings to the-— and —+ states are momentum. In our 3D formalism, the dynamical boost is
present in all of these approaches when similar mesorembedded within the equations. Wave functions correspond-
exchange interactions are used, we would expect the role &fg to nonzero three-momentum should be obtained straight-
negative-energy states to be larger when the ET propagator figrwardly by solving the bound-state equation with the inter-
used that when either the spectator propagator of Gross @&ction appropriate to the moving frame. This differs from the
the BSLT propagator of Hummel and Tjon is used. interaction in the c.m. frame because retardation corrections

A straightforward analysis of time-ordered perturbationand Dirac spinors in the matrix elements depend upon the
theory graphs for th&IN t matrix in the static limit(see  total momentum. The violation of Lorentz invariance causes
Appendix A shows that the leading graphs involving the  the total bound-state energ(P) to differ from M3+ P2,
intermediate+ — and — + states are correctly given by the For the deuteron, the effect is small and it may be compen-
ET propagator. Results based upon either the symmetrizegshted by a simple renormalization of the interaction that, in
Gross propagator or the BSLT propagator are too small by affect, approximately takes into account the terms omitted
factor of 2. whenU . is truncated at lowest order.

Our preference for the ET formalism is based on three In order to confront the predictions of this formalism with
facts: it embeds the correct one-body limit feither particle  electron-scattering data we must derive a 3D reduction of the
as the mass of the other particle tends to infinity, it provideslectromagnetic current that is consistent with the reduction
the correct isoscala-graph contributions to leading order in of the scattering equation. A clear 4D formalism for the cur-
1/M for the NN system, and the systematic 3D formalism rent follows from coupling photons everywhere in the Bethe-
associated with it includes retardation effects without posSalpeter Green’s function. This leads to the following gauge-
sessing the unphysical singularities that generally are presemvariant 4D result for the photon’s interaction with the two-
in quasipotential theories. nucleon system:

I'(P)=QR(P)I'er(P), (1.1

A similar relation is needed for final states:

QY (P)=1+05P)Go(P)[U(P)~Uy(P)]. (1.18
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Ags =F(P’)Gg I'(P) suitaple consgrved current was derived for use with verte_x
" i functions that included negative-energy components. In this
_|_F(p’)Go(p')KZ(Q)GO(p)F(p% (119  paper, we extend_these_ previqus analyses t_Jy use of our sys-
tematic 3D formalism with the improved choice & that is
whereP’'=P+Q, G{, is a five-point function for inser- needed when retardation effects are included.
tion of a photon of momentur® and Lorentz index in the It is easy to show that if the instant approximation is used
free propagatoG,, andK is the five-point, two-nucleon to reduce the four-dimensional equati¢h9) to the three-
irreducible NN—NNy amplitude found by coupling the dimensional ET equation, a particularly simple three-
photon to all charged-particle lines inside the Bethe-Salpetefimensional conserved current exists. If we denote this cur-

kernelK. A similar result holds for the 4D theory involving rent by Gig ,, then we may write the resulting Ward-
Ge, Takahashi identity as

Aer,,=T(P)GE,T(P)+T(P)Go(PHULQG(PIT(P),  Q“Ginstu(P1.P2:Q)

(1.20 o 0. ~o
=02[(G0)(P1,P2;P") —(Go)(P1,P2+ Q;P°+ Q)]
whereG{,=G{,+G¢ ,, andU is the result of coupling
the photoirq to aﬁ internMaI lines (;Lf the reduced interactibn +(1<2), (1.22

In order to develop a conserved currsnt n the 4,D theor3(/vhere (12~2) indicates the part of the current proportional
based on Eq(1.9), we must construcG¢ ,, which is the 1 chargeq,, with momenta and labels of the two particles

extra current required in order thgtj, satisfy a Ward- interchanged. Consequently, if we construct the current ma-
Takahashi identity involvingj,. Unfortunately, this is not trix element

straightforward, since in general the variabxl% in G¢ de-

pends on the three-momentum of the intermediate state. As dip —

we shall see in Sec. IV, we cannot simply use the standardAinst#:f 3L ins(Pi P+ Q) Gifst (P, P; Q) Lins(P; P),
fermion electromagnetic current, , since this choice vio- (2)

lates current conservation. In Sec. IV we construct the addi- (1.23
tional pieces of the current that restore current conservatior\lmhereFinst is the vertex function obtained from the bound-

thereby obtaining a conserved currgidt, for use with ver-  giate equation corresponding to EG.14) with an instant
tex functions obtained from Eq1.13. interaction chosen fdd ;, then the result will be a conserved
In this paper, we develop an equivalent 3D form of thejmpyise current. A similar instant analysis was performed by
current matrix elements for the equal-time formalism, basegheyine and Wallacg19]. Our instant calculations differ
on an expansion of the formula from those of Ref[19] in that a slightly different choice for
TP YO PG OR 3 is made than was made by Wallace and Mandelzweig.
Agr,=Ter(P)(Q(P)GE,Q7(P)Iexr(P) This different choice fork$ is necessitated by the require-
™ / 1Y ment that the three-dimensional theory with retardations
TLer(PGPHULG(P)Ten(P).  (1.2D should not possess any unphysical singularities when evalu-

The resultant reduction is consistent with the reduction use@®d in & frame where the two-body system has large mo-
to obtain the 3Dt matrix of Eq.(1.1) and the vertex func- Mentum. _ o
tion of Eq.(1.14. Furthermore, this reduction preserves the A first step beyond the instant approximation may be ob-
two-body electromagnetic Ward-Takahashi identities whicH2in€d by replacing the vertdXs;, which is calculated with
are present in the 4D theory. Quantities inside angular brackNStant one-boson-exchand©BE) interactions, with the
ets are integrated over time components of relative moment¥ertexI'er, calculated with the full retarded OBE interaction
thus reducing them to a 3D form. This yields a consistenfPtained in the systematic ET formalism. In order to main-
three-dimensional formalism that includes the effects of relal@in current conservation our approach demands that in mak-
tivity systematically, has the correct one-body limits, andind this change we should also repla@g;, by a signifi-
maintains current conservation. We then apply this machincantly more complicated obje¢i . The resultant current
ery to the calculation of electron-deuteron scattering in thematrix element, which we denotder ,, differs from Eq.
impulse approximation. (1.23 by replacement of the subscript “inst” by the sub-
Previous calculations of electron-deuteron scattering bycript “ET” in the vertex functions and replacement of
Hummel and Tjon[15-17 have used instant interactions g%st,u by ggyﬂ. This Agr,, would satisfy current conserva-
and a form of the ET current. However, several approximation when retardations are included provided that we also
tions were employed, such as the use of wave functionicluded the two-body currents, such as the one depicted in
based on the 3D quasipotential propagator of Blankenbecldfig. 2, which become necessary because of retardation ef-
and Sugaf14] and Logunov and TavkhelidZ4€], approxi- fects. This work is concerned primarily with displaying the
mate boost operators, and an electromagnetic current whidlermalism and performing impulse approximation calcula-
was conserved only in positive-energy states. Calculations dfons that explore the effects of retardation and negative-
elastic electron-deuteron scattering also were performed bgnergy components in the vertex functions. Therefore, we
Devine and Wallace using an instant interaction and the ETise the simpler curreqg; ,) with the ET vertex functions
propagator of Mandelzweig and Wallace, H4.12, with  as well as with the instant vertex functions. For elastic
the choice ong given below equatiof18]. In that work, a  electron-deuteron scattering this is expected to be a very
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. —-— Instant calculation
A —— Retarded calculation
Y 10% | ]
-4
10* ; .
Ng 3|
<
10° | ~ " . .
FIG. 2. One example of a two-body current that is required in S
our formalism in order to maintain gauge invariance. 00 L T ]
good approximation to the use of the full ET current. Calcu-
lations wherg(G¢ ) is omitted from the instant current ma- 10

trix element suggest that the total contribution(&Z ,) to 00 25.0 ,500, 75.0 100.0
the observables is small. This is consistent with the interpre- @ (im’)

tation of(G¢ ,) as arising from the coupling of the photonto  FiG. 3. The form factorA(Q?) for the deuteron. The dash-
internal charged lines in the crossed-box gra([mé#) isa  dotted line represents a calculation using a vertex function gener-
two-body current, and therefore we would exped priori ated using the instant interaction. Meanwhile, the solid line is the
to be small at the momentum transfers under consideratioresult obtained with the retarded ET vertex function. In both cases
here. SincgG¢ ) itself makes a small contribution to ob- both positive- and negative-energy sectors are included.
servables, using a form of it that only approximately satisfies
current conservation is expected to have an even smaller egurrent conservation and the usyary meson-exchange
fect on our numerical results. We expect that these effectgurrent(MEC) contribution, should be added to our calcula-
and the other effects of retardations we have neglected in thgons before they can be reliably compared to experimental
current, will only have a minor influence on observables.data. One of the most interesting features is the close simi-
Here our main goal is to examine the effect of retardation onarity of the results based on the ET vertex functions that
the vertex functions and the role that negative-energy statgfclude retardations and instant vertex functions that do not.
play in the calculation, and so we do not calculate thesgye find that once ther coupling is renormalized &)?=0
additional effects. Work is in progress to include these extrgas must be done to refit the deuteron binding after incorpo-
terms of the current that are derived in Sec. IV in the calcurating the repulsive effects arising from meson retardation
lation. We are also calculating meson-exchange currentshe deuteron properties in these two models are remarkably
such aspmy and woy, which we do expect to influence similar.
observables. For comparison, in Figs. 6, 7, and 8 we display calcula-
The first step in obtaining theoretical predictions for thetions forA, B, andT,,, where the effects of negative-energy
experimental observables in electron scattering on the delstates are removed. We see that the inclusion of these states
teron is to find the vertex functioniS;,s; andI'gr. We take  in the calculation makes little difference to any of the ob-
the four-dimensional kernd) in Eq. (1.9 to be the sum of ~ servables. However, comparing the different positions of the
single-boson exchanges. The parameters for these exchanggmima in Figs. 4 and 7 we see that including the negative-

are taken from the Bonn-B OBE model, with the exceptionenergy states in the calculation does shift the minimurB in
of the o-meson coupling, which we leave as a free param-
eter. From the 4D kerndJ; ogg, an instant interactiold ; ;g
is easily found, and a corresponding retarded interaction
U, g7 can be defined by the systematic procedure outlined —-— Instant calculation
above. These two different interactions are then inserted into 452 | —— Retarded calculation
the bound-state equation derived from Ed.14). The &
o-meson coupling is adjusted so that tN&N bound-state
pole in the 3S;-°D; channel appears at the deuteron mass. 10
Once this is done, the deuteron vertex functibpg; andl' gt o
can be extracted. We calculate these two vertex functions @
including the effects of negative-energy states and also inthe 10
approximation where only positive-energy states contribute.
With vertex functions in hand and using the 3D current
(Gihetn)» We calculate the electron-deuteron-scattering ob-
servable®\, B, andT,,. The results from such a calculation
are shown in Figs. 3, 4, and 5. We also show experimental ¢
data from Refs[20-24 for A, from Refs.[22,23,25,2¢ for
B, and from Refs[27-32 for T,,. It should be pointed out,
though, that a number of two-body effects, such as the dif- FIG. 4. The form factoiB(Q?) for the deuteron, legend as in
ferences betweedy , andG{ , that are needed to restore Fig. 3.

0

10 T T

Q@ (mD)
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1.0 T 10 . .

————————— Instant ET calculation: ++ only

05 - 102 [ —-— TOPT calculation: ++ only ]
—— Retarded ET calculation: ++ only
0.0 107 ]
.8 E ‘g
a
0.5 | 10 1
—— Retarded calculation o
— - — Instant calculation T
1.0 | - 107 o
1.5 * : ‘ 107 ( !
0.0 25.0 50.0 75.0 100.0 0.0 25.0 50.0 75.0 100.0
Q’ (fm?) Q@ (im™)
FIG. 5. The tensor polarizatiofi,o(Q?) in electron-deuteron FIG. 7. The form factoiB(Q?) for the deuteron, legend as in
scattering, legend as in Fig. 5. Fig. 6. Again, all calculations are done in thet only approxima-
tion.

to somewhat large®?. A similar effect was observed by van
Ordenet al.[33] in calculations of electron-deuteron scatter-ism treatment of negative-energy states, since our results
ing using the spectator formalism. However, note that hereshow that negative-energy states have a much smaller effect.
in contradistinction to the results of R¢B3], the inclusion We also note that the inclusion of retardation moves the
of negative-energy states doewt bring the impulse- minimum inB a little higher inQ? but otherwise has little
approximation calculation into agreement with the data.  observable effect. Again, this additional effect is not enough
The fact that negative-energy states seem to have @ bring the predictions of our model into line with the ex-
smaller effect on observables in the ET analysis than in th@erimental data.
spectator analysis of van Ordenal. [33] is somewhat sur- Finally, examining the tensor polarizatidn, we see that
prising. As pointed out above, the ET propagator has twiceill the different models produce results which are very simi-
the negative-energy state propagation amplitude of the Grodar. This suggests that this observable is fairly insensitive to
propagator. Thus, other differences between the ET andynamical details of the deuteron model, at least u®to
spectator models, not just differences in the role of negative=4 Ge\~.
energy states in the two approaches, appear to be responsibleWe find that elimination of the approximations used by
for the differing results foB(Q?). The fact that the calcu- Hummel and Tjon produces only minor changes for the ex-
lation of Ref.[33] essentially agrees with the experimental perimentally measured quantitids B, and T,o, although
data forB(Q?) is not solely attributable to the Gross formal- the precise location of the minimum in the magnetic form
factor B does change when meson retardations are included
10° in the calculation. Nevertheless, there is little improvement
in the agreement of the impulse-approximation calculations

-~ |nstant calculation: ++ only
—-— TOPT calculation: ++ only

10 | —— Retarded ET calculation: ++ only 1.0 T
A%
10* [ Ty, : 05
— \\
Ng ~ N i}\ . R
< St
10° [ = g 1 0.0
5
10° | ] 0.5
-~ |nstant calculation: ++ only
—-— TOPT calculation: ++ only
107 ‘ s ‘ 1.0 —— Retarded ET calculation: ++ only |
0.0 25.0 50.0 75.0 100.0 ’
Q° (im®)
FIG. 6. The form factoA(Q?) for the deuteron, as predicted by -1-50 o 25‘ 0 50' o 75‘ 0 100.0
three differentNN models. The dotted curve is the instant calcula- ’ ’ Q? (im?) ' ’

tion, the dash-dotted curve is the calculation using the TOPT inter-

action, and the solid curve is the result using a retarded ET inter- FIG. 8. The tensor polarizatiofi,(Q?) in electron-deuteron
action. All calculations are done with the contributions of negative-scattering, legend as in Fig. 6. All calculations are done using only
energy states dropped. + + states.
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with the experimental data fds. K; P-p, k,
Comparing our results with those of a nonrelativistic g
impulse-approximation calculation of the same observables
(see, for instance, Ref34]) strengthens the conclusion of
previous authors that neither the consideration of relativistic
kinematics for the nucleons and mesons nor the inclusion of
negative-energy state effects improves the agreement with
the experimental data. Of course, by definition, such a non-
relativistic impulse-approximation calculation neglects both
relativistic effects and two-body current contributions. In-
deed, we see here that, as already found by Areoll. [34]
and Zuilhof and Tjon35], including relativistic effects ac-
tually worsensthe agreement with the experimental data.
The inclusion of these effects to all orders ip&V expan-
sion, as done here and in Ref84,35, doesnot lead to a

k3 ki+k,-p, k,

FIG. 9. The crossed-box graph, showing the momentum labels
used in the text.

nal approximation to reorganize the generalized ladder
small correction which brings the theory into closer agree_Bethe-S_aIpeter kernel,_based_ upon the fact that we may al-
ment with the experimental data. This suggests that the con{Yys Write the kerneK in the iterative form, Eq(1.8). The
parative success of a simple nonrelativistic impulse-duestionis, whatare good choices @¢ andU? To answer
approximation  calculation is fortuitous. Dynamical this question, consider the lowest-ordén coupling con-
mechanisms beyond the impulse approximation appear tgtan} parts of the kernel& andU. Obviously, the second-
play a more important role in this reaction than one wouldorder pieces must be the same, i.e.,
conclude from the nonrelativistic calculation. Figures 3, 4,
and 5 imol 2 _ U(Z):K(z). (21)
ply that onc&? gets above about 0.5 GéWwo

body current contributions become important. One example . )
of such a two-body current would be meson-exchange cutMeanwhile, at fourth order, we obtain
rent contributions, but it is also possible that other two-body @ _ (1) o 1D @
currents are dynamically important in this regime. KW =U"+U"GcU™. 2.2

The rest of this paper is devoted to a detailed description ] )
of our formalism and to an explanation of technical detailsThus, in order that the expansion forcan be truncated at
pertaining to our calculation that were omitted in the briefsecond order without losing the one-body limit @s— c,
sketch of the calculations given here. In Sec. Il we presenthe choice 0fGc must be such that the last term captures the
our modified four-dimensional equation 6. with the cor-  part of K®) that is nonzero in that limit. Moreover, G is
rect one-body limit and incorporating a form of the eikonal chosen in this way, the one-body limit will then be correct no
approximation which is an improvement over that proposednatter the order at which the expansionlbis truncated.
in Ref. [1]. The new choice of the parameteg has been Consider the fourth-order contribution t, i.e., the
found to be necessary, when retardations are included in th@ossed-box graph depictédith momentum labelsin Fig.
ET interaction, in order to avoid unphysical singularities9. |n order to expres&(® in the form(2.2), it is necessary to

when P is large. Our formalism for reductions to three di- commute vertices until they appear in the same order as in
mensions Is then Used to determlne the IOWest'Order 3D |r]<(2)GCK(2)_ In doing this commutator terms are collected in

teractionU; . In Sec. Il we explain the various interactions (;(4) qnce this is done. the part of the graph that takes on an
that are used in calculations of deuteron wave functions; y

. . ; . . Siterative form is expr
These can be divided into two classes: instant mteractlonge ative form is expressed as
and ET interactions that include meson retardation. Within g4
either of these classes, versions of the interactions are con- KA (K Kk k ):if P2
structed that do and do not include the effects of negative- e 1*72 172 )
energy states, in order to display the role played by such
components of the deuteron wave function. Section IV dis- X dp(katky—pa)K P (pa—ky).
cusses our 3D reduction of the electromagnetic current that
maintains current conservation, including a detailed discus-
sion of the way in which the gauging of the propagaterin HereK(? is the ladder Bethe-Salpeter kernBljs the con-
our modified four-dimensional equation is performed. The
y . ; ) : served, total four-momentum

ET currentG§ , is derived and we discuss its connection to

) 5 ) : i
the simpler curren@ s, that is used in the present calcula P=ky+ky=k,+k}, (2.4)
tions. Section V presents details concerning the application
of this formalism to the calculation of electromagnetic ob- .
servables using the wave functions computed as discussed i) d the propagatord; are given by
Sec. lll. Conclusions are presented in Sec. VI.

K(Z)(ké_ P2)d1(P—py)

2.3

d(p)= A (pi) Ay (pi) 25
Il. BOUND-STATE EQUATIONS WITH CORRECT i\Mi)— . o .
ONE-I%ODY LIMITS S PP —e(p)tin  pltelp)—in

A. Four-dimensional equation where

As outlined in the Introduction, a simple four-dimensional
i i i i &(p)) = (p?+m?)Y2 (2.6
equation may be obtained by employing a form of the eiko- i(Pi Pi i) .
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1

2¢€i(pi)
*e(p) Y= yi-pitm
2€i(p;)

for spin-0 patrticles,
A (p)=
for spin-1 particles,

(2.7

and 7 is a positive infinitesimal.
In Eq. (2.3 the argument of the functiod, may be re-
written as

(K3+ k52— p3 ko +ky—py). (2.9

Suppose that the zeroth component of the momentum of pa

ticle 2 is large. In particular, this will be the casenf,

>m; (one-body limi}. In this case particle 2's intermediate
and final-state three-momentum will be largely unaffected b
the presence of particle 1, and so we may approximate the

components as unchanging,

This is the eikonal approximation, and it rests upon forward
scattering being the dominant mechanism of interaction. In

deed, making the replacemegi2.9) in Eg. (2.3 will not af-
fect the value oK{Z) in the limit my—o.
This argument shows that{s) may be approximately re-

written as

Kiiar(k3 . kz; P)
[ d%p
”'J 24 K@ (ky—po)di(P—po)da(2k,—py)
(27)
XK@ (py—ky), (2.10
with the four-component objeat, defined by
k3 +ks°
Kp= 5 P2 (211
In operator notation,
K@ ~K@GK?. (2.12
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On the other hand, in writing Eq2.13 we have expressed
the result in terms of the center of mass and relative four-
momenta:

pi=viP+p, p=v,P—p, (2.1
P24+ mi—m3 P2—mi+m3 .17
1=, Vo= —"F""". .
! 2p? 2 2p?

The propagatods defined in Eq.(2.13 depends on the ze-
roth components of the external momenta through the zeroth
component ofx,. Thus the use of operator notation in Eq.
f2.12) anticipates a suitable choice for these zeroth compo-
nents of external momenta.

In the case that particle 2 is extremely massive, it will not

Ybe very far off its mass shell. The total energy of the
%‘?/stem will be approximately the energy of particle 2, and

thus we choose

k9= w,PC, (2.18

This choice was used in Rdfl] because it leads to an inte-
gral equation that satisfies both the criteria needed to obtain
the correct one-body limitm,—«. It also is suitable for
equal-mass particles in the center-of-mass frame. However,
in frames where the bound state has nonzero total momen-
tum, the choice leads to an interaction that possesses un-
physical singularities.

A consideration of the singularities of the interaction
when the particles have equal masses suggests that the par-
ticles should be equally far off their mass shells in the inter-
mediate state. Hence, in that case we choose

o_1 o
K2:§(P — €1+ €y), (2.19
where, in an arbitrary frame,
e1=€,(PI2+p), e,=e€(PI2—p). (2.20

This choice is consistent with the eikonal approximation and
differs from that of Eq(2.18 only whenP=+ 0. Note that our
new choice forxg depends not only on the external variables

Now we are in a position to answer the question of how top® andP, but also on the internal three-momentpmThis

chooseG.. Equation(2.10 shows that the choice

Ge(p;P)=idy(v1P+p)dy(26,—v,P+p), (2.13
which we write symbolically as
GC:idldg, (214)

will allow U to be truncated at second order while still yield-
ing a four-dimensional equation with the correct one-body

limit. Here it is understood that when writin@¢ as a func-
tion of the four four-momenta;, p;, p1, andp,, we have

Gc(P1.P2;P1.P2)
=i(2m)88(py—p1) 8 (ps—p2)di(py)

Xda(2k2—P2). (2.19

feature complicates the construction of a conserved current.

OnceU and theG of Eq. (2.13 are chosen, this defines
an “improved” ladder BSE, which, in the two-body center-
of-mass frame, takes the form

d4

F(p’o,p’;S)=iJ(2

p
) U(p’,p)di(»1P°+p°p)

T 4

X [dy(v,P%~p°,—p)
+0(263—v,P+p%, —p) I (p°,p;s).
(2.2

Because the choice ocfg employed here agrees with that of
Ref.[1] in the limit m,— o, the proof given there now suf-
fices to show that this equation becomes the appropriate one-
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body equation in the limim,— . For equal-mass particles, B. Summary of the reduction to three dimensions

K3 is chosen as per E¢2.19. The 3D reduction that was outlined in the Introduction
We make the choicéZ._lQ) because it eliminates singu- may now be applied to the 4D equati¢®25. This yields
larities that afflict the choice2.18. As observed in Refl]  the following 3D equation for the bound-state vertex func-

if the choice(2.18 is made fork$, then Eq.(2.21) develops  tion Cer:
a cut beginning at
Fer=Uy(Go)ler, (2.29
2v,P%=2m,+ u. (2.22
with (Gy) the three-dimensional propagator of H4.12),
and the interactiotJ ; defined as the solution of the coupled
equations

If we attempt to solve the integral equati¢h2l) in a frame
moving with large enough three-momentuR) then P°

= M2+ P2 will become big enough to encounter this sin-
gularity. However, with the choicé2.19 the interaction
does not have this unphysical singularity.

The above arguments pertain to the one-body limit in
which m,—oo. Clearly we can interchange the labels on par-
ticles 1 and 2 in order to obtain a propagatdfd, that is
motivated by a consideration of the limih;—o. In the g=Got+Go(U—U1)G. (2.28
propagatord] we choose, for the equal-mass case,

U1=(Go) HGoUGNGo) ", (2.27

which is three dimensional, and

Note once more that the solution for, is found by demand-
o 1 o ing that{G)={(G,). Equations(2.26) and (2.27) are exactly
K1:§(P te—€). (2.23 equivalent to the 4D equatio®.25. Inserting the choice
(2.19 for Kg and specializing to the case of equal-mass par-
In the casem;=m,, writing the propagator as in Eq. ticles gives
(2.149 treats the two particles asymmetrically. If they are

identical particles, this will lead to violations of the identical- A+ 4 - A+ -

. o L : 1 A5 ATA; ATA; AT A,
particle statistics. To avoid this, we symmetrize the propaga-(G,(P))= 5 — - - = ,
tor G¢, by choosing, instead afl,dS, the form Pl—e1—e, 262 Z I +611226229)

[
Go=Go+Gc= E(d1+di)(d2+dg)' (2249 which is a restatement of E¢l.12. We note in passing that

this is exactly the same expression as that found when the
If the mass of particl@ is taken to infinity, we use the choice simpler expressioid,(d,+d3)) is calculated.
«2=PPin dS, while the«® variable associated with the light By using Eq.(2.26), rather than Eq(1.2), we not only
particle is chosen to be zero. This yields the one-body propahave a consistent 3D reduction but we approximately include
gator for the light particle, multiplied by a delta function in the crossed-ladder graphs, particularly th-graph” con-
the relative momentum, and a projection operator onto théributions where one nucleon is in a positive-energy state and
positive-energy states of particle Meanwhile, the delta the other is in a negative-energy state.
function guarantees that the interaction will be static, and so For equal-mass particles in the center-of-mass frame, Eq.
both conditions necessary for the correct one-body limit ta2.26) agrees with the quasipotential equations of Wallace
be present are satisfied. However, note that this formal propand Mandelzweig[11]. However, in a quasipotential ap-
erty does not apply to the case of practical interest for thigoroach the interaction in other frames should be obtained by
work, m;=m,, since thenx) and «) are defined by Egs. boosting via a dynamical equation. This leads to unphysical

(2.23 and(2.19. singularities. The systematic ET formalism avoids these. In
Symbolically we now write our “improved” ladder BSE essence, the ET formalism with a truncated interaction em-
as phasizes the elimination of unphysical singularities over the
strict enforcement of Lorentz invariance.
F=UGl, (2.25 The second-order 3D interactian(® is given by

where here, and throughout this wokk, is defined by Eq.

(2.24) ° % g (Go)UE(Go) = (G oK P'Go)=A. (230
We stress that what has been done here is to take certain

pieces of the Bethe-Salpeter keri€land rewrite them as An explicit form for A can be computed for the case of OBE

KAGK?, KAGKAGK®P), etc. Consequently, Eq. interactions of the form

(2.25 is equivalent to a Bethe-Salpeter equation in which

graphs other than one-meson exchange are approximately gﬁVn(l)Vn(Z)

included in the kernel. Thus we expect that the solution of K@(q=> X1~

this equation may provide a better description of the dynam- n

ics of two-particle systems than the ladder BSE amplitude.

Numerical calculations in a scalar field theory appear to supwhereV (i) denotes the appropriate vertex operator for the

port this[1]. interaction of thenth meson with nucleom. If we write

; (2.3D)

2
qz—,u,n
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ApiAPé APlApz

1 2
A= 2 e ANpipr— ) Va(DVa(2) g
" p1p102p; €17eé

(2.32

with e = p;v;k?— €; ande/ =p/ v;x/°— €/ , then, for the exchange of mesonthe factorsA,(p;p5—p1p,) can be written in

any rho-spin channel as

2

On
An(p",piP%P)(p1py—pip2) = g - [F(wn+qo)+F(wn a1, (233
where
1 1 1 1 1 [ ete 1 [ ete
F((U)EE r_ + ’ _ + r_ + r_ + r_ r_ ’ _ r_
el+62 w el+e2 w el+el w ez+ez w e1+ez w e2+ez w el+e2 w el+e1 w
e;+e) 1 e;+e; 1 e te; / 1 1 e,+e,
+ + + +
e;te—w/ejtey—o \ete—w/ejter—o e2+e§—w\e1+e§—w ejte,—w/ete—w
(2.39

and qo—Kio—Kl The key difference here from the calculation of Rif] is that here the parametet0 varies with the
intermediate-state momentum under consideration. For equal-mass particles,

1 1
KQZE(PO"‘El_fz)- Kg:E(Po_fl"‘fz)y (239

1
KO=3 (PO el ep),  KiP=5 (PO i+ ep). (2:39

The expression foA is easily converted into a result fbﬂlz) using the inverse of the propagat@h,). The result is expressed
in terms of matrix elements between initial and final states of @spin as follows:

Uillg'lz' P2(p’,p;PO,P)= ; [UP3(p1P) V(1)UL p1p1) 1[UP2(p3P3)Vn( 2)UP2(poP) 1AL(P' ,P; PO, P) (ppge—p1pa).-
(2.37

This is the full ET interaction including retardation effects. If one eliminates the retardation effects, the result is the instant
interaction defined by

2
1P2 ) ) -9
U5 (p' PP = 3 [upl(plpovn(1)uPl(plplﬂ[upz<p2p2>vn(2>up2<pzpz>](w—;) : (2.38
n
Expanding the vertex functions in terms of Dirac spinors,

Ter(p,P)= 7373 2 UP(p1p1)uP2(p,po) TEX2(p,P), (239

P1P2
leads to the coupled equations that we solve,

/

Lg"(p,P)= 2 2 )3 U212 P02(p, 0" PO, P)(G ) Pir2(p ,P)T2(p! ). (2.40
Plpz

Here the propagator factor&l )"z are (Go)*t=1/(P°— €| —€}), (Go)* =1/2€), (Go) "=1/2¢,, and (Gg) ™
=—1/(P°+€;+€)).
Two special cases of particular interest are the matrix element of the ET interaction between positive-energy spinors,



PRC 58 ELECTRON-DEUTERON SCATTERING IN A CURRENT. .. 2271

UI,ET'“(p',p;PO,P):; (U™ (PP Va(L)u™ (p)I[u" (P Va(2)u™ (p2)]

gﬁ [ 1 1 PO—¢e,— ¢, 1 Po—ei—eé

+= +z
200 PO~~~y 2 (P'—€l—€3—wp)? 2 (PO—€j— €, wy)’

1 (P°— €1— eé)(PO— €1— €)

2 (PY— €] — e,—wy)

+(1<2)], (2.41

and the matrix element in positive-energy states omitting the effedB:of

2
Uiiger (P,p;PYP)=2 [0 (PVA(DU™ (po) T (P V(20 (P T |

+(1<2)|. (2.42
n{PO—ei—éz—wn ( )

This is the standard time-ordered perturbation thédQ@PT) factors at all the verticgs(1) the “retarded ET” interaction,
one-boson-exchange interaction. Diagrams for the one-piorgiven by Eq.(2.37), with the choice$2.23 and(2.19 for K?
exchange part of this interaction between positive-energjand,(g; (2) the instanN N interaction, defined by E¢2.38);
nucleon states are shown in Fig. 10. There are additionaind (3) the second-order TOPWN interaction defined by
pieces in the ET interaction of E(R.41) that arise fronGc,  Eq. (2.42. The first and second interactions are used in a
i.e., from the approximate inclusion of higher-order graphs inwo-body equation with the full ET Green’s function given
the crossed-ladder kernel, which is necessary to obtain thgy Eq. (2.40, and also in an equation in which only the

one-body limits. + sector is retained. However, for the instant interaction, we
follow the practice of Devine and Walladd8] and switch
I1l. CONSTRUCTION OF THREE-DIMENSIONAL off by fiat couplings that involve flip of bOtl’p spins, i.e.,
NUCLEON-NUCLEON INTERACTIONS between thet + and — — sectors and between the— and

— + sectors. A partial justification of this rule follows from
an analysis of the static limit of our 3D retarded interaction,
which shows that all couplings to the — states vanish as

M—0, while other couplings approach the instant form.

[though the static limit for coupling ofr — and — + sec-
69rs approaches the standard instant form, we omit this cou-
gling in order to reproduce the previous results of Devine
d Wallace.

A number of different 3D two-body interactions may be
defined by including or not including retardation effects and
by including or not including the contributions of negative-
energy states. These different 3D interactions are used in o
assessment of the significance of retardations and
negative-energy states in calculations of electromagnetic o
servables. In this section we outline the development of th
various interactions used in this work, in each case startin&n . .
from a four-dimensional kerneK that is the sum of six Since, as we have already discussed, the propagator

; Go) ! does not exist in thet — and —+ sectors, the
single-meson exchanges. The mesons aretfiE38), the {Go . ) . . '
#(550), the 7(549), the p(769), the w(782), and the OPT mFerac’[lonUIde;T+ is used with only++ sectors
5(983). The quantum numbers and masses of these mesoffiained in the equation.

: Once a particular interaction is chosen, the integral equa-
and the cutoffs in thémonopole form factors, as well as the . . ’
couplings for all but ther meson, are listed in Table I. All tion (2.40 is solved for the bound-state energy. The method

these parameters except for hecoupling are taken directly used involves seeking the_ energy at Wh.iCh the Iargest eigen-
from the Bonn-B fit to theNN phase shifts36]. The o value of the kernel(Gy) is one. The eigenvalue is calcu-

coupling is varied so as to achieve the correct deuteron bin %t'ed ustlhng dtht(he Mﬁlﬂ'et'.ﬂ%n |§era;[]|on proce((j:il:rr]e. Detatllhs of
ing energy for each interaction considered. is method, the rho-spin basis chosen, and the way the an-

We then use the techniques of the previous section to
construct the following interactions, all of which are to be TABLE |. Meson quantum numbers, masses, cutoffs, and cou-
used in the three-dimensional ET equati@40 (note that plings as taken from the Bonn-B model. Note that the number in
in calculating the 3D interaction we assume that the 4D inPrackets in the) row is thep-meson tensor coupling.
teraction contains no form factors and any dependence of o 5
vertex factorsV,, uponq® is neglected; after calculating the Meson J° T Mass(MeV) — Cutoff (MeV) — g*/dm
three-dimensional interaction we then insert monopole form

T 0- 1 138.03 1200 14.6

7 1= 0 548.8 1500 5.0

p 1t 1 769.0 1300 0.9%6.1

® 1t 0 782.6 1500 20.0

o ot 1 983.0 1500 3.1155
FIG. 10. The two time-ordered perturbation-theory graphs forg ot 0 550.0 2000

one-pion exchange.
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TABLE II. Sigma coupling required to produce the correct deu- 1.25 . . .
teron binding energy in the five different models under consider- - Instant ET interaction (++ states) 7
ation here. -~~~ Klein interaction (++ states) 7
120 ' —— - Retarded ET interaction (++ states) .-~
—-— Instant ET interaction (all states) .~~~
Interaction States included 92/4m 8

—— Retarded ET interaction (all statés)
e

’d

1.15

Instant ++ 8.08

TOPT ++ 9.64 & 110 ]
< e

Retarded ET ++ 8.39 PR

Instant ET All 8.55 108 1

Retarded ET All 8.44 ’

gular integrations are performed may be found in R&8].
In our calculations we used 40 quadratures in the radial mo- 0.95 . ‘ . .
mentum and 8 in the integration over the polar angldn 0.0 10.0 200 300 40.0 50.0
the case of the two energy-dependent interactions numerical P (fm’)
integration was used to perform the integration over the azi- fig. 11. A plot showing the eigenvalue of the homogeneous
muthal angle¢. We found that 12 quadratures were suffi- integral equation(2.26), as a function of the total three-momentum
cient to achieve convergence. of the two-body system, for different choices of the interactibn

In each calculation, the coupling was adjusted to get the The dot-dasheddotted line is the result whetJ, is chosen to be
correct deuteron binding energy, producing the redaltsu-  an instant interaction and albnly + +) states are included in the
rate to three significant figuregiven in Table Il. The value calculation. The solidlong dasheflline is the result whetu, is
given for the instant calculation with positive-energy stateschosen to be the retarded interaction defined by(E®3 and all
alone is that found in the original Bonn-B fit. In all other (only ++) states are included. Finally, the short-dashed line is the
cases ther coupling must be adjusted to compensate for theesult from the TOPT interaction, calculated with+ states only.
inclusion of retardation, the effects of negative-energy states,
etc. We believe that this adjustment of the scalar couplingactors with and without inclusion of the boost correction.
strength is sufficient to get a reasonable deuteron wave fundrhe solid lines show the results with a constant value
tion. However, one direction for future work is to refit the =1, in which case the deuteron is overbound when calcu-
meson-exchange parameters in these various different relfated in the Breit frame. The dotted lines show results based
tivistic NN interaction models to thé&lN scattering data. on \(*Q/2) as determined from Fig. 11, such that the deu-
From Table Il we see thawith the exception of the TOPT teron total energy is/MDz +Q/4 in the Breit-frame wave
interaction) adjusting theo coupling to reproduce the ob- fynctions, whereMy, is the invariant mass. The results for
served deuteron binding leads to at most a 5% deviation, differ very little for these two cases and are not shown.
from the Bonn-B value, thereby suggesting that other mesofrhe results show that including so as to remove the viola-

parameters would change only slightly if a more detailed fittion of Lorentz invariance decreasasby about 10% a?
were performed.

Once the bound-state wave function in the center-of-mass
frame has been determined in this fashion, it is a simple
matter to solve the integral equatiq@.26) in any other 1\ Instant calculation: ++ only, constant energy
frame. As we shall explain below, we choose to calculate Instant calculation: +-+ only, constant A
electron-deuteron scattering in the Breit frame. Hence, we
need to calculate the deuteron wave functions in frames witr
total four-momentum (/M2D+P2,P). To do this, the interac- 10% L ]
tion is recalculated in the new frame using the rules givenNS
above, and then the integral equation is solved with this nenx
interaction. Because the formalism we use for reducing the 10° - e . 1
four-dimensional integral equation to three dimensionsois o
Lorentz invariant if the potentidl ; is truncated at any finite .
order in the coupling, we have calculated the eigenvalue 1 r
N (P) defined by

00

U1 (P)Y{Go(P)T er(P)=\(P)Te1(P), (3.2 1o 0.0 25.0 50.0 75.0 100.0

Q’ (fim™

for each of the five different interactions defined above. [/~ 15 1hafom factoA(Q?) for the deuteron. The solid line
; - i 0 MZ1pP2i ; e '
SinceA (0) =1, by construction, an@"= |Mp+P°is setin  represents a calculation using=1 and the dotted line shows a
accordance with Lorentz invariance, the deviationdfom  calculation using\(+Q/2) in the Breit frame, such that the deu-
1 indicates violation of Lorentz invariance in the interactionteron energy corresponds to the invariant miss. In both cases

U;. The results of this test are shown in Fig. 11. only positive-energy sectors are included and an instant interaction
Figures 12 and 13 show results for theand B form s used.
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10° . . malism, and then show how a corresponding 3D current is
............ Instant calculation: ++ only obtained from the 4D one. The emphasis is on satisfying the

Instant calculation: ++ only, =1 appropriate Ward-Takahashi identities. These reviews estab-

107 o 1 lish the procedure that is followed in subsequent subsections

in order to construct the electromagnetic current for the 4D
and 3D formalisms involving the propagai@¢ . The tricky
issue whenG is present is the construction of additional
terms in the current to maintain current conservation. Be-
causeG enters as a part of two-body interactions associated
with crossed graphs, the current associated with it is a two-
body current. We construct the extra terms in the current
required by the Ward-Takahashi identity, which is not

straightforward because the variable$ and «3 that we

! choose depend on the three-momentum of the intermediate

107" L : : state. As we shall see below, this means that we cannot use
00 2.0 Qz‘;’f%]%) 750 1900 the standard fermion electromagnetic current because

such a choice would violate current conservation. We show
FIG. 13. The form factoB(Q?) for the deuteron. The solid line that the Ward-Takahashi identiyVTI) may be recovered
represents a calculation using=1 and the dotted line shows a by incorporating an additional term in the current. This
calculation using\(=Q/2) in the Breit-frame, such that the deu- yields the ET current referred to GJ%M in the Introduction.
teron energy corresponds to the invariant migs. In both cases  We then develop the corresponding 3D current for the for-
only positive-energy sectors are included and an instant interactiomalism involvingG. . Because the ET current has parts at-
is used. tributable to two-body effects, we also develop a simpler
current that is appropriate for use with instant interactions
~25 fm~?, and by about 30-40 % &@°=100 fm . The s - This last-mentioned current is the one used in the
effects onB are comparable. calculations of this paper, which are based upon the impulse
Referring back to Fig. 11, we note that adding mesongpproximation. Although we do not use the full formalism
retardation to the formalism actuallgcreaseshe violation developed in this section for calculations in this paper, the

of Lorentz invariance. This is a little surprising because theesults presented here are pertinent to future calculations in
retardation effects, when expanded to or@éfM?2, repro-  which two-body currents will be included.

duce the Poincareoost operator of Ref§37,1]. We note

that if the Poincardoost operator of orde??/M? were ac-

tually sufficient in this calculation, and effects of higher or- A. Review of Ward-Takahashi identities in the 4D Bethe-

der in 1M were truly negligible, then the inclusion of these Salpeter formalism

retardation effects should remove most of the violation of \ye pegin our discussion by reviewing the WTI for the

Lorentz invariance present in the instant analysis. This doeggy,4| Bethe-Salpeter Green’s function. Consider the two-

not happen. Finally, including negative-energy states in thgogy Green’s functiorG that is the solution of the Bethe-
formalism decreases the size of the violation of Lorentz iN-Salpeter equation

variance.
G=Gy+GyKG, (4.0
IV. CONSTRUCTION OF A CURRENT-CONSERVING

ELECTROMAGNETIC INTERACTION . ,
where K is any BSE kernel. Define the two-body Green’s

In this section, we first review how a conserved electro-function for the interaction of two free particles with a pho-
magnetic current is developed for the 4D Bethe-Salpeter forton of fixed momentun@) via

|
G (P1,P2,Q)=Go(p1,p2+Q)
X[ =ij2(Q%)d1 {(p1)]Go(p1.P2) +(1-2)
=G32(p1.,p2,Q) + G (p1,p2.Q). (4.2

Here, and throughout the rest of the paper, the notatioexpression. An explicit example of this rule is the particle 1
(1+2) indicates that the momenta of the two particles mustoupling term of Eq.(4.2), which is Ggf/})(pl,pz,Q)

be swappe@ndthe labels exchanged. Therefore, the{2) =Gy(p1+Q,p2)[— idgl(pz)jf})(Qz)]Go(pl,pz).

pieces of any expression represent the photon coupling to The free Green’s functios{,, obeys a Ward-Takahashi

whichever particle it did not couple in the first part of the identity. Now letG ) be the Green’s function for the interac-
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tion of one photon with the interacting two-particle system.interaction of the bound state with a photon of momen@m
Note that in the two-nucleon system the chargesvill in- [40]. Expressing the result in terms of total and relative four-
clude isospin operators, and so care must be exercised momenta yields
ordering charges and isospin-dependent interactions. We

may write the following equation for a current-conserving dp — ' y(2)
G, by allowing the photon to be inserted anywhere on the AM(P:Q)ZJ W)4F(p—Q/2;P )G, (p;P;Q)I'(p; P)
right-hand side of Eq(4.1), and then rearranging the result:

YLl L 4p/d4p_
G#(k ,kz;klakZ;Q) +(l<—>2)—|—J (2 )8 I‘(p!,P!)GO(pr,Pr)
an
_ d*p,d*p, A vir o

= ome G(ky.Kz:p1,p2+ Q) XKX(p',P";p,P;Q)Go(p;P)T(p;P), (4.6

<[ —ii @(02)d:L G(P1.0s Ky ko) (12 whereP’'=P+Q andI'(p;P) is the two-body vertex func-
[=117(Q7Ay (PGP Paiky ko) +(12) tion corresponding to the bound state at four-momentum
d*pjdpydipyd®p, P2=M?2. From the WTI's forG, andK}, and the bound-
(216 G(ki,ks;p1,P3) state BSE]'=KG,TI', it is then straightforward to show that
o
" =
XK2(P}.P5iP1.P2i Q)G Poik ko). (43 Q" AL(P.Q)=0, @9

HereK? is found by coupling the photon to every internal 23 required for current conservation.
charged line in the kerneé{. [Note that there is an overall
delta function 5(4)(ki+ ky—k;—k,—Q) on both sides of B. Gauge invariance in a 3D reduction of the Bethe-Salpeter

this equatior]. Using the WTI forGj,, Eq. (4.3), and the formalism
explicit form of Eq.(4.1) we find a WTI forGZ, In the context of a reduction to three dimensions, the
guestion is how to maintain gauge invariance when the re-
Q*GJ (kg Kz 1Ky k2;Q)=02G (kg ,k;— Qiky ko) duction is made. In Sec. | we outlined the 3D reduction

R method for the bound-state vertex arising from the solution
~G(ky ko ki ka+Q)a of the Bethe-Salpeter equation. This gives
+(1<2), 4.4
(122 44 I4(P)=Ky(P)XGo(P)T'1(P), 4.9
provided that .
where the dependence of quantities on the total four-
a2K(p,ps—Q;p1,P2) —K(P1,ps;P1,P2+Q)gp+(12)  momentunP is indicated. The 4D vertex functidn and the

» ) 5 corresponding 3D onE,; are related as follows:
=Q*KJ(P1,P2:P1,P2:Q), 4.

which is the WTI for the interaction currerSimilar identi-
ties are used in the construction of Ward-Takahashi identitiegioreover, the interactiok ; is defined so as to obey
for the Gross—or spectator—formalism in Ref88,39.)
The result(4.5) is completely general, and will always hold (Go(P)YK1(P)(Go(P))=(Go(P)K(P)G(P)).
if the two-body currenth is constructed by coupling the
photon to every charged line in the keriél
Using the usual decomposition of the two-body Green’s Inserting Eq.(4.9) into Eq. (4.6), we find an entirely
function into a pole and a regular part gives the amplitude forequivalent expression for the current,

Go(P)I'(P)=G(P)I'y(P). (4.9

d*k’d*p’ d*pd*k—
4,40 | (;;)mp T3k POGK ' P~} 2(Q2)d; (voP—p) 8 (p’ — p—QI2)
—ij{2(Q)dy Y(v1P+p) 8 (p' —p+Q/2) +K(P',p'";P,p:Q)1G(p.k;:P)T'1(K;P). (4.10)

Because the vertex functions do not depend upon the time Now, given a result fof"; obtained by systematic expan-
components of relative momenta, integrations oversion ofK,, the amplitudeA, also can be expanded system-
k® and k% reduce this expression to a 3D one, which weatically in a way that maintains current conservation. First,
abbreviate as note that we solve foK; in accordance with Eq4.10. This
_ leads to an infinite series fd€,. If the condition(4.10 is
A, =T (PGP, +KIIGP)T1(P). (4.12  imposed order by order in the expansiorkif-K,, the con-
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dition definesK; to the same order. Truncation of the kernel QMAEE):O_ (4.15
is necessary for a practical analysis and we must ask if a

corresponding 3D approximation for the current matrix ele-
ment(4.12 exists that maintains the Ward-Takahashi iden-

tities of the theorylt turns out that the current matrix ele- body and two-body current pieces of Bd.11 similarly are

ment (Eq: 4.12) is conserved @(J,+KY)G on the right- ) ! )
hand side of Eq. (4.12) is expandgd toﬂa given order in theexpanded to fourth order. This defines a vertex funcﬂﬁﬁ

coupling constant and the kernel,Kused to defind’, is  Which obeysQ# A ("= 0. Thus, truncating the kernl, de-
obtained from Eq. (4.10) by truncation at the same order infin€d by Eq.(4.10 and the electromagnetic vertex defined by
the coupling constant. Eqg. (4.12 at consistent order in the pouplmg constant yields

To effect this the right-hand side of EG.12 is splitinto & current-conserving electromggnetlc matrix elem(.ant.'A co-
two pieces, one due to the one-body curiépt and one due variant extension of the formalism presented here is given in
to the two-body currenk? . Suppose now thé; has been Ref.[2].

) ibuti i
truncated at lowest order, i-eK1=K(12), and that K In fact, A includes contributions from diagrams where

— w72 . . , ; the photon couples to particles 1 and 2 while exchanged
K™ Then, in thel, piece, Vg? ex%a)md th@s and retain guanta are “in flight.” These contributions are of two kinds.
terms up to the same order Kf?—K{?. A piece from the

. k Firstly, if the four-dimensional kerné{ is dependent on the
two-body current must be added to this. In that piece we stog,; momentum, or if it involves the exchange of charged

this expansion of at zeroth order ik (@) — K, I.e., Wrté  particles, then gauge invariance requires the presence of
G=Gq. Thus, we define our second-order approximation taerms representing the coupling of the photon to internal
A, AD by lines inK. Second, even if gauge invariance does not require
the presence of such terms in the four-dimensional formal-
ism, terms arise in the three-dimensional formalism where
@_T (VY the photon couples to particles 1 and 2 while an exchanged
A =T1(P{Gg T (P) particle is “in flight.” These must be included if our ap-
+T1(P')N(Go(PHIKD(P)—KP(P)]GL)T1(P) proach is to contain a WTKSee Fig. 2 for a diagrammatic
" interpretation of one such termn.

It is straightforward to check that the same result holds if
Eq. (4.10 for K, is truncated at fourth order, while the one-

+F1(P')<G8 [K<2>(p)_K<12>(p)]GO(p)>rl(p) A special case of the above results occurs when retarda-
- . tion effects are omitted, i.e., when the kere]=Kj.g; is
+T1(P')(Go(P)K P Gy(P))T1(P). (4.13  chosen, and the bound-state equatibr®) is solved to get

the vertex functionl’;=T';,;. Then a gauge-invariant cur-
rent is obtained by implementing the instant approximation
To show thatAEf) is gauge invariant, it must be contracted in the expression4.13 in a way consistent with that in
with the four-vectorQ. The WTI's forGo),, K, together ~which it was used in obtaining the Salpeter equaiibr®).
with the bound-state equati@d.8), can be used to show that Taking Eq.(4.13 and imitating the derivation of the Salpeter
equation by replacingl by K;.; leads to

QrA Y _ _
Ainst,,u( P,Q)= 1_‘inst( P,)<Ggﬂ>rinst( P)+ l_‘inst( P,)

_ X<G0(PI)>Ki}r/1$w<GO(P)>I‘inst(P)-
Xd.I'(P)+T1(P")qy (4.19

X(Go(P)[KP(P)—K{P(P)]Go(P))T'1(P) +(1-2).

(4.14 where we have also replaced the meson-exchange current
kernelK ] by the instant approximation thereto. By definition
this instant meson-exchange current kernel obeys the WTI

Thus, at second order in the coupling constant, with Eq(4.5), but with the instant kerné{;,s; appearing on the right-
(4.10 expanded at second order definiKéZ), the corre- hand side. To show that E¢4.16) defines a gauge-invariant
sponding amplitude for electromagnetic interactions of thematrix element we contract with the four-vec@f and use
bound state, as defined by E¢.13, obeys the Ward-Takahashi identities fdy, andKj,, . This gives

=—T1(P"{Go(P)[KZ(P")=KP(P')]Go(P"))

Q¥ Ainstu(P,Q) =Tins P")02(Go(P) = Go(P"))T sl P) + Tinst P")
X <GO( P’)[qZKinst( P) - Kinst( P’)Qz]Go( P)>
X Lins P) +(12). (4.17)
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Using the bound-state equati®¥,q= Ki,sf Go)'inst, bOth at dp _
total momentun® and at total momentur®’, then gives the AM(P,Q):J 2 )4F(p—Q/2;P’)ggf)(p;P;Q)F(p;P)
r

desired WTI

_ d4 rd4 -
Q*Ainet(P.Q)=0. (418 o)+ | (5 )gpﬁp';P')go(p';P')
ar
Note that if the four-dimensional interactidt does not de-
pend on the total momentu®, then the simple current xXUJ(p’,P";p,P;Q)Go(p; P)L(p;P)  (4.27)

) P.O)=T. (P )(GZ. (P:ONT.o(P) (4.1 will satisfy the current conservation conditig#.7).
Ainstu (P, Q) =Tins P){G3,.(Pi Q) Tins((P) (419 In order to implement this formalism, we must construct a

currentG¢,, that obeys Eq(4.29. Rather than immediately
tackling the full G defined by Eq(2.24 we first perform
this task for one term by considering the simple case in
which the propagator isl;d5 and the photon couples only to

In this section we construct a conserved current for the 4Dparticle 2. This is nontrivial because the choice of variable
equation 3 in dS in general depends on the three-momenta of both

I'=UG,l (4.20 particles. For instance, i3 is chosen as in Eq2.19 and
' ' the particles are of equal mass, then #3ewhich appears in

In order to do this we rewrite the equation as two coupled® ProPagatoSc(py,pz+Q) is (for equal-mass particlgs
equations, the first of which involves the Bethe-Salpeter ker- 1
neIK’ Kg,ZE(P0+QO_€l+6é)1 (428)

is gauge invariant.

C. Gauge invariance in the 4D formalism withG¢

I'=KG,I, (4.21) / is i
whereP=p;+p,, ande;=€,(p,+ Q). This is to be com-

and the second of which defines the reduced interattion Pared to th case wherg is defined via Eq(2.18. In that
case thex; appearing inG¢(p1,p,+Q) is, for equal-mass
K=U+UGcK. (422  particles,

From Eq.(4.6) we see that the gauge-invariant current for the
photon coupling to the bound state will contain a piece cor-
responding to the coupling of photon lines in all possible
ways insideK. This piece of the current is composed of two and there is thus no dependence on the intermediate-state
parts, as follows: three-momenta of particles 1 and 2. As we shall see below,
the appearance of momenta in the chai¢29 for «J leads
KX=(1+KGc)UX(1+GcK)+KGE K. (4.23 Ez ;os)mplications in the construction of a current obeying Eq.
The Ward-Takahashi identities that are required to be satis- To construct such a current, we first postulate the form
fied involve one folU, that takes the same form as E4.5), -
with K replaced by’ d22(p2:Q)=d5(p,+ Q)jZLd5(py), (430

o 1
K3 :E(P0+Qo)y (4.29

U (p1,p>—Q;p1,P2) —U(P1.P2;P1,P2+ Q)02+ (12)  where we writedg in order to indicate that the constraint on
_ yinr ot . k5 is different once the photon strikes particle 2. The WTI
Q¥UL(P1.P2:P1,P2: Q). (429 for this current is then

The other involves the Green'’s functi@y ,, representing wi(2) _ S -1 qc 1
a photon coupling to the propagat@¢ . This piece must be Q¥jeu=0zld2(P2+ Q) dz(p2) - (4.39
constructed in accordance with the Ward-Takahashi identi%onstructing the right-hand side of this equation, for spin-

articles we obtain
Q“GL (P12, Q=0 Gc(p1,P) ~ Ge(pr.p+ Q] ©

+(1-2). (4.29 Qo[ 2(ky— ko) — @]. (432

When both of the WTI's(4.24 and (4.25 hold, then the Using the form forx,, Eqg.(2.11), and three-momentum con-

electromagnetic kernéd ; will satisfy the WTI(4.5). In this servationp;=p,+Q, we see that
case the current appropriate to a photon insertion in the free -~ B B ,
propagator is d5(p2+Q) 1= dS(py) " t=[2(ky — k9 —2Q°]¥3+ Q.
(4.33
gy, =Gg  +G¢ (4.2 ] ) o o
Note that if we make the choid@.18, thenk; is given by

and so, ifl" obeys Eq(4.20, the amplitude k3 =1,(P°+ Q0% and «9=r,P°, and so
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d~§(p2+ Q) 1—dS(p,) =0+ 2(v,—1)Q%23. Note that here the propagatdﬁ_(pl)qédi(pl), since the

(4.39 change in the momentum of particle 2 after the impact of the
photon leads to a change in the choice@fthat appears in
d—in spite of particle 1 apparently being a spectator in this
interaction. Again, the simplest choice

This means that, in the Breit frame whe@®=0, the usual
current j?)=q,y,, satisfies the Ward-Takahashi identity
(4.3,
However, when we use the formulés.28 and(2.19 in -
the case of equal-mass particles, note that df(p1,P2;Q)=idi(p1)da(P2+ Q)d2Y2,d2(P2)
(4.4
0, @ (P2+p2)

0 0
2(k3' —K3)=Q e
€27 €

, (4.39

does not obey the Ward-Takahashi identity. However, if we

constructdz according to
thus implying that

- B+ D : Or= g :
dtzt(p2+Q)—l_dg(pz)—le_sz P2 Y20, (436) d,u(plivaQ)_ 2{[dl(p1)+d1(pl)]d2(p2+Q)

€t e

) ) X 02 72,02(P2) + 4(P1)T2,73735(py)
wherep;=(€5,p5), P2=(€2,p2). Consequently, the WTI 2ranziRel TR an T2 A

(4.31) requires that we define the current X[da(p2+ Q) +da(p2) 1}, (4.42
1Eh=q27,— 1 (4.37  then it does obey the WT(4.40. This can be shown as
h follows. Contracting the right-hand side of E@.42 with
where Q* gives
~ ﬁé +E)2 .
JP=0—"—" 720 (4.38 [N =
et € E{[dl(pl)+d1(D1)]Q2[d2(P2)_dz(p2+Q)]

is the additional piece of the current that compensates for the - 0, O Oac
dependence ot on momentum. Note thaf%)=0 with this +d1(p1)d22( k7" — x1) ¥2d1(P1)[da(P2+ Q) +da(p2) I}

choice ofj{). Note also the identity
But

QTP =2(k) — k)2 20- (4.39

0,_ 0 _Ac —1_ HC -1
Next we consider a second piece @, namely, the 2(ky" = k1) 720=d1(Pa) di(p) (443
propagatorid{d,, still in the situation where the photon
couples only to particle 2. Denote the fré¢N—NNy and so the Green’s function defined by E4.42 does in-

Green's function corresponding to this situationdfy. The ~ deed satisfy the WT(4.40. .
Ward-Takahashi identity which this Green’s function should It is now possible to combine the results {¢f), andd, in
obey is order to construct the 4D curredif ,=Gg§,+G¢, corre-
- - sponding to the free Green'’s functi¢®.24). In this case the
Q“di(pl,pz;Q)z iq,[dS(p1)da(p,) —di(p1)da(pa+ Q)] relevant WTI(again, only V\_/riting explicitly the parts where
(4.40 the photon couples to particle &

Q“G,(P1,P2i Q)= 5 G0y (P) + 05(p2) 11 ez(P)+ AS(P)] — 5Ly (P) + 5P 1T elo P+ Q)+ P+ Q)] +(14-2).

(4.44

Using the forms already constructed ﬂcggt and d; we discover that the 4D current in the formalism involviBg is

i ~ ~ -
G ,.(P1,P21Q)= 7{[2d1(P1) +d5(P1) +d5(P1) T da(Po+ Q)U272,8a(Pa) +d5(Po+ Q)] 2,d5(P2) 1+ d5(P1)T 2, ¥2 730 (P1)

X[da(ps) + da( P2+ Q)+ dS(p2) +dS(pyt Q)T+ (152), (4.49

and it obeys Eq(4.44).
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D. Reduction to 3D and the ET current At this point it appears that we must integrate the rather
Having constructed a 4D current for the formalism in- COMPplicated formula4.45 over the zeroth component of

volving G that obeys the required Ward-Takahashi identity,rélative. momentum in order to calculat¢; ). However,
we can apply the reduction formalism of Sec. IV B to obtainthe result(4.45 for G§ , was constructed in order to obey
the currents corresponding to the 3D reduction of this 4DWard-Takahashi identities in the full four-dimensional
theory. To this end, we first note that the 4D vertex functiongheory. Itis not, in fact, necessary to use the full result if we
are related to 3D oneBgr by Egs.(1.15 and(1.17. Using  are only concerned with maintaining WTI's at the three-
these relations to rewrite the 4D curréht21) in terms of the dimensional level in the instant approximation. As remarked
3D vertex functions shows that following Eq. (1.12, the simpler propagatofd,(d,+d3))

. provides the same result &5,). Thus, we may construct the

Aet =T 1 (P ){QNP)GE QR(P))T 1 er(P) corresponding current

+T 1P )(G(P)ULG(P)T 1ex(P). (4.4 hetu(P1,P2; P, Q) =1(d1(p1)da(p2+ Q)] 17'd2(p2)

c (2
7 denotes the interaction current obtained by cou- +d1(py)d5(pa+Q)j&LdS(p2))

pling th_e photon in all possible ways yvithin the reduced +(1-2). (4.49
interactionU. In the same manner as discussed for the 3D
version of the Bethe-Salpeter current, it is possible to mainW
tain gauge invariance if the 3D interactibh is truncated at
some definite order in the coupling constant, while the ex-QMg_y (P1,p2:Q)
pansions fo-Gy QR andGU G similarly are truncated at nstutBLrFes
the same order in the coupling constant. .

Because we truncate our effective interaction at second —192[(d1(P1)d2(p2)) = (d1(p1)dx(P2+Q))

order, the corresponding conserved current in 3D form is ¢ T
+ - + +(le
obtained by use OQR(Z)=1+[U(2)—U(12)]QO and a corre- (d1(p1)d3(p2)) —(d1(p1)d3(p2+ Q)]+ (1 2)

Here, U?

hen contracted witl@Q* this gives

sponding expansion fa-(? in Eq. (4.46. The result for (4.50
the 3D current,
=02[(Go)(P1,P2:P®) = (Go)(P1,P2+ Q; PP+ Q)]
Af)zFl,ET(P')<gg,,L>F1,ET(P)+F1,ET(P')<QO(P’)[U(2) +(1<2). (4.5)
112 ’ ™ '
X(P")—U(P )]Q&M)Fl,g( P)+ Ty edP’) Consequently, if a vertex functidn,; is constructed to be a
Yy 112 py_11(2 solution to Eq.(2.26), then the current matrix element de-
X(G§ LU (P)=Ui”(P)]Go(P))I' 1 gx(P) fined by
+T 1 e P ){(Go(PULPGo(P)T 1 e(P),  (4.47) 4
p J—
A :f—r- —QI2;P")GHZD (PP, Q)T st P; P
obeys the Ward-Takahashi identit.15). e ] 2m)® ns{ P~ Q/2iP") Gingto (PP Q) ins PP
Note thatU®@=K® andU??=K 2 are correct at sec-
g “ +(12) (4.52

ond order in expansions in the coupling constant. Conse-

guently, if we are considering one-boson-exchange interac- ) .

tions, the only contributions t&”? that are necessary for obeys the current conservation conditighl8. The current
’ /2

gauge invariance come from the photon coupling to isovecYinsi: 1S Simpler than the full ET current and omits only

tor exchange particles and from contact terms due to deriveEffects stemming from retar_datlon In the_current. Since our
tive couplings of the mesons to the nucleon. Since these gi resent calculations are designed to provide an assessment of

rise to isovector structures, their contribution to electromag:[he role of fnega.ltwe-en%rgz statefsf and retardgﬂor; effects in
netic scattering off the deuteron is, in fact, zero. the vertex functions, and these effects stemming from retar-

dation in the current are expected to be mirgf, , is used

in these calculations.
E. Impulse-approximation current based on the instant

approximation to ET formalism
V. ELECTRON-DEUTERON SCATTERING:

Just as in the case of the Bethe-Salpeter equation, if the IMPULSE-APPROXIMATION CALCULATIONS
instant approximation is used to obtain from E}.25 the _ -
three-dimensional equation that defines the vertex function, NOw we are in a position to calculate the deuteron elec-
then a corresponding gauge-invariant impulse current can Jéomagnetic form factoré andB and the tensor polarization
constructed by replacing by U everywhere in the ex- Tzo_. These are related to the charge, quadrupole, and mag-
pression(4.47). Assuming that the interaction in the four- netic form factors of the deuterokc, Fq, andFy, by the
dimensional equation does not depend on the total momerollowing formulas:
tum, this leads to a particularly simple conserved current

= A=|:2+§ 2|:2+E F2 (5.2)
Ainst,M:Finst(gg,M>Finst- (4.48 cTg7rem 3" ™M '
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©Q using any of the interactions obtained with only positive-
energy-state propagation we of course drop all pieces of the
operatorg i, in negative-energy-state sectors.
The general form of a matrix element of the operator,

using the deuteron vertex-function decomposition developed

202 EQm in Ref.[19], is, for coupling only to particle 1,
: [P lsins .
FIG. 14. The kinematics of electron-deuteron scattering, for a <M |A}L|M>_ > 3[F1 (p+Q/12P+Q)]
momentum transfe® = (0,Q), in the Breit frame. (2)

X (G o)P12(p+QI2;P+ Q)

4
B==n(1+n)F%, (5.2 -
3 X‘]i’l:1P1319252<go>plp2(p; P)
X(X+2)+y/2 x P22 Mg py 4 (1652), 5.1
tZOZ_ﬁ#, (53) 1 (p ) ( ) ( @
1+2(x°+y) with
where (Goy"1#2(p;P)
= 3Fc ' ®4 =pi1p2 1
5 E(P1+P2)PO_€1_52+ E(Pl_Pz)(Gl_fz)
| e B 5
Y=313 (1+npta 2|\ ) (5.5 (5.1
Q2 and
7]:_4|\/|2’ (5.6 P1S1P1S1P2S2_ T plsl 1 s\ AP1P1P2, \pyS
P I = pauPr1(p1py)d; T UPPL(papy),

(5.12

whereQ? is the square of the four-momentum transfer. For
elastic electron-deuteron scatterir@@,is spacelike andy is AP1P1P2 . o
positive. In this work all plots and data are quoted at anyvhere the .form Oﬂl,u is rho-spin dependent and is given
electron angle of,=70°. in Appendix B. _ _

The deuteron form factofsc, Fq, andFy are related to The single-nucleon currents used in these calculations are
the matrix elements of the current, discussed in the pre- the usual one for extended nucleons, definednferl or 2
vious section, taken between the three different magneti€¥y
quantum number statgd1)=|+1), |0), and|—1) of the i
deuteron as follows: jme=q, yﬁF(l“>(Q2)+2MN aﬁ”QvF(Z”)(QZ)) :

1 (5.13
Fe=——=((0]A%0)+2(+1]A%+1)), (5.
¢ 3V1+ ne(< AT +2(+ 1 AT 1), (57 The appearance of the factey in the first term here implies

that the WTIQ*j ,= @ is not satisfied. On the other hand, as
pointed out by Gross and Risk&8] a current which obeys
((0]A°|0y—(+1|A%+1)), (5.8 the original WTI is

Fq

1
_27]\/1-!— ne

_ 1
=7+ gy QUFA(Q)

-1
Fy=—=——(+1|4,|0). (5.9
V25(1+ n)e " 0
. . . +[F1(Q%) —1]| y*—Qr1—2|. 5.1
Matrix elements of4,, are calculated in the Breit frame, [F(QH=1]1»*=Q Q? (5.14

with kinematics as shown in Fig. 14. In order to calculate

matrix elements such as those defined by @2 we re-  The difference betweei* and j{; is proportional toQ*.
quire the vertex functions, or equivalently the wave func-Therefore, for elastic electron-deuteron scattering in the Breit
tions, in the frame where the total four-momentumHAs frame onlyj2 will be affected if we adopt the WTI-obeying
=(\/M2D+Q2/4,Q/2). However, these are precisely the currentj{,; instead of the original extended-nucleon current
wave functions calculated in Sec. IIl. Thus, we now take theg/#. Recall that in the Breit framg® is formally constrained
wave functions constructed for the five different interactionsby current conservation to be proportionaljfp and is never

of Sec. IIl atP? ranging from 0 to 25 fm? and insert them evaluated. Hence, it transpires that by formally adding a
into the expressiort4.52. The explicit form of the three- piece to the one-body currept we can obtain a one-body
dimensional curreng; , is presented in Appendix B. In current for an extended object which still satisfi@é],
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=@ and yet, in this calculation, leads to the same numericainteraction is thereby obtained.
results as Eq(5.13. We choose to parametrize the single- When the electromagnetic currents are constructed in our
nucleon form factor$§; andF, via the 1976 fits of Hhler =~ 3D theory the necessary Ward-Takahashi identities are
et al. [41]. Choosing different single-nucleon form factors clearly satisfied provided that one calculates both the the
does not affect our qualitative conclusions, although it hadnteraction and the electromagnetic current to all orders.
some impact on our quantitative results for B, and T . However, this is neither practical nor, if an effective had-
Using such a one-body current the calculation describedOnic Lagrangian is being used, desirable. A truncation of
above conserves the electromagnetic current if the verteR0th the interaction and the electromagnetic current is
functionT'; is obtained using an instant potential. However,needed.' It is noa priori ewdt_ent that. one may truncate the
in all other circumstances it violates the Ward-Takahashf>Pansion for the both the interaction and the electromag-

identities by omission of pieces that are required because cr)}etic current in a way that systematically maintains current
y P q conservation. We show that this can in fact be done in the ET

the inclusion of retardation effects in the calculation. Thisformalism
violation of the WTI's comes from two sources. '

First, in, for instance, the TOPT calculation, the pieces o
the current coming from terms in E.13 of the form

Violations of Lorentz invariance occur when the interac-
ftion is truncated. For the range of momenta that arise in
electron-deuteron scattering at TINAF? these violations
may be compensated for by the use of a renormalized inter-
action. It is found that the required renormalization typically
: : . . . . is no more than a few percent. Based upon this, we do not
are not included if Eq(4.5 is applied. The inclusion of o, ot this violation of Lporentz invariancgto have a signifi-

:c[_hese 'g'f:;]ght contrlbutltons tto tT_e curfrent in (:ur calcula;_ cant effect on results for electron-deuteron scattering.
ions and the consequent restoration of current conservation: - jcjations have been performed for the impulse ap-

'_Phthe -I;E)PT calcijI%tlct)_n will bedthe subject o:]a future paptt-:'r. roximation, in which we use an instant approximation for
ere these contributions, and meson-exchange current & electromagnetic current. This current satisfies current

fngtS such as thlﬁﬂ‘?.' a]fll.dr‘]"f,”.MEC,S will be .calcfulatedr.] conservation when used with deuteron vertex functions that
course, similar “Iin-flight” pieces are missing from the .o qpiained with instant interactions. We also have used this

“re;ardeddET” calg;ulﬁltlon.“' flight” oi included i simple current with vertex functions that include the full re-
econd, even If these “in-flight” pieces are included In 15 qations obtained in the ET formalism.

the retarded ET calculation, the WTI's will not hold. Pieces Impulse-approximation results fall systematically below

will still be missing from the curreni4.52. Specifically, we experimental data for the form factofsand B for Q>3—
need to use the more complicated forma@¥,, given in EA. 4 -1 This deficiency of the theoretical calculations at
(4.45. However, calculations whet@s¢ ,) is omitted from  higher Q indicates that additional mechanisms beyond the
the instant current matrix element suggest that the total CoNmpulse approximation should be significant. However, the
tribution of (G¢ ) to the observables is small. SinGB% ,)  existing tensor polarization data are reasonably well de-
itself makes a small contribution to observables, using a&cribed, and this is consistent with previous analyses that
form of it that only approximately satisfies current conserva-have showrr,, to be less sensitive to two-body currents.
tion_is expected to have an even smaller effect on our nu- The role of negative-energy states is found to be not very
merical results. large. Our impulse-approximation numerical results are in
closer agreement with those of Hummel and T[ja5—17
VI. CONCLUSION than with those based upon the spectator formali8ai.
] ) _Because the ET formalism incorporates the relevagiaphs
The ET formalism developed here provides a systematig, 5 preferable way, we are confident ttagraphs play a
three-dimensional theory of electromagnetic interactions inminor role in calculations that are based upon standard
volving relativistic bound states. This is achieved by ime'boson-exchange models of thN interaction. The role of
grating over time components of relative momenta. For thgetardation corrections in the deuteron vertex functions also
propagator of the theory, this produces a form corresponding; (ather minor.

to zero relative time of the two particles. In order for this  pyrther calculations are needed in order to incorporate the
formalism to incorporate th& graphs that are expected in a f|| ET current and the meson-exchange currents.
guantum field theory, it is necessary for the propagator to

include terms that come from crossed Feynman graphs. The ACKNOWLEDGMENTS
predominant terms that are needed have been derived using a

form of the eikonal approximation. This leads to the ET We thank the U.S. Department of Energy for its support
propagator. In this paper, we discuss a refined version of thender Grant No. DE-FG02-93ER-40762. We also thank E.J.

ET propagator involving a different choice Qg from that of  Beise for discussions regarding the experimental daff,gn

Refs.[10,11]. This new choice okg avoids the unphysical D.R.P. is grateful for the warm hospitality of the Special

singularities which otherwise occur in the three-dimensiona[1€S€arch Centre for the Subatomic Structure of Matter,

ET interaction when it is evaluated in a frame where theWhere the writing of this paper was completed.

bound state has a large three-momentum.

Given a suitable choice for the ET propagator, one may
calculate the interaction and the electromagnetic currents that
must be used with it. A full accounting of both the couplings Here we examine the fourth-order graphs for b t
to negative-energy states and the role of retardations in thmatrix in the equal-time formalism and show that the contri-

(Go(P")(KP—K?)Go(P)J,Go(P))

APPENDIX A: LEADING EFFECTS IN 1/ M
OF TIME-ORDERED Z GRAPHS
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into K{? through the fitting of the parameters in that inter-
action to theNN scattering data.

The contribution of the remaining six graphs begins at
order 1M. At that order they give energy denominators

(O] 2M wq 2M (,()1+ Wy Wq wo (1)1+ (OF) 2M )

Including the appropriate spinors and factors to obtain the
full expression shows that the sum of these graphs yields

+ (1 and 2 interchanged) y

94UIV1(1)U1_U;V1(2)U2 U Vz(l)UI 2 Va(2)uy
1 1 1
__2)(_W) __2), (A5)
FIG. 15. The graphs which contribute to the three-dimensional 0 W3
NN t matrix at fourth order in the coupling, up to ordeiML/ The
graphs on the first and third lines come from tBl Feynman box ~ WhereV;(j) is the vertex for the interaction of mesomwith
graph and those on the second and fourth lines come frorhl e nucleonj . Note that in Writing this expression we have taken
Feynman crossed-box graph. some liberties with the ordering of these vertices. However,
the error that this produces is of higher order iM1/To
butions of order W are correctly reproduced in the ET order 1M, Eq. (A5) reproduces the- + — + + matrix ele-
equation with instant interactions. ment of the iteration of the instant interaction using the
The fourth-order piece of the equal-time Green'’s function— + sector of the ET propagator:
is
(2) (4) (2) Ay A+ (2)
<G K GO >+<G K GO> (Al) ul u2 Klnst —2M Kinstul us . (A6)
whereK is the full Bethe-Salpeter kernel. If we consider only
positive-energy states on the external lines, and decomposgmilarly, the 12 version of expressioA6) gives the six
the internal nucleon lines according to the different rho spindourth-order particle-Z graphs correctly to order .
which are possible, we produce 48 graphs. However, if we Thus we see that using the ET propagator with an instant
restrict our attention to graphs which contribute at ordét 1/ interaction correctly reproduces thevLpieces of the fourth-
or above, only the 12 graphs shown in Fig. 15 are relevantorderZ graphs in the scattering series. By contrast, the Gross
Of these, those on the first and third lines arise from the firstor BSLT propagator with an instant interaction would yield a
iterative, part of expressiofAl) while those on the second fourth_—orderZ—graph contribution which is only half the cor-
and fourth lines come from the crossed-box piece of Eqfect size.

(Al).
The external Green’s functions are now amputated, and APPENDIX B: EXPLICIT FORM OF THE IMPULSE-
the static limit of APPROXIMATION CURRENT

T(+4+H++ <Go>++[<Go GOK<2>GO> _ In this appe.ndix' we present thg expllicit form of the
) impulse-approximation current which vyields a current-
+(GoKWGo) ]+ -++(Go)sL  (A2)  conserving calculation if vertices obtained using an instant

. o . o interaction are considered. Recall that
is taken. In this limit the first two graphs in Fig. 15 are

infinitely enhanced, as they come from the iteration of the 7 (P1.P2;P,Q)=i(d(p1+Q)jPdy(py)da(p,)
lowest-order interactiork{?). Meanwhile, the next four * #
graphs give energy denominators +dS(p,+ Q)i d5(p1)da(p2))

1 1 1 1 1 1 1 1 1 +(1<2). (B1)

W1 O1T w0y Wy @z @1t @z @y g @1y w(l/_\3) Inserting the forms of the propagators and performing the
integrals over relative momenta we arrive at a form which is

where w; (w,) is the energy of the firstsecongl meson
emitted from nucleon one. These graphs do not vanish in the
limit M—. They correspond to a shorter-range interaction"”
thanK{?), and are formally part of the fourth-order three-

dimensional kernek{*). Their effects are usually subsumed

most easily expressed in terms of the quanﬂfj/””’2 as
written in Eq.(5.10. In rho-spin-conserving sectors it is

2= —(1= 85 )T (B2)

P1P2
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whereTM is the object defined for nucleon 2 in E@..38. In our calculation théﬂ defined there is multiplied b ;(Q?) in
order to take into account the extended-nucleon structure. Likeyyjsis,the usual extended-nucleon curr¢atl3).

Meanwhile, in rho-spin changing sectors we have

O/
j_++— 1—2 Ko ) PO_€1_€2 PO_E]__GZ . PO_€1_€2 (B3)
m - 04 ¢ 4 ¢! 04 o+ ¢! 0 2 0_ 0\ _ _rJ# 0 2 o_ o\ _ _ _
Q+tete Qterte Q°+2(kij—k) )—€1—€ Q" +2(ky—ky )€1~ €
3=+ _| 142 Kg—ez B PO — € —e, _PO'—ei—ez - Por—ei—ez B4
woo= 0 PRPNG 0_ o ; 0 T e™ 2o 0_ o du. (B4
Q—e1—€¢ Q+2(kj—ky)terte)’ Q' —€e1—¢€ | Q"+2(ki—ky' )+ ert e
Al K9+ €, P0,+61+62 PO/+€1+€2 _ Pol+ei+62
Jl’« =[1+2 0 ;0 0_ Ory_ _ 7 A0 ’ J/"+ 0 0 o’ A (BS)
Q°+erte; Q°+2(ki—ki')—€1—€; Q' +erte| Q'+2(kj— Ky )—€1—€;
k) +e,  PO4e+ PO+ e+ POt e+
jt-—=|1-2 2 2 €1T € €17 € B €1T € (B6)
Ju 0_ . _ o__ _ 1 0 0o_ 0o i 0 o_ 0o e
Q'—e1—¢; Q°—€1—€¢; Q°+2(k;—ky )tete Q +2(kj— Ky )tete

These reduce to the formulas of Devine and Walld&? if the appropriate limits are taken. Note thatdint+ states the current

j# is just the usual single-nucleon currdbt13).
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