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Coexistence of cluster configurations in the32S nucleus
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The T50 energy spectrum and the electromagnetic transitions of the32S nucleus are described in terms of
the semimicroscopic algebraic cluster model.28Si1a and 16O116O configurations are considered for the
low-lying bands and molecular resonances, respectively. The cluster configurations, including their Hamilto-
nians, are treated in a unified framework. The densities of high-lying core-plus-alpha-particle states arepre-
dicted in those energy windows, where good-resolution experiments have been carried out.
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I. INTRODUCTION

Clusterization is known to be important both in th
ground-state region and at high excitation energies of li
nuclei. The spectrum of cluster states is thus distributed o
a very wide energy range. However, due to obvious exp
mental difficulties, only certain parts of it are usually know
Further complications occur due to the coexistence of dif
ent cluster configurations in the same nucleus, such as
example, alpha-particle states, and molecular resonance
heavy ions. The theoretical understanding of cluster struc
involves a multiple task:~i! a unified description of the clus
ter spectrum is needed,~ii ! a consistent treatment of differen
configurations is required, and~iii ! finally, for a truly reliable
description, in addition to the reproduction of experimen
data, we need to be able to supply some predictions.

For fully microscopic approaches, which combine micr
scopic model spaces with effective two-nucleon forces,
detailed calculation in the middle of thesd shell is very
complicated, especially for configurations including shell e
citations. On the other hand, fully phenomenologic a
proaches are easy to apply. These models use phenom
logic cluster-cluster interactions and model spaces that
constructed without taking into account the Pauli princip
They can describe the high-lying part of the spectrum,
usually cannot be applied to the ground-state region, wh
the effect of the exclusion principle is very important. The
treatments contain a considerable amount of ambigu
partly because of the parameters of their interactions,
more importantly, because of the large uncertainty in
association of model quantum numbers to the experime
states.

Semimicroscopic models, based on microscopic mo
spaces and phenomenologic interactions, seem to be ab
give the best overall description of clusterization. The
cently proposed semimicroscopic algebraic cluster mo
~SACM! @1# has the additional advantage of having an ea
solvable formulation of the energy-eigenvalue problem.
PRC 580556-2813/98/58~4!/2144~10!/$15.00
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As for the structure of the32S nucleus, microscopic cal
culations have been carried out only for the ground-state
gion ~@2–4#, and references therein!. The energy spectrum o
the high-lying 28Si1a states@5# and the16O 116O molecu-
lar resonances@6# were interpreted in terms of different mod
els without direct connection to the microscopic structure
to each other. In this paper we describe the spectra of
three energy regions in a unified way in terms of the SAC
Starting with the analysis of the low-lying spectrum of32S as
28Si1a configuration~band structure, electromagnetic tra
sitions! and with that of the16O116O resonances, we give
parameter-free prediction for the complete spectrum of
high-lying core-plus-alpha-particle states.

The prediction is based on the concept of multichan
dynamic symmetry, which connects different reaction ch
nels, and consequently, different cluster configurations@7#.
This is a composite symmetry in the following sense. On
one hand, it involves dynamically symmetric interactions
sociated with specific cluster configurations, and having v
similar nature, like those of other algebraic models~i.e., hav-
ing Hamiltonians expressed in terms of invariant operators
an algebra chain!. On the other hand, the multichannel sym
metry requires an invariance with respect to the transform
tion of one cluster configuration to another~i.e., from one set
of Jacobian coordinates to another!. This requirement acts a
a strong constraint put on the interactions of different clus
configurations, and as a consequence, it reduces conside
the ambiguity which is present in the phenomenologic
scription of the spectrum.

In the ground-state region of the32S nucleus, different
shapes seem to coexist. The excitation energies of the
lying 01, 21, and 41 states suggest a nearly spherical
brator, while the quadrupole moment of the first 21 state@8#
corresponds to prolate deformation. Shell model calculati
@9# are able to reproduce this shape, as well as the pos
parity part of the low-lying spectrum@3,9# in general.
Hartree-Fock@10# and Nilsson-Strutinsky@11# calculations
give prolate, oblate, and spherical shapes at energies clo
2144 © 1998 The American Physical Society
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PRC 58 2145COEXISTENCE OF CLUSTER CONFIGURATIONS IN . . .
each other, while the SU(3) shell model has a preference
the triaxial shape@12#.

In the present work our main goal is to describe the gr
features of the large-scale spectrum on a common basis.
includes the treatment of the positive- and negative-pa
spectra on the one hand, and the unified description of
different cluster spectra in highly excited regions, on t
other. Therefore, our description of the low-lying positi
parity spectrum is less detailed than that of the shell mo
calculations, and it should not be considered as a substitu
or competitor. Rather, its main role is to indicate that t
model spaces and Hamiltonians we apply for theunified
treatment of the gross features of the spectrum in a w
energy range are compatible with the fully microscopic d
scription, and are able to account forsomeaspects of the
structure in the ground-state region as well.

II. THE SEMIMICROSCOPIC ALGEBRAIC
CLUSTER MODEL

This model is algebraic in the sense that both the b
states, and the physical operators are characterized by
irreducible representations of some Lie algebras, and th
fore the matrix elements can be determined by group th
retical methods. In the SACM, the internal structure of t
clusters is described by the Elliott model of UC

ST(4)
^ UC(3) group structure@13#, where UST(4) is Wigner’s
spin-isospin group@14#. The relative motion is treated in
terms of the UR(4) vibron model@15#. The group structure
of the model for a system of two clusters, when one of th
has a closed shell structure, is

UC~3! ^ UR~4!.UC~3! ^ UR~3!.SUC~3!

^ SUR~3!.SU~3!.O~3!.O~2!

u@n1
C ,n2

C ,n3
C#,@N,0,0,0#,@np,0,0,#,~lC ,mC!,

~np,0!,~l,m!,x,L,M &. ~1!

Here we have indicated also the labels of irreducible rep
sentations~irreps! of the corresponding groups. The supe
script and subscriptC means ‘‘cluster,’’ indicating that the
particular group characterizes the internal structure of
non-closed-shell cluster. Similarly, subscriptR signifies
groups associated with the relative motion of the cluste
The relative motion is characterized bynp , the number of
oscillator quanta~dipole bosons! and N, which sets the
higher limit for np and thus sets the size of the model spa
(lC ,mC) is the SUC(3) representation associated with t
orbital structure of the non-closed-shell~core! nucleus,
(l,m) is the SU~3! representation assigned to the unit
nucleus, while the role ofx is to distinguish between O(3
representations which have identical values ofL, in case
there are several of them belonging to the same SU~3! irre-
ducible representation. It can be interpreted as the projec
K of the total angular momentum on a nuclear symme
axis.

A major point in constructing the model space is rela
to the exclusion of the Pauli-forbidden states and the sp
ous excitations of the center-of-mass motion. One can
or
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that by making an intersection between the cluster mo
basis corresponding to group-chain~1! and that of the~fully
antisymmetric! SU~3! shell model of the whole nucleus. Thi
procedure is based on the equivalence of the shell mo
Hamiltonian and that of the cluster model@16#. The resulting
cluster model space is an SU~3! symmetry-dictated trunca
tion of the full shell model space for each cluster configu
tion. More detailed discussion on the construction of t
model space is given in the next section, in relation to
specific configurations we consider here.

The physical operators of the model are expressed
terms of the generators of group chain~1! with parameters to
be fitted to the experimental data. An important lim
emerges when the Hamiltonian can be expressed in term
the Casimir invariants of the subgroup chain. This is cal
dynamic symmetry, and when it holds, an analytic solut
of the energy eigenvalue problem is available. Besides
Casimir invariants of the groups appearing in Eq.~1!, a
Hamiltonian of this kind may contain other terms which a
diagonal~or closely diagonal! in the associated basis. Thes
terms may also reflect further types of symmetries, such
those related to the geometric arrangement of the system
possible Hamiltonian of this type is the following:

H5E01gRnp1dRC2„SUR~3!…1tCC3„SUC~3!…

1dC2„SU~3!…1~b1npb̃!J~J11!1„u1~21!npũ…x2

1s~21!np1x, ~2!

where Cn is the nth order Casimir invariant of the SU~3!
group, and the subscriptsC andR again stand for ‘‘cluster’’
and ‘‘relative motion,’’ respectively. The physical impo
tance of the individual interaction terms is discussed later
in Sec. III A 1. We note that althoughx2, which accounts for
K-band splitting is not an invariant of the SU~3! group, it is
a nearly diagonal higher-order scalar operator construc
from SU~3! generators@17#. In our calculations in the dy-
namic symmetry approximation, we do not diagonalize
rather ~referring to its small off-diagonal matrix element!
we approximate it with the relevantK2 value. Our motiva-
tion for this is to keep the calculations simple using the d
namical symmetry approximation. In a more sophistica
approach the diagonalization of the Hamiltonian could
performed. We reserve this option for future studies,
which other nondiagonal operators will also be considered
the Hamiltonian.

The operators of the isoscalar electromagnetic transiti
can be expressed in terms of the dipole, quadrupole,
angular momentum operators@1#:

T~E1!5dRDR
~1! , ~3!

T~E2!5qRQR
~2!1qCQC

~2! , ~4!

T~M1!5gRLR
~1!1gCLC

~2! . ~5!

Besides their O(3) tensorial character~i.e., vector of rank-2
tensors! the various dipole and quadrupole operators a
carry well-defined SUR(3) and SUC(3) tensorial structure,
which simplifies the calculation of their matrix elements
the coupled SU~3! basis ~1!. The parameters appearing
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TABLE I. The SACM model space for the28Si(0,12)1a, 28Si(12,0)1a, and 16O116O configurations. The SU~3! states present in the
particular channels are displayed for the first few shells.

n\v 28Si(0,12)1a 28Si(12,0)1a 16O116O

0 ~4,8!,~3,7!,~2,6!,~1,5!,~0,4! ~4,8! —
1 ~6,9!,~5,8!,~4,7!,~3,6!,~2,5!,~1,4!,~0,3! ~9,6!,~7,7!,~5,8!,~3,9! —
2 ~8,10!,~7,9!,~6,8!,~5,7!,~4,6!, ~14,4!,~12,5!,~10,6!,~8,7!,~6,8!, —

~3,5!,~2,4!,~1,3!,~0,2! ~4,9!,~2,10!
3 ~10,11!,~9,10!,~8,9!,~7,8!,~6,7!, ~19,2!,~17,3!,~15,4!,~13,5!,~11,6!, —

~5,6!,~4,5!,~3,4!,~2,3!,~1,2!,~0,1! ~9,7!,~7,8!,~5,9!,~3,10!,~1,11!
4 ~12,12!,~11,11!,~10,10!,~9,9!,~8,8!,~7,7!, ~24,0!,~22,1!,~20,2!,~18,3!,~16,4!,~14,5!, ~24,0!

~6,6!,~5,5!,~4,4!,~3,3!,~2,2!,~1,1!,~0,0! ~12,6!,~10,7!,~8,8!,~6,9!,~4,10!,~2,11!,~0,12!
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these transition operators are to be fitted to the experime
data, similarly to the parameters of the Hamiltonian~2!.

III. CALCULATIONS FOR THE 28Si1a
AND 16O116O CLUSTERIZATIONS

The U(3) irreps into which the states are classified
determined by the distribution of the oscillator quanta alo
the axes of a Cartesian reference frame@nz

C ,nx
C ,ny

C#
[@n1

C ,n2
C ,n3

C#, according to the prescription of the she
model. The ground-state band of28Si is considered to belong
to the U(3) irrep@16,16,4#, and, consequently, to the~0,12!
irrep of the SU~3! subgroup. This corresponds to oblate d
formation. The ground state of thea-particle and of the16O
nucleus belong to the@0,0,0# and the@4,4,4# U(3) irreps,
respectively, and both correspond to the~0,0! SU~3! scalar
irrep. We also take into account the28Si states belonging to
the (l,m)5(12,0) SU~3! irrep, which corresponds to prolat
equilibrium shape. All these clusterizations include sta
with exclusivelyT50 isospin.

A unified treatment of the clusterizations is carried out
follows. The cluster model spaces are obtained as those
of the shell model space that belong to the direct prod
SU~3! symmetries of the cluster internal structures and
corresponding~Pauli-allowed! relative motions. The mode
spaces of different clusterizations are obviously different,
they may have considerable overlaps. If the overlapp
cluster bands of different configurations have the same e
gies, we speak of multichannel dynamic symmetry@7#. This
means that, e.g., the Hamiltonian of one cluster configura
may completely determine that of another configuration
this very restrictive symmetry holds, the model has stro
predictive power. Let us consider two configurations~de-
noted by 1 and 2!, each containing two clusters characteriz
by the group-chain~1!. If the relation between the relativ
motion quantum numbers isnp15np21np0 , and the integer
constantnp0 is even~as in our case!, then the restrictions o
the multichannel dynamic symmetry are the following:tC1

5tC2
50, dR1

5dR2
5dR , g15g213d r1np0 , E015E02

1(g213dR)1np0 , b̃15b̃25b̃, b15b21b̃np0 , d15d2
5d, u15u25u, s15s25s for the Hamiltonian, anddR
5d, qR5qC5q, gC5gR5g for the transition operators
Here the parameters without a channel index indic
channel-independent quantities.

Table I shows the model spaces of the SACM for t
28Si(0,12)1a, 28Si(12,0)1a, and 16O116O cluster con-
tal
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figurations in the first five shells. The cluster states are
tained as triple outer products: (lC1

,mC1
) ^ (lC2

,mC2
)

^ (np ,0), where (lCi
,mCi

) stands for the internal structur

of cluster i , while (np ,0) are the quantum numbers of th
relative motion. Herenp is limited from below by the Pauli
principle: np>8 for 28Si1a, and np>24 for 16O116O.
However, these product wave functions contain Pa
forbidden states, too. In order to exclude them we make
intersection with the SU~3! shell model space of the32S
nucleus. This model space is fully antisymmetric. Therefo
the model space that we obtain as an intersection is free f
the Pauli-forbidden states. The truncation, as described h
can be carried out due to the equivalence of the SU~3! dy-
namically symmetric Hamiltonians of the shell and clus
models @16#. One can see from Table I, that for the 0\v
major shell of the32S nucleus, the Pauli principle rules ou
several U(3) irreps of the28Si(12,0)1a configuration, and
all irreps of the16O116O configuration. With increasing ex
citation energy, which shows up in the cluster picture
increasing number of oscillator quanta of the relative moti
the number of cluster irreps excluded by the Pauli princi
is less and less. But for the low-lying major shells of Tabl
the truncation is very severe. In particular, the lowest-lyi
Pauli-allowed 16O116O cluster configuration belongs t
4\v excitation of the32S nucleus.

A particularly interesting question is the relation of th
same irreps of different cluster configurations, such as
example (4,8) in the 0\v, and~5,8! in the 1\v major shell,
which appear both in the28Si(0,12)1a and in the
28Si(12,0)1a configurations, or the (24,0) states bein
common in the28Si(12,0)1a and 16O116O configurations
in the 4\v major shell. These states are not orthogonal
each other; on the contrary, they have very large overlaps
case the shell model irrep has a single multiplicity, like
these examples, then the fully antisymmetric cluster mo
wave functionscC( i )5N( i )A(fC

1
( i )fC

2
( i )fR( i )) of two differ-

ent configurations may differ from each other only in the
normalization factors. HereN( i ) stands for the normalization
factor, andA is the antisymmetrizer operator@18#. In our
semimicroscopic treatment we do not deriveN( i ) micro-
scopically, rather we simply suppose that thecC

k
( i )’s are nor-

malized to unity. The requirement that these states sho
have the same energy for different cluster configuration
the basic assumption of the multichannel dynamic symme
@7#. Obviously, it holds only for very special interaction
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FIG. 1. The low-lying positive-parity states of the32S nucleus. Experimental states are displayed in the left panel, and the correspo
model spectrum is shown in the right one. The states are arranged into bands that we identified on the basis of their location
electromagnetic transitions. TheJp assignment of the experimental states is taken from Refs.@2,3#. UncertainJp values are given in
parentheses. The model spectrum shows the SACM quantum numbers (l,m)x assigned to the cluster bands, which are supposed to be
on the oblate28Si ground-state band. All model states belong to the 0\v shell, which corresponds tonp58.
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namely for those ones that are invariant under the trans
mation from one cluster configuration to the other, i.e., fro
one set of Jacobi coordinates to the other.

The 28Si1a and 16O116O cluster configurations do no
have a common intersection if the Si is in its oblate~0,12!
state. But the28Si(12,0)1a cluster configuration, i.e., pro
late core plus alpha-particle states, do have a common in
section with both of them. Therefore, in order to be able
construct channel-invariant interactions, etc., we take i
account this configuration as well. It turns out that one c
keep a complete symmetry between the28Si(12,0)1a and
16O116O channels, but a reasonable description of the
perimental data requires a slight breaking of the multich
nel invariance between the28Si(0,12)1a and 28Si(12,0)
1a configurations. This breaking, however, does not dest
the predictive power of our description, as will be illustrat
by our detailed calculations. The strength of the symme
breaking can be characterized quantitatively.

A. Energy spectrum

In assigning observedT50 32S levels to the28Si(0,12)
1a cluster model states we have made use of Ref.@2#,
which extends the existing compilation@8# by adding states
with higher J values to it and by clarifying a number o
uncertainJp assignments. This compilation is claimed to
r-

r-
o
o
n

x-
-

y

y

essentially complete forT50 states up toEx.10 MeV. We
also accepted some furtherJp assignments made by the sam
authors based on the analysis of the data in@2# in terms of
shell model considerations@3#. In order to establish a ban
structure of the cluster states we also took into account e
tromagnetic transition data, such as isoscalarB(E2)
@19,20,2#, B(M1) @19,20,2#, andB(E1) @19,21,20,2# values.

1. Parameters of the Hamiltonian

The low-lying part of the32S energy spectrum@8# con-
tains bands with both positive and negative parity, and th
can be identified with model bands labeled with t
np(l,m)x quantum numbers of the SACM. The twoKp

501 bands built on the 01
1 ground state and the 02

1 state at
3.778 MeV can be labeled as 8~4,8!0 and 8~2,6!0. A some-
what staggeredKp511 band starts at 4.695 MeV, and the
is also a 21 band at 6.666 MeV. We label these with th
quantum numbers 8~3,7!1 and 8~4,8!2. All these states cor-
respond to 0\v excitations, which means that the relativ
motion of the core and thea cluster does not carry an
excitation quanta in excess of the 8p bosons required by the
Pauli principle.

The negative-parity part of the spectrum seems to con
a Kp532, 12, 52, and a 02 band starting at 5.006, 5.798
6.762, and 7.434 MeV, respectively. We associated the
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FIG. 2. The same as Fig. 1 for negative parity. The model states are assigned to the 1\v shell, corresponding tonp59.
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three of these to the model bands 9~5,8!3, 9~5,8!1, and
9~5,8!5, and the fourth one to 9~6,9!0.

The 16O116O configuration becomes Pauli allowed in th
SACM when there arenp524p bosons in the relative mo
tion, corresponding to 4\v excitations of the32S nucleus.
Then the resonances can be assigned to the band 24~24,0!0.
The (l,m)5(24,0) SU~3! multiplet is missing from the
28Si(0,12)1a model space, however, it is present in t
28Si(12,0)1a one~as a 4\v excitation!, because then it can
be obtained from the (lC ,mC)3(np,0)5(12,0)3(12,0)
SU~3! outer product.

We used the Hamiltonian of Eq.~2! to fit the 32S spec-
trum. We fitted the model parameters within a two-step p
cedure. First we found those parameters that set the rela
position of states~bands! within individual major shells
(0\v, 1\v, etc.! and then those that determine the relat
position of the shells. According to this, we first set the va
of d, mainly based on positive-parity bands in the groun
state region, and fittedb, b̃, u, andũ. The first two of these
set the rotational constant of bands from the various sh
imitating the observed feature that bands with higher exc
tions of the relative motion seem to have higher momen
inertia. The second pair accounts for~a parity-dependent!
K-band splitting within SU~3! multiplets. The parity depen
dence seems to be an important feature here, because b
with larger K (x in the SACM! are located higher in the
positive-parity spectrum, while they tend to be lower in t
negative-parity part.

The parameters obtained~in units of MeV! in the multi-
step fitting procedure of the Hamiltonian areE05
-
ive

e
-

ls,
-
f

nds

250.3040,dR520.292 60,tC50.002 291,d520.032 00,
b50.360 93, b̃520.0261, u50.453 70, ũ50.574 24, and
s520.842 99.tC and the corresponding interaction ter
accounts for the splitting between28Si1a states built on
oblate and prolate core states, and it does not respec
multichannel dynamic symmetry.gR , the coefficient of the
harmonic oscillator term was not fitted, rather it was set
11.6939 MeV, the oscillator constant considered usually
A532 nuclei:gR545A21/3225A22/3.

The last term of the Hamiltonian~2! has not been consid
ered in our model previously, therefore we discuss it here
some detail. The introduction of this phenomenologic te
seems to be essential to describe the observed spectra
terns of the32S nucleus, which indicate that bands with ev
K are usually located higher in positive-parity shells a
lower in negative-parity shells, while the situation is revers
for bands with oddK. This term, for example, prevent
bands withK high and even from appearing too low in th
negative-parity part of the spectrum. The interpretation
this term can be given in terms of several frameworks.

First, it is related to the parity of the states~determined by
the number of excitation quanta carried by the system! and
also to the parity~i.e., the even or odd nature! of x, the
projection of the angular momentum on a symmetry ax
Both of these are well-defined quantities in the shell mo
framework. Since the parity ofx is related to that of the
smaller of the quantum numbersl and m in the SU~3!
scheme, (21)np1x can be expressed in terms of (21)ni,
whereni is the number of oscillator quanta associated w
the three spatial directions in the Cartesian frame. Usu
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thenz>nx>ny convention is used to label the principal axe
It can be shown then that for cluster systems consisting
even-even clusters without major shell excitatio
(21)np1x is equal with (21)nz if l>m holds, and with
(21)ny otherwise.~We recall the definitionl5nz2nx and
m5nx2ny .)

This interpretation can be linked with an additional sy
metry of the system, theD2 point symmetry of a genera
triaxial object associated with the rotations throughp about
its principal axes@22#. It is known @23# that the SU~3! irreps
associated with the states of a general triaxial nucleus, s
as 32S, can be classified according to their transformat
properties with respect to the elements of theD2 symmetry
group. In particular, these states can be divided accordin
the four one-dimensional irreps ofD2 , labeled by the factors
61 associated with the rotations byp through two perpen-
dicular symmetry axes. In the SU~3! framework these phas
factors are supplied by (21)l and (21)m @23#. Straightfor-
ward calculation shows that for all the28Si(0,12)1a states
listed in Table I and plotted in Figs. 1 and 2, (21)np1x is
equal to (21)m. This seems to indicate that the phenomen
logic last term of Eq.~2!, which depends on quantities ass
ciated with the geometric content of our essentially algeb
approach~i.e., np and x), indeed, reflects the spatial a
rangement of the nuclear system.

In order to characterize the breaking of the multichan
symmetry in a quantitative way, we calculate the parame
b5tC

2 /(tC
2 1( ia i

2), where tC is the strength of the term
which does not respect the multichannel symmetry, anda i ’s
stand for the strengths of the symmetry-preserving term
the Hamiltonian. The parameters of our Hamiltonian~2! cor-
respond to a 431028 breaking of the multichannel symme
try. We note here that this seemingly small breaking is du
the small value of tC . The actual magnitude of th
symmetry-breaking termtCC3„SUC(3)… in the Hamiltonian
is 11.134 MeV, with negative and positive sign for sta
built on the oblate and the prolate28Si configurations, re-
spectively.

Altogether we considered 28 states from both the 0\v
and the 1\v shell, and 24 states~corresponding to16O
116O resonances! from the 4\v shell. We assigned the
states into bands according to their location and electrom
netic transitions~see below!. The resulting spectrum is dis
played in Figs. 1, 2, and 3 for the low-lying positive- an
negative-parity states, and the16O116O resonances.

In the low-lying spectrum the model essentially exhau
the experimental data set for the level scheme of the32S
nucleus up toEx.8 to 10 MeV, depending onJp. In par-
ticular, the first unaccounted experimental 01 state is located
at 7.637 MeV; for 11 this happens at 9.290 MeV, for 21 at
8.690 MeV, and for 31 at 9.920 MeV. The correspondin
values for the negative-parity states are 9.731, 8.380,
10.434 MeV, for the 12, 22, and 32 states, respectively
We note that the cluster model space does not contain
02 state, of which the lowest one is located at 10.402 Me
~In the assignment of the excitation energies we accepted
results of Ref.@2#.! The 0\v model space contains alto
gether threeJp501 states. The third one of these wit
(l,m)5(0,4) SU~3! labels appears near 5 MeV in the mod
spectrum. We assigned this state to the experimental lev
.
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Ex56.581 MeV, which is known to haveJ5024 and natu-
ral parity@2#. The interpretation of this state is not equivoca
it has been assigned previously toJp501 @24# and 41 @3#
alike.

Since the model space constructed assuming inert16O
clusters contains only one state for any givenJ value ~up to
J524) we fitted the average position of the experimen
states for each angular momentum. We also note that in
16O116O channel, only states withJ5even were identified
experimentally, due to the identical nature of the cluste
We, therefore, displayed only these states in the model s
trum. A richer spectrum of16O116O resonances could b
generated in the 4\v model space if we had permitted exc

FIG. 3. The 16O116O molecular resonances displayed in a r
tational diagram form. Data on the experimental states (d) are
from Ref.@6#. The model states (1) belong to the 4\v shell, which
corresponds tonp524 for the 16O116O configuration and tonp

512 for the28Si1a clusterization based on the excited prolate28Si
band.

TABLE II. The number of states predicted by the U(3) symm
try in comparison with the number of resonances reported in R
@25#.

Energy windows Number of states
Jp Ex(min) Ex(max) Model Exp.

01 10.37 11.13 1 6
21 10.87 11.96 4 3
32 10.82 12.20 4 8
32 12.94 14.43 6 10
41 13.69 15.85 11 7
52 13.87 17.26 22 15
61 15.75 17.87 19 9
72 17.39 20.28 22 13
81 18.80 20.45 11 13
92 21.21 23.30 16 10
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TABLE III. ReducedE2 transition probabilities~in W.u.! between32S states. Experimental data are fro
Refs.@21,19,2#.

Experimental data Theory
Ji

p(Ex i) Jf
p(Ex f) B(E2)Expt. B(E2)Th. np(l,m)x i→ f

21(2.230) 01(0.0) 1061 7.27 8~4,8!0 8~4,8!0
41(4.459) 21(2.230) 1262 9.17 8~4,8!0
61(8.346) 41(4.459) .3.7 7.88 8~4,8!0
21(6.666) 01(0.0) 1.06 8~4,8!2 8~4,8!0

21(2.230) 1.11 8~4,8!0
41(4.459) 0.005 8~4,8!0
11(4.695) 1.25 8~3,7!1
31(5.413) 1.34 8~3,7!1

41(7.883) 21(2.230) 0.77 8~4,8!0
21(5.549) 2.86 8~3,7!1

51(9.235) 41(4.459) 1.88 8~4,8!0
31(5.413) 3.87 8~3,7!1

11(4.695) 21(2.230) 5.58 8~3,7!1 8~4,8!0
21(5.549) 01(0.0) 0.1260.03 1.44 8~4,8!0

21(2.230) 0.68 8~4,8!0
11(4.695) 7.32 8~3,7!1

31(5.413) 21(2.230) 2.760.5 0.89 8~4,8!0
41(4.459) 4.27 8~4,8!0
11(4.695) 7.50 8~3,7!1
21(5.549) 8.75 8~3,7!1

41(6.411) 21(2.230) 3.060.7 1.15 8~4,8!0
21(5.549) 6.68 8~3,7!1
31(5.413) 0.96 8~3,7!1

51(7.567) 41(4.459) 2.160.5 0.71 8~4,8!0
31(5.413) 9.30 8~3,7!1

01(3.778) 21(2.230) 1462 0 8~2,6!0 8~4,8!0
21(5.549) 15.91 8~3,7!1

21(4.282) 01(0.0) 1.460.2 0 8~4,8!0
21(2.230) 9.361.3 0 8~4,8!0
11(4.695) 2.89 8~3,7!1
21(5.549) 0.71 8~3,7!1
01(3.778) 8.13 8~2,6!0

41(6.852) 41(4.459) 0.920.5
10.7 0 8~4,8!0

21(4.282) 5.921.4
13.1 9.50 8~2,6!0

21(5.549) 0.74 8~3,7!1
31(5.413) 1.80 8~3,7!1
41(6.411) 0.10 8~3,7!1

61(9.783) 41(4.459) 0.2320.1
10.8 0 8~4,8!0

41(6.852) 6.58 8~2,6!0
21(8.407) 11(4.695) 0.60 8~2,6!2 8~3,7!1

31(5.413) 1.60 8~3,7!1
01(3.778) 0.84 8~2,6!0
21(4.282) 0.80 8~2,6!0

41(10.102) 21(4.282) 0.60 8~2,6!0
21(8.281) 21(4.282) 0.67 8~1,5!1 8~2,6!0
31(8.746) 21(4.282) 0.76 8~2,6!0
41(9.065) 21(4.282) 0.81 8~2,6!0
51(10.574) 41(8.191) 4.24 8~0,4!0
21(9.464) 01(0.0) 0.860.3 np510 8~4,8!0
21(9.712) 01(0.0) 0.02660.009 np510 8~4,8!0
31(10.221) 21(2.230) 0.0160.005 np510 8~4,8!0

11(4.695) 1.660.4 np510 8~3,7!1
11(10.232) 31(5.413) 1.360.7 np510 8~3,7!1
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TABLE III. ~Continued.!

Experimental data Theory
Ji

p(Exi) Jf
p(Ex f) B(E2)Expt. B(E2)Th. np(l,m)x i→ f

42(7.950) 32(5.006) 2.860.7 3.38 9~6,9!4 9~5,8!3
42(6.621) 32(5.006) 1062 11.36 9~5,8!3 9~5,8!3
52(8.270) 32(5.006) .5.9 2.65 9~5,8!3
62(9.635) 42(6.621) 5.922

112 4.23 9~5,8!3
62(9.024) 42(6.621) 1.960.5 1.06 9~5,8!5 9~5,8!3

52(6.762) 5.661.3 10.23 9~5,8!3
72(9.463) 52(6.762) .13 1.72 9~5,8!5
12(9.487) 32(5.006) 1.460.5 0.02 9~4,7!0 9~5,8!3
42(10.398) 32(5.006) 0.160.06 0.90 9~4,7!4 9~5,8!3

42(6.621) 0.560.4 1.05 9~5,8!3
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tations of one of the16O clusters and had broken the SU~3!
dynamic symmetry, allowing thus the mixing of variou
SU~3! representations.

2. Spectrum generation

Having determined the parameters of the Hamilton
from the ground-state and16O116O molecular resonance re
gion, we can predict the number ofa-cluster states at the
intermediate energies. This is just where the elastic alp
scattering experiments can reveal the resonant states.
have applied the Hamiltonian in Eq.~2!, and calculated the
number of 28Si(0,12)1a states with specific angular mo
mentum in energy windows, where they have been obser
The model space we considered extended to 8\v excita-
tions. The result is given in Table II in comparison with th
data of Ref.@25#.

Considering the high excitation energies and the expon
tial energy dependence of the state densities, the result s
to be quite remarkable. The point to be stressed here is th
comparison with the experimental data on this basis is c
pletely free from any ambiguity, and these densities are
n

a-
e

d.

n-
ms
t a
-

b-

tained without fitting any parameter in this region, or witho
any model assumption related to the data in question.

B. Electromagnetic transitions

We have considered experimental information on
B(E2), B(M1), andB(E1) values from Refs.@19,21,20,2#.
Some of these represent only an upper or lower limit for
given reduced electromagnetic transition rate. The pres
version of the SACM can describe only isoscalarE2, M1,
andE1 transitions. This did not pose a serious problem
the electric quadrupole and dipole transitions. In the case
the magnetic dipole transitions, however, the significanT
51 component of a number of states resulted in enhan
B(M1) values due to the dominantly isovectorM1 transi-
tions @3#. Due to this fact and also to the low number of da
we restricted our study to isoscalar electric quadrupole
dipole transitions only.

The available experimental information onB(E2) values
of isoscalar electric quadrupole transitions is limited to ab
20 data in the positive-parity domain of the spectrum a
about 10 in the negative-parity one.~See Table III for the
l
TABLE IV. ReducedE1 transition probabilities~in 1023 W.u.! between32S states. The experimenta
data are from Refs.@19–21,2#.

Experimental data Theory
Ji

p(Ex i) Jf
p(Ex f) B(E1)Expt. B(E1)Th. np(l,m)x i→ f

12(5.789) 01(0.0) 0.560.2 0.242 9~5,8!1 8~4,8!0
21(2.230) 0.102 8~4,8!0

22(6.224) 21(2.230) 0.1860.03 0.333 8~4,8!0
32(7.702) 21(2.230) 0.237 8~4,8!0

41(4.459) 0.118 8~4,8!0
32(5.006) 21(2.230) 0.07960.014 0.000 9~5,8!3 8~4,8!0
42(6.621) 41(4.459) 0.03260.007 0.000 8~4,8!0

31(5.413) 0.01260.002 0 8~3,7!1
12(9.487) 01(0.0) 0.5460.14 0.085 9~4,7!0 8~4,8!0

21(2.230) 0.223 8~4,8!0
01(4.282) 0.3160.08 0 8~2,6!0

32(10.626) 21(2.230) 0.086 8~4,8!0
41(4.459) 0.221 8~4,8!0
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details.! We used the electric quadrupole operator of Eq.~4!
to describe these transitions. The SU~3! selection rules for
this operator areDl5Dm50 or 61. We determined the
two parameters from a least-square fit to all the availa
allowed transitions, and we obtainedqR50.88 41 e fm2

andqC521.93 83 e fm2. ~In the fitting procedure we use
the inverse of the relative error as the weight for each tr
sition.! The results are displayed in Table III. In-band tra
sitions are reasonably reproduced, but the strength of
interband ones is sometimes underestimated. Also, the a
T(E2) operator forbids transitions from theKp502

1 band to
the ground-state one, since these transitions correspon
changing the SU~3! quantum numbersl andm by two units.
These findings can be considered as indications for
breaking of the SU~3! dynamic symmetry: a mixing betwee
the 21 states of the (l,m)5(4,8), ~3,7!, and ~2,6! SU~3!
multiplets would allow relatively strongB(E2) values here,
as can be seen in Table III.

In Table III we displayed a number of transitions whe
no experimental data are available, nevertheless, some
mations are given for them in the literature. Generally,
expectations based on shell model calculations@3# are in rea-
sonable agreement with our results. We also displayed
on some positive-parity levels aroundEx.10 MeV, which
we did not assign to model states. In the SACM these m
be interpreted as states with 2\v excitation. The lowest-
lying states from this shell are expected to appear in
energy region, and the (l,m) quantum numbers associate
with them might be~8,10! or ~7,9!, etc. ~See Tables I and
III. ! Transitions from these states to the lowest-lyi
positive-parity states can be calculated using a higher-o
term in theE2 transition operator, which acts only on th
relative motion part of the coupled wave function a
changesnp with 2 units @26–28#. This operator can also
changel andm up to 2 units, so the 2\v→0\v transitions
mentioned above are expected to be highly forbidden in
SACM due to the large differences inl and m. This is in
agreement with the observations: theB(E2) values for these
transitions were found to be rather small experimentally.

It is remarkable that although the spectrum of t
negative-parity states is not reproduced too well by
model, the calculatedE2 transition rates seem to support t
band assignment of these states, because theB(E2) values
are reproduced reasonably well. A similar situation w
found in the application of the SACM to other nuclei in th
sd shell, such as24Mg @27# and 38Ar @28#.

We note that the more restrictive version of theT(E2)

operator with qR5qC[q allows transitions exclusively
within the same SU~3! irreducible representations, i.e., wit
Dl5Dm50 only. Using this operator in the fitting proce
dure we obtainedq521.8113 e fm2 and found that the
B(E2) values of the intraband transitions changed by up
10%, while the interband transitions~at least those changin
l andm) became forbidden. We note that if we assume t
the multichannel dynamic symmetry holds between
28Si1a and the16O116O channels, then we can use thisq
parameter to make predictions for the strength ofE2 transi-
tions between the16O116O resonances. With these assum
tions we found these to range between 15 to 40 W.u.
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A possible consistency check is to analyzeE2 transitions
and quadrupole momenta of the core nucleus,28Si. Using the
parameterqC determined from the least-square fit of th
B(E2) values of transitions between32S states, we obtain
the following data for28Si: B(E2;21

1→01
1)513.39 W.u.,

B(E2;41
1→21

1)518.05 W.u., andB(E2;61
1→41

1)517.79
W.u. These are in reasonable agreement with the experim
tal values of 1361, 1361, and 1063 W.u., respectively.
The calculated electric quadrupole moment of the 21

1 28Si
state,Q516.76e fm2 also compares favorably with the ex
perimental value 16.561.8e fm2.

The situation is somewhat different for32S: Calculating
the electric quadrupole moment of the first excited state
find Q(21

1)514.39e fm2, while the experimental value is
214.9e fm2. This shows that the SACM reproduces co
rectly the magnitude of this quadrupole moment, but it p
dicts oblate, rather than prolate shape for it. In fact,
(l,m)5(4,8) SU~3! labels suggest triaxial shape. This fin
ing can again be an indication for the necessity of symme
breaking: a mixture from the (l,m)x5(4,8)2,Jp521 state
or from 28Si(12,0)1a-type states in the 2\v shell could
shift the quadrupole moment to the prolate direction.

The available information on isoscalarE1 transitions in
32S is listed in Table IV, along with the theoretical value
The electric dipole operator of the SACM@Eq. ~3!# acts only
on the relative motion part of the cluster wave function. T
selection rules for this operator areDnp561; Dl5
61, Dm50 or Dl50, Dm571.

The least-square fit procedure of theB(E1) data gave
dR50.002 726 (W.u.)1/2. It can be seen from Table IV tha
the calculated values are in reasonable agreement with
experimental ones. Electric dipole transitions predicted to
forbidden or very weak by the model usually have we
experimental B(E1) values ~lying in the .1025 W.u.
range!.

IV. SUMMARY AND CONCLUSIONS

In this paper we have presented the results of our ca
lations within the framework of the semimicroscopic alg
braic cluster model for the cluster structure of the32S
nucleus. The 28Si1a and 16O116O configurations were
taken into account. A unified treatment and a single Ham
tonian were used for the energy spectrum of the ground-s
region and the16O116O molecular resonances. Based
this Hamiltonian, a parameter-free prediction could be ma
for the densities of28Si1a states in the resonance region.
compares reasonably well with the experimental findin
Electric dipole and quadrupole transitions have also b
calculated.

The results illustrate that the algebraic model is able
describe a large amount of experimental data in a consis
way. The predictive power of the model for the densities
high-lying cluster states is especially remarkable.
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