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A complete discrete set of spherical single-particle wave functions for studies of weakly bound many-body
systems is proposed. The new basis is obtained by means of a local-scale point transformation of the spherical
harmonic oscillator wave functions. Unlike the harmonic oscillator states, the new wave functions decay
exponentially at large distances. Using the new basis, characteristics of weakly bound orbitals are analyzed and
the ground state properties of some spherical doubly magic nuclei are studied. The basis of the transformed
harmonic oscillator is a significant improvement over the harmonic oscillator basis, especially in studies of
exotic nuclei where the coupling to the particle continuum is important.@S0556-2813~98!07610-9#

PACS number~s!: 21.10.Pc, 21.60.Cs, 21.60.Jz, 71.15.Mb
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I. INTRODUCTION

Understanding the nature of exotic nuclei with extrem
isospin values is one of the most exciting challenges of c
rent nuclear structure physics. Thanks to development
radioactive ion beam instrumentation, we are in the proc
of exploring the very limits of nuclear binding, namely th
regions of the periodic chart in the neighborhood of the p
ticle drip lines. Several new structural features arise in
description of nuclei near the drip lines. Firstly, such nuc
exhibit very weak binding, which leads to extended spa
distributions. Secondly, the particle continuum plays a cr
cal role in a description of the properties of these nuc
Unlike more stable nuclei closer to the valley of beta sta
ity, a proper theoretical description of weakly bound syste
~such as halo nuclei! requires a very careful treatment of th
asymptotic part of the nucleonic density.

The correct treatment of the particle continuum and ne
threshold ~e.g., halo! states poses a significant theoretic
challenge. One possible way of tackling this problem is
means of the continuum shell model~CSM!, in which the
basis consists of both bound and unbound states, e.g.
eigenvectors of some finite shell-model potential@1–8#. An
alternative approach is to discretize the continuum by me
of Sturmian function expansions or resonant state exp
sions. Sturmian functions form a discrete set of states wh
behave asymptotically as outgoing waves; they have b
used as a basis in the solution of scattering equations, inc
ing various applications of the CSM@2,9,10#. The Gamow
~Berggren! states are the eigenstates of the time-indepen
Schrödinger equation with complex eigenvalues@11–13#;
they have been applied to many problems involving an
bound spectrum@14–16#. Another possibility is to employ
the canonical Hartree-Fock-Bogoliubov~HFB! basis of the
independent-quasiparticle Hamiltonian@17,18#. The canoni-
cal states, i.e., the eigenstates of the one-body density ma
form a complete localized basis with proper one-body
ymptotics. Unfortunately, in order to find the canonical bas
PRC 580556-2813/98/58~4!/2092~7!/$15.00
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the self-consistent one-body density matrix must be kno
and this is not always possible. Finally, the particle co
tinuum can be discretized by placing the nucleus insid
very large box. Since the properties of the nucleus itself m
not depend on the box size, one has to subtract the contr
tion from the free-gas states that are introduced@19–21#. The
coordinate-space HFB@17,18,22,23# and relativistic Hartree-
Bogoliubov~RHB! @24# methods are based on this principl

One of the most important tools of nuclear structure ph
ics is the harmonic oscillator~HO! potential. The simple ana
lytic structure of HO wave functions greatly simplifies she
model studies@25–27#. Since the HO wave functions form
complete discrete set, they typically serve as the single
particle basis of choice in microscopic many-body calcu
tions. Another useful feature of HO states is that they are
spatially localized, so that the resulting densities and curre
are localized as well. The disadvantage of HO wave fu
tions is that, because of their Gaussian asymptotics, t
cannot describe the falloff of nuclear density distributio
near the nuclear surface and beyond. To get the falloff c
rect, it is essential to mix HO basis states. This is a seri
problem when dealing with weakly bound nuclei, where t
density distributions fall off very slowly and the bases r
quired are extremely large and thus very difficult to hand
Hence, the HO basis is not particularly useful when deal
with weakly bound nuclei.

It is desirable, therefore, to have an alternative to H
wave functions for use in nuclear structure studies. Idea
the new basis should preserve as many of the advantag
features of HO wave functions as possible, but, at the sa
time, it should have an improved asymptotic behavior. In t
work, we consider a new spherical single-particle basis,
tained through the application of a general local-scal
point transformation to harmonic oscillator wave function
This approach was originally developed by Petkov a
Stoitsov, and is described in detail in Ref.@28#. In this study,
we pay particular attention to the asymptotic form of t
resulting transformed HO wave functions, developing t
2092 © 1998 The American Physical Society
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PRC 58 2093NEW DISCRETE BASIS FOR NUCLEAR STRUCTURE STUDIES
method so as to guarantee an appropriate exponential fa
This makes the new basis especially useful in the descrip
of weakly bound nuclear systems.

The paper is organized as follows. Section II briefly r
views the method of Petkov and Stoitsov, and introduces
transformed HO basis. Stability tests of the new basis, w
applied to weakly bound orbitals, are contained in Sec. III
Sec. IV, we use the new basis in variational calculatio
based on the density functional theory. Finally, Sec. V su
marizes the principal conclusions of the work and spells
some issues for future consideration.

II. TRANSFORMED OSCILLATOR BASIS

A. Local-scale point transformations

The key ingredient in the construction of our new basis
a coordinate transformation based on the local-scale tran
mation method@28#. A local-scaling point transformation
~LST! replaces the original coordinater by a new coordinate
r 85f(r )[ r̂ f (r ). The new coordinate is in the same directi
as r , but has a new magnituder 85 f (r ), depending on a
scalar functionf (r ) ~called the LST function!. It is assumed
that f (r ) is an increasing function ofr and f (0)50. The set
of invertible transformations of this type forms a LST grou

Given a model A-particle wave function

C̄(r1 ,r2 , . . . ,rA), the LST transforms it into a new wav
function

C f~r1 ,r2 , . . . ,rA!5F)
i 51

A f 2~r i !

r i
2

] f ~r i !

]r i
G 1/2

3C̄„f~r1!,f~r2!, . . . ,f~rA!…. ~1!

Assuming that the model wave function is normalized
unity,

^C̄uC̄&51, ~2!

the LST wave functionC f(r1 ,r2 , . . . ,rA) will also be nor-
malized to unity, regardless of the choice off (r ).

The local one-body density corresponding to anA-body
wave functionC is

r~r !5AE uC~r ,r2 , . . . ,rA!u2dr2 , . . . ,drA . ~3!

It then follows from Eq.~1! that there exists a simple relatio
between the local densityr f(r ) associated with the LST
functionC f and the model local densityr̄(r ) corresponding
to the model functionC̄:

r f~r !5
f 2~r !

r 2

] f ~r !

]r
r̄„f~r !…. ~4!

The relation~4! is particularly useful when the densityr f(r )
is known ~or at least approximately known!. Given a model
wave function, Eq.~4! becomes a first-order nonlinear di
ferential equation for the LST functionf . For a spherically
symmetric system,r f , r̄, and f depend only onr 5ur u, and
Eq. ~4! can be reduced to the nonlinear algebraic equatio
ff.
n
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r

r f~u!u2du5E
0

f ~r !

r̄~u!u2du, ~5!

which can be solved subject to the boundary condit
f (0)50. Such an approach was pursued in a series of wo
@29–31# based on the energy density functional method.
review of the density functional theory based on the LST c
be found in the monograph@32#.

In the context of shell-model or mean-field application
the particularly interesting case is when the model function
a Slater determinant,

C̄~r1 ,r2 , . . . ,rA!5
1

AA!
detuc̄ i~r j !u, ~6!

built from a complete set of model single-particle wave fun
tions c̄ i(r ). Due to the unitarity of transformation~1!, the
LST wave function retains the structure of a Slater deter
nant,

C f~r1 ,r2 , . . . ,rA!5
1

AA!
detuc i~r j !u, ~7!

but with new single-particle wave functions

c i~r !5F f 2~r !

r 2

] f ~r !

]r
G1/2

c̄ i„f~r !…. ~8!

These functions, in the following referred to as the LST b
sis, form a complete set of single-particle states.

B. Transformed harmonic oscillator basis

Having in mind the numerous advantages of the HO ba
we choose for the model single-particle wave functions
eigenfunctions of a HO potential. Since in this work we co
sider spherically symmetric systems only, the angular par
the single-particle wave function is not affected by the LS
transformation. The radial HO wave functionsRnl

HO(r ) are
characterized by one external parameter, namely the osc
tor lengthaosc5A\/Mv. The LST basis associated with HO
model wave functions will be referred to throughout the
mainder of this paper as the transformed harmonic oscilla
~THO! basis. The states in this basis are given by Eq.~8!:

Rnl
THO~r !5F f 2~r !

r 2

d f~r !

dr
G1/2

Rnl
HO

„f ~r !…. ~9!

Up to this point, the LST function has not been define
Ideally, we would like to parametrizef (r ) in as simple a
manner as possible consistent with the requirement tha
reproduces the generic features of the local densityr f at
small and large distancesr . Of course, the actual behavior o
r f is affected by nuclear shell effects. Therefore, we conc
trate on the average behavior ofr f(r ) only.

In the nuclear interior, the average local density var
rather weakly withr . Due to the effects of Coulomb repu
sion, the proton charge density is expected to exhibit a c
tral depression@33#. Consequently, at low values ofr , we
assume the following ansatz:
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r~r !'r01cr2. ~10!

Equation~5! can then be cast into a fifth-order polynomi
equation for the LST functionf (r ) at small r . To further
simplify the problem, we assume that the model densityr̄(r )
is constant in the inner region. In this limit, the LST functio
assumes the simple form

f ~r !5r ~a1br2!1/3, ~11!

wherea andb are parameters still to be determined.
For large values ofr , i.e., outside the nucleus, the avera

LST density should decay exponentially. Hence,

r~r !'r~R!expS R2r

ã
D , ~12!

whereR is a characteristic LST radius that is significan
greater than the nuclear radius andã is the LST diffuseness
parameter. In contrast, the model density based on HO s
exhibits a Gaussian asymptotic behavior. Using Eq.~5!, we
obtain an approximate expression forf (r ) at large distances

f ~r !5Ad22

r 2 1
d21

r
1d01d ln r 1d1r , ~13!

whered22 , d21 , d0 , d1 , andd are parameters. Asymptot
cally, the linear term in the expansion~13! takes over and
f (r→`);r 1/2, as it should.

The parameters$d22 ,d21 ,d1 ,d0 ,d% can be determined
by the requirement thatf (r ) and its first, second, third, an
fourth derivatives are continuous at the pointR. We are then
left with only three independent parameters$a,b,R% in the
LST function f (r ), which can be chosen to optimize th
THO basis for the physics problem of interest. In practi
calculations, we assume thata,b>0, thereby ensuring tha
f (r ) is a monotonically increasing function ofr .

The ansatz~11!–~13! for the LST function guarantees tha
all the THO states~9! are spatially localized and decay e
ponentially at large distances. The THO functions are c
tinuous up to their fourth derivatives. The HO length is a
sorbed into the coefficientsa andb, and does not appear a
an additional parameter. It should be stressed here tha
parametrization off (r ) assumed in our work reflects ou
desire to keep it as simple and practical as possible.
though, as will be demonstrated in the following sectio
this three-parameter form of the LST function performs ve
well in actual calculations, other choices are possible
could prove useful~or even essential! in other applications.

III. APPLICATION OF THE THO BASIS
TO WEAKLY BOUND STATES

On the neutron-rich side of the valley of stability, the
appear loosely bound few-body systems called neutron
nuclei ~see Refs.@34–37# for reviews!. In these nuclei, weak
neutron binding implies large spatial dimensions and the
istence of the halo~i.e., a dramatic excess of neutrons
large distances!. Theoretically, the weak binding and the co
responding proximity to the particle continuum, togeth
tes
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with the need for explicit treatment of few-body dynamic
makes the subject of halos both extremely interesting
difficult.

In this section, we apply the THO basis to weakly bou
single-particle states to assess its potential usefulness in
description of nuclei far from stability and, in particular, ha
nuclei. We focus on spherical single-particle states and
sume that they come from a finite square well~SQW! poten-
tial with radiusR0 and depth2V0 . We concentrate onl
50 orbitals, since they are the best candidates for ha
@38,39#.

More specifically, we carry out a diagonalization of th
SQW Hamiltonian within a truncated THO single-partic
basis and compare the results that emerge with those o
exact SQW solutions. For the sake of comparison, we a
carry out calculations in the analogous truncated HO ba
All calculations are carried out for a fixed radiusR0
57.11 fm of the SQW potential and under the assumpt
that the most weakly boundl 50 state is the 3s. To simu-
late scenarios with varying degrees of binding of the 3s or-
bital, we vary the well depth. The parameters defining
basis, i.e., the oscillator length in the HO variant and
$a,b,R% parameters of the THO basis, have been chosen
as to minimize the single-particle energy of the 3s halo state.
For a given calculation in either the HO or THO basis, tru
cation is defined to includeall single-particle states belong
ing to N<Nmax oscillator shells.

The ability of the HO and THO basis expansions to
produce single-particle energies is illustrated in Fig. 1, wh
shows the deviation between approximate and exact ene
of the 1s, 2s, and 3s states as a function ofNmax. The
energy of the 3s state was assumed in these calculations
be very low:2200 keV@Fig. 1~a!# and240 keV @Fig. 1~b!#.
As can be seen from the figure, the THO basis offers a s
tematic improvement over the traditional HO expansion.
an example,Nmax520 THO shells are sufficient to reproduc
the energy of the 3s halo state with an accuracy of 50–6
keV, whereasNmax'30 is required with the HO basis. Fo
the well-bound 1s and 2s states, there is also an improve
ment when using the THO basis.~The low-Nmax fluctuations
seen in the 1s and 2s curves reflect the fact that the bas

FIG. 1. Deviation between approximate energies based on
basis expansion method and exact energies of the 1s, 2s, and 3s
states of the SQW Hamiltonian as a function of the number of
quanta included in the basis,Nmax. The solid lines are the result
obtained when expanding in a HO basis; the dotted lines are
results obtained using the THO basis. The radius of the well w
taken to beR057.11 fm. The different binding energies of the 3s
halo orbital, 2200 keV ~a! and 240 keV ~b!, were achieved by
changing the well depth.
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was optimized to the energy of the 3s halo state, so that the
resulting radial asymptotics is not appropriate for the m
deeply bound orbitals.!

Figures 2–4 compare the exact and approximate w
functions. It is gratifying to see that even with a relative
low number of THO shells, the structure of the 3s orbital
~Figs. 2 and 3! is well reproduced out to 15–18 fm, and th
agreement with the exact eigenvector becomes excellen
Nmax530. Again, as for the single-particle energies, o
needs at least 30 HO shells to obtain results of compar
quality out to 15–18 fm. For well-bound states, such as
1s state at222.4 MeV shown in Fig. 4, both expansion
work equally well: 20 HO or THO shells are sufficient
reproduce the exact result in the physically interesting
gion.

It is instructive to discuss why so many HO shells a
required to reproduce a wave function out to a very la
distance. In the HO approximation, the classical radius o
orbit with principal quantum numberN and orbital quantum
numberl 50 is given by@40#

r cl'aoscA2N. ~14!

FIG. 2. Exact~dots! and approximate~lines! wave functions of
the 3s halo state ate52200 keV as a function ofr . The approxi-
mate wave functions were obtained by means of the basis expan
method~HO, left panel; THO, right panel! in Nmax512, 20, 30, and
40 HO ~THO! shells.

FIG. 3. Same as in Fig. 2, but for the wave functions of thes
halo state ate5240 keV and forNmax512, 20, 30, and 60 HO
~THO! shells.
e

e

or
e
le
e

-

e
n

From this we see that the radial information contained in H
wave functions varies quite slowly with the principal qua
tum number. To build up the large-r dependence in a radia
wave function, we must include HO states of very high pr
cipal quantum numbers. In contrast, the THO basis has
such restriction on the radial content of its wave functio
and convergence can be achieved much more rapidly.

Another rather extreme example is shown in Fig. 5. He
we consider the single-particle wave function of a 1s state at
e5214 keV. The SQW wave function has a very large sp
tial extension. In this case, instead of performing the f
basis expansion, theoptimizedsingle-particle 1s HO and
THO wave functions were obtained by maximizing their r
spective overlaps with the exact solution.~In this way one is
testing the ability of unperturbed basis states to reproduce
exact wave functions of weakly bound states.! The corre-
sponding wave functions are plotted in Fig. 5. The TH
wave function has a squared overlap with the exact SQ
solution of u^SQWuTHO&u250.994, whereas the HO wav
function has a much lower squared overlap
u^SQWuHO&u250.877. Clearly, the THO basis with the LS

ion

FIG. 4. Same as in Fig. 2, but for the wave functions of t
well-bound 1s state ate5222.4 MeV.

FIG. 5. The wave function of a 1s SQW eigenstate ate
5214 keV ~SQW, solid line!. The HO ~dotted line! and THO
~dashed line! 1s wave functions were determined by maximizin
their overlap with the SQW state. The asymptotic behavior~in loga-
rithmic scale! is shown in the insert.
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TABLE I. Total binding energies and neutron and proton rms radii obtained using HO and THO S
determinants and from self-consistent HF calculations for the spherical doubly magic nuclei16O, 40Ca, and
208Pb.

16O 40Ca 208Pb
HO THO HF HO THO HF HO THO HF

E ~MeV! 2125.9 2126.2 2127.6 2339.1 2340.9 2343.3 21565.5 21621.8 21636.5
^r p& rms ~fm! 2.73 2.73 2.73 3.46 3.45 3.45 5.49 5.47 5.47
^r n& rms ~fm! 2.71 2.71 2.70 3.42 3.40 3.40 5.64 5.61 5.61
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function ~11!–~13! is much better able to reproduce the t
of a halo wave function than the HO basis.

IV. VARIATIONAL CALCULATIONS
WITH SKYRME FORCES

In this section, we test whether Slater determinants b
up in terms of the single-particle HO and THO wave fun
tions are able to reproduce the results of full self-consis
HF calculations. We follow the energy density function
approach@29,32,41#, whereby the total HF energy, taken
an expectation value of the nuclear Hamiltonian over a t
Slater determinant, involves a sum of the Skyrme and C
lomb energies. As usual, the Skyrme energy density is
pressed in terms of local nucleon densities, kinetic ene
densities, and spin-orbit densities, all defined in terms of
variational single-particle states. The Coulomb energy d
sity, which depends on the local proton density, conta
both direct and exchange terms, the latter taken in the S
ilt
-
nt
l

l
u-
x-
y
e

n-
s
ter

approximation. The effective interaction used in these cal
lations was the Skyrme force SkP@17#.

In the HO variational analysis, the energy functional
the SkP Hamiltonian was minimized with respect to two p
rameters, the proton and neutron harmonic-oscillator leng
In the THO analysis, the energy minimization involved t
six parameters that define the LST functions for neutro
$an ,bn ,Rn% and protons$ap ,bp ,Rp%. The calculations were
carried out for three spherical doubly magic nuclei,16O,
40Ca, and208Pb.

Table I contains the results for ground-state binding en
gies and proton and neutron rms radii. As expected, the b
ing energies based on THO Slater determinants are lo
than those based on the HO. The HF binding energies ar
course lower than those based on either the HO or T
Slater determinants because of the self-consistent natur
HF calculations~the HF state is the optimal Slater determ
nant for a given Hamiltonian!. In all cases considered, th
THO binding energies are within 1.1% of the HF resul
while the HO results deviate up to 5% for heavy nuclei. F
ts
TABLE II. Spherical single-neutron energies~in MeV! obtained using HO and THO Slater determinan
and from self-consistent HF calculations for the spherical doubly magic nuclei16O, 40Ca, and208Pb.

16O 40Ca 208Pb
nl j HO THO HF HO THO HF HO THO HF

1s1/2 229.0 229.2 229.0 236.4 237.1 237.4 237.1 239.0 240.0
1p3/2 217.9 217.9 218.3 229.0 229.1 228.9 234.8 235.6 236.4
1p1/2 213.5 213.6 213.6 225.5 225.5 225.8 233.3 235.1 235.8
1d5/2 219.6 219.6 219.7 231.3 231.6 231.9
2s1/2 214.9 215.5 216.4 228.7 229.8 229.2
1d3/2 214.5 214.5 214.4 229.0 230.4 230.6
1 f 7/2 226.7 226.7 226.9
2p3/2 223.2 223.8 223.3
1 f 5/2 223.5 224.5 224.5
2p1/2 221.7 222.7 222.4
1g9/2 221.1 221.1 221.3
2d5/2 217.1 217.5 217.2
1g7/2 217.0 217.6 217.6
3s1/2 215.0 215.8 215.5
2d3/2 214.6 215.5 215.6
1h11/2 214.8 215.0 215.3
2 f 7/2 211.0 211.3 210.9
1h9/2 29.7 210.0 210.1
1i 13/2 28.0 28.5 28.8
3p3/2 29.0 29.5 28.9
2 f 5/2 27.8 28.5 28.6
3p1/2 27.7 28.4 28.1
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PRC 58 2097NEW DISCRETE BASIS FOR NUCLEAR STRUCTURE STUDIES
neutron and proton rms radii, the THO results agree v
well with the self-consistent HF values, whereas the HO
sults systematically overestimate them.

Table II compares the neutron single-particle energies
resulted from the restricted HO and THO variational calc
lations with those from the self-consistent HF calculatio
The restricted calculations give a rather good approxima
to the self-consistent single-particle energies. In general,
best agreement is obtained for the high-l states where the
tail of the wave function plays little role. The largest devi
tions are seen fors andp states.

Finally, the neutron and proton density distributions
sulting from the various calculations are compared in Fig
There is excellent agreement between the THO and s
consistent HF densities in the surface region. In contrast,
incorrect asymptotic behavior of HO wave functions leads
significant deviations@42#. The THO densities differ mos
significantly from the HF results at small values ofr . How-
ever, since the densities are weighted byr 2 in calculations of
expectation values, the main contribution to global nucl
characteristics such as energies and rms radii comes from
surface region.

V. SUMMARY AND CONCLUSIONS

In this paper, we have explored a new class of sing
particle basis states obtained by a local-scale point trans
mation~LST! of harmonic oscillator states. We focused sp
cial attention on the asymptotic properties of these sta
~called THO states!, to see whether they might be useful
the description of weakly bound nuclear systems, includ
those with a halo structure.

Following a comprehensive summary of the LST form
ism and its use in building the THO basis, we discussed
applications of this new basis. The first concerned the
scription of subthreshold~halo! states. We showed that th
THO basis is greatly superior to the usual HO basis in rep
ducing the properties of such weakly bound states. We t
discussed the use of this basis in restricted HF calculati
Once again, the clear superiority of the THO basis to
ordinary HO basis was demonstrated, even for normal w
bound nuclei. Most importantly, the optimal THO basis th
emerged from the restricted HF calculations provided an
cellent reproduction of nuclear surface properties.

The analysis presented in this paper should be viewed
starting point for future investigations. One potentially inte
esting application of the THO basis is in the context
nuclear shell-model studies. The fact that the THO basis
pansion technique and the THO variational procedure ac
rately reproduce nuclear properties in the surface region
gests that the new basis can be very useful when stud
those nuclear properties that depend on the asymptotic
havior of the radial form-factor, and also for microscop
calculations of the effective interactions for weakly bou
systems@43#. Some of the simplicity inherent in the use
HO wave functions in such studies will be lost, howev
Calculations of G-matrix elements, for example, ben
greatly from the ease of transforming harmonic oscilla
product wave functions into relative and center-of-mass
ordinates, and this would be lost in the THO basis. On
other hand, it should be still much easier to carry out cal
lations in this basis than in a basis generated by nume
y
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solution of the single-particle Schro¨dinger equation.
Another interesting avenue for future exploration co

cerns the use of the THO basis in HFB or RHB calculatio
of weakly bound nuclei where other traditional metho
~e.g., HF1BCS! cannot be used@17,18#. The fact that with a
rather modest number of basis THO states one can reprod
the properties of spatially extended states suggests tha
traditional method of solving the HFB equations, based
basis expansion, can be revitalized by using the THO ba
This way of solving the HFB problem~both in the spherical
and deformed cases! can be an interesting alternative to a
gorithms based on coordinate-space methods@22–24#.

Finally, the THO states that arise variationally can
used as approximations to the self-consistent canonical st
of HFB. Recently, the variational method based on the
ergy density formalism was generalized to the HFB ca
@44#. In that work, the authors employed the basis propos
by Ginocchio@45# in the description of semimagic nucle
Despite the successes achieved in those calculations an
earlier restricted HF calculations for doubly magic nuc
@46#, there are several features of the Ginocchio potential t
make its more detailed use problematical. First, since
centrifugal term in the Ginocchio potential is not treate
properly, the resulting wave functions withl .0 do not have
proper asymptotic behavior. Second, since the Ginocchio

FIG. 6. Local one body densities for16O, 40Ca, and208Pb cal-
culated in the self-consistent HF approach~solid line! compared
with those obtained in restricted variational calculations using
trial wave functions Slater determinants built from HO~dotted line!
and THO~dashed line! single-particle orbitals. All calculations uti-
lized the same SkP effective interaction.



e
sa
is

ul
t

der
er

n

ant

2098 PRC 58M. V. STOITSOV, W. NAZAREWICZ, AND S. PITTEL
tential is finite, its bound eigenvectors do not form a clos
set, and the use of the continuum wave functions is neces
~see recent Ref.@47#!. In this context, the discrete THO bas
would appear to be more useful.
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