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A complete discrete set of spherical single-particle wave functions for studies of weakly bound many-body
systems is proposed. The new basis is obtained by means of a local-scale point transformation of the spherical
harmonic oscillator wave functions. Unlike the harmonic oscillator states, the new wave functions decay
exponentially at large distances. Using the new basis, characteristics of weakly bound orbitals are analyzed and
the ground state properties of some spherical doubly magic nuclei are studied. The basis of the transformed
harmonic oscillator is a significant improvement over the harmonic oscillator basis, especially in studies of
exotic nuclei where the coupling to the particle continuum is impor{&0556-281®8)07610-9

PACS numbgs): 21.10.Pc, 21.60.Cs, 21.60.Jz, 71.15.Mb

[. INTRODUCTION the self-consistent one-body density matrix must be known,
and this is not always possible. Finally, the particle con-
Understanding the nature of exotic nuclei with extremetinuum can be discretized by placing the nucleus inside a
isospin values is one of the most exciting challenges of curvery large box. Since the properties of the nucleus itself must
rent nuclear structure physics. Thanks to developments inot depend on the box size, one has to subtract the contribu-
radioactive ion beam instrumentation, we are in the processon from the free-gas states that are introduicded-21]. The
of exploring the very limits of nuclear binding, namely the coordinate-space HFRL7,18,22,23and relativistic Hartree-
regions of the periodic chart in the neighborhood of the parBogoliubov(RHB) [24] methods are based on this principle.
ticle drip lines. Several new structural features arise in the One of the most important tools of nuclear structure phys-
description of nuclei near the drip lines. Firstly, such nucleiics is the harmonic oscillatgHO) potential. The simple ana-
exhibit very weak binding, which leads to extended spatialytic structure of HO wave functions greatly simplifies shell-
distributions. Secondly, the particle continuum plays a criti-model studie$25—-27. Since the HO wave functions form a
cal role in a description of the properties of these nucleicomplete discrete set, they typically serve as the single-
Unlike more stable nuclei closer to the valley of beta stabil-particle basis of choice in microscopic many-body calcula-
ity, a proper theoretical description of weakly bound systemgions. Another useful feature of HO states is that they are all
(such as halo nuclgrequires a very careful treatment of the spatially localized, so that the resulting densities and currents
asymptotic part of the nucleonic density. are localized as well. The disadvantage of HO wave func-
The correct treatment of the particle continuum and neartions is that, because of their Gaussian asymptotics, they
threshold (e.g., halg states poses a significant theoreticalcannot describe the falloff of nuclear density distributions
challenge. One possible way of tackling this problem is bynear the nuclear surface and beyond. To get the falloff cor-
means of the continuum shell mod@SM), in which the rect, it is essential to mix HO basis states. This is a serious
basis consists of both bound and unbound states, e.g., tigoblem when dealing with weakly bound nuclei, where the
eigenvectors of some finite shell-model potenfiat-8]. An  density distributions fall off very slowly and the bases re-
alternative approach is to discretize the continuum by meanguired are extremely large and thus very difficult to handle.
of Sturmian function expansions or resonant state exparHence, the HO basis is not particularly useful when dealing
sions. Sturmian functions form a discrete set of states whickvith weakly bound nuclei.
behave asymptotically as outgoing waves; they have been It is desirable, therefore, to have an alternative to HO
used as a basis in the solution of scattering equations, includvave functions for use in nuclear structure studies. Ideally,
ing various applications of the CSI2,9,10. The Gamow the new basis should preserve as many of the advantageous
(Berggren states are the eigenstates of the time-independeifiéatures of HO wave functions as possible, but, at the same
Schralinger equation with complex eigenvalugs1-13; time, it should have an improved asymptotic behavior. In this
they have been applied to many problems involving an unwork, we consider a new spherical single-particle basis, ob-
bound spectruni14—-1§. Another possibility is to employ tained through the application of a general local-scaling
the canonical Hartree-Fock-Bogoliub@WFB) basis of the point transformation to harmonic oscillator wave functions.
independent-quasiparticle Hamiltonigh7,18. The canoni- This approach was originally developed by Petkov and
cal states, i.e., the eigenstates of the one-body density matrigtoitsov, and is described in detail in RE28]. In this study,
form a complete localized basis with proper one-body aswe pay particular attention to the asymptotic form of the
ymptotics. Unfortunately, in order to find the canonical basisresulting transformed HO wave functions, developing the
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method so as to guarantee an appropriate exponential falloff. r 5 fh—
This makes the new basis especially useful in the description fo pr(u)usdu= fo p(u)usdu, %)
of weakly bound nuclear systems.

The paper is organized as follows. Section Il briefly re-\yhich can be solved subject to the boundary condition
views the method of Petkov and Stoitsov, and introduces th?(0)=0. Such an approach was pursued in a series of works

transformed HO basis. Stability tests of the new basis, whep29_3j] based on the energy density functional method. A

applied to weakly bound orbitals, are contained in Sec. Il Ine\jiew of the density functional theory based on the LST can
Sec. IV, we use the new basis in variational calculatlonsbe found in the monograpl82].

based on the density functional theory. Finally, Sec. V sum- |, the context of shell-model or mean-field applications,
marizes the principal conclusions of the work and spells oufne particularly interesting case is when the model function is

some issues for future consideration. a Slater determinant,
II. TRANSFORMED OSCILLATOR BASIS — 1 _
W(ry,ro, ... ra)=—==detiy(r;)], 6
A. Local-scale point transformations RERE A VAl il J)| ©

The I_<ey ingredient in _the construction of our new basis Shuilt from a complete set of model single-particle wave func-
a coordinate transformation based on the local-scale transfor-

mation method[28]. A local-scaling point transformation t0NS #i(r). Due to the unitarity of transformatioft), the
(LST) replaces the original coordinateby a new coordinate LST wave function retains the structure of a Slater determi-

r'=f(r)=rf(r). The new coordinate is in the same direction nant,

asr, but has a new magnitud€ =f(r), depending on a 1

scalar functionf(r) (ca]led the !_ST function It is assumed Vi(ry,fa, ... Fa)= — defy(r))], (7)
thatf(r) is an increasing function af andf(0)=0. The set VAl

of invertible transformations of this type forms a LST group. ) ) ) )

6(r1,r2, ... fa), the LST transforms it into a new wave

. f2(r) af ()]
function ¢i<r>={ 7 | ). 8)
sl S(0) af(ror’z e _
Wi(ry ..o =11 5 These functions, in the following referred to as the LST ba-
i=1 T ar; sis, form a complete set of single-particle states.
XW(f(ry),f(ra), ... f(ra). (1) B. Transformed harmonic oscillator basis
Assuming that the model wave function is normalized to Having in mind the numerous advantages of the HO basis,
unity, we choose for the model single-particle wave functions the
o eigenfunctions of a HO potential. Since in this work we con-
(V|¥)=1, 2) sider spherically symmetric systems only, the angular part of
the single-particle wave function is not affected by the LST
the LST wave functionV ((ry,ry, ... ra) will also be nor-  transformation. The radial HO wave functioR&\°(r) are
malized to unity, regardless of the choicefdf). characterized by one external parameter, namely the oscilla-
The local one-body density corresponding toAody  tor lengtha,s= VA/Mw. The LST basis associated with HO
wave function¥ is model wave functions will be referred to throughout the re-

mainder of this paper as the transformed harmonic oscillator
p(r)ZAI V(... r0)|2dry, ... dra. 3) (THO) basis. The states in this basis are given by (Bj.

f2(r) df(r)]*2

It then follows from Eq(1) that there exists a simple relation RN =|— —} RHO(f(r)). (9
between the local densitg:(r) associated with the LST r dr
function ¥ and the model local densify(r) corresponding Up to this point, the LST function has not been defined.
to the model functionV’: Ideally, we would like to parametriz&(r) in as simple a

5 manner as possible consistent with the requirement that it

)= fo(r) af(r) o(f(r)) 4) reproduces the generic features of the local dengjtyat
Pt 2 o P ' small and large distances Of course, the actual behavior of

p; is affected by nuclear shell effects. Therefore, we concen-
The relation(4) is particularly useful when the densipy(r) trate on the average behavior @f(r) only.
is known (or at least approximately knownGiven a model In the nuclear interior, the average local density varies
wave function, Eq(4) becomes a first-order nonlinear dif- yather weakly withr. Due to the effects of Coulomb repul-
ferential equation for the LST functioh For a spherically  sjon, the proton charge density is expected to exhibit a cen-
symmetric systemp;, p, andf depend only om=|r|, and tral depressio33]. Consequently, at low values of we
Eq. (4) can be reduced to the nonlinear algebraic equation assume the following ansatz:
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p(r)~po+cr?. (10 e

Equation(5) can then be cast into a fifth-order polynomial &
equation for the LST functiori(r) at smallr. To further é’
%
%
¢
]
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simplify the problem, we assume that the model derﬁt))
is constant in the inner region. In this limit, the LST function
assumes the simple form

R=7.11 fm
103F 19=229 Mev
&(25)=-13.6 MeV
e{3s)= -0.2 MeV
f(r)=r(a+br?)¥3 (11 BV Wovervoverveverovet NOR AU OVOTIONY ierresiree AT
0 10 20 30 40 50 60 70 80 10 20 30 40 50 60 70 80

wherea andb are parameters still to be determined. Nimax
For large values of, i.e., outside the nucleus, the average

LST density should decay exponentially. Hence FIG. 1. Deviation between approximate energies based on the

basis expansion method and exact energies of 2§, and 3

R—r states of the SQW Hamiltonian as a function of the number of HO
p(r)%p(R)exp< T) (12 quanta included in the basibl,.. The solid lines are the results

a obtained when expanding in a HO basis; the dotted lines are the

. o ) L results obtained using the THO basis. The radius of the well was
whereR is a characteristic LST radius that is significantly taken to beR,=7.11 fm. The different binding energies of the 3
greater than the nuclear radius aamds the LST diffuseness halo orbital, —200 keV (a) and —40 keV (b), were achieved by
parameter. In contrast, the model density based on HO statebanging the well depth.
exhibits a Gaussian asymptotic behavior. Using &g we

obtain an approximate expression fdr) at large distances, with the need for explicit treatment of few-body dynamics,

makes the subject of halos both extremely interesting and
" " difficult.

-2 -1 In this section, we apply the THO basis to weakly bound
f(r)= 27 T+d0+d Inr+dyr, (13 gingle-particle states to assess its potential usefulness in the
description of nuclei far from stability and, in particular, halo
nuclei. We focus on spherical single-particle states and as-
sume that they come from a finite square W8IQW) poten-
tial with radiusR, and depth—V,. We concentrate o’
=0 orbitals, since they are the best candidates for halos
[38,39.

whered_,, d_;, dg, d;, andd are parameters. Asymptoti-
cally, the linear term in the expansiqt3) takes over and
f(r—)~r*2 as it should.
The parameter$d_,,d_;,d;,dy,d} can be determined
fourth derhatives are continuous atthe paRIWe are then o MOre specifcally, we carry out a diagonalization of the
. ) P : SQW Hamiltonian within a truncated THO single-particle
left with only three independent parametgesb,R;} in the ) qis and compare the results that emerge with those of the
LST function f(r), which can be chosen to optimize the gyact SQW solutions. For the sake of comparison, we also
THO basis for the physics problem of interest. In practicalcarry out calculations in the analogous truncated HO basis.
calculations, we assume thatb=0, thereby ensuring that Al calculations are carried out for a fixed radiug,
f(r) is a monotonically increasing function of =7.11fm of the SQW potential and under the assumption
The ansatz11)—(13) for the LST function guarantees that that the most weakly bound=0 state is the 8. To simu-
all the THO stateg9) are spatially localized and decay ex- |ate scenarios with varying degrees of binding of trseo8-
ponentially at large distances. The THO functions are conyjtg| we vary the well depth. The parameters defining the
tinuous up to their fourth derivatives. The HO length is ab'basis, i.e., the oscillator length in the HO variant and the
sorbed into the coefficients andb, and does not appear as {a,b,R} parameters of the THO basis, have been chosen so
an additional parameter. It should be stressed here that thg 1o minimize the single-particle energy of thetgalo state.
parametrization off(r) assumed in our work reflects our For g given calculation in either the HO or THO basis, trun-
desire to keep it as simple and practical as possible. Alzation is defined to includall single-particle states belong-
though, as will be demonstrated in the following sectlons,ing to N<N,,, Oscillator shells.
this three-parameter form of the LST function performs very “tpne ability of the HO and THO basis expansions to re-
well in actual calculations, other choices are possible anghrogyce single-particle energies is illustrated in Fig. 1, which
could prove usefulor even essentiain other applications.  shows the deviation between approximate and exact energies
of the 1s, 2s, and 3 states as a function df,,,. The
Ill. APPLICATION OF THE THO BASIS energy of the 8 state was assumed in these calculations to
TO WEAKLY BOUND STATES be very low:—200 keV[Fig. 1(a)] and—40 keV[Fig. 1(b)].
As can be seen from the figure, the THO basis offers a sys-
On the neutron-rich side of the valley of stability, there tematic improvement over the traditional HO expansion. As
appear loosely bound few-body systems called neutron halan exampleN,,—=20 THO shells are sufficient to reproduce
nuclei (see Refs[34—37 for reviews. In these nuclei, weak the energy of the 8 halo state with an accuracy of 50—60
neutron binding implies large spatial dimensions and the exkeV, wheread\,,,,~30 is required with the HO basis. For
istence of the halgi.e., a dramatic excess of neutrons atthe well-bound & and Z states, there is also an improve-
large distances Theoretically, the weak binding and the cor- ment when using the THO basi§he lowN . fluctuations
responding proximity to the particle continuum, togetherseen in the & and X curves reflect the fact that the basis
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FIG. 2. Exact(dotg and approximatélines) wave functions of
the 3 halo state ae= —200 keV as a function of. The approxi- FIG. 4. Same as in Fig. 2, but for the wave functions of the
mate wave functions were obtained by means of the basis expansid¥ell-bound Is state ate= —22.4 MeV.

method(HO, left panel; THO, right pangin N,,=12, 20, 30, and ) o ) . .
40 HO (THO) shells. From this we see that the radial information contained in HO

wave functions varies quite slowly with the principal quan-

was optimized to the energy of thes Bialo state, so that the tym number. To build up the largedependence in a radial
resulting radial asymptotics is not appropriate for the morgyave function, we must include HO states of very high prin-
deeply bound orbitals. cipal quantum numbers. In contrast, the THO basis has no

Figures 2—4 compare the exact and approximate wavgych restriction on the radial content of its wave functions
functions. It is gratlfylng to see that even with a relatively and convergence can be achieved much more rap|d|y
low number of THO She”S, the structure of the 8rbital Another rather extreme examp|e is shown in F|g 5. Here,
(Figs. 2 and Bis well reproduced out to 15-18 fm, and the we consider the single-particle wave function ofsistate at
agreement with the exact eigenvector becomes excellent fegf= — 14 kev. The SQW wave function has a very large spa-
Nmax=30. Again, as for the single-particle energies, onetial extension. In this case, instead of performing the full
needs at least 30 HO shells to obtain results of comparablgasis expansion, theptimizedsingle-particle  HO and
quality out to 15-18 fm. For well-bound states, such as therHO wave functions were obtained by maximizing their re-
1s state at—22.4 MeV shown in Fig. 4, both expansions spective overlaps with the exact solutiéh this way one is
work equally well: 20 HO or THO shells are sufficient to testing the ability of unperturbed basis states to reproduce the
reproduce the exact result in the physically interesting reexact wave functions of weakly bound staleShe corre-
gion. sponding wave functions are plotted in Fig. 5. The THO

It is instructive to discuss why so many HO shells arewaye function has a squared overlap with the exact SQW
required to reproduce a wave function out to a very largesolution of |(SQWTHO)|?=0.994, whereas the HO wave
distance. In the HO approximation, the classical radius of amynction has a much lower squared overlap of
orbit with principal quantum numbe and orbital quantum  |(SQWHO)|?=0.877. Clearly, the THO basis with the LST
number/=0 is given by[40]

5 T T T T T
I o1~ aoscV 2N. (14 o
P 1s "halo” state, e,_=-14 keV
F T T T IE T T T E a4t : HO — J
o | | 4 3s 1 |4 ] o
r e= 40 keV
o R=7.11fm = T 3 0 .
10% L - P
F @ 20
< 2 " .
-0
-70
-80
-0
104 - 1 ; 7
0 ] 1 LTt
UL ’ J 0 50 100 150 200 250 300
105 Lo .|....|.‘..|....\'| NIPEEFEE | N RPN BN r(fm)
0 5 10 15 0 5 10 15
r (fm) FIG. 5. The wave function of a sl SQW eigenstate ae

=—14keV (SQW, solid ling. The HO (dotted ling and THO
FIG. 3. Same as in Fig. 2, but for the wave functions of tke 3 (dashed ling 1s wave functions were determined by maximizing
halo state ae=—40keV and forN,,,,=12, 20, 30, and 60 HO their overlap with the SQW state. The asymptotic behafiiologa-
(THO) shells. rithmic scalg is shown in the insert.
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TABLE I. Total binding energies and neutron and proton rms radii obtained using HO and THO Slater
determinants and from self-consistent HF calculations for the spherical doubly magic ¥iagléiCa, and

208pp,
160 4OCa 208Pb
HO  THO  HF HO  THO  HF HO THO HF
E (MeV) —1259 —-126.2 —127.6 —339.1 —340.9 —343.3 —1565.5 —1621.8 —1636.5
<rp>rms (fm) 2.73 2.73 2.73 3.46 3.45 3.45 5.49 5.47 5.47
{1 n)ms (FM) 2.71 2.71 2.70 3.42 3.40 3.40 5.64 5.61 5.61

function (11)—(13) is much better able to reproduce the tail approximation. The effective interaction used in these calcu-
of a halo wave function than the HO basis. lations was the Skyrme force SKB7].
In the HO variational analysis, the energy functional of
the SkP Hamiltonian was minimized with respect to two pa-
IV. VARIATIONAL CALCULATIONS rameters, the proton and neutron harmonic-oscillator lengths.
WITH SKYRME FORCES In the THO analysis, the energy minimization involved the

In this section, we test whether Slater determinants buil b parameters that define the LST functions for neutrons

up in terms of the single-particle HO and THO wave func-2n-Pn Rn} and protonda, by, R,}. The calculations were
, , arried out for three spherical doubly magic nuclO,
tions are able to reproduce the results of full self-consisteni 20!

. ; X Ca, and“"*Pb.
HF calculations. We follow the energy density functional

Table | contains the results for ground-state binding ener-
approacl"[29,32,41, whereby the total HF. energy, taken as gies and proton and neutron rms radii. As expected, the bind-
an expectation value of the nuclear Hamiltonian over a trial

i - ng energies based on THO Slater determinants are lower
Slater determinant, involves a sum of the Skyrme and CoUghan those based on the HO. The HF binding energies are of

lomb energies. As usual, the Skyrme energy density is excourse lower than those based on either the HO or THO
pressed in terms of local nucleon densities, kinetic energg|ater determinants because of the self-consistent nature of
densities, and spin-orbit densities, all defined in terms of theyF calculationsthe HF state is the optimal Slater determi-
variational single-particle states. The Coulomb energy dennant for a given Hamiltonian In all cases considered, the
sity, which depends on the local proton density, containsSTHO binding energies are within 1.1% of the HF results,
both direct and exchange terms, the latter taken in the Slatevhile the HO results deviate up to 5% for heavy nuclei. For

TABLE Il. Spherical single-neutron energiés MeV) obtained using HO and THO Slater determinants
and from self-consistent HF calculations for the spherical doubly magic nt¥&ei*°Ca, and?°%Pb.

160 40cg 208p,

nlj HO THO HF HO THO HF HO THO HF
1Sy, -290 —-29.2 -290 —-364 —-371 —-374 —371 -390 —400
1p3p -179 —-179 -183 —-29.0 -291 -289 —348 -356 —36.4
1Py -135 —13.6 —136 —255 —255 —258 —333 -351 —358
1dg, -196 —196 —19.7 -31.3 -31.6 -—31.9
281/ -149 -155 -—164 -287 —29.8 —29.2
1da), -145 —145 —144 -290 —304 —30.6
1f7 -267 —26.7 —26.9
2Py —-232 —238 —233
1fgp —-235 —245 —245
2Py -21.7 -—227 -—-224
199s -211 -211 —-213
2dsp, -171 -175 -17.2
197 -17.0 —-17.6 —17.6
3s12 -150 -158 -—155
2d3; -146 —155 —156
1hyyp -148 -150 -—15.3
2t -11.0 -11.3 -10.9
1hgp, -97 -100 -101
liqgp —-8.0 -85 —-8.8
3P -9.0 -95 -8.9
25 -7.8 -85 -8.6

3pupn -77 -84  -81
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neutron and proton rms radii, the THO results agree ven
well with the self-consistent HF values, whereas the HO re: ¢t Iﬂ. 0.08} @.
sults systematically overestimate them.

Table Il compares the neutron single-particle energies the ~ 0.06p+"
resulted from the restricted HO and THO variational calcu-
lations with those from the self-consistent HF calculations.%
The restricted calculations give a rather good approximatiol
to the self-consistent single-particle energies. In general, th
best agreement is obtained for the highstates where the 0.00
tail of the wave function plays little role. The largest devia-
tions are seen fog and p states. 0.2} 042}

Finally, the neutron and proton density distributions re- 4ok
sulting from the various calculations are compared in Fig. 6
There is excellent agreement between the THO and sel+
consistent HF densities in the surface region. In contrast, th<
incorrect asymptotic behavior of HO wave functions leads tc 004}
significant deviation§42]. The THO densities differ most 0.02}
significantly from the HF results at small valuesrofHow- 0.00
ever, since the densities are weighted Byn calculations of
expectation values, the main contribution to global nuclea o012}
characteristics such as energies and rms radii comes fromtl 4l
surface region. )

%0, SkP
0.06 [

0.041 0.041

0.021 0.021
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o.08f

006 o
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V. SUMMARY AND CONCLUSIONS

0.041 0.041

In this paper, we have explored a new class of single
particle basis states obtained by a local-scale point transfo .
mation(LST) of harmonic oscillator states. We focused spe- 90— 3% s+ o550 *o 3 5 st ¢ 5 5 o0
cial attention on the asymptotic properties of these state r (im) r (fm)

(called THO states to see whether they might be useful in
the description of weakly bound nuclear systems, including FIG. 6. Local one body densities f6fO, **Ca, and**Pb cal-
those with a halo structure. culated in the self-consistent HF approagolid line) compared

Following a comprehensive summary of the LST formaI-W,ith those obtgined in restricted.variation.al calculations using as
ism and its use in building the THO basis, we discussed twd 1 Wave functions Slater determinants built from ki@btted ling
applications of this new basis. The first concerned the de2"d THO(dashed lingsingle-particle orbitals. All calculations uti-
scription of subthreshold¢halo) states. We showed that the lized the same SkP effective interaction.

THO basis is greatly superior to the usual HO basis in repro-

ducing the properties of such weakly bound states. We thegolution of the single-particle Schiimger equation.

discussed the use of this basis in restricted HF calculations. Another interesting avenue for future exploration con-
Once again, the clear superiority of the THO basis to thecerns the use of the THO basis in HFB or RHB calculations
ordinary HO basis was demonstrated, even for normal wellof weakly bound nuclei where other traditional methods
bound nuclei. Most importantly, the optimal THO basis that(e.g., HF+BCS) cannot be usefll7,18. The fact that with a
emerged from the restricted HF calculations provided an exrather modest number of basis THO states one can reproduce
cellent reproduction of nuclear surface properties. the properties of spatially extended states suggests that the

The analysis presented in this paper should be viewed asteaditional method of solving the HFB equations, based on
starting point for future investigations. One potentially inter- basis expansion, can be revitalized by using the THO basis.
esting application of the THO basis is in the context of This way of solving the HFB problertboth in the spherical
nuclear shell-model studies. The fact that the THO basis exand deformed casgsan be an interesting alternative to al-
pansion technique and the THO variational procedure accugorithms based on coordinate-space mett@@s-24.
rately reproduce nuclear properties in the surface region sug- Finally, the THO states that arise variationally can be
gests that the new basis can be very useful when studyingsed as approximations to the self-consistent canonical states
those nuclear properties that depend on the asymptotic bef HFB. Recently, the variational method based on the en-
havior of the radial form-factor, and also for microscopic ergy density formalism was generalized to the HFB case
calculations of the effective interactions for weakly bound[44]. In that work, the authors employed the basis proposed
systemg43]. Some of the simplicity inherent in the use of by Ginocchio[45] in the description of semimagic nuclei.
HO wave functions in such studies will be lost, however.Despite the successes achieved in those calculations and in
Calculations of G-matrix elements, for example, benefitearlier restricted HF calculations for doubly magic nuclei
greatly from the ease of transforming harmonic oscillator[46], there are several features of the Ginocchio potential that
product wave functions into relative and center-of-mass comake its more detailed use problematical. First, since the
ordinates, and this would be lost in the THO basis. On theentrifugal term in the Ginocchio potential is not treated
other hand, it should be still much easier to carry out calcuproperly, the resulting wave functions witfi>0 do not have
lations in this basis than in a basis generated by numericairoper asymptotic behavior. Second, since the Ginocchio po-

0.02¢

0.021
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tential is finite, its bound eigenvectors do not form a closedBulgarian National Foundation for Scientific Research under
set, and the use of the continuum wave functions is necessaGontract No.®-527, the U.S. Department of Energy under
(see recent Ref47]). In this context, the discrete THO basis Contract Nos. DE-FG02-96ER4096Bniversity of Tennes-
would appear to be more useful. sed, DE-FG05-87ER40361Joint Institute for Heavy lon
Research)y DE-AC05-960R22464 with Lockheed Martin
Energy Research CorgOak Ridge National Laboratory
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