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The T=0 energy spectrum and the electromagnetic transitions of‘®eucleus are described in terms of
the semimicroscopic algebraic cluster mod&Si+ o and %0+ %0 configurations are considered for the
low-lying bands and molecular resonances, respectively. The cluster configurations, including their Hamilto-
nians, are treated in a unified framework. The densities of high-lying core-plus-alpha-particle stgies are
dictedin those energy windows, where good-resolution experiments have been carried out.
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l. INTRODUCTION As for the structure of the’?S nucleus, microscopic cal-
culations have been carried out only for the ground-state re-
Clusterization is known to be important both in the gion([2—4], and references therginThe energy spectrum of
ground-state region and at high excitation energies of lighthe high-lying 2’Si+ « stateg5] and the®0 + 60 molecu-
nuclei. The spectrum of cluster states is thus distributed ovdar resonancel6] were interpreted in terms of different mod-
a very wide energy range. However, due to obvious experiels without direct connection to the microscopic structure or
mental difficulties, only certain parts of it are usually known. to each other. In this paper we describe the spectra of the
Further complications occur due to the coexistence of differthree energy regions in a unified way in terms of the SACM.
ent cluster configurations in the same nucleus, such as, fétarting with the analysis of the low-lying spectrum¥8 as
example, alpha-particle states, and molecular resonances #Si+ « configuration(band structure, electromagnetic tran-
heavy ions. The theoretical understanding of cluster structursitions and with that of the'®0+ %0 resonances, we give a
involves a multiple task(i) a unified description of the clus- parameter-free prediction for the complete spectrum of the
ter spectrum is neede(i) a consistent treatment of different high-lying core-plus-alpha-particle states.

configurations is required, ardi ) finally, for a truly reliable The prediction is based on the concept of multichannel
description, in addition to the reproduction of experimentaldynamic symmetry, which connects different reaction chan-
data, we need to be able to supply some predictions. nels, and consequently, different cluster configuratipfis

For fully microscopic approaches, which combine micro-This is a composite symmetry in the following sense. On the
scopic model spaces with effective two-nucleon forces, th@ne hand, it involves dynamically symmetric interactions as-
detailed calculation in the middle of thed shell is very sociated with specific cluster configurations, and having very
complicated, especially for configurations including shell ex-similar nature, like those of other algebraic modeks., hav-
citations. On the other hand, fully phenomenologic ap-ing Hamiltonians expressed in terms of invariant operators of
proaches are easy to apply. These models use phenomeran algebra chajn On the other hand, the multichannel sym-
logic cluster-cluster interactions and model spaces that ametry requires an invariance with respect to the transforma-
constructed without taking into account the Pauli principle.tion of one cluster configuration to anotHee., from one set
They can describe the high-lying part of the spectrum, bupf Jacobian coordinates to anothérhis requirement acts as
usually cannot be applied to the ground-state region, wherg strong constraint put on the interactions of different cluster
the effect of the exclusion principle is very important. Theseconfigurations, and as a consequence, it reduces considerably
treatments contain a considerable amount of ambiguitythe ambiguity which is present in the phenomenologic de-
partly because of the parameters of their interactions, angcription of the spectrum.
more importantly, because of the large uncertainty in the In the ground-state region of th#?S nucleus, different
association of model quantum numbers to the experimentshapes seem to coexist. The excitation energies of the low-
states. lying 0", 2%, and 4" states suggest a nearly spherical vi-

Semimicroscopic models, based on microscopic modebrator, while the quadrupole moment of the first &tate[8]
spaces and phenomenologic interactions, seem to be able ¢corresponds to prolate deformation. Shell model calculations
give the best overall description of clusterization. The re{9] are able to reproduce this shape, as well as the positive
cently proposed semimicroscopic algebraic cluster modeparity part of the low-lying spectruni3,9] in general.
(SACM) [1] has the additional advantage of having an easilyHartree-Fock{10] and Nilsson-Strutinsky11] calculations
solvable formulation of the energy-eigenvalue problem.  give prolate, oblate, and spherical shapes at energies close to
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each other, while the SU(3) shell model has a preference fdhat by making an intersection between the cluster model
the triaxial shap¢12]. basis corresponding to group-chdi) and that of thefully

In the present work our main goal is to describe the gros@ntisymmetri¢ SU(3) shell model of the whole nucleus. This
features of the large-scale spectrum on a common basis. Thsocedure is based on the equivalence of the shell model
includes the treatment of the positive- and negative-paritytamiltonian and that of the cluster modéb]. The resulting
spectra on the one hand, and the unified description of theluster model space is an §) symmetry-dictated trunca-
different cluster spectra in highly excited regions, on thetion of the full shell model space for each cluster configura-
other. Therefore, our description of the low-lying positive tion. More detailed discussion on the construction of the
parity spectrum is less detailed than that of the shell modemodel space is given in the next section, in relation to the
calculations, and it should not be considered as a substitutiosPecific configurations we consider here.
or competitor. Rather, its main role is to indicate that the The physical operators of the model are expressed in
model spaces and Hamiltonians we apply for thgfied terms of the generators of group chéin with parameters to
treatment of the gross features of the spectrum in a widge fitted to the experimental data. An important limit
energy range are compatible with the fully microscopic de-emerges when the Hamiltonian can be expressed in terms of
scription, and are able to account feomeaspects of the the Casimir invariants of the subgroup chain. This is called

structure in the ground-state region as well. dynamic symmetry, and when it holds, an analytic solution
of the energy eigenvalue problem is available. Besides the
II. THE SEMIMICROSCOPIC ALGEBRAIC ﬁas”.?'r '.”Va”far;]t.s E.f éhe groups .appia””g n Eﬁﬂg])_, r‘;"
CLUSTER MODEL amiltonian of this kind may contain other terms which are

diagonal(or closely diagonalin the associated basis. These

This model is algebraic in the sense that both the basigerms may also reflect further types of symmetries, such as
states, and the physical operators are characterized by thigose related to the geometric arrangement of the system. A
irreducible representations of some Lie algebras, and thergrossible Hamiltonian of this type is the following:
fore the matrix elements can be determined by group theo-
retical methods. In the SACM, the internal structure of the H=Eq+ yrN 7+ 6rC2(SUR(3)) + 7cC3(SU(3))
clusters is described by the Elliott model ofCT(J4) ~ ~
®Uc(3) group structurd13], where F'(4) is Wigner's +8Co(SUR))+(B+Nn-B) I+ 1) +(0+(~ 1) O)x*
spin-isospin groud14]. The relative motion is treated in +o(—1)"=tx, 2)
terms of the J(4) vibron model[15]. The group structure
of the model for a system of two clusters, when one of themwhere C,, is the nth order Casimir invariant of the SB)

has a closed shell structure, is group, and the subscrip@ andR again stand for “cluster”
and “relative motion,” respectively. The physical impor-
Uc(3)®Ur(4) D Uc(3) ® Ur(3) D SUc(3) tance of the individual interaction terms is discussed later on,
in Sec. Il A 1. We note that althougi?, which accounts for
®SUR(3)DSU(3)D0(3)D0(2) K-band splitting is not an invariant of the $&) group, it is
a nearly diagonal higher-order scalar operator constructed
I[n$,n5,n$1.[N,0,0,0,[n,.,0,0],(Ac,ec), from SUQ3) generatord17]. In our calculations in the dy-
namic symmetry approximation, we do not diagonalize it,
(n,,0),(\,x),x,L,M). (1)  rather(referring to its small off-diagonal matrix elemehts

we approximate it with the relevamt? value. Our motiva-
Here we have indicated also the labels of irreducible repretion for this is to keep the calculations simple using the dy-
sentations(irreps of the corresponding groups. The super-namical symmetry approximation. In a more sophisticated
script and subscrip€ means ‘“cluster,” indicating that the approach the diagonalization of the Hamiltonian could be
particular group characterizes the internal structure of theperformed. We reserve this option for future studies, in
non-closed-shell cluster. Similarly, subscri® signifies  which other nondiagonal operators will also be considered in
groups associated with the relative motion of the clustersthe Hamiltonian.
The relative motion is characterized Ioy., the number of The operators of the isoscalar electromagnetic transitions
oscillator quanta(dipole bosons and N, which sets the can be expressed in terms of the dipole, quadrupole, and
higher limit for n,. and thus sets the size of the model spaceangular momentum operator|:
(Nc,mc) is the SWE(3) representation associated with the

orbital structure of the non-closed-sheltore nucleus, TEY=dgDE”, )
(\,u) is the SU3) representation assigned to the united

nucleus, while the role of is to distinguish between O(3) TE2=0rQ¥ +0cQ¢¥ (4)
representations which have identical valuesLofin case

there are several of them belonging to the samé38tire- TMU =gl B +gcL?). (5)

ducible representation. It can be interpreted as the projection

K of the total angular momentum on a nuclear symmetryBesides their O(3) tensorial charactee., vector of rank-2

axis. tensor$ the various dipole and quadrupole operators also
A major point in constructing the model space is relatedcarry well-defined SE(3) and SW.(3) tensorial structure,

to the exclusion of the Pauli-forbidden states and the spuriwhich simplifies the calculation of their matrix elements in

ous excitations of the center-of-mass motion. One can dthe coupled S(B) basis(1). The parameters appearing in
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TABLE I. The SACM model space for th&Si(0,12)}+ «, 28Si(12,0)+ a, and ®0+ %0 configurations. The S@3) states present in the
particular channels are displayed for the first few shells.

nfiw ?85i(0,12)+ #8Si(12,01+ « °0+1%0
0 (4,8,(3,7,(2,6),(1,9,004 (4.8 —

1 (6,9,(5,8,(4,7),3,6,(2,9,(1,4,00,3 (9,6),(7,7,(5,8,(3,9 —

2 (8,10,(7,9,(6,8),(5,7,(4.6), (14,4,(12,5,(10,6,(8,7,(6.8), —

(35.(2,4,(1,3,0,2 (4,9,2,10
3 (10,12,(9,10,(8,9.(7.8.(6,7), (19,2,(17,3,(15,4,(13,9,(11,6, —
(5.6),(4.9,(3,4,(2,3,(1,2,(0,1 9.7.(7.8,(5,9,3.10,(1,1)
4 (12,12,(11,11,(10,10,(9,9,(8,8,(7,7), (24,0,(22,1,(20,2,(18,3,(16,4,(14,5, (24,0
(6,6),(5,9,(4,4,(3,3,(2,2,(1,1),(0,0 (12,6,(10,7,(8,8),(6,9,(4,10,(2,11,(0,12

these transition operators are to be fitted to the experimentdigurations in the first five shells. The cluster states are ob-
data, similarly to the parameters of the Hamilton{@n tained as triple outer products:\§ ,uc )®(Nc, uc,)

®(n,,0), where Q‘Ci”"“ci) stands for the internal structure

of clusteri, while (n,,0) are the quantum numbers of the
relative motion. Heren, is limited from below by the Pauli
The U(3) irreps into which the states are classified aredrinciple: n,=8 for ?®Si+a, andn,=>24 for °0+1%0.
determined by the distribution of the oscillator quanta alongHowever, these product wave functions contain Pauli-
the axes of a Cartesian reference frarﬁezc,nf,ng] forbidden states, too. In order to exclude them we make an
E[n(l:'n(z:,ng], according to the prescription of the shell intersection with the S(B3) shell model space of the?s
model. The ground-state band €6i is considered to belong nucleus. This model space is fully antisymmetric. Therefore,
to the U(3) irrep[16,16,4, and, consequently, to th®,12  the model space that we obtain as an intersection is free from
irrep of the SW3) subgroup. This corresponds to oblate de-the Pauli-forbidden states. The truncation, as described here,
formation. The ground state of theparticle and of the'®0  can be carried out due to the equivalence of thé3pldy-
nucleus belong to th€0,0,0] and the[4,4,4] U(3) irreps, namically symmetric Hamiltonians of the shell and cluster
respectively, and both correspond to tte0) SU(3) scalar models[16]. One can see from Table |, that for thé &
irrep. We also take into account tH&Si states belonging to major shell of the®’S nucleus, the Pauli principle rules out
the (\, ) =(12,0) SUB) irrep, which corresponds to prolate several U(3) irreps of thé®Si(12,01+ « configuration, and
equilibrium shape. All these clusterizations include statesll irreps of the'®0+ %0 configuration. With increasing ex-
with exclusivelyT=0 isospin. citation energy, which shows up in the cluster picture as
A unified treatment of the clusterizations is carried out agncreasing number of oscillator quanta of the relative motion,
follows. The cluster model spaces are obtained as those pattse number of cluster irreps excluded by the Pauli principle
of the shell model space that belong to the direct producis less and less. But for the low-lying major shells of Table |
SU(3) symmetries of the cluster internal structures and thehe truncation is very severe. In particular, the lowest-lying
corresponding Pauli-allowed relative motions. The model Pauli-allowed %0+ %0 cluster configuration belongs to
spaces of different clusterizations are obviously different, bué% » excitation of the®?S nucleus.
they may have considerable overlaps. If the overlapping A particularly interesting question is the relation of the
cluster bands of different configurations have the same enesame irreps of different cluster configurations, such as for
gies, we speak of multichannel dynamic symmég#} This  example (4,8) in the ®w, and(5,8) in the 14 » major shell,
means that, e.g., the Hamiltonian of one cluster configuratiowhich appear both in the?®Si(0,12}+« and in the
may completely determine that of another configuration. 1f?8Sj(12,0+ « configurations, or the (24,0) states being
this very restrictive symmetry holds, the model has strongcommon in the?®Si(12,0)+ a and %0+ %0 configurations
predictive power. Let us consider two configuratiofi®-  in the 44w major shell. These states are not orthogonal to
noted by 1 and @ each containing two clusters characterizedeach other; on the contrary, they have very large overlaps. In
by the group-chair(1). If the relation between the relative case the shell model irrep has a single multiplicity, like in
motion quantum numbers is.;=n_,+n 4, and the integer these examples, then the fully antisymmetric cluster model
constantn .4 is even(as in our case then the restrictions of wave functionSz/fc(i)=/\/’(i)A(¢c(li)¢c<2i)¢R<i)) of two differ-
the multichannel dynamic symmetry are the following:,  ent configurations may differ from each other only in their
=7¢,=0, 6r,=0R,=0r: ¥1=721736+ N0, Eoqi=Eq,  normalization factors. Herd/;, stands for the normalization
+(y2+30R) + Mo, Bi=Bo=B, B1=Pot BNy, 1=5, factor, and.A is the antisymmetrizer operat@LS]. In our
=5, 6,=0,=0, o,=a,=0 for the Hamiltonian, andl, ~ SeMimicroscopic treatment we do not deriyg;, micro-
=d, gr=0c=0, gc=0gr=9 for the transition operators. scopically, rather we simply suppose that t;b'@ki)’s are nor-
Here the parameters without a channel index indicatenalized to unity. The requirement that these states should
channel-independent quantities. have the same energy for different cluster configurations is
Table | shows the model spaces of the SACM for thethe basic assumption of the multichannel dynamic symmetry
285j(0,12+ a, 28Si(12,0¢+ @, and °0+1%0 cluster con- [7]. Obviously, it holds only for very special interactions,

Ill. CALCULATIONS FOR THE ?%Si+a
AND 10+ 160 CLUSTERIZATIONS
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FIG. 1. The low-lying positive-parity states of t#éS nucleus. Experimental states are displayed in the left panel, and the corresponding
model spectrum is shown in the right one. The states are arranged into bands that we identified on the basis of their location and their
electromagnetic transitions. ThHE assignment of the experimental states is taken from R&f8]. UncertainJ” values are given in
parentheses. The model spectrum shows the SACM quantum numbgis¢(assigned to the cluster bands, which are supposed to be built
on the oblate®®Si ground-state band. All model states belong to theyGhell, which corresponds tm,=8.

namely for those ones that are invariant under the transforessentially complete foF =0 states up t&,=10 MeV. We
mation from one cluster configuration to the other, i.e., fromalso accepted some furth&f assignments made by the same
one set of Jacobi coordinates to the other. authors based on the analysis of the datf2ihin terms of
The S+ a and *°0+1%0 cluster configurations do not shell model consideratiorf8]. In order to establish a band
have a common intersection if the Si is in its oblé12  structure of the cluster states we also took into account elec-
state. But the?®Si(12,0)+ « cluster configuration, i.e., pro- tromagnetic transition data, such as isoscaB¢E2)

late core plus alpha-particle states, do have a common ime[lQ,ZO,Z, B(M1) [19,20,3, andB(E1) [19,21,20,2 values.
section with both of them. Therefore, in order to be able to

construct channel-invariant interactions, etc., we take into

account this configuration as well. It turns out that one can

keep a complete symmetry between tH8i(12,0}+ « and _The low-lying part of th?szs energy spectrurfg] con-
160+ 160 channels, but a reasonable description of the extains bands with both positive and negative parity, and these
perimental data requires a slight breaking of the multichanc@n be identified with model bands labeled with the
nel invariance between th&Si(0,12)+ @ and 285i(12,0) N(\,u)x quantum numbers of the SACM. The two™

+ a configurations. This breaking, however, does not destroy=0" bands built on the D ground state and the,Ostate at

the predictive power of our description, as will be illustrated3-778 MeV can be labeled a$488)0 and §2,6)0. A some-

by our detailed calculations. The strength of the symmetryvhat staggere”=1" band starts at 4.695 MeV, and there
breaking can be characterized quantitatively. is also a 2 band at 6.666 MeV. We label these with the

quantum numbers(8,7)1 and &4,82. All these states cor-
respond to @ w excitations, which means that the relative
motion of the core and ther cluster does not carry any
excitation quanta in excess of ther®osons required by the

1. Parameters of the Hamiltonian

A. Energy spectrum

In assigning observe@=0 32S levels to the?3Si(0,12)
+a cluster model states we have made use of R2f.  Pauli principle.
which extends the existing compilati¢8] by adding states The negative-parity part of the spectrum seems to contain
with higher J values to it and by clarifying a number of aK™=3", 17, 57, and a 0 band starting at 5.006, 5.798,
uncertainJ™ assignments. This compilation is claimed to be6.762, and 7.434 MeV, respectively. We associated the first
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FIG. 2. The same as Fig. 1 for negative parity. The model states are assigned touttshdll, corresponding ta,,=9.

three of these to the model band$5®)3, 95,891, and —50.3040, §x=—0.29260, 7-=0.002291, 5= —0.032 00,

9(5,85, and the fourth one to(6,9)0. $=0.36093, 3= —0.0261, #=0.45370,9=0.574 24, and

The *°0+ %0 configuration becomes Pauli allowed in the ;= —(0.84299. 7. and the corresponding interaction term
SACM when there ar@, =24 m bosons in the relative mo- accounts for the splitting betweeffSi+ o states built on
tion, corresponding to #w excitations of the®’s nucleus. oplate and prolate core states, and it does not respect the
Then the resonances can be assigned to the ba@.20.  muiltichannel dynamic symmetryg, the coefficient of the
The (\,u)=(24,0) SU3) multiplet is missing from the harmonic oscillator term was not fitted, rather it was set to
?%5i(0,12)+ « model space, however, it is present in the11.6939 MeV, the oscillator constant considered usually for
?%Si(12,0y+ « one(as a 4w excitation, because then it can  A=32 nuclei: yg=45A" 13— 25423
be obtained from the Nc,uc) X (n,,0)=(12,0)x(12,0) The last term of the Hamiltoniaf2) has not been consid-
SU(3) outer product. ered in our model previously, therefore we discuss it here in

We used the Hamiltonian of Eq2) to fit the 3°S spec-  some detail. The introduction of this phenomenologic term
trum. We fitted the model parameters within a two-step proseems to be essential to describe the observed spectral pat-
cedure. First we found those parameters that set the relativgrns of the32S nucleus, which indicate that bands with even
position of states(bandg within individual major shells K are usually located higher in positive-parity shells and
(0hw, lfiw, etc) and then those that determine the relativelower in negative-parity shells, while the situation is reversed
position of the shells. According to this, we first set the valuefor bands with oddK. This term, for example, prevents
of &, mainly based on positive-parity bands in the ground-hands withK high and even from appearing too low in the
state region, and fitte@, 3, 6, andd. The first two of these negative-parity part of the spectrum. The interpretation of
set the rotational constant of bands from the various shellghis term can be given in terms of several frameworks.
imitating the observed feature that bands with higher excita- First, it is related to the parity of the stat@ketermined by
tions of the relative motion seem to have higher moment ofhe number of excitation quanta carried by the systand
inertia. The second pair accounts f@ parity-dependeht also to the parity(i.e., the even or odd naturef y, the
K-band splitting within SW3) multiplets. The parity depen- projection of the angular momentum on a symmetry axis.
dence seems to be an important feature here, because bamifzh of these are well-defined quantities in the shell model
with larger K (x in the SACM are located higher in the framework. Since the parity of is related to that of the
positive-parity spectrum, while they tend to be lower in thesmaller of the quantum numbeps and n in the SU3)
negative-parity part. scheme, ¢ 1)"="X can be expressed in terms of ()",

The parameters obtaindth units of MeV) in the multi-  wheren; is the number of oscillator quanta associated with
step fitting procedure of the Hamiltonian argy= the three spatial directions in the Cartesian frame. Usually
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then,=n,=n, convention is used to label the principal axes. T T ' ' ' ' '
It can be shown then that for cluster systems consisting of
even-even clusters without major shell excitations
(—1)"="x is equal with (-1)"z if A=pu holds, and with

.o+

(—1)" otherwise.(We recall the definition =n,—n, and 50 |- : :
m=ny—ny.) +
This interpretation can be linked with an additional sym- ~_ Z :
. (MeV)
metry of the system, th®, point symmetry of a general . +
triaxial object associated with the rotations througlabout 0L . i

its principal axe$22]. It is known[23] that the SW3) irreps
associated with the states of a general triaxial nucleus, suct
as 3°S, can be classified according to their transformation .
properties with respect to the elements of e symmetry 4 251604150
group. In particular, these states can be divided according to 0 - N

the four one-dimensional irreps BX,, labeled by the factors
+1 associated with the rotations by through two perpen-
dicular symmetry axes. In the $8) framework these phase
factors are supplied by1)* and (—1)* [23]. Straightfor- 20 - -
ward calculation shows that for all th&Si(0,12)+ « states T
listed in Table | and plotted in Figs. 1 and 2;-1)""X is 0246 8 10 12 14 16 18 20 2 2
equal to (- 1)*. This seems to indicate that the phenomeno- J

logic last term of Eq(2), which depends on quantities asso- 5 3 The 60+ 150 molecular resonances displayed in a ro-
ciated with the geometric content of our essentially algebrai¢,tiona diagram form. Data on the experimental stai®3 @re
approach(i.e., n, and ), indeed, reflects the spatial ar- fom Ref.[6]. The model states¥) belong to the 4w shell, which

rangement of the nuclear system. _ corresponds t,, =24 for the 0+ %0 configuration and ta,,
In order to characterize the breaking of the multichannel 12 for the Si+ « clusterization based on the excited prolisi

symmetry in a quantitative way, we calculate the parametepand.
b=7%/(72+=a?), where 7¢ is the strength of the term

which does not respect the multichannel symme?ry, apsl E,=6.581 MeV, which is known to havé=0—4 and natu-
stand for the strengths of the symmetry-preserving terms Qfy| parity[2]. The interpretation of this state is not equivocal:
the Hamiltonian. The parameters of our Hamiltoni@ncor- it has been assigned previously 38=0" [24] and 4 [3]
respond to a # 10 8 breaking of the multichannel symme- alike.
try. We note here that this seemingly small breaking is due t0  gjnce the model space constructed assuming iHt
the small value ofrc. The actual magnitude of the cjysters contains only one state for any givewalue (up to
symmetry-breaking termcC5(SUc(3)) in the Hamiltonian 53— 24) we fitted the average position of the experimental
is 11.134 MeV, with negative and positive sign for stateSstates for each angular momentum. We also note that in the
built on the oblate and the prolat®Si configurations, re- 160+ 160 channel, only states with=even were identified
spectively. ) experimentally, due to the identical nature of the clusters.
Altogether we considered 28 states from both thi&w0 \ye, therefore, displayed only these states in the model spec-
and the Lo shell, and 24 statescorresponding t0'°0  yrym. A richer spectrum of°0+ 180 resonances could be

+%%0 resonancesfrom the 4iw shell. We assigned the generated in the #w model space if we had permitted exci-
states into bands according to their location and electromag-

netic transitiongsee beloyw. The resulting spectrum is dis-
played in Figs. 1, 2, and 3 for the low-lying positive- and

o+ o
cenp
o+

oh
o+

TABLE Il. The number of states predicted by the U(3) symme-
try in comparison with the number of resonances reported in Ref.

negative-parity states, and tH€0+ %0 resonances. [25]

In the low-lying spectrum the model essentially exhausts___
the experimental data set for the level scheme of & Energy windows Number of states
nucleus up taE,=8 to 10 MeV, depending od”. In par- ;= E,(min) E,(max) Model Exp.
ticular, the first unaccounted experimental State is located
at 7.637 MeV; for I this happens at 9.290 MeV, for2at 0" 10.37 11.13 1 6
8.690 MeV, and for 3 at 9.920 MeV. The corresponding 2" 10.87 11.96 4 3
values for the negative-parity states are 9.731, 8.380, and 10.82 12.20 4 8
10.434 MeV, for the I, 27, and 3 states, respectively. 3~ 12.94 14.43 6 10
We note that the cluster model space does not contain ary" 13.69 15.85 11 7
0~ state, of which the lowest one is located at 10.402 MeV 5~ 13.87 17.26 22 15
(In the assignment of the excitation energies we accepted the 15.75 17.87 19 9
results of Ref.[2].) The 0hw model space contains alto- 7- 17.39 20.28 22 13
gether threeJ”=0" states. The third one of these with g+ 18.80 20.45 11 13
(\,u)=(0,4) SUI) labels appears near 5 MeV in the model g- 21.21 23.30 16 10

spectrum. We assigned this state to the experimental level at
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TABLE Ill. ReducedE? transition probabilitiesin W.u.) between®?S states. Experimental data are from
Refs.[21,19,3.

Experimental data Theory
J7(Exi) J7(Exy) B(E2)expt. B(E2)m, NN p)x i—f
2%(2.230) 0(0.0) 101 7.27 84,90 84,90
47 (4.459) 2'(2.230) 12£2 9.17 84,90
61(8.346) 4*(4.459) >3.7 7.88 84,80
2+(6.666) 0'(0.0) 1.06 84,92 84,90
2+(2.230) 1.11 8,90
47(4.459) 0.005 8,80
1" (4.695) 1.25 8,71
3%(5.413) 1.34 8,71
47(7.883) 25(2.230) 0.77 .80
2%(5.549) 2.86 8,71
5%(9.235) 47 (4.459) 1.88 .80
3%(5.413) 3.87 8,71
1*(4.695) 2'(2.230) 5.58 ®,71 84,80
2+(5.549) 0'(0.0) 0.12+0.03 1.44 84,90
2+(2.230) 0.68 8,90
1" (4.695) 7.32 8,71
3%(5.413) 2"(2.230) 2.70.5 0.89 84,90
47(4.459) 4.27 .80
17(4.695) 7.50 8,71
2%(5.549) 8.75 8,71
4%(6.411) 2"(2.230) 3.0:0.7 1.15 84,80
2+(5.549) 6.68 8,71
37(5.413) 0.96 8,71
5%(7.567) 4f(4.459) 2.10.5 0.71 84,80
37(5.413) 9.30 8,71
07(3.778) 2"(2.230) 14+2 0 82,6)0 84,80
27(5.549) 15.91 &8,71
2+(4.282) 07(0.0) 1.4+0.2 0 84,80
27(2.230) 9.3+1.3 0 84,890
1*(4.695) 2.89 8,71
2+(5.549) 0.71 8,71
07(3.778) 8.13 8,60
47(6.852) 47 (4.459) 0.973¢ 0 84,80
2(4.282) 59731 9.50 82,60
2+(5.549) 0.74 8,71
37(5.413) 1.80 8,71
47(6.411) 0.10 8,71
6+(9.783) 4 (4.459) 0.23"58 0 84,80
47(6.852) 6.58 8,60
2+(8.407) 1'(4.695) 0.60 ®.6)2 83,71
37(5.413) 1.60 8,71
07(3.778) 0.84 8,60
2+(4.282) 0.80 .60
47(10.102) 2°(4.282) 0.60 ,6)0
2+(8.281) 2'(4.282) 0.67 81,51 8(2,6)0
3%(8.746) 25(4.282) 0.76 ,6)0
47(9.065) 25(4.282) 0.81 8,60
5%(10.574) 4(8.191) 4.24 80,40
2+(9.464) 0'(0.0) 0.8:0.3 n,=10 84,80
2+(9.712) 0'(0.0) 0.026+0.009 n,=10 84,80
3%(10.221) 2(2.230) 0.01+0.005 n,=10 84,80
1" (4.695) 1.6-0.4 n,=10 83,71
1+(10.232) 3(5.413) 1.3:0.7 n,=10 83,71
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TABLE lll. (Continued).

Experimental data Theory
I (Exi) Jf(Exy) B(E2)expt. B(E2)m Na(N, ) xi—f
47 (7.950) 3 (5.006) 2.8:0.7 3.38 96,94 95,93
47(6.621) 37 (5.006) 10+2 11.36 95,83 95,83
57(8.270) 37 (5.006) >5.9 2.65 95,83
67(9.635) 4(6.621) 5.9712 4.23 95,93
67(9.024) 4(6.621) 1.9-0.5 1.06 95,95 95,93
57(6.762) 5.6:1.3 10.23 9,83
77(9.463) 5 (6.762) >13 1.72 95,85
17(9.487) 3 (5.006) 1.4+0.5 0.02 94,70 95,83
47(10.398) 3(5.006) 0.1-0.06 0.90 94,74 95,83
47(6.621) 0.5-0.4 1.05 95,83

tations of one of the'®0O clusters and had broken the (&) tained without fitting any parameter in this region, or without
dynamic symmetry, allowing thus the mixing of various any model assumption related to the data in question.
SU(3) representations.

B. Electromagnetic transitions

2. Spectrum generation We have considered experimental information on the

Having determined the parameters of the HamiltoniarB(E2), B(M1), andB(E1) values from Refd.19,21,20,2
from the ground-state antfO-+ %0 molecular resonance re- Some of these represent only an upper or lower limit for the
gion, we can predict the number of-cluster states at the given reduced electromagnetic transition rate. The present
intermediate energies. This is just where the elastic alpharersion of the SACM can describe only isoscat, M1,
scattering experiments can reveal the resonant states. VmdEL transitions. This did not pose a serious problem for
have applied the Hamiltonian in E), and calculated the the electric quadrupole and dipole transitions. In the case of
number of 28Si(0,12)+ « states with specific angular mo- the magnetic dipole transitions, however, the significant
mentum in energy windows, where they have been observed= 1 component of a number of states resulted in enhanced
The model space we considered extended fi@ 8xcita- B(M1) values due to the dominantly isovectdrl transi-
tions. The result is given in Table Il in comparison with the tions[3]. Due to this fact and also to the low number of data,
data of Ref[25]. we restricted our study to isoscalar electric quadrupole and

Considering the high excitation energies and the exponerdipole transitions only.
tial energy dependence of the state densities, the result seemsThe available experimental information &(E2) values
to be quite remarkable. The point to be stressed here is thataf isoscalar electric quadrupole transitions is limited to about
comparison with the experimental data on this basis is com20 data in the positive-parity domain of the spectrum and
pletely free from any ambiguity, and these densities are obabout 10 in the negative-parity on€See Table Il for the

TABLE IV. ReducedE1 transition probabilitiegin 10~2 W.u.) between3?S states. The experimental
data are from Refd.19-21,3.

Experimental data Theory
JT(Exi) J7(Ex 1) B(EL)expt. B(EL)th, NL(\,p)x i—f
17(5.789) 0'(0.0) 0.5+0.2 0.242 95,91 84,90
2+(2.230) 0.102 8,80
27(6.224) 2'(2.230) 0.18+0.03 0.333 84,80
37(7.702) 2(2.230) 0.237 &,80
47 (4.459) 0.118 #,80
37(5.006) 2"(2.230) 0.079+0.014 0.000 95,83 84,80
47(6.621) 4" (4.459) 0.032+0.007 0.000 84,80
3%(5.413) 0.012+0.002 0 83,71
17(9.487) 0'(0.0) 0.54+0.14 0.085 94,70 84,90
2+(2.230) 0.223 #.80
0*(4.282) 0.31+0.08 0 82,60
37(10.626) 2(2.230) 0.086 8,80

4*(4.459) 0.221 8.80
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details) We used the electric quadrupole operator of &q. A possible consistency check is to analyz2 transitions

to describe these transitions. The (8Uselection rules for and quadrupole momenta of the core nucledisj. Using the
this operator areAA=Au=0 or +1. We determined the parameterqc determined from the least-square fit of the
two parameters from a least-square fit to all the availablé(E2) values of transitions betweeffS states, we obtain
allowed transitions, and we obtainegk=0.8841e fm?  the following data for?*Si: B(E2;2; —0;)=13.39 W.u.,
andgc=—1.9383 e fm2. (In the fitting procedure we used B(E2;4; —2;)=18.05 W.u., andB(E2;6; —4,)=17.79

the inverse of the relative error as the weight for each tranW.u. These are in reasonable agreement with the experimen-
sition.) The results are displayed in Table Ill. In-band tran-tal values of 131, 13+1, and 1&3 W.u., respectively.
sitions are reasonably reproduced, but the strength of thEhe calculated electric quadrupole moment of the 2Si
interband ones is sometimes underestimated. Also, the abogate,Q=16.76e fm? also compares favorably with the ex-
T(E2) operator forbids transitions from te™=03 band to ~ Perimental value 16.5-1.8efm?.

the ground-state one, since these transitions correspond to The situation is somewhat different f67S: Calculating
changing the S(8) quantum numbers and x by two units. the electilc quadrupole moment of the flrst excited state we
These findings can be considered as indications for th&nd Q(21)=14._39efm2, while the experimental value is
breaking of the S(B) dynamic symmetry: a mixing between —14.9efm?, Th.|s shows .that the SACM reproduces_ cor-
the 2 states of the X, u)=(4.8), (3,7), and (2,6 SU(3) rectly the magnitude of this quadrupole moment, but it pre-

. : dicts oblate, rather than prolate shape for it. In fact, the
multiplets would allow relatively stron§(E2) values here, ! o S
as capn be seen in Table IIl y 8(E2) (N, ;) =(4,8) SUI) labels suggest triaxial shape. This find-

In Table IIl we displayed a number of transitions Whereing can again be an indication for the necessity of symmetry

5 . H e)( — Tt
no experimental data are available, nevertheless, some es I[eaklngésa _m|xture from th ’“)X._(A"S)Z'J 2" state
. . . : or from “°Si(12,0)+ a-type states in the 720 shell could
mations are given for them in the literature. Generally, the

. . shift the quadrupole moment to the prolate direction.
expectations based on shell model calculati@sre in rea- The available information on isoscal&rl transitions in

sonable agregment With our results. We also displa){ed dat@s is listed in Table IV, along with the theoretical values.
on some positive-parity levels arouriti=10 MeV, which — rq gjectric dipole operator of the SACMEq. (3)] acts only

we did not assign to model states. In the SACM these mighp, the relative motion part of the cluster wave function. The
be interpreted as states withi@ excitation. The lowest- gglection rules for this operator ar&n_=+1: A\=

lying states from this shell are expected to appear in this: Ap=0 orAN=0, Au=71.

energy region, and the\(x) quantum numbers associated  The |east-square fit procedure of tB€E1) data gave
with them might be(8,10 or (7,9), etc. (See Tables | and d;=0.002726 (W.u¥2 It can be seen from Table IV that
lll.) Transitions from these states to the lowest-lyingthe calculated values are in reasonable agreement with the
positive-parity states can be calculated using a higher-ordesxperimental ones. Electric dipole transitions predicted to be
term in theE2 transition operator, which acts only on the forbidden or very weak by the model usually have weak
relative motion part of the coupled wave function andexperimental B(E1) values (lying in the =10"° W.u.
changesn,, with 2 units [26—28. This operator can also range.

change\ andu up to 2 units, so the’2o— 0% w transitions

mentioned above are expected to be highly forbidden in the IV. SUMMARY AND CONCLUSIONS

SACM due to the large differences i and u. This is in
agreement with the observations: fR€E2) values for these

transitions were found to be rather small experimentally. braic cluster model for the cluster structure of tRes
It is remarkable that although the spectrum of thenucleus. The28Si+ « and f0+1%0 configurations were

negative-parity states is not reproduced too well by thgaen into account. A unified treatment and a single Hamil-
model, the calculateB2 transition rates seem to support the (onian were used for the energy spectrum of the ground-state
band assignment of these states, becaus@(B) values region and the®0O+ 260 molecular resonances. Based on
are reproduced reasonably well. A similar situation wasthjs Hamiltonian, a parameter-free prediction could be made
found in the application of the SACM to other nuclei in the for the densities 0f®Si+ « states in the resonance region. It
sd shell, such as“Mg [27] and *°Ar [28]. compares reasonably well with the experimental findings.
We note that the more restrictive version of ti€?  Electric dipole and quadrupole transitions have also been
operator with gr=qc=q allows transitions exclusively calculated.
within the same SUB) irreducible representations, i.e., with  The results illustrate that the algebraic model is able to
AN=Apu=0 only. Using this operator in the fitting proce- describe a large amount of experimental data in a consistent
dure we obtainedy=—1.8113e fm? and found that the way. The predictive power of the model for the densities of
B(E2) values of the intraband transitions changed by up tcigh-lying cluster states is especially remarkable.
10%, while the interband transitioriat least those changing
N\ andu) became forbidden. We note that if we assume that
the multichannel dynamic symmetry holds between the
28Sj+ a and the'®0+ %0 channels, then we can use this The authors are indebted to Professor M. Brenner for pro-
parameter to make predictions for the strengttE@ftransi-  viding them with experimental data, and to Dr. K. W. Burn
tions between thé®0-+ %0 resonances. With these assump-for a critical reading of the manuscript. This work was sup-
tions we found these to range between 15 to 40 W.u. ported by the OTKAGrant No. T2218Y, INFN, and ENEA.

In this paper we have presented the results of our calcu-
lations within the framework of the semimicroscopic alge-
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