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Microscopic description of @ decay from superdeformed nuclei
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A microscopic formalism to treat decay from superdeformed nuclei is given within the framework of the
Hartree-Fock-Bogoliubov approximation. The process of penetration through the deformed barrier is described
exactly. The influence of the deformation on the formation amplitude and on the penetrability is analyzed. It is
found that the results of the WKB approximation differ strongly from the exact ones as the deformation
increases foB, larger than 0.3. The most favorable case that we found corresponds to a superdeformed band
in 192Pb, for which thex decay probability is very large, making this a likely mechanism to feed the daughter
nucleus®Hg. [S0556-28188)02010-X

PACS numbgs): 21.60.Gx, 23.20.Js, 23.60e

[. INTRODUCTION i.e., orbits with wave functions extending far out in space
[8—10!. In order to avoid the use of very large baseith all
Superdeformed nuclei have been intensively investigatedhe problems connected with the handling of such bases
both experimentally1] and theoreticallf2], during the last have recently proposed an efficient technique to account for
decade. One of the important questions raised by these stugionfigurations lying high up in the nuclear continugitri —
ies is the possibility of amr decay branch connecting mem- 13 ) ) ) .
bers of superdeformed bands in the mother nucleus with the The aim of this paper is to present a formalism that over-
ground band in the daughter nucleus. To make a theoretic&omes the two problems mentioned above, that is one that
estimation of those transitions one has to determine wheth&yould allow one to evaluate the penetrability exactly and
the formalisms usually applied to study decay from de- whic_h would be aple to describe the plusterization of the
formed nuclei are also valid for the case of superdeformaparticle at large distances. We will first solve exactly the
tions. In particular, the validity of the widely used WKB guantum mechanics problem of penetration of a particle
approximation in computing the penetration of the Coulombthrough a deformed barrier. We will also analyze some se-
barrier may be questioned_ Perhaps even more importad@CtEd examples to prObe the range of Valldlty of traditional
one has to have a reliable method to evaluatedtiparticle ~ approaches to this problefe.g., WKB for the case of su-
formation amplitude on the surface of the rapidly rotatingP€rderformed nuclei. A convenient SP basis for our purposes
nucleus in order to evaluate the absolutdecay width. That ~ Will be presented. This basis will be used to estimate micro-
is, an estimation of the probability of observiag(or even ~ SCOpIC a particle formation amplitudes in rapidly rotating
C|usteD decay from Superderformed nuclei requires a ComsuperdeformEd nuclei. In Sec. Il we present the formalism, in
parison ofa decay with other competing modes. This can beSec. lll are the applications, and a summary and conclusions
done by using the same techniques as in the analysis of tf&e in Sec. IV.
structure of superdeformed bands, i.e., by means of a
cranked Hartree-Fock-BogoliubdtdFB) approximatior3]. Il. FORMALISM
Within this approach one would be able to describe, e.g., the
expected influence of large quadrupole deformations and
pairing correlations on the rotational motion and, therefore, In this section we will derive a formalism to evaluate
on thea particle formation process. It is expected that a veryexactly the quantum-mechanical penetration of a particle
large single-particléSP basis is needed to realize that mi- through a deformed barrier. The decay process to be consid-
croscopic treatment. One knows that already the descriptiored is, in standard notatioB(1;K;)—A(l{K;)+ a(l). The
of spectroscopic properties such as energy levels, electr¢otal decay width corresponding to this process can be esti-
magnetic transitions or moments of inertia requires the use ohated by{14]
rather large SP basisip to 6—8 major shel)sin the diago-
nalization of the deformed Woods-Saxon potenf@l—?].. r=> r=lim#v>, |C:<ille iy a(RIZ (2.2
But in « decay the situation is even more demanding since [ it BBy
one has to describe the motion of the four nucleons that
eventually become the particle well outside the surface of whereC is a Clebsh-Gordan coefficient,is the velocity of
the nucleus, where the nuclear interaction betweendhe the a particle, andg,(R) is thel component of the wave
cluster and the daughter nucle(as well as the correspond- function describing the relative motion of tlaeparticle with
ing effects induced by the Pauli principlare negligible. respect to the daughter nucleus. This function can be evalu-
One therefore needs very high lying SP orbits in the basisated by solving the coupled system of equations describing

A. a particle dynamics

R— |
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the motion of thex particle in the deformed potential. Thus, where the notation is standard, in particukaare internal

assuming thaw/;,(r) is the matrix element connecting the coordinates. One thus obtains

channeld andl’ one gets

91(Re)
R

1
hZ d2 ﬁ2|(|+1) ER_azk Sk)(Ra)Ck:]:I(Ra)' (26)

ZMadr2+ 2M r? : :
Let us stress once more tHa} is a point beyond the nuclear
=E,g(r). (2.2 surface, where the cluster is already formed. At this point
only the Coulomb interaction is important and thedecay
Due to the Coulomb barrier, which can be very large, theproblem can be considered as a two-body problem. The ex-
wave function decreases by many orders of magnitude fromact expression for the decay width, Eq(2.1), becomes
the nuclear surface to the outer turning point. This makes ,
impossible a forward integration procedure starting from L 1
known values on the nuclear surface, since the exponentialll;:f”’z,: CKinffKin G—|(Ra)2 KiRFi(R) |, (2.7
increasing solution makes the process unstable. The system '

of equations(2.2) can be numerically integrated starting \yhich has a similar analytic form as the corresponding WKB
from large distances into a stable backward direction, USiNGay pression of Ref.14]. However the matriX of that refer-

for instance, the Numerov iterative proced{ilb]. An im-  gnee is here the inverse matrix of the fundamental system of
portant test of the accuracy of the calculation is to reproducg | tions at the matching radius. That is, from E2j4) and

the irregular Coulomb wave8,(R) for a spherical barrier. sinceF, is negligible one obtains '

We have thus calculated the outgoing wave function corre-

sponding to the nucleua=152,7=66 which, after an in- K||/=G|(Ra)[Sfl(Ra)]|(l). 2.9
crease of 12 orders of magnitude inside the barrier, is calcu-

lated on the nuclear surface with a precision of 5 digits. EverRecently an approximate form of this matrix was proposed in
for a very deformed nuclear surfacg< 0.6) the interaction Ref [17].

matrix V,;» has fast decreasing nondiagonal elements with

a

9i(r)+ > Vi (r)gy(r)
II

respect to the differenc—1’|. In principle | =10 partial B. a particle formation amplitude
waves could describe the wave function with a good accu- _ _ _
racy. Indeed, by increasing this basis ud 030 the correc- The other important element in thedecay process is the

tions are negligible. Anyway taking into account that we formation amplitude which, as described above, enters as a
need high angular momenta to describesadecay process boundary condition in Eq(2.7). To evaluate the formation
with a large momentum transfer we considered in our calcuamplitude we will describe the internal wave functions of the
lation | =30 partial waves. mother and daughter nuclei using a cranked HFB approach
In order to integrate the Syste(ﬁ_z) Starting from |arge for neutrons aﬂq pl’OtOI."IS. We will not include eXpI_ICItIy the
distances, but with a matching condition on the nuclear surbeutron-proton interaction although, as usual, that interaction
face, let us introduce the matrix of the fundamental system owill be taken into account effectively since the strength of
solutions, defined in such a way that at large distarRes the interactions will be adjusted to reproduce the neutron and

(where the interaction can be considered spherically symmefroton gapg16].

ric and only the Coulomb interaction is importarit be- The dynamics of the rotating system of protons=(m)
comes practically a diagonal matrix of the spherical outgoingtnd neutrons{= v) in the daughter nucleus is therefore de-
Coulomb waves, i.e., termined by the following constrained Hamiltonian:
k) ,
SUR-AGRIFRL 23 WY o ata- Gl S, aiaiaa,

In practice the distancR is usually determined by the outer
turning point. A general solution to E@2.2) is built as a earki=(Earm—Mar) S~ wa(jx) Akl » (2.9
superposition of the fundamental solutions. One gets,
where the indexk labels the available quantum numbers,
_ K . which in this case are the ener§yand the projectionn of
g|(R)—§k‘, SY(RIC—CIG(R+IF(R)]. (24 the angular momentum. The operatgl, creates the daugh-
ter SP state ¥a.), Ea-m iS the energy of the deformed
Since the regular Coulomb functiols(R) have vanishing daughter nucleus and,, the Lagrange multiplier that takes
values inside the barrier the consta@jsare practically real into account the conservation in average of the number of
numbers. These numbers are determined by matching thgarticles. In the same fashion, the last term takes into ac-
outgoing solutiorg;(R)/R of the Schrdinger equation with  count the conservation in average of the angular momentum
the corresponding internal solution. This is the formationalong thex axis, with the angular frequeney as a Lagrange

amplitude 7 (R,) defined by{16] multiplier, i.e.,
fl(ﬁaa):J [V (£ W A(ER) YR} V(£p)dE,dén, % (0amaparia=Ia(laT 1), Park=2 VaniVaski:

(2.5 (2.10
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whereV, . are the HFB amplitudes defined by Eg.11). integrals. In our calculation it was sufficient to consider
A similar Hamiltonian is taken for the mother nucleus. n.,n,<8 to get a good accuracy. The results are stable with
The HFB transformation can be written in a general formrespect to increases of these quantum numbers.

as (where we dropped all indicgs
at a’ ,3+
(a) a)’ (B) Ve Ug . . ;
2.1y Wwave functions entering E¢2.14 we generahze the expan-
sion presented in Refl12] to an axially deformed mean
wherea® (b™) creates a normal particle ard" (8") cre- field. In that reference the SP representation was chosen to
ates a quasiparticle in the daughtenothey nucleus. The be the eigenstates of two HO potentials. The low lying shells
HFB amplitudes defined above are found by the standardf the representation are eigenvalues of a standard HO, i.e.,
procedure described, for instance, in H&i. one that reproduces the bound properties of the nucleus,
We assume that the two nuclei have different deformawhile the high lying members are eigenvalues of a shallow
tions. Yet, their wave functions are connected by the Hermitpotential, with eigenfunctions that extend far out in space.

Ul Vi\/b* C. Single particle basis
) ( b ) ' In order to ensure a proper asymptotic behavior of the SP

UL Va
Va Ux

ian transformation The deformed SP states can then be written as
b* D* 0\/a*
( ) :( 'r//XT;Em( g) = E Cg(lT);Eylm'r//(y)\%r)]( 5)
b 0 D al’ 2n;+11=N;<Ng 1
D, =(0|acb,,|0)= ). 2.1 + c? (M2)(g)
o = {012y |0)=(varl erc) (212 1, SKAEran Y ©)
From this equation and E@2.11) one can readily obtain a (2.16

relation between the vectorg(,8) and (@™, «).
The two HFB vacug¥ ), X=A,B are connected accord-

ing to the Thouless theorem, i8], whereX=A,B, y=(nlj), and

|~1fB>=<\PA|~1fB>exp( > zkk,a;a;) W), P& =[P (D) x1/9) Tjm

k<k’ -~
=RY(O[Y(Rx1A9)]jm. (217
Z=(VU H*=-27T (2.13

In order to compute the formation amplitude defined by Eq.Herexl is the HO parameter corresponding to the HO po-

(2.5 we expand the mother wave function in terms of thetential which provides the discrete spectrum, whilg de-

tensorial product of the daughter wave function times the>criPe€s the quasicontinuum part of the spectrum. The stan-
two-neutron and two-proton wave functions dard representation generally usf®] to diagonalize the
mean field includes only the terms corresponding to the first

summation in Eq(2.16 with a given numbeiN, of major
‘I’A+z=go B(K)A[#ak(L)a(2)¥a]l.  (2.14  shells. As shown in Ref12], if A, is small (corresponding
to the flat HO potential, with wave functions extending far

If one neglects the antisymmetrization between the core an@Ut in Spacgthe description of the mother wave function at

. P p large distances is improved.
the cluster{19] the coefficientB(k) is given by the pairin
density 19] (k) is g y P g This basis is able to simultaneously describe the absolute

decay width and the spectroscopic factor with the relatively
B(k)=<‘IfA+2|a,faf|\IfA) small dimension of 10—11 major shells. It has the saturation

property that its further increase does not significantly

=(Vard Wa)(VAUR +URZ*U ). (219 change the results.
By considering the equations for the HO radial wave
Using standard recoupling technique one gets the formafunction of the parametex

tion amplitude in terms of the pairing proton and neutron
densities given by Eq2.15. The multipole expansion of the
formation amplitude is given in EqQA2). This is an exact
expression, depending upon the relative and center of mass 2\
(c.m) quantum numbers corresponding to the proton and
neutron pairs. It is worthwhile to point out that due to the
nonorthogonality of the SP basis used in the calculation, as
described in the next paragraph, it was necessary to use gen-
eralized Talmi-Moshinsky brackets with different harmonic
oscillator (HO) parameter$20]. It is also important to men-
tion that this expansion converges rather fast as a function afne obtains the following system of algebraic equations in a
the radial quantum numbens; ,n,, which define the overlap block-matrix form, for a given projectiom:

fiw

1d?>  1(1+1)

R (r
r r2 r2 I"I|( )

2

3 Ar
=HMROV (N =fio| 2n+1+ 5 - 7) RY(r),

(2.18
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(1) (12) v TABLE |. Ratio between the theoretical and experimental
H A yivym X7,Ey;m decay widths corresponding to the transitittDy— *Gd+ « as a
(21) (22) C(2) function of the quadrupole deformation parameter. Thevalue
H Yay,m Yavym X7,Ey,m corresponds to the g.s. to g.s. transition. The widjxg was cal-
culated according to the formalism of Rgt4] while I'. is the one
(11 (12 (1) calculated within the formalism presented in this paper.
I ' I ’ CXT;E’)’im
Y171 Y175
=E, (21) (22) C(2) , (2.19 B 1_‘WKB/Fexp I‘Icc/rexp
I ’ ’ XT;E’yém
Y271 Y27, 0.0 0.65 0.65
_ . 0.1 0.73 0.69
where the summation ovey, is understood. The overlap 0.2 1.02 0.75
integrals are defined as 03 1.86 0.98
(i) _ ) K 0.4 4.01 1.52
L= SRt IR ) G B (2.20 05 9.32 2.46
0.6 27.87 3.48
while the Hamiltonian kernels are given by 0.7 101.50 4.97
3 1 0.8 450.80 6.90
(k) _ ' Pl T a0 21 (M)
Hyiyﬁm—ﬁ“’fk 2n,+1+ 5 Im; 2<Rnill [N |Rnél )
. As usual, we have probed the reliability of our calculation
X 5”,5--,+<¢//(“.) |V|¢,//( k), ) (2.21) by checking that the total width is approximately indepen-
J] n;lim n'17j'm’’ . . . . .
k dent upon the distance in the region of the touching point,
where i.e., atR,=8—10 fm. All our calculations are performed in
this interval. Moreover, another feature which is worthwhile
N to stress is that we reproduced the experimental width by
fk:)\—o, k=1,2. (222 using realistic deformationgas given by electromagnetic

transitiong and experimental gap values. This is important

If one considers only even multipolarities the systéhl9  concerning the_ reliability of the results in the new region of
splits into blocks with the same parity. The procedure tosuperdeformations that we will explore below.
diagonalize this system of equations is described in Ref. Large deformations may invalidate approximate treat-

[12]: one builds a new orthonormal SP basis using the eigenents of the penetration problem, particularly the classical
states of the metric matri2.20). WKF approach of Ref[14]. We give in Table | the ratios

theoretical/experimental values of the widths for two cases.
In the second column the penetration was calculated by fol-
lowing the WKB approach mentioned above, while in the
We will first test our method in a known case and then welast column we used the exact coupled channel approach
will apply it to a superdeformed nucleus. We thus first ana-developed in this paper. One can clearly observe that for
lyze the decay*>Dy— 148Gd+ « for which the ground state values of the deformation parameter larger thn0.2 the
to ground statég.s. to g.9. « decay half live is 8.&610° s differences between the ratios in those two columns increase
[21] andQ,=3.37 MeV. To simplify the analysis we have with the deformation. The WKB approximation overesti-
chosen the same deformation for the mother and daughtenates strongly the value of the width for large deformation.
nuclei, i.e., 3=0.2. This value is realistic in these nuclei. This is a very important result, since it invalidates calcula-
The pairing gaps were adjusted using the masses of neigions of the widths in superdeformed nuclei performed
boring nuclei. We have chosen the universal parametrizatiowithin the WKB.
of the Wood-Saxon potential given in Ref§—7]. The two For the superdeformed band of the mother nucl&¥dy
potentials that define our representation in E2j16 have  we have chosen a deformatighy=0.6 for all angular mo-
different HO parameters. The firlsk; =0—6 major shells of menta, which is close to the predicted value of R2g]. In
the representation correspond to the eigenvalues of a HOrder to study the effect of the deformation we have also
potential with the standard paramete;=1.2Mq w/% [6], chosen for it an intermediate valygz=0.4 which corre-
while for the higher lying shells, i.e., the shelld,=7 sponds to a superdeformed band'Pb[23]. The half life
—10, we use\,=0."Mw/% [12]. This parametrization is of the g.s. to g.s. decay’®Pb—8Hg+ « is close to the
fixed by physical constraints. If for instance one talds  previous case, i.e., it is 4010° s[21], but with Q,=5.22
=0-5N,=6—-9 one can reproduce the total width, but the MeV, which is larger than before. For the daughter nucleus
spectroscopic factor is overestimated by one order of magnin the ground state we keep the deformatj@g=0.2 used
tude and the moment of inertia by a factor of 2. It is worth-above. The angular momenta asg=1,=0.
while to stress that the members of the SP representation In the second column of Table Il is given the ratio be-
lying close to the Fermi surface determines the HFB calcutween the pairing gap at a given frequeneyand the one at
lation while high lying configurations ensure a proper de-w=0. As perhaps expected, one sees that the gap decreases
scription of the radial wave functions at large distances. Wawith the frequency. This behavior is consistent with constant
reproduced the total width, as can be seen in Table I, usingroton and neutron pairing strengths. The angular momenta
the quadrupole deformatiof=0.2. of the mother nucleus computed according to @gL0 with

[ll. APPLICATIONS
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TABLE Il. Ratio between the pairing gajy at frequencyh w 0 ' ‘
(given in MeV in the first columnand the corresponding gap at
frequencyZw=0 (second column Angular momentum of the
mother nucleug®y corresponding to the quadrupole deformation 0
Bg=0.6 (third column, labeled,) and of the mother nucleu$?b
with Bg= 0.4 (fourth column, labeled,). The product of the proton

and neutron overlap integrals entering E2.15 are given in the - W%

fifth column for %Dy (i.e., Z;, corresponding t@z=0.6) and in = L’//
720 — L

the last column for®%h (i.e., Z,, corresponding tg8g=0.4). In
these two last columns the quadrupole deformations of the daughte
nuclei were chosen to be the same, i#g,=0.2.

h(l) A/AO Il IZ Il IZ

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

1.00
0.98
0.92
0.82
0.68
0.50
0.35
0.25
0.19
0.15
0.12

N O

12
22
28
36
42
50
54
62

oo N O

20
30
38
42
46
52
58

1.06-2)
1.02-2)
2.86-2)
6.80-3)
2.44-3)
8.10-4)
2.65-4)
8.45-5)
2.38-5)
8.21-6)
1.97-6)

3.22-1)
3.19-1)
3.10—1)
2.86—1)
9.23-2)
3.45-2)
5.09—4)
1.08—4)
1.05-5)
3.24—6)
4.00—6)

-

— 10

.},‘U)

204 24 -

guadrupole deformatioz=0.6, are given in the third col-
umn of that table under the he&g, while in the fourth col-
umn, under the heal, are given the angular momenta for =30 ! ! !
- . : 0 N 2 3
Bs=0.4. The corresponding values for the proton times neu-g, ke [Mev]
tron overlap integrals entering E@®.15 are given in the last
two columns. One can see that the overlap decreases by in- FIG. 1. () The numben/{" containing the formation amplitude
creasing the difference between the mother and daughter dgsee Eq.(3.1)] as a function of the rotational frequendyw (in
formation parameters. MeV) for the « decay from*>?Dy. The deformation parameters for
Our interest is to compare decay transitions from super- the mother and daughter nuclei g8g=0.2, Bg=0.6. (b) Asin ()
derformed bands with the corresponding g.s. to g.s. transfor the decay of-*®b, corresponding t8,=0.2 andBz=0.4. The
tion. This comparison can conveniently be performed bycurves are labeled by the correspondingalues.
studying the ratio between those two decay widths. More- _ ) ) )
over, one can examine separately the nuclear structure part One notices in these figures a rather abrupt change in the
and the penetration part in a convenient fashion by taking théormation amplitude foriw at about 0.3 MeV. This is due to
logarithm of the ratio between a partiacomponent of the @ corresponding change in the pairing density distribution,

total width in Eq.(2.1) and the corresponding experimental which sharply decreases around the Fermi level with the ro-
value, i.e., tational frequency in that range btv. Since low lying states

(i.e., those close to the Fermi leyalarry smaller values of
T 1l 2 the spin that redistribution of HFB states induces the de-
=In CK'in—KinZ Ki'ReF1/(Ra) creasdgincrease of the formation amplitude, and therefore of
! %(1)’ for small(large | values as the frequency increases, as
ho indeed is seen in Fig. 1.
+In————=%"(Ba.Bs.®) + %7(Q,). The penetration factor corresponding to the decay of
Gi(R)exp 152Dy, contained in the function{?, is given in Fig. 2 as a
function of thea particle Q value, calledQ, in the figure.
_ _ _ o Also here the curves are labeled hywe presenty(? only
The behavior of the formation amplitude, contained in thefor the case of Dy because this plot gives a rather univer-
quantity ), is shown in Fig. 1 as a function of the rota- sa| behavior of the penetration with tRevalue, as expected.
tional frequency. The decay from a superdeformed band in the mother
In Fig. 1(a) we present the function(*) corresponding to  nucleus to the ground state band in the daughter nucleus can
the decay from the superdeformed bandifDy. The defor-  proceed through a complicated combination of electromag-
mation parameters ag,=0.2 andBg=0.6. The curves are netic anda decay transitions. For instance, first the mother
labeled by the angular momentum of thegarticlel. In Fig.  nucleus may decay b2 transitions following the superde-
1(b) we present the same quantity corresponding to the decdprmed band, then a band crossing occurs and a high-energy
of 19%Pb, for which it isB,=0.2, Bg=0.4. E1 y ray is emitted to another band. This process can occur

I

In
1—‘exp

(3.2
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30 . ' ' The most favorable of the cases analyzed by us is the
decay of 1%Pb. The spin of the head of the superdeformed
10 band is in this casé =10 (Aw=0.3) [1]. Considering the

16 transition of type(1), one has that th& value isQ,=7.80
20 20 - MeV and from Figs. (b) and 2 one obtaing{,;,~ —12 and
_ 0 y@m% 15. The logarithm of the ratio given by E¢B.1) is
o= then yM+ (2 ~3, which is already a rather big number.
28 But this number is still much bigger if one considers possi-
10 30 bility (2). Assuming a transition to the state with sdip
=10 in the superdeformed band 8¥Hg one hag=0. From
Fig. 1(b) one then obtaing{Yy~—4+2=—2 (from Table
Il the correction coming from the overlap squared-ig) and
from Fig. 2 (%)~ +16. Thus, that ratio is for this decay of
the order 1&%, which is a very large number and, therefore,
the daughter nucleus can well be reached by this process of

FIG. 2. The numben{? containing the penetration factpsee ~ decay. The search and eventual measurement, of this decay

Eqg.(3.1)] as a function of the) value corresponding to thedecay ~ Would have a great importance in understanding the structure
from 152Dy (Q,L). The curves are labeled by the corresponding of superderformed bands as well as the mechanisms that in-
values. duce« decay.

0

1 ] |
0 5 10 15 20
Q, [MeV]

several times to the point where a bandhead is reached. From IV. SUMMARY AND CONCLUSIONS
here, finally,a decay can proceed to a band in the daughter S .
nucleus. Even in this nucleus the decay can follow a compliic r\rgved hnaV(T isulidlffhimvchlsh p\)/apef Isec(j:ayx fr%m tﬁuDerrdﬁ' m
cated path ofy ray emissions down to the ground state. Forc:c en trug en. foth S rfi Iatﬁrso ﬁ ed e:cc r?/n debp rori ?

our purpose of estimating the possibility of observing withs\/epi eea:coo n(;)thaf[n pa oc'fn teo??aatﬁﬂner?to ofethe ae eet' a
present experimental facilitiea decay from the superde- ave tou approximate ir S penetra-

formed band it suffices to analyze two extreme cases. nghty In terms of the deformation, such as, e.g., the WKB

assume that the mother nucleus decays by electromagneﬁ‘n‘?pmx'matlon or the classical treatment of Refsd], are

transitions to the head of the superdeformed band. From hefPt valid for deformations larger th%~0'3 (see Table)l
We have also presented a formalism to calculate the for-

a decay follows to(1) the ground state of the daughter i litude ob particles i derf d lei
nucleus or2) a similar state of the daughter superdeformedma lon amplitude ok particies in superdertormed nuclel, a
umber which is necessary to evaluate absolute decay

band followed by an electromagnetic transition to the ground™ . . i ) .
state y 9 9 widths. Since this calculation requires the use of single-

We will first analyze thex decay from the superdeformed particle states that can d_escribe processes occur_ring outs_ide
band in the mother nucleu$?Dy. In this case the bandhead f[he nuclear _surface, we mtroduc_:ed a representation consist-
has an angular momentuln=24, i.e.,#w=0.4. The corre- ing of .the elgenvalugs of two different harmonic os_cnlator
spondingQ value isQ,=11.18 'Me\/’. From Fig. () one potentials. The low lying r_nembers pf the representation cor-
sees that forfiw=0.4 (clme obtains the order of magnitude respond to the standard single-particle states used to describe

1 . . bound properties, while the high lying members correspond
=24~ — 18, while for the penetration term one has, from to the eigenvalues of a shallow harmonic oscillator potential.

Fig. 2, 7’!@24~8- Therefore, the logarithm of the ratio be- \yjthin this representation we used the HFB approximation
tween this decay and the correszpondmg g.s. 10 g.s. transitiqy gescribe the structure of the superderformed nuclei. This
is, according to E¢(3.1), ™+ y®~—10. This small num-  single-particle basis allows for a much faster convergency of
ber is due to the large centrifugal barrier induced by lthe the computed formation amplitude in the region beyond the
=24 angular momentum transfer, as seen in Figs. 1 and Zyclear surface, where the interaction becomes practically a
This possibility is therefore highly unlikely. Coulomb repulsion between the emittadparticle and the
According to possibility(2) the mother nucleus decays to gaughter nucleus. We can therefore perform calculations
a superdeformed state in the daughter nucleus with the samghich would otherwise be prohibitive. We have thus found
angular momentum. Therefore the lowest angular momernmat the formation amplitudeand the corresponding decay
tum transfer id =0 and the value oQ, would be similar to probability) decreases with the difference between the quad-
the one corresponding to the g.s. to g.s. transition, @&.,  rupole deformations in the mother and daughter nuclei, al-
= 3.7 MeV. One notices that in this case the overlap integl’a'ﬁqough this is not a b|g effe((See the differences between
entering Eq.(2.19 are very close to unitythe mother and  the columns labeled; andZ, in Table II).
daughter nuclei have the same deformatj(mw therefore We assumed that the mother nucleus decays by electro-
one should correct the term) by the order of magnitude magnetic transitions to the head of a superdeformed band.
+6 (overlap squared in the fifth column of the Table Il, From here we considered thatdecay proceeds following
corresponding tdi w=0.4). We notice from Fig. (a) thatit  two different possibilities{1) direct « decay to the ground
is y{Yy~—8+6=—2 while from Fig. 2 it isy{%,~—10 state of the daughter nucleus af®) o decay to an excited
(this point is actually outside the range of the figur®ne state belonging to the superdeformed band of the daughter
then hasyM+ y(?)~ —12. Therefore possibility2) is neg-  nucleus followed by an electromagnetic transition to the
ligible in this case. ground state. The first process involves large transferred an-
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gular momenta an@ values, while for the second one those
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guantities are both rather small.

wBﬂ': 2 E (E m)[CA'n' Ey, C»(M:' Evyy

We found that thex decay probability from the head of a ki Em=0
superdeformed band if®%Pb to the corresponding state in % (—yim 21 (}‘k
1839 is about 14 orders of magnitude larger than the corre- =) \/_w ml )l// 2.
sponding probability for the ground state to ground state ,
transition. This is therefore a likely candidate to obseswve = > 2 B,(E’, ,)[ A E ’CAk >E ,
v viE"y TAVE y,

decay transitions from superdeformed bands.
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APPENDIX

one finally obtains a multipolar expansion of theparticle
formation amplitude

In this appendix we give the multipole expansion of the A oy
formation amplitude, which is the generalization of the ex- FRa R E ]:LH(R”)YLCVO(R“)
pression given in Ref12] to a deformed mean field. Differ-
ent multipoles are used as initial conditions to integrate the =3 3 V\ﬂ'k' q)(Alk )(R R)),
system of equation$2.2), describing the motion of ther ki k" Nalo “
particle in a deformed Coulomb field. By considering the
expansion(2.16 of the SP wave functions one obtains for

the wave functions of the mother and daughter nu@ei4) where

(A2)

ik’
WF\;kILk) E 2 G(Ik)(vaLw)Gl K )(NV'LV)COOO 02 <n ONa a a|NwLwNvLy;La>D!Lk,IE‘|>\i(l)< )\a)’ (A3)
N N, L 1 a

=7 Sv-v

. 11 1 1
GI(N,,L)=2 Bw(Yi-ykva)<(|i|k)Lw(§§)0;Lw(l )J.('k )Jk' ><n ONLiLanilingy; W>DKIE1)\ISM)'

Yi Yk
(A4)
|
1+(—)t= wherei, k refers to the basis with frequency ratifys f, [see
B (i ,yk,Lw)=Em2>0 —— Ba(E m)Chr. Ey, Eq. (2.22] and
jr— Jl] L7T 1
X Caey (72 M2C T (AS) Aje=5 (1) (A8)

A similar expression is obtained for neutrons. The first set of

brackets in Eq(A4) denotesj — LS recoupling coefficients 5 the c.m. HO parameter. The overlap mteg,ﬁfs.k Na
while the second one is the generalized Talmi-Moshinsky

symbol, which depends upon the rabg.=X\;/\y [20]. The  gnd radial c.m. wave functlor@(A.k )(R R!) in Eq. (A2)

(N )‘a) ;
quantitiesZ 5"« are the overlap integrals between the ra- depend on the relative and c.m. HO parameters, respectively.
dial HO wave functions, i.e., That is,
Nik A A
I( |k @ <R( i) |R >, (AG) e A
N = 2R (A9)
with the relative HO parameter,, given by A

RS e 1
)\ik_A_ikv (A7) Aik :E(Aik+Ai’k’)' (A].O)
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