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Microscopic description of a decay from superdeformed nuclei

D. S. Delion
Institute of Physics and Nuclear Engineering, Bucharest Ma˘gurele, POB MG-6, Romania

R. J. Liotta
KTH, Physics at Frescati, Frescativa¨gen 24, S-10405 Stockholm, Sweden

~Received 24 February 1998!

A microscopic formalism to treata decay from superdeformed nuclei is given within the framework of the
Hartree-Fock-Bogoliubov approximation. The process of penetration through the deformed barrier is described
exactly. The influence of the deformation on the formation amplitude and on the penetrability is analyzed. It is
found that the results of the WKB approximation differ strongly from the exact ones as the deformation
increases forb2 larger than 0.3. The most favorable case that we found corresponds to a superdeformed band
in 192Pb, for which thea decay probability is very large, making this a likely mechanism to feed the daughter
nucleus188Hg. @S0556-2813~98!02010-X#

PACS number~s!: 21.60.Gx, 23.20.Js, 23.60.1e
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I. INTRODUCTION

Superdeformed nuclei have been intensively investiga
both experimentally@1# and theoretically@2#, during the last
decade. One of the important questions raised by these s
ies is the possibility of ana decay branch connecting mem
bers of superdeformed bands in the mother nucleus with
ground band in the daughter nucleus. To make a theore
estimation of those transitions one has to determine whe
the formalisms usually applied to studya decay from de-
formed nuclei are also valid for the case of superdeform
tions. In particular, the validity of the widely used WK
approximation in computing the penetration of the Coulo
barrier may be questioned. Perhaps even more impor
one has to have a reliable method to evaluate thea particle
formation amplitude on the surface of the rapidly rotati
nucleus in order to evaluate the absolutea decay width. That
is, an estimation of the probability of observinga ~or even
cluster! decay from superderformed nuclei requires a co
parison ofa decay with other competing modes. This can
done by using the same techniques as in the analysis o
structure of superdeformed bands, i.e., by means o
cranked Hartree-Fock-Bogoliubov~HFB! approximation@3#.
Within this approach one would be able to describe, e.g.,
expected influence of large quadrupole deformations
pairing correlations on the rotational motion and, therefo
on thea particle formation process. It is expected that a ve
large single-particle~SP! basis is needed to realize that m
croscopic treatment. One knows that already the descrip
of spectroscopic properties such as energy levels, elec
magnetic transitions or moments of inertia requires the us
rather large SP basis~up to 6–8 major shells! in the diago-
nalization of the deformed Woods-Saxon potential@4–7#.
But in a decay the situation is even more demanding si
one has to describe the motion of the four nucleons
eventually become thea particle well outside the surface o
the nucleus, where the nuclear interaction between tha
cluster and the daughter nucleus~as well as the correspond
ing effects induced by the Pauli principle! are negligible.
One therefore needs very high lying SP orbits in the ba
PRC 580556-2813/98/58~4!/2073~8!/$15.00
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i.e., orbits with wave functions extending far out in spa
@8–10#. In order to avoid the use of very large bases~with all
the problems connected with the handling of such bases! we
have recently proposed an efficient technique to account
configurations lying high up in the nuclear continuum@11–
13#.

The aim of this paper is to present a formalism that ov
comes the two problems mentioned above, that is one
would allow one to evaluate the penetrability exactly a
which would be able to describe the clusterization of thea
particle at large distances. We will first solve exactly t
quantum mechanics problem of penetration of a part
through a deformed barrier. We will also analyze some
lected examples to probe the range of validity of tradition
approaches to this problem~e.g., WKB! for the case of su-
perderformed nuclei. A convenient SP basis for our purpo
will be presented. This basis will be used to estimate mic
scopic a particle formation amplitudes in rapidly rotatin
superdeformed nuclei. In Sec. II we present the formalism
Sec. III are the applications, and a summary and conclus
are in Sec. IV.

II. FORMALISM

A. a particle dynamics

In this section we will derive a formalism to evalua
exactly the quantum-mechanical penetration of a part
through a deformed barrier. The decay process to be con
ered is, in standard notation,B(I iKi)→A(I fK f)1a( l ). The
total decay width corresponding to this process can be e
mated by@14#

G[(
l

G l5 lim
R→`

\v(
l

uCKiK f2KiK f

I i l I f gl~R!u2, ~2.1!

whereC is a Clebsh-Gordan coefficient,v is the velocity of
the a particle, andgl(R) is the l component of the wave
function describing the relative motion of thea particle with
respect to the daughter nucleus. This function can be ev
ated by solving the coupled system of equations describ
2073 © 1998 The American Physical Society
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the motion of thea particle in the deformed potential. Thu
assuming thatVll 8(r ) is the matrix element connecting th
channelsl and l 8 one gets

H 2
\2

2Ma

d2

dr2
1

\2l ~ l 11!

2Mar 2 J gl~r !1(
l 8

Vll 8~r !gl 8~r !

5Eagl~r !. ~2.2!

Due to the Coulomb barrier, which can be very large,
wave function decreases by many orders of magnitude f
the nuclear surface to the outer turning point. This ma
impossible a forward integration procedure starting fro
known values on the nuclear surface, since the exponent
increasing solution makes the process unstable. The sy
of equations~2.2! can be numerically integrated startin
from large distances into a stable backward direction, us
for instance, the Numerov iterative procedure@15#. An im-
portant test of the accuracy of the calculation is to reprod
the irregular Coulomb wavesGl(R) for a spherical barrier.
We have thus calculated the outgoing wave function co
sponding to the nucleusA5152,Z566 which, after an in-
crease of 12 orders of magnitude inside the barrier, is ca
lated on the nuclear surface with a precision of 5 digits. Ev
for a very deformed nuclear surface (b50.6) the interaction
matrix Vll 8 has fast decreasing nondiagonal elements w
respect to the differenceu l 2 l 8u. In principle l 510 partial
waves could describe the wave function with a good ac
racy. Indeed, by increasing this basis up tol 530 the correc-
tions are negligible. Anyway taking into account that w
need high angular momenta to describe ana decay process
with a large momentum transfer we considered in our ca
lation l 530 partial waves.

In order to integrate the system~2.2! starting from large
distances, but with a matching condition on the nuclear s
face, let us introduce the matrix of the fundamental system
solutions, defined in such a way that at large distanceR
~where the interaction can be considered spherically symm
ric and only the Coulomb interaction is important! it be-
comes practically a diagonal matrix of the spherical outgo
Coulomb waves, i.e.,

Sl
~k!~R!→dkl@Gl~R!1 iF l~R!#. ~2.3!

In practice the distanceR is usually determined by the oute
turning point. A general solution to Eq.~2.2! is built as a
superposition of the fundamental solutions. One gets,

gl~R!5(
k

Sl
~k!~R!Ck→Cl@Gl~R!1 iF l~R!#. ~2.4!

Since the regular Coulomb functionsFl(R) have vanishing
values inside the barrier the constantsCk are practically real
numbers. These numbers are determined by matching
outgoing solutiongl(R)/R of the Schro¨dinger equation with
the corresponding internal solution. This is the formati
amplitudeFl(RW a) defined by@16#

Fl~RW a!5E @Ca~ja!CA~jA!Yl~R̂!# I i
* CB~jB!djadjA ,

~2.5!
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where the notation is standard, in particularj are internal
coordinates. One thus obtains

gl~Ra!

Ra
[

1

Ra
(

k
Sl

~k!~Ra!Ck5Fl~Ra!. ~2.6!

Let us stress once more thatRa is a point beyond the nuclea
surface, where the cluster is already formed. At this po
only the Coulomb interaction is important and thea decay
problem can be considered as a two-body problem. The
act expression for thea decay width, Eq.~2.1!, becomes

G5\v(
l

FCKiK f2KiK f

I i l I f
1

Gl~Ra!(l 8
Kll 8RaF l 8~Ra!G2

, ~2.7!

which has a similar analytic form as the corresponding WK
expression of Ref.@14#. However the matrixK of that refer-
ence is here the inverse matrix of the fundamental system
solutions at the matching radius. That is, from Eq.~2.4! and
sinceFl is negligible one obtains

Kll 85Gl~Ra!@S21~Ra!# l 8
~ l ! . ~2.8!

Recently an approximate form of this matrix was proposed
Ref. @17#.

B. a particle formation amplitude

The other important element in thea decay process is the
formation amplitude which, as described above, enters a
boundary condition in Eq.~2.7!. To evaluate the formation
amplitude we will describe the internal wave functions of t
mother and daughter nuclei using a cranked HFB appro
for neutrons and protons. We will not include explicitly th
neutron-proton interaction although, as usual, that interac
will be taken into account effectively since the strength
the interactions will be adjusted to reproduce the neutron
proton gaps@16#.

The dynamics of the rotating system of protons (t5p)
and neutrons (t5n) in the daughter nucleus is therefore d
termined by the following constrained Hamiltonian:

HAt
~v!5(

kl
eAt;klatk

1 at l2GAt (
kl.0

atk
1 at k̄

1
at l̄ at l ,

eAt;kl5~EAtm2lAt!dkl2\vA~ j x!A;kl , ~2.9!

where the indexk labels the available quantum number
which in this case are the energyE and the projectionm of
the angular momentum. The operatoratk

1 creates the daugh
ter SP stateucAtk&, EAtm is the energy of the deforme
daughter nucleus andlAt the Lagrange multiplier that take
into account the conservation in average of the numbe
particles. In the same fashion, the last term takes into
count the conservation in average of the angular momen
along thex axis, with the angular frequencyv as a Lagrange
multiplier, i.e.,

(
tkl

~ j x!At;klrAt;kl5AI A~ I A11!, rAt;kl5(
i

VAt; l i VAt;ki* ,

~2.10!
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whereVAt;ki are the HFB amplitudes defined by Eq.~2.11!.
A similar Hamiltonian is taken for the mother nucleus.

The HFB transformation can be written in a general fo
as ~where we dropped all indices!

S a1

a D 5S UA
T VA

T

VA
1 UA

1D S a1

a D , S b1

b D 5S UB
T VB

T

VB
1 UB

1D S b1

b D ,

~2.11!

wherea1 (b1) creates a normal particle anda1 (b1) cre-
ates a quasiparticle in the daughter~mother! nucleus. The
HFB amplitudes defined above are found by the stand
procedure described, for instance, in Ref.@3#.

We assume that the two nuclei have different deform
tions. Yet, their wave functions are connected by the Herm
ian transformation

S b1

b D 5S D* 0

0 D D S a1

a D ,

Dkk8
* 5^0uakbk8

1 u0&[^cAkucBk8&. ~2.12!

From this equation and Eq.~2.11! one can readily obtain a
relation between the vectors (b1,b) and (a1,a).

The two HFB vacuauCX&, X5A,B are connected accord
ing to the Thouless theorem, i.e.@18#,

uCB&5^CAuCB&expS (
k,k8

Zkk8ak
1ak8

1 D uCA& ,

Z5~VU21!* 52ZT. ~2.13!

In order to compute the formation amplitude defined by E
~2.5! we expand the mother wave function in terms of t
tensorial product of the daughter wave function times
two-neutron and two-proton wave functions

CA125 (
k.0

B~k!A@cA;k~1!cA; k̄~2!CA#. ~2.14!

If one neglects the antisymmetrization between the core
the cluster@19# the coefficientB(k) is given by the pairing
density

B~k!5^CA12uak
1ak̄

1uCA&

5^CA12uCA&~VAUA
11UA* Z* UA

1!kk̄ . ~2.15!

Using standard recoupling technique one gets the for
tion amplitude in terms of the pairing proton and neutr
densities given by Eq.~2.15!. The multipole expansion of the
formation amplitude is given in Eq.~A2!. This is an exact
expression, depending upon the relative and center of m
~c.m.! quantum numbers corresponding to the proton a
neutron pairs. It is worthwhile to point out that due to t
nonorthogonality of the SP basis used in the calculation
described in the next paragraph, it was necessary to use
eralized Talmi-Moshinsky brackets with different harmon
oscillator~HO! parameters@20#. It is also important to men-
tion that this expansion converges rather fast as a functio
the radial quantum numbersnp ,nn , which define the overlap
rd
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integrals. In our calculation it was sufficient to consid
np ,nn<8 to get a good accuracy. The results are stable w
respect to increases of these quantum numbers.

C. Single particle basis

In order to ensure a proper asymptotic behavior of the
wave functions entering Eq.~2.14! we generalize the expan
sion presented in Ref.@12# to an axially deformed mean
field. In that reference the SP representation was chose
be the eigenstates of two HO potentials. The low lying she
of the representation are eigenvalues of a standard HO,
one that reproduces the bound properties of the nucl
while the high lying members are eigenvalues of a shall
potential, with eigenfunctions that extend far out in spa
The deformed SP states can then be written as

cXt;Em~j!5 (
2n11 l 15N1<N0

cXt;Eg1m
~1! cg1m

~l1!
~j !

1 (
2n21 l 25N2.N0

cXt;Eg2m
~2! cg2m

~l2!
~j !,

~2.16!

whereX5A,B, g5(nl j ), and

cnl jm
~l! ~j!5@Fnl

~l!~rW !x1/2~s!# jm

[Rnl
~l!~r !@ i lYl~R̂!x1/2~s!# jm . ~2.17!

Here l1 is the HO parameter corresponding to the HO p
tential which provides the discrete spectrum, whilel2 de-
scribes the quasicontinuum part of the spectrum. The s
dard representation generally used@6# to diagonalize the
mean field includes only the terms corresponding to the fi
summation in Eq.~2.16! with a given numberN0 of major
shells. As shown in Ref.@12#, if l2 is small ~corresponding
to the flat HO potential, with wave functions extending f
out in space! the description of the mother wave function
large distances is improved.

This basis is able to simultaneously describe the abso
decay width and the spectroscopic factor with the relativ
small dimension of 10–11 major shells. It has the saturat
property that its further increase does not significan
change the results.

By considering the equations for the HO radial wa
function of the parameterl

2
\v

2l F1

r

d2

r 2
r 2

l ~ l 11!

r 2 GRnl
~l!~r !

[Hl
~l!Rnl

~l!~r !5\vS 2n1 l 1
3

2
2

lr 2

2 DRnl
~l!~r !,

~2.18!

one obtains the following system of algebraic equations i
block-matrix form, for a given projectionm:
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S H g1g
18m

~11! H g1g
28m

~12!

H g2g
18m

~21! H g2g
28m

~22! D S cXt;Eg
18m

~1!

cXt;Eg
28m

~2! D
5EmS I g1g

18
~11! I g1g

28
~12!

I g2g
18

~21! I g2g
28

~22! D S cXt;Eg
18m

~1!

cXt;Eg
28m

~2! D , ~2.19!

where the summation overgk8 is understood. The overla
integrals are defined as

I g igk8
~ ik !

5^Rni l
~l i !uR

n
k8 l

~lk!
&d l l 8d j j 8 , ~2.20!

while the Hamiltonian kernels are given by

H g igk8m
~ ik !

5\v f kF S 2nk81 l 1
3

2DI g igk8
~ ik !

2
1

2
^Rni l

~l i !ulkr
2uR

n
k8 l

~lk!
&G

3d l l 8d j j 81^cni l jm
~l i ! uVuc

n
k8 l 8 j 8m

~lk!
&, ~2.21!

where

f k5
lk

l0
, k51,2. ~2.22!

If one considers only even multipolarities the system~2.19!
splits into blocks with the same parity. The procedure
diagonalize this system of equations is described in R
@12#: one builds a new orthonormal SP basis using the eig
states of the metric matrix~2.20!.

III. APPLICATIONS

We will first test our method in a known case and then
will apply it to a superdeformed nucleus. We thus first an
lyze the decay152Dy→148Gd1a for which the ground state
to ground state~g.s. to g.s.! a decay half live is 8.63106 s
@21# and Qa53.37 MeV. To simplify the analysis we hav
chosen the same deformation for the mother and daug
nuclei, i.e.,b50.2. This value is realistic in these nucle
The pairing gaps were adjusted using the masses of ne
boring nuclei. We have chosen the universal parametriza
of the Wood-Saxon potential given in Refs.@5–7#. The two
potentials that define our representation in Eq.~2.16! have
different HO parameters. The firstN15026 major shells of
the representation correspond to the eigenvalues of a
potential with the standard parameterl151.2M0v/\ @6#,
while for the higher lying shells, i.e., the shellsN257
210, we usel250.7M0v/\ @12#. This parametrization is
fixed by physical constraints. If for instance one takesN1
5025,N25629 one can reproduce the total width, but t
spectroscopic factor is overestimated by one order of ma
tude and the moment of inertia by a factor of 2. It is wort
while to stress that the members of the SP representa
lying close to the Fermi surface determines the HFB cal
lation while high lying configurations ensure a proper d
scription of the radial wave functions at large distances.
reproduced the total width, as can be seen in Table I, u
the quadrupole deformationb50.2.
o
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As usual, we have probed the reliability of our calculati
by checking that the total width is approximately indepe
dent upon the distance in the region of the touching po
i.e., atRa58210 fm. All our calculations are performed i
this interval. Moreover, another feature which is worthwh
to stress is that we reproduced the experimental width
using realistic deformations~as given by electromagneti
transitions! and experimental gap values. This is importa
concerning the reliability of the results in the new region
superdeformations that we will explore below.

Large deformations may invalidate approximate tre
ments of the penetration problem, particularly the class
WKF approach of Ref.@14#. We give in Table I the ratios
theoretical/experimental values of the widths for two cas
In the second column the penetration was calculated by
lowing the WKB approach mentioned above, while in t
last column we used the exact coupled channel appro
developed in this paper. One can clearly observe that
values of the deformation parameter larger thanb50.2 the
differences between the ratios in those two columns incre
with the deformation. The WKB approximation overes
mates strongly the value of the width for large deformatio
This is a very important result, since it invalidates calcu
tions of the widths in superdeformed nuclei perform
within the WKB.

For the superdeformed band of the mother nucleus152Dy
we have chosen a deformationbB50.6 for all angular mo-
menta, which is close to the predicted value of Ref.@22#. In
order to study the effect of the deformation we have a
chosen for it an intermediate valuebB50.4 which corre-
sponds to a superdeformed band in192Pb @23#. The half life
of the g.s. to g.s. decay192Pb→188Hg1a is close to the
previous case, i.e., it is 4.03106 s @21#, but with Qa55.22
MeV, which is larger than before. For the daughter nucle
in the ground state we keep the deformationbA50.2 used
above. The angular momenta arevA5I A50.

In the second column of Table II is given the ratio b
tween the pairing gap at a given frequencyv and the one at
v50. As perhaps expected, one sees that the gap decre
with the frequency. This behavior is consistent with const
proton and neutron pairing strengths. The angular mome
of the mother nucleus computed according to Eq.~2.10! with

TABLE I. Ratio between the theoretical and experimentala
decay widths corresponding to the transition152Dy→148Gd1a as a
function of the quadrupole deformation parameter. TheQ value
corresponds to the g.s. to g.s. transition. The widthGWKB was cal-
culated according to the formalism of Ref.@14# while Gcc is the one
calculated within the formalism presented in this paper.

b GWKB /Gexp Gcc /Gexp

0.0 0.65 0.65
0.1 0.73 0.69
0.2 1.02 0.75
0.3 1.86 0.98
0.4 4.01 1.52
0.5 9.32 2.46
0.6 27.87 3.48
0.7 101.50 4.97
0.8 450.80 6.90
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quadrupole deformationbB50.6, are given in the third col
umn of that table under the headI 1 ,while in the fourth col-
umn, under the headI 2 , are given the angular momenta fo
bB50.4. The corresponding values for the proton times n
tron overlap integrals entering Eq.~2.15! are given in the last
two columns. One can see that the overlap decreases b
creasing the difference between the mother and daughte
formation parameters.

Our interest is to comparea decay transitions from super
derformed bands with the corresponding g.s. to g.s. tra
tion. This comparison can conveniently be performed
studying the ratio between those two decay widths. Mo
over, one can examine separately the nuclear structure
and the penetration part in a convenient fashion by taking
logarithm of the ratio between a partiall component of the
total width in Eq.~2.1! and the corresponding experiment
value, i.e.,

ln
G l

Gexp
5 lnFCKiK f2KiK f

I i l I f (
l 8

Kll 8RaF l 8~Ra!G2

1 ln
\v

Gl
2~Ra!Gexp

[g l
~1!~bA ,bB ,v!1g l

~2!~Qa!.

~3.1!

The behavior of the formation amplitude, contained in t
quantity g l

(1) , is shown in Fig. 1 as a function of the rota
tional frequency.

In Fig. 1~a! we present the functiong l
(1) corresponding to

the decay from the superdeformed band in152Dy. The defor-
mation parameters arebA50.2 andbB50.6. The curves are
labeled by the angular momentum of thea particle l . In Fig.
1~b! we present the same quantity corresponding to the de
of 192Pb, for which it isbA50.2, bB50.4.

TABLE II. Ratio between the pairing gapD at frequency\v
~given in MeV in the first column! and the corresponding gap a
frequency \v50 ~second column!. Angular momentum of the
mother nucleus152Dy corresponding to the quadrupole deformati
bB50.6 ~third column, labeledI 1) and of the mother nucleus192Pb
with bB50.4 ~fourth column, labeledI 2). The product of the proton
and neutron overlap integrals entering Eq.~2.15! are given in the
fifth column for 152Dy ~i.e., I1 , corresponding tobB50.6) and in
the last column for192Pb ~i.e., I2, corresponding tobB50.4). In
these two last columns the quadrupole deformations of the daug
nuclei were chosen to be the same, i.e.,bA50.2.

\v D/D0 I 1 I 2 I1 I2

0.0 1.00 0 0 1.05~22! 3.22~21!

0.1 0.98 2 2 1.02~22! 3.19~21!

0.2 0.92 6 4 2.85~22! 3.10~21!

0.3 0.82 12 8 6.80~23! 2.86~21!

0.4 0.68 22 20 2.44~23! 9.23~22!

0.5 0.50 28 30 8.10~24! 3.45~22!

0.6 0.35 36 38 2.65~24! 5.09~24!

0.7 0.25 42 42 8.45~25! 1.08~24!

0.8 0.19 50 46 2.38~25! 1.05~25!

0.9 0.15 54 52 8.21~26! 3.24~26!

1.0 0.12 62 58 1.87~26! 4.00~26!
-

in-
e-

i-
y
-
art
e

e

ay

One notices in these figures a rather abrupt change in
formation amplitude for\v at about 0.3 MeV. This is due to
a corresponding change in the pairing density distributi
which sharply decreases around the Fermi level with the
tational frequency in that range of\v. Since low lying states
~i.e., those close to the Fermi level! carry smaller values of
the spin that redistribution of HFB states induces the
crease~increase! of the formation amplitude, and therefore o
g l

(1) , for small~large! l values as the frequency increases,
indeed is seen in Fig. 1.

The penetration factor corresponding to the decay
152Dy, contained in the functiong l

(2) , is given in Fig. 2 as a
function of thea particle Q value, calledQa in the figure.
Also here the curves are labeled byl . We presentg l

(2) only
for the case of152Dy because this plot gives a rather unive
sal behavior of the penetration with theQ value, as expected

The decay from a superdeformed band in the mot
nucleus to the ground state band in the daughter nucleus
proceed through a complicated combination of electrom
netic anda decay transitions. For instance, first the moth
nucleus may decay byE2 transitions following the superde
formed band, then a band crossing occurs and a high-en
E1 g ray is emitted to another band. This process can oc

ter

FIG. 1. ~a! The numberg l
(1) containing the formation amplitude

@see Eq.~3.1!# as a function of the rotational frequency\v ~in
MeV! for thea decay from152Dy. The deformation parameters fo
the mother and daughter nuclei arebA50.2, bB50.6. ~b! As in ~a!
for the decay of192Pb, corresponding tobA50.2 andbB50.4. The
curves are labeled by the correspondingl values.
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several times to the point where a bandhead is reached. F
here, finally,a decay can proceed to a band in the daugh
nucleus. Even in this nucleus the decay can follow a com
cated path ofg ray emissions down to the ground state. F
our purpose of estimating the possibility of observing w
present experimental facilitiesa decay from the superde
formed band it suffices to analyze two extreme cases.
assume that the mother nucleus decays by electromag
transitions to the head of the superdeformed band. From
a decay follows to~1! the ground state of the daught
nucleus or~2! a similar state of the daughter superdeform
band followed by an electromagnetic transition to the grou
state.

We will first analyze thea decay from the superdeforme
band in the mother nucleus152Dy. In this case the bandhea
has an angular momentumI i524, i.e.,\v50.4. The corre-
spondingQ value is Qa511.18 MeV. From Fig. 1~a! one
sees that for\v50.4 one obtains the order of magnitud
g l 524

(1) '218, while for the penetration term one has, fro
Fig. 2, g l 524

(2) '8. Therefore, the logarithm of the ratio be
tween this decay and the corresponding g.s. to g.s. trans
is, according to Eq.~3.1!, g (1)1g (2)'210. This small num-
ber is due to the large centrifugal barrier induced by thl
524 angular momentum transfer, as seen in Figs. 1 an
This possibility is therefore highly unlikely.

According to possibility~2! the mother nucleus decays
a superdeformed state in the daughter nucleus with the s
angular momentum. Therefore the lowest angular mom
tum transfer isl 50 and the value ofQa would be similar to
the one corresponding to the g.s. to g.s. transition, i.e.,Qa
53.7 MeV. One notices that in this case the overlap integ
entering Eq.~2.15! are very close to unity~the mother and
daughter nuclei have the same deformations! and therefore
one should correct the termg (1) by the order of magnitude
16 ~overlap squared in the fifth column of the Table
corresponding to\v50.4!. We notice from Fig. 1~a! that it
is g l 50

(1) '2816522 while from Fig. 2 it isg l 50
(2) '210

~this point is actually outside the range of the figure!. One
then hasg (1)1g (2)'212. Therefore possibility~2! is neg-
ligible in this case.

FIG. 2. The numberg l
(2) containing the penetration factor@see

Eq. ~3.1!# as a function of theQ value corresponding to thea decay
from 152Dy (Qa). The curves are labeled by the correspondinl
values.
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The most favorable of the cases analyzed by us is
decay of 192Pb. The spin of the head of the superdeform
band is in this caseI i510 (\v50.3) @1#. Considering the
transition of type~1!, one has that theQ value isQa57.80
MeV and from Figs. 1~b! and 2 one obtainsg l 510

(1) '212 and
g l 510

(2) '15. The logarithm of the ratio given by Eq.~3.1! is
then g (1)1g (2)'3, which is already a rather big numbe
But this number is still much bigger if one considers pos
bility ~2!. Assuming a transition to the state with spinI f
510 in the superdeformed band of188Hg one hasl 50. From
Fig. 1~b! one then obtainsg l 50

(1) '2412522 ~from Table
II the correction coming from the overlap squared is12! and
from Fig. 2g l 50

(2) '116. Thus, that ratio is for this decay o
the order 1014, which is a very large number and, therefor
the daughter nucleus can well be reached by this processa
decay. The search and eventual measurement, of this d
would have a great importance in understanding the struc
of superderformed bands as well as the mechanisms tha
ducea decay.

IV. SUMMARY AND CONCLUSIONS

We have studied in this papera decay from superde
formed nuclei. For this we have solved exactly the probl
of penetration of thea particle through a deformed barrie
We have found that approximate treatments of the pene
bility in terms of the deformation, such as, e.g., the WK
approximation or the classical treatment of Refs.@14#, are
not valid for deformations larger thanb2'0.3 ~see Table I!.

We have also presented a formalism to calculate the
mation amplitude ofa particles in superderformed nuclei,
number which is necessary to evaluate absolute de
widths. Since this calculation requires the use of sing
particle states that can describe processes occurring ou
the nuclear surface, we introduced a representation con
ing of the eigenvalues of two different harmonic oscillat
potentials. The low lying members of the representation c
respond to the standard single-particle states used to des
bound properties, while the high lying members correspo
to the eigenvalues of a shallow harmonic oscillator potent
Within this representation we used the HFB approximat
to describe the structure of the superderformed nuclei. T
single-particle basis allows for a much faster convergency
the computed formation amplitude in the region beyond
nuclear surface, where the interaction becomes practica
Coulomb repulsion between the emitteda particle and the
daughter nucleus. We can therefore perform calculati
which would otherwise be prohibitive. We have thus fou
that the formation amplitude~and the correspondinga decay
probability! decreases with the difference between the qu
rupole deformations in the mother and daughter nuclei,
though this is not a big effect~see the differences betwee
the columns labeledI1 andI2 in Table II!.

We assumed that the mother nucleus decays by elec
magnetic transitions to the head of a superdeformed ba
From here we considered thata decay proceeds following
two different possibilities:~1! direct a decay to the ground
state of the daughter nucleus and~2! a decay to an excited
state belonging to the superdeformed band of the daug
nucleus followed by an electromagnetic transition to t
ground state. The first process involves large transferred
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gular momenta andQ values, while for the second one tho
quantities are both rather small.

We found that thea decay probability from the head of
superdeformed band in192Pb to the corresponding state
188Hg is about 14 orders of magnitude larger than the co
sponding probability for the ground state to ground st
transition. This is therefore a likely candidate to observea
decay transitions from superdeformed bands.
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APPENDIX

In this appendix we give the multipole expansion of t
formation amplitude, which is the generalization of the e
pression given in Ref.@12# to a deformed mean field. Differ
ent multipoles are used as initial conditions to integrate
system of equations~2.2!, describing the motion of thea
particle in a deformed Coulomb field. By considering t
expansion~2.16! of the SP wave functions one obtains f
the wave functions of the mother and daughter nuclei~2.14!
t o

sk

ra
-
e

in
.
.

-

e

cBp5 (
ikg igk

(
E,m.0

Bp~E,m!@cAp;Eg i

~ i ! cAp;Egk

~k!

3~2 ! j k2mA2cg im
~l i !~1!c

gkm̄

~lk!
~2!#cAp ,

cBn5 (
i 8k8g i8gk8

(
E8,m8.0

Bn~E8,m8!@cAn;E8g
i8

~ i 8!
cAn;E8g

k8
~k8!

3~2 ! j k82m8A2c
g

i8m8

~l i8!
~3!c

g
k8m8̄

~lk8!
~4!#cAn , ~A1!

where Bt , t5p,n are the pairing densities given by Eq
~2.15!. By using the standard recoupling procedure to
c.m. and relative coordinates and performing the integ
one finally obtains a multipolar expansion of thea particle
formation amplitude

F~Ra ,R̂a8 !5(
La

FLa
~Ra!YLa0~R̂a8 !

5 (
iki 8k8

(
NaLa

WNaLa

~ iki 8k8!F
NaLa

~L ik
i 8k8!

~Ra ,R̂a8 !,

~A2!

where
WNaLa

~ iki 8k8!5 (
NpLp

(
NnLn

Gp
~ ik !~Np ,Lp!Gn

~ i 8k8!~Nn ,Ln!C000
LpLnLa(

na

^na0NaLa ;LauNpLpNnLn ;La&D
ik
i 8k8I

na0
~l ik

i 8k8la!
, ~A3!

Gp
~ ik !~Np ,Lp!5 (

g igk

Bp~g i ,gk ,Lp!K ~ l i l k!LpS 1

2

1

2D0;LpUS l i

1

2D j i S l k

1

2D j k ;LpL ^np0NpLp ;Lpuni l inkl k ;Lp&Dik
I np0

~l ikla! ,

~A4!
ely.
Bp~g i ,gk ,Lp!5 (
E,m.0

11~2 !Lp

2
Bp~E,m!cAp;Eg i

~ i !

3cAp;Egk

~k! ~2 ! j 22mA2C
mm̄0

j i j kLp . ~A5!

A similar expression is obtained for neutrons. The first se
brackets in Eq.~A4! denotesj j 2LS recoupling coefficients
while the second one is the generalized Talmi-Moshin
symbol, which depends upon the ratioDik5l i /lk @20#. The
quantitiesI np0

(l i ,la) are the overlap integrals between the

dial HO wave functions, i.e.,

I np0
~l ik ,la!

5^Rnp0
~l ik!uR00

~la!
&, ~A6!

with the relative HO parameterl ik given by

l ik5
l ilk

L ik
, ~A7!
f

y

-

wherei , k refers to the basis with frequency ratiosf i , f k @see
Eq. ~2.22!# and

L ik5
1

2
~l i1lk! ~A8!

is the c.m. HO parameter. The overlap integralsI
na0
(l ik

i 8k8la)

and radial c.m. wave functionsF
NaLa

(L ik
i 8k8)

(RaR̂a8 ) in Eq. ~A2!

depend on the relative and c.m. HO parameters, respectiv
That is,

l ik
i 8k85

L ikL i 8k8

L ik
i 8k8

, ~A9!

L ik
i 8k85

1

2
~L ik1L i 8k8!. ~A10!
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