PHYSICAL REVIEW C VOLUME 58, NUMBER 4 OCTOBER 1998

Finite temperature nuclear response in the extended random phase approximation
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The nuclear collective response at finite temperature is investigated for the first time in the quantum frame-
work of the small amplitude limit of the extended time-dependent Hartree-Fock approach, including a non-
Markovian collision term. It is shown that the collision width satisfies a secular equation. By employing a
Skyrme force, the isoscalar monopole, isovector dipole, and isoscalar quadrupole excitatity@s iare
calculated and important quantum features are pointed out. The collisional damping due to decay into inco-
herent two-particle—two-hole states is small at low temperatures but increases rapidly at higher temperatures.
[S0556-28188)06310-9

PACS numbdps): 24.30.Cz, 21.60.Jz, 25.70.Lm

I. INTRODUCTION ture is concerned one may worry about the adequacy of
semiclassical calculations which neglect most of the quan-
After the discovery of giant dipole resonant@®DR) in  tum features but the Pauli principle.

1947, much work was done to understand the properties of In this work, we present a first quantal investigation of the
nuclear collective vibrations built on the ground state anduclear collective response at zero and finite temperatures on
excited states. Most of these theoretical investigations arthe extended TDHF framework in the small amplitude limit,
based on the random phase approximati&PA) theory  Which may be referred as an extended RPA approach. In this
which is quite successful in describing the mean resonanc@Pproach, in contrast to the semiclassical treatments, shell
energies and fragmentation of the excitation strengths at ze@ffects are incorporated into the strength distributions as well
and finite temperatures. However, the RPA approach, whicRs collisional damping widths. We point out that the damp-
is in fact the small amplitude limit of the time-dependenting widths should be calculated by solving a secular equa-
Hartree-Fock(TDHF) theory, is not suitable for describing tion. We compute the isoscalar monopole, isocalar quadru-
damping of the collective excitatiord]. Damping arises Pole, and isovector dipole strength distributions*iCa at
mostly by mixing of the collective state with the nearby finite temperatures by employing an effective Skyrme force.
complex state§2]. The importance of the intrinsic com-
pound nucleus lifetime has also been stress®d]. As a  |I. COLLECTIVE RESPONSE AT FINITE TEMPERATURE
result of the mixing with complex states, the excitation . i
strength spread around the mean resonance energy, and fur-In the extended TDHF theory, the evolution of the single-
thermore the damping width increases with the intrinsic temParticle density matrixo(t) is determined by a transport
perature of the system as observed in giant dipole resonancgguation[16,18—24
in 12%Sn[5] and 2°%b nuclei[6—8]. In order to describe the J -
nuclear collective response including damping, it is neces- i 0 - _
sary to go beyond the RPA theory by incorporating coupling ' atP [h(p).p] ﬁfodTTrZ[v'G(t't )
between the collective states and the doorway configurations. +
There are essentially two different approaches for this pur- XFp(t=1)GH(tt=7)], @
pose: (i) a coherent mechanism due to coupling with low- i , o ,
lying surface modes which provides an important mechanisn{/nere h(p) is the mean-field Hamiltonian, the right hand
for damping of giant resonances in particular at low temperaS'de represents a non-Markovian collision term with
tures[9,4] and (ii)) damping due to the coupling with inco- -
herent two-particle—two-hol@p-2h states which is usually F12=(1=p1)(1=prlvpipr—p1p2v(1=p1)(1=py),
referred to as the collisional dampifig0]. The small ampli- )
tude limit of the extended TDHF approach is an appropriate ot e
basis for investigating the collective response, in which@nd G(t,t—7)=Texd(—i/4)J;_dt'h(t’)] denotes the mean-

damping due the incoherent 2p-2h decay is included in th&ield propagator. The small amplitude limit of the extended
form of a non-Markovian collision terril1—-13. Based on TDHF theory provides a suitable framework to describe col-
this approach, the incoherent contribution to damping at fi/€ctive vibrations including damping due to the coupling
nite temperature has been calculated in the Thomas-Ferrfith incoherent 2p-2h excitations. The small deviations of
approximation in Refg[14—16. Calculations using the Mar- the single-particle density matrisp(t) = p(t) —po around a
kovian limit of this semiclassical treatment, the so-calledfinite temperature equilibrium stafg, are determined by
Boltzmann-Uehling-UhlenbeckBUU) approach, are dis- 5

cussed by many autho(®r a review se¢17]). However, as g 0 _ + _

far as the collective behavior of nuclei at moderate tempera- i at op=[ho,dp]=[U+F.po]=lo p, ©
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where U = (dU/dp)y op represents small deviations in the T,/2
effective mean-field potential anB(r,t)=F(r)exp(—iwt) D(w—w))= 5 >+ (10
+H.c. is a one-body excitation operator with harmonic time (ho—fiw\)*+(T)\/2)

dependence. An explicit expression of the linearized forml’he main features of the strength function are usually dis-

Iy 8p of the non-Markovian collision term can be found in a . .
I cussed in terms of sum rules, which are calculated from the
recent publicatior16].
RPA response as

The linear response of the system to the external pertur-

bation F is determined by expanding the small deviation o
Sp(t) in terms of finite temperature RPA modes, m,(T)= fo o’dw S(w,T). (11
Sp(t)=> {Zk(t)pljuzt(t)p)\}' (4) However, becaue of the L_orentzian shape of the _p_oles, these
A>0 moments are not well defined f&e>1. For a Hermitian ex-

citation operator the energy-weighted sum rule Ker1 is

where the finite temperature RPA mod,eIsand p\ are de-  not effected by the damping and is given by
fined by

fiwxpy—[ho,pt]1=[h,po]=0. 5) my(T)= X ou[{[0x F1)ol* (12)
Here w, is the mean frequency of the RPA mode ahnId For a multipole operator, the energy-weighted sum rule
=(aU/dp), pl represents the positive frequency part of the(EWSR leads tom;(T)=3([F',[H,F]]), which is exactly
vibrating mean field. It is convenient to introduce the collec-satisfied by the finite temperature RPA sum rule, as shown
tive operator)] andO, associated with the RPA modes as by Vautherin and Vinh Ma§25].
pl=[0],po] and p,=—[O, ,pol, and they are orthonor- !N the Hartree-Fock basis the finite temperature RPA
malized according to TO, ,0/]po=4),,. Substituting the ~eauation reads
expansion4) and projecting byO, , we find that the ampli-
tudes of the RPA modes execute forced harmonic motion, (hw)\_fi+5j)<i|ollj>+§k (ik|v|jl)a(n—n (1| O] k)

z,=([0y.,F)o. (6 =0, (13)

where v=(dU/dp)y, the indicesi,j, ... represent all
where ([0, ,F1)o=Tr[O, ,F]p, and ", denotes the colli- single-particle quantum numbers including spin and isospin,
sional damping width of the mode. Here, we neglect a smal&nd n,= 111+ exp(e— €:)/T] denotes the finite temperature
shift of the mean frequency, arising from the principle Fermi-Dirac occupation numbers of the Hartree-Fock states.
value part of the collision term. Solving this equation by At zero temperature these occupation numbers are 0 or 1, so
Fourier transform, the response of the system to the extern#éthat the RPA operator®] , O, have only particle-hole and

i
h(l))\_ EF)\

. d
_'ﬁazﬁ

perturbationF can be expressed as hole-particle matrix elements. At finite temperatures the
RPA functions involve more configurations including
Sp(w)=R(w,T)F, (7) particle-particle and hole-hole states. By associating a single

index with the pair of indicesi(j), the RPA functions can
whereR(w, T) denotes the finite temperature extended RPAbe regarded as a vector, and in this manner(&8). can be

response function including damping: expressed as an eigenvalue equation for finite temperature
RPA modeq25]. According to the small amplitude limit of
ARUNCERD the extended TDHF equation, the damping width of RPA
Rij,kl(va):)go “heo—hot (2T, modes due to decay into incoherent 2p-2h doorway excita-

tions is given by[16]

T i i
(KlpJI1)ilpali) ) (8)

. 1 L
fio+hio\+(i/2)1'\ F)\ZEE [(ij 1[0y ,u1IKIYAl2Djj sl ninynin; — minjngeny 1,

The strength distribution of the RPA response is obtained by (14)

the imaginary part of the response function, wheren;=1-n;. In Ref. [16], neglecting the damping of

1 the collective amplitude in the collision term, the energy-
S(w,T)=—=Tr{F'ImR(w,T)F} conserving factor is taken as a sharp delta function as
™ Diju=Im(fiw\—€— €+ e+ e—i 7)~1. Here, we take
1 into account the depletion of the collective amplitude in the
== {[[Oy,F1)o|?D(w—w,) collision term by substitutingo) — (i/2)I", in place ofw, .
>0 Then, the factor takes a more appropriate Lorentzian form

—K[OV.Fl)ol*D(w+w))}, (9) I

(ﬁw)\— € — Ej+ €k+ €|)2+(F)\/2)2 .

(15

Dij k=
where the sum goes over the positive frequency modes and .
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Then, expressioril4) becomes a secular equation for the T=0 MeV T=2 MeV T=4 MeV
damping width. As we will see this self-consistency is of o AN SN AL
major importance in order to properly compute the collision 20k 3 Cam-0 i
width. The collective mode damps out by mixing with the 15) i i
intrinsic states of increasing complexity. The sequence of the 10} i i
complexity of the states can be classified according to the Sf | | L7 ]| | J” Iy
exciton number as mixing with 2p-2h, 3ps3h., o B B
Np-Nh, ... states. The expressighd) contains only the & 12: I i ]
mixing with 2p-2h doorway states in accordance with the ‘"E ok ja-t i ]
extended TDHF theory. In order to incorporate the damping & 4} + 3 E
due to mixing with more complex states, the extended TDHF 3 2 . JL.I T jll-.l T J““ 3
should be improved by including higher-order correlations w2000 === ARaasRsaRS P
beyond binary collision term. The effect of the higher-order 1500 F Cat_a* + :
mixing may be approximately taken into account by intro- 1000 | i i ]
ducing an appropriate decay width; , of 2p-2h states in sool i i 1
the expressionl5): L - || . b
00 10 20 30 0 10 ZIO 30 0 10 l20 30
D (T +Tj /2 _ E (MeV) E (MeV) E (MeV)
M (hoy— € € 6t ) F (T + Ty 1)/2]

(16) FIG. 1. RPA strength distributions ifCa as a function of the
energy at temperaturds=0,2,4 MeV for isoscalar monopol®*

Then, the secular equation can also be solved consideriréP?), isovector dipole 1 (middle), and isoscalar quadrupole”2
these higher-order effects. ottom excitations.

addition to p-h excitations, p-p and h-h excitations become
possible. The p-p and h-h configurations mainly change the

We calculate the isoscalar monopole, isoscalar quadrwstrength distribution at the low-energy sideEBt4 MeV.
pole, and isovector dipole excitations iCa at several tem- As a result, the giant resonance has less transition strength.
peratures. We use the Skyrme interaction SGIl for the Figure 2 illustrates the average energi)=m;/mg
Hartree-Fock and RPA calculatiof26] and we neglect the

lll. RESULTS

temperature dependence of single-particle energies and wave E* (MeV)
functions. We determine the hole states by solving the 0 368 168.86 4513 B5.53
Hartree-Fock problem in coordinate representation. Then, R4p . . T |

the particle states are generated by diagonalizing the Hartree-
Fock Hamiltonian in a large harmonic oscillator representa- _
tion by including 12 major shells. In this manner, unbound 22x%
continuum states are approximately included in the RPA cal-

23— = —— 8 — O -

culations. The RPA strength distributions of the monopole 21; E
Fo(r)=r2, dipole F,(r)=7,rYo(r) (in isospin symmetric RO g
systemsN=2Z), and quadrupol@z(r)zrzYzo(F) excitation 21

operators at temperaturds=0,2,4 MeV are shown in Fig. N e ]
1. As seen from the top panel of Fig. 1, the monopole = g e
strength atT=0 MeV exhibits a large Landau spreading I 194 B
over a broad energy regide= 16—-28 MeV with an average ~ 18% -
energy E=21.5 MeV. The recent experimental data also AN

show a broad resonance around a peak value of 17.5 MeV v 171 E
[27]. For increasing temperature, the transition strength 16 o

spreads a broader range towards lower energies. As shown in 50 b a4
the middle panel, the strength distribution of isovector di- [;___E,,a—/’ﬂ’

poles shows a weaker temperature dependence than mono- 18L E
poles. AtT=0, the dipole strength is concentrated at a range 1BF e =
E=16-23 MeV. The Landau width is large and is spread- 145_ \\ E
ing for increasing temperature. However, the average energy S LS N

of the main peak remains nearly constant arould g \T‘— =
=16.5 MeV. The experimental data show a broad reso- 0 1 2 3 4
nance at around 20 Mej28] with a width close to 6 MeV. T (MeV)

As illustrated at the bottom panel of Fig. 1, the RPA result at
T=0 MeV gives a very collective quaqupCJ'e mode. peaked FG. 2. Averaged energy of the monopole, dipole, and quadru-
atE=17.5 MeV, which agrees well with the experimental pole excitations in*®Cam; /m, (solid line) and the moment ratios
finding of an average energy 17 Mg¥9] and the calcula- (m,/m_,)"? (short-dashed lineand (ms/m;)"? (long-dashed ling
tions of Sagawa and Berts¢B0|. At higher temperatures in as a function of the temperature.
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3.0 T Rasad 20— T . R
—~R5F B BN L Ca**-L"=1" E E
> Ca*-L =17 = 15h T =2 MeV . 10
52.0 3 T=0 M;a\L = \ 8 3
$15F o7 3 10F » 5 ok E
10 -~ : I R S 5
e 5F E 4t =
05 F / = | E
0.0 < 1 1 1 1 0 1 1 1 2 E =
01 2 3 4 5 6 0 5 10 15 =20 15.0 e e
i (MeV I'i,(MeV b
m( ) m( ) /'>\ 12.5 Ca4°—L"=1_ =
3.0 T T T R0 ¥ T T T v F
— e 10.0 | -
czsb——afm 70 3 catirgr 2
o 7/l cat-LrT=2" % 15F | T = 2 MeV b 7.5F =
= 20F ¢ |T=OMeV_ = \ A\ 3 E
~— / ~— < B.0F
L5, | = 3 10} \,\ . —~ :
= 10F | . (T Vo25p 3
05F | 3 °F | 0.0 FF oo
0.0 1 Lol 1 1 0 [T | I 10F ca®®—1"=2* -
01 2 3 4 5 8 0 5 10 15 =20 : E
Iy, (MeV) Iy (MeV)
FIG. 3. Graphical solution of the secular equation for the damp- 3
ing width for L™=1" (top) andL™=2" (bottom) at T=0 MeV 3
(left) andT=2 MeV (right).

(solid lineg and the ratiosrf, /m_,)*? (short-dashed lings
and (m3/m,)? (long-dashed lingsof the monopole, dipole,
and quadrupole excitations as a function of temperature. The £ 4. collisional damping widths that are averaged over
behavior of the average energy of the monopole resonance jgarby states with more than 10% of the EWSR, for monopole,
particularly interesting, since it may be related to the com-jipole, and quadrupole modes as a function of temperature.
pressibility coefficient of nuclear mattg81,32.

We obtain the collisional damping widths of the collective yhere each bin has a small energy intensd aroundE,

states by calculating the expressid#) and solving the as- 5,4 D(%w,—E) is the Lorentzian factor given by E¢L5).
sociated secular equation by the graphical method. We no

that the sums over single-particle states, needed to evaluat
the expressiolil4), have been performed explicitly using the

T (MeV)

eereV_V>\(E) denotes the average transition rate,

projection of the total spimn, as one of the explicit quantum V_VA(E)= 1 E [(i§ [0y 0T [KIYAl2
numbers as done in Rdf33]. Figure 3 illustrates examples J2p2H E) RE ’

of the graphical solution for giant dipole and quadrupole _ _

excitations at two temperaturds=0,2 MeV. In this figure, X[ngninin;—ninngng ] (18

the curves with dashed lines are obtained by calculating the
right hand side of Eq(14) as a function ofl’,=T";,. The In this expression many terms are vanishing either due to the
intersection of this curve with the diagonal line determinesselection rules or due to the Pauli-blocking factors. The
the solution. The effect of the damping widil; ,, of 2p-2h  quantityg,,.,{E) is the total number of 2p-2h states in the
states may be approximately incorporated by taking a largegnergy interval including only those states which are not
value ofl";, as indicated in Eq(16). As seen from Fig. 3, in Pauli blocked and which have nonvanishing matrix elements
most cases, the self-consistent value of the damping widthf the transition rate, i.e., which can be coupled to the pho-
saturates very rapidly, and hence it is not modified verynon quantum numbers. Figures 5 and 6 show the density of
much by increasingd’;,. Figure 4 shows the damping widths 2p-2h states and the average transition rates as a function of
as a function of temperature, which are averaged over severtiie 2p-2h energy for dipole and quadrupole excitation$ at
nearby states with strengths more than 10% of the EWSR=0 MeV andT=3 MeV. In the dipole mode, there is no
The results for monopoles, dipoles, and quadrupoles are iredd parity 2p-2h states available in the vicinity of the collec-
dicated in the top, middle, and bottom panels, respectivelytive energy; hence the average transition ME(E) and the
Collisional damping widths are generally small at low tem-density of states vanish at zero temperature. As a result, the
peratures, but rapidly grow for increasing temperature. Thigollisional damping of giant dipole if°Ca is zero atT
increase appears to be more complex than the semiclassicalp MeV. This behavior is a particular quantum feature due
quadratic prediction. Depending upon the mode, the increasg shell effects in the extended RPA calculation of double
may be linear or may saturate. magic light nuclei, and it cannot be described in the frame-
In order to understand this behavior, it is convenient tOvvork of semiclassical approaches_ In medium We|ght and
write the expressiofl4) of the damping width as sum over heavy nuclei, in the vicinity of the GDR strength, there are

energy bins in energi = €+ €; — €,— € of 2p-2h states, few odd parity 2p-2h configurations involving intruder states
L associated with the spin-orbit coupling. As a result, we ex-
== EYW, (E)D(fw, —E), 1 pect to find a small finite damplng of thg giant dipole reso-

» 2% 922 EYWA(E)D (o, —E) an nance at zero temperature. For increasing temperature, the
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T=0 MeV T=2 MeV T=4

) - g 25 U T T T T T
2 o fero™ ] :
& o075 L E sp 1 3 i
&8 E T E 10 F + 3 3
§0.50 S E
& I E 5F + E3 E
& 0.25 ]
i i i Ty 3 8 I ) : I t I I

— I ] E 6 T T 7
> I ] -+
3 1 ] ‘g 4t + + b
= i 5 = g JWL/L_ i A ]
= : ] 500 el Saps SO T
400 + Cal—2"* T E
10 20 30 3001 T El 3
200 F + + E
E (MeV) E (MeV) ool i i ]
FIG. 5. Top: energy dependence of the density of 2p-2h states % o 2 =0 0 10 20 30 o0 10 20 30
O2p2n for L™=1" (left) and L™=2" (right) at zero temperature. E (MeV) E (MeV) E (MeV)
Bottom: averaged transition rate between collective states and
2p-2h states as a function of the energy of 2p-2h states. FIG. 7. The extended RPA strength distributions of the mono-

pole, dipole, and quadrupole excitations as a function of tempera-

available phase space becomes much larger and the collHre
sional damping of the giant monopole resona(@®R) and
giant dipole resonand&DR) increases. This is not the case T=0 MeV are mainly due to fragmentation of the collective
for the giant quadrupole resonan@QR) because the in- strength, i.e., the so-called Landau spreading, which is about
crease of the phase space is compensated by a reductiondfMeV in both cases. Since it is difficult to extract well-
the magnitude of average transition rates. As a result, thdefined values, the FWHM of these mode§ at0 MeV are
damping width of the giant quadrupole resonance appears teft open in the figure. The total widths increase further by
saturate abov@=3-4 MeV. mixing of the collective mode with incoherent 2p-2h excita-
Figure 7 shows the strength distributions including thetions at higher temperatures. However, the total width does
collisional damping. The giant dipole strength at  not present the parabolic behavior predicted by semiclassical
=0 MeV is smoothed by performing an averaging with acalculations.
Lorentzian weight with a width of 0.5 MeV. The excitation  In Fig. 9, long-dashed lines and solid lines show the inte-
strengths become broader for increasing temperature. Thgrated strengths over the energy interval 10—-40 MeV as a
peak position of the monopole resonance does not change

much, but the peak position of the dipole slightly shifts down i T
and of the quadrupole slightly shifts up in energy. This is a E +
signature of the reduction of the collectivity of those states 12F + =
with temperature because the peak energy moves back to- 1ok R
wards the single-particle expectations. 3 R *

Figure 8 illustrates the full widths at half maximum 8 g
(FWHM) of the collective excitations at several tempera- 6b Ca**-L"=0" ]
tures. The widths of the giant monopole and giant dipole at 150 T

=
[H] E .
15.0 T Ty = 125 *
- ~10.0F 3
S 12.5 _ s + ]
D g N Ca®0-Lm=1"
% '?.5E e 5.05— + =
&5‘05 25:_::::{::::I::::{::::{:T
DIE 25¢ 10 _ - 4+
3 8F + 3
6b E
af :
) . ca40_L1r 2+
2 — —
E | | | |
0ol ; i 0 1 2 3 4
0 10 20 30 40 50 10 20 30 40 50 T (MeV)

E (MeV) E (MeV)

FIG. 8. The full widths at half maximum of the strength distri-
FIG. 6. The same as in Fig. 5, but B3 MeV. butions at several temperatures.
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R I S I A cay into incoherent 2p-2h excitations. We calculate the exci-
a0k ;//’;} 3 tation strength distributions in a self-consistent Hartree-Fock
B S Sy representation by employing a Skyrme force with SGII pa-
28F 3 rameters. AtT=0, the monopole and dipole strengths are
o om ot fragmented and spread over a broad range because of the
=6 Ca™~17=0"1 Landau damping, while the quadrupole strength exhibits a
, 5 single peak structure. For increasing temperature, the
|

strength in all cases becomes broader and hence the collec-
3 tivity is reduced. The incoherent damping widths at low tem-
peratures are, in general, small, thus leaving room for a pos-
B sible coherence effect of doorway states in the description of
the damping properties. At high temperature the collisional
damping becomes large and may even dominate the spread-
3 ing width since the coherence effect is expected to diminish
- rather rapidly. For increasing temperature, the collisional
3 damping, predicted by the quantal calculations, evolves in a
more complex manner than the quadratic increase predicted
by the semiclassical calculations. An interesting property of
the collisional damping is that it may saturate for increasing
temperature. In fact, our calculations indicate that the damp-
ing width of the giant quadrupole saturates aroufd
=3-4 MeV; however, a saturation of the giant monopole
and dipole modes is not visible at these temperatures. There
T (MeV) are important quantal effects in the collective behavior of a
hot nuclear system as illustrated [iB4]. Investigations pre-
%ented here also indicate that quantal effects have a large
influence on the damping properties of collective excitations
at low temperatures, which may even persist at relatively
high excitations. As illustrated in R€f16], the magnitude of
function of temperature in the RPA and the extended RPAthe. collis_ional d_amping s rather sensitiv_e to the_ eff_ective
tesidual interactions, for which accurate information is not

respec’uvely. As a referenge, the total strength is glso available. The effective Skyrme force is well fitted to de-
indicated by short-dashed lines. In the RPA calculations, th%cribe the nuclear mean-field oroperties. but not the in
modes retain a high degree of collectivity even at tempera: =~ . . prop -
- X medium cross sections and damping properties. Therefore, a
tures atT=4-5 MeV. However, in the extended RPA ap- ; CE ! S
X o systematic study of the effective interactions in this context
proach, as a result of damping, the excitation strength be-

S ' . s clearly called for. However, our investigation, while re-
comes broader and the collectivity diminishes for increasing ;- ) o . N .
temperature. aining semiquantitative, gives valuable insight into the

quantal properties of collective excitations at finite tempera-
ture.

FIG. 9. Integrated strengths over the energy interval 10-4
MeV in the RPA(long dashed lineand the extended RP£solid
line). The total strengthsn, are plotted as a reference by short
dashed lines.

IV. CONCLUSIONS
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