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Finite temperature nuclear response in the extended random phase approximation
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The nuclear collective response at finite temperature is investigated for the first time in the quantum frame-
work of the small amplitude limit of the extended time-dependent Hartree-Fock approach, including a non-
Markovian collision term. It is shown that the collision width satisfies a secular equation. By employing a
Skyrme force, the isoscalar monopole, isovector dipole, and isoscalar quadrupole excitations in40Ca are
calculated and important quantum features are pointed out. The collisional damping due to decay into inco-
herent two-particle–two-hole states is small at low temperatures but increases rapidly at higher temperatures.
@S0556-2813~98!06310-9#

PACS number~s!: 24.30.Cz, 21.60.Jz, 25.70.Lm
s
n
a

n
ze
ic
n
g

y
-

on
d
m
n

e
in
on
u

w-
is
ra
-

at
ic
th

t fi
er
-
ed
-

r

of
an-

he
s on
it,
this
hell
ell
p-
ua-
ru-

ce.

le-
t

d

-
ed
ol-
g
of
I. INTRODUCTION

After the discovery of giant dipole resonance~GDR! in
1947, much work was done to understand the propertie
nuclear collective vibrations built on the ground state a
excited states. Most of these theoretical investigations
based on the random phase approximation~RPA! theory
which is quite successful in describing the mean resona
energies and fragmentation of the excitation strengths at
and finite temperatures. However, the RPA approach, wh
is in fact the small amplitude limit of the time-depende
Hartree-Fock~TDHF! theory, is not suitable for describin
damping of the collective excitations@1#. Damping arises
mostly by mixing of the collective state with the nearb
complex states@2#. The importance of the intrinsic com
pound nucleus lifetime has also been stressed@3,4#. As a
result of the mixing with complex states, the excitati
strength spread around the mean resonance energy, an
thermore the damping width increases with the intrinsic te
perature of the system as observed in giant dipole resona
in 120Sn @5# and 208Pb nuclei@6–8#. In order to describe the
nuclear collective response including damping, it is nec
sary to go beyond the RPA theory by incorporating coupl
between the collective states and the doorway configurati
There are essentially two different approaches for this p
pose:~i! a coherent mechanism due to coupling with lo
lying surface modes which provides an important mechan
for damping of giant resonances in particular at low tempe
tures @9,4# and ~ii ! damping due to the coupling with inco
herent two-particle–two-hole~2p-2h! states which is usually
referred to as the collisional damping@10#. The small ampli-
tude limit of the extended TDHF approach is an appropri
basis for investigating the collective response, in wh
damping due the incoherent 2p-2h decay is included in
form of a non-Markovian collision term@11–13#. Based on
this approach, the incoherent contribution to damping a
nite temperature has been calculated in the Thomas-F
approximation in Refs.@14–16#. Calculations using the Mar
kovian limit of this semiclassical treatment, the so-call
Boltzmann-Uehling-Uhlenbeck~BUU! approach, are dis
cussed by many authors~for a review see@17#!. However, as
far as the collective behavior of nuclei at moderate tempe
PRC 580556-2813/98/58~4!/2154~7!/$15.00
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ture is concerned one may worry about the adequacy
semiclassical calculations which neglect most of the qu
tum features but the Pauli principle.

In this work, we present a first quantal investigation of t
nuclear collective response at zero and finite temperature
the extended TDHF framework in the small amplitude lim
which may be referred as an extended RPA approach. In
approach, in contrast to the semiclassical treatments, s
effects are incorporated into the strength distributions as w
as collisional damping widths. We point out that the dam
ing widths should be calculated by solving a secular eq
tion. We compute the isoscalar monopole, isocalar quad
pole, and isovector dipole strength distributions in40Ca at
finite temperatures by employing an effective Skyrme for

II. COLLECTIVE RESPONSE AT FINITE TEMPERATURE

In the extended TDHF theory, the evolution of the sing
particle density matrixr(t) is determined by a transpor
equation@16,18–24#

i\
]

]t
r2@h~r!,r#52

i

\E0

t

dt Tr2@v,G~ t,t2t!

3F12~ t2t!G†~ t,t2t!#, ~1!

where h(r) is the mean-field Hamiltonian, the right han
side represents a non-Markovian collision term with

F125~12r1!~12r2!vr1r 2̃2r1r 2̃v~12r1!~12r2!,
~2!

and G(t,t2t)5Texp@(2i/\)*t2t
t dt8h(t8)# denotes the mean

field propagator. The small amplitude limit of the extend
TDHF theory provides a suitable framework to describe c
lective vibrations including damping due to the couplin
with incoherent 2p-2h excitations. The small deviations
the single-particle density matrixdr(t)5r(t)2r0 around a
finite temperature equilibrium stater0 are determined by

i\
]

]t
dr2@h0 ,dr#2@dU1F,r0#5I 0 dr, ~3!
2154 © 1998 The American Physical Society
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wheredU5(]U/]r)0 dr represents small deviations in th
effective mean-field potential andF(r ,t)5F(r )exp(2ivt)
1H.c. is a one-body excitation operator with harmonic tim
dependence. An explicit expression of the linearized fo
I 0 dr of the non-Markovian collision term can be found in
recent publication@16#.

The linear response of the system to the external per
bation F is determined by expanding the small deviati
dr(t) in terms of finite temperature RPA modes,

dr~ t !5 (
l.0

$zl~ t !rl
†1zl* ~ t !rl%, ~4!

where the finite temperature RPA modesrl
† andrl are de-

fined by

\vlrl
†2@h0 ,rl

†#2@hl
† ,r0#50. ~5!

Here vl is the mean frequency of the RPA mode andhl
†

5(]U/]r)0 rl
† represents the positive frequency part of t

vibrating mean field. It is convenient to introduce the colle
tive operatorsOl

† andOl associated with the RPA modes
rl

†5@Ol
† ,r0# and rl52@Ol ,r0#, and they are orthonor

malized according to Tr@Ol ,Om
† #r05dlm . Substituting the

expansion~4! and projecting byOl , we find that the ampli-
tudes of the RPA modes execute forced harmonic motio

2 i\
d

dt
zl1S \vl2

i

2
GlD zl5^@Ol ,F#&0 , ~6!

where ^@Ol ,F#&05Tr@Ol ,F#r0 and Gl denotes the colli-
sional damping width of the mode. Here, we neglect a sm
shift of the mean frequencyvl arising from the principle
value part of the collision term. Solving this equation
Fourier transform, the response of the system to the exte
perturbationF can be expressed as

dr~v!5R~v,T!F, ~7!

whereR(v,T) denotes the finite temperature extended R
response function including damping:

Ri j ,kl~v,T!5 (
l.0

S 2
^ i url

†u j &^kurlu l &
\v2\vl1~ i /2!Gl

1
^kurl

†u l &^ i urlu j &
\v1\vl1~ i /2!Gl

D . ~8!

The strength distribution of the RPA response is obtained
the imaginary part of the response function,

S~v,T!52
1

p
Tr$F†Im R~v,T!F%

5
1

p (
l.0

$u^@Ol ,F#&0u2D~v2vl!

2u^@Ol
† ,F#&0u2D~v1vl!%, ~9!

where the sum goes over the positive frequency modes
r-

-

ll

al

y

d

D~v2vl!5
Gl/2

~\v2\vl!21~Gl/2!2
. ~10!

The main features of the strength function are usually d
cussed in terms of sum rules, which are calculated from
RPA response as

mk~T!5E
0

`

vkdv S~v,T!. ~11!

However, becaue of the Lorentzian shape of the poles, th
moments are not well defined fork.1. For a Hermitian ex-
citation operator the energy-weighted sum rule fork51 is
not effected by the damping and is given by

m1~T!5 (
l.0

vlu^@Ol ,F#&0u2. ~12!

For a multipole operator, the energy-weighted sum r
~EWSR! leads tom1(T)5 1

2 ^@F†,@H,F##&0 which is exactly
satisfied by the finite temperature RPA sum rule, as sho
by Vautherin and Vinh Mau@25#.

In the Hartree-Fock basis the finite temperature R
equation reads

~\vl2e i1e j !^ i uOl
†u j &1(

lÞk
^ ikuvu j l &A~nl2nk!^ l uOl

†uk&

50, ~13!

where v5(]U/]r)0 , the indices i , j , . . . represent all
single-particle quantum numbers including spin and isosp
andnk51/@11exp(ek2eF)/T# denotes the finite temperatur
Fermi-Dirac occupation numbers of the Hartree-Fock sta
At zero temperature these occupation numbers are 0 or 1
that the RPA operatorsOl

† , Ol have only particle-hole and
hole-particle matrix elements. At finite temperatures t
RPA functions involve more configurations includin
particle-particle and hole-hole states. By associating a sin
index with the pair of indices (i , j ), the RPA functions can
be regarded as a vector, and in this manner Eq.~13! can be
expressed as an eigenvalue equation for finite tempera
RPA modes@25#. According to the small amplitude limit o
the extended TDHF equation, the damping width of RP
modes due to decay into incoherent 2p-2h doorway exc
tions is given by@16#

Gl5
1

2( u^ i j u@Ol ,v#ukl&Au2Di j ,kl@nknl n̄i n̄ j2ninj n̄kn̄l #,

~14!

where n̄i512ni . In Ref. @16#, neglecting the damping o
the collective amplitude in the collision term, the energ
conserving factor is taken as a sharp delta function
Di j ,kl5Im(\vl2e i2e j1ek1e l2 ih)21. Here, we take
into account the depletion of the collective amplitude in t
collision term by substitutingvl2( i /2)Gl in place ofvl .
Then, the factor takes a more appropriate Lorentzian for

Di j ,kl5
Gl/2

~\vl2e i2e j1ek1e l !
21~Gl/2!2

. ~15!
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Then, expression~14! becomes a secular equation for t
damping width. As we will see this self-consistency is
major importance in order to properly compute the collisi
width. The collective mode damps out by mixing with th
intrinsic states of increasing complexity. The sequence of
complexity of the states can be classified according to
exciton number as mixing with 2p-2h, 3p-3h, . . . ,
N p-N h, . . . states. The expression~14! contains only the
mixing with 2p-2h doorway states in accordance with t
extended TDHF theory. In order to incorporate the damp
due to mixing with more complex states, the extended TD
should be improved by including higher-order correlatio
beyond binary collision term. The effect of the higher-ord
mixing may be approximately taken into account by intr
ducing an appropriate decay widthG i j ,kl of 2p-2h states in
the expression~15!:

Di j ,kl5
~Gl1G i j ,kl!/2

~\vl2e i2e j1ek1e l !
21@~Gl1G i j ,kl!/2#2

.

~16!

Then, the secular equation can also be solved conside
these higher-order effects.

III. RESULTS

We calculate the isoscalar monopole, isoscalar qua
pole, and isovector dipole excitations in40Ca at several tem
peratures. We use the Skyrme interaction SGII for
Hartree-Fock and RPA calculations@26# and we neglect the
temperature dependence of single-particle energies and w
functions. We determine the hole states by solving
Hartree-Fock problem in coordinate representation. Th
the particle states are generated by diagonalizing the Har
Fock Hamiltonian in a large harmonic oscillator represen
tion by including 12 major shells. In this manner, unbou
continuum states are approximately included in the RPA
culations. The RPA strength distributions of the monop
F0(r )5r 2, dipole F1(r )5tzrY10( r̂ ) ~in isospin symmetric
systemsN5Z), and quadrupoleF2(r )5r 2Y20( r̂ ) excitation
operators at temperaturesT50,2,4 MeV are shown in Fig
1. As seen from the top panel of Fig. 1, the monop
strength atT50 MeV exhibits a large Landau spreadin
over a broad energy regionE516–28 MeV with an average
energy E521.5 MeV. The recent experimental data al
show a broad resonance around a peak value of 17.5 M
@27#. For increasing temperature, the transition stren
spreads a broader range towards lower energies. As show
the middle panel, the strength distribution of isovector
poles shows a weaker temperature dependence than m
poles. AtT50, the dipole strength is concentrated at a ran
E516–23 MeV. The Landau width is large and is sprea
ing for increasing temperature. However, the average en
of the main peak remains nearly constant aroundE
516.5 MeV. The experimental data show a broad re
nance at around 20 MeV@28# with a width close to 6 MeV.
As illustrated at the bottom panel of Fig. 1, the RPA resul
T50 MeV gives a very collective quadrupole mode peak
at E517.5 MeV, which agrees well with the experiment
finding of an average energy 17 MeV@29# and the calcula-
tions of Sagawa and Bertsch@30#. At higher temperatures in
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addition to p-h excitations, p-p and h-h excitations beco
possible. The p-p and h-h configurations mainly change
strength distribution at the low-energy side atE54 MeV.
As a result, the giant resonance has less transition stren

Figure 2 illustrates the average energy^E&5m1 /m0

FIG. 1. RPA strength distributions in40Ca as a function of the
energy at temperaturesT50,2,4 MeV for isoscalar monopoleO1

~top!, isovector dipole 12 ~middle!, and isoscalar quadrupole 21

~bottom! excitations.

FIG. 2. Averaged energy of the monopole, dipole, and quad
pole excitations in40Ca m1 /m0 ~solid line! and the moment ratios
(m1 /m21)1/2 ~short-dashed line! and (m3 /m1)1/2 ~long-dashed line!
as a function of the temperature.
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~solid lines! and the ratios (m1 /m21)1/2 ~short-dashed lines!
and (m3 /m1)1/2 ~long-dashed lines! of the monopole, dipole
and quadrupole excitations as a function of temperature.
behavior of the average energy of the monopole resonan
particularly interesting, since it may be related to the co
pressibility coefficient of nuclear matter@31,32#.

We obtain the collisional damping widths of the collecti
states by calculating the expression~14! and solving the as-
sociated secular equation by the graphical method. We
that the sums over single-particle states, needed to eva
the expression~14!, have been performed explicitly using th
projection of the total spin,m, as one of the explicit quantum
numbers as done in Ref.@33#. Figure 3 illustrates example
of the graphical solution for giant dipole and quadrupo
excitations at two temperaturesT50,2 MeV. In this figure,
the curves with dashed lines are obtained by calculating
right hand side of Eq.~14! as a function ofGl5G in . The
intersection of this curve with the diagonal line determin
the solution. The effect of the damping widthG i j ,kl of 2p-2h
states may be approximately incorporated by taking a la
value ofG in as indicated in Eq.~16!. As seen from Fig. 3, in
most cases, the self-consistent value of the damping w
saturates very rapidly, and hence it is not modified v
much by increasingG in . Figure 4 shows the damping width
as a function of temperature, which are averaged over sev
nearby states with strengths more than 10% of the EW
The results for monopoles, dipoles, and quadrupoles are
dicated in the top, middle, and bottom panels, respectiv
Collisional damping widths are generally small at low te
peratures, but rapidly grow for increasing temperature. T
increase appears to be more complex than the semiclas
quadratic prediction. Depending upon the mode, the incre
may be linear or may saturate.

In order to understand this behavior, it is convenient
write the expression~14! of the damping width as sum ove
energy bins in energyE5e i1e j2ek2e l of 2p-2h states,

Gl5
1

2(E g2p-2h~E!W̄l~E!D~\vl2E!, ~17!

FIG. 3. Graphical solution of the secular equation for the dam
ing width for Lp512 ~top! and Lp521 ~bottom! at T50 MeV
~left! andT52 MeV ~right!.
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where each bin has a small energy intervalDE aroundE,
andD(\vl2E) is the Lorentzian factor given by Eq.~15!.
HereW̄l(E) denotes the average transition rate,

W̄l~E!5
1

g2p-2h~E!(DE
u^ i j u@Ol ,v#ukl&Au2

3@nknl n̄i n̄ j2ninj n̄kn̄l #. ~18!

In this expression many terms are vanishing either due to
selection rules or due to the Pauli-blocking factors. T
quantityg2p-2h(E) is the total number of 2p-2h states in th
energy interval including only those states which are
Pauli blocked and which have nonvanishing matrix eleme
of the transition rate, i.e., which can be coupled to the p
non quantum numbers. Figures 5 and 6 show the densit
2p-2h states and the average transition rates as a functio
the 2p-2h energy for dipole and quadrupole excitations aT
50 MeV andT53 MeV. In the dipole mode, there is n
odd parity 2p-2h states available in the vicinity of the colle
tive energy; hence the average transition rateW̄l(E) and the
density of states vanish at zero temperature. As a result
collisional damping of giant dipole in40Ca is zero atT
50 MeV. This behavior is a particular quantum feature d
to shell effects in the extended RPA calculation of dou
magic light nuclei, and it cannot be described in the fram
work of semiclassical approaches. In medium weight a
heavy nuclei, in the vicinity of the GDR strength, there a
few odd parity 2p-2h configurations involving intruder stat
associated with the spin-orbit coupling. As a result, we
pect to find a small finite damping of the giant dipole res
nance at zero temperature. For increasing temperature

-

FIG. 4. Collisional damping widths that are averaged ov
nearby states with more than 10% of the EWSR, for monop
dipole, and quadrupole modes as a function of temperature.
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available phase space becomes much larger and the
sional damping of the giant monopole resonance~GMR! and
giant dipole resonance~GDR! increases. This is not the cas
for the giant quadrupole resonance~GQR! because the in-
crease of the phase space is compensated by a reducti
the magnitude of average transition rates. As a result,
damping width of the giant quadrupole resonance appea
saturate aboveT53 –4 MeV.

Figure 7 shows the strength distributions including t
collisional damping. The giant dipole strength atT
50 MeV is smoothed by performing an averaging with
Lorentzian weight with a width of 0.5 MeV. The excitatio
strengths become broader for increasing temperature.
peak position of the monopole resonance does not cha
much, but the peak position of the dipole slightly shifts dow
and of the quadrupole slightly shifts up in energy. This is
signature of the reduction of the collectivity of those sta
with temperature because the peak energy moves bac
wards the single-particle expectations.

Figure 8 illustrates the full widths at half maximum
~FWHM! of the collective excitations at several tempe
tures. The widths of the giant monopole and giant dipole

FIG. 5. Top: energy dependence of the density of 2p-2h st
g2p-2h for Lp512 ~left! and Lp521 ~right! at zero temperature
Bottom: averaged transition rate between collective states
2p-2h states as a function of the energy of 2p-2h states.

FIG. 6. The same as in Fig. 5, but atT53 MeV.
lli-
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T50 MeV are mainly due to fragmentation of the collectiv
strength, i.e., the so-called Landau spreading, which is ab
4 MeV in both cases. Since it is difficult to extract wel
defined values, the FWHM of these modes atT50 MeV are
left open in the figure. The total widths increase further
mixing of the collective mode with incoherent 2p-2h excit
tions at higher temperatures. However, the total width d
not present the parabolic behavior predicted by semiclass
calculations.

In Fig. 9, long-dashed lines and solid lines show the in
grated strengths over the energy interval 10–40 MeV a

es

nd
FIG. 7. The extended RPA strength distributions of the mo

pole, dipole, and quadrupole excitations as a function of temp
ture.

FIG. 8. The full widths at half maximum of the strength distr
butions at several temperatures.
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function of temperature in the RPA and the extended RP
respectively. As a reference, the total strengthm1 is also
indicated by short-dashed lines. In the RPA calculations,
modes retain a high degree of collectivity even at tempe
tures atT54 –5 MeV. However, in the extended RPA a
proach, as a result of damping, the excitation strength
comes broader and the collectivity diminishes for increas
temperature.

IV. CONCLUSIONS

We investigate isoscalar monopole, isoscalar quadrup
and isovector dipole excitations of40Ca at finite temperature
in the basis of the small amplitude limit of the extend
TDHF approach. The extended TDHF approach goes bey
the thermal RPA approach by including damping due to

FIG. 9. Integrated strengths over the energy interval 10–
MeV in the RPA~long dashed line! and the extended RPA~solid
line!. The total strengthsm1 are plotted as a reference by sho
dashed lines.
d

v

,

e
-

e-
g
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nd
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cay into incoherent 2p-2h excitations. We calculate the ex
tation strength distributions in a self-consistent Hartree-F
representation by employing a Skyrme force with SGII p
rameters. AtT50, the monopole and dipole strengths a
fragmented and spread over a broad range because o
Landau damping, while the quadrupole strength exhibit
single peak structure. For increasing temperature,
strength in all cases becomes broader and hence the co
tivity is reduced. The incoherent damping widths at low te
peratures are, in general, small, thus leaving room for a p
sible coherence effect of doorway states in the descriptio
the damping properties. At high temperature the collisio
damping becomes large and may even dominate the spr
ing width since the coherence effect is expected to dimin
rather rapidly. For increasing temperature, the collisio
damping, predicted by the quantal calculations, evolves
more complex manner than the quadratic increase predi
by the semiclassical calculations. An interesting property
the collisional damping is that it may saturate for increas
temperature. In fact, our calculations indicate that the dam
ing width of the giant quadrupole saturates aroundT
53 –4 MeV; however, a saturation of the giant monopo
and dipole modes is not visible at these temperatures. T
are important quantal effects in the collective behavior o
hot nuclear system as illustrated in@34#. Investigations pre-
sented here also indicate that quantal effects have a l
influence on the damping properties of collective excitatio
at low temperatures, which may even persist at relativ
high excitations. As illustrated in Ref.@16#, the magnitude of
the collisional damping is rather sensitive to the effect
residual interactions, for which accurate information is n
available. The effective Skyrme force is well fitted to d
scribe the nuclear mean-field properties, but not the
medium cross sections and damping properties. Therefo
systematic study of the effective interactions in this cont
is clearly called for. However, our investigation, while r
maining semiquantitative, gives valuable insight into t
quantal properties of collective excitations at finite tempe
ture.
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