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Electromagnetic transitions of theK=1 band in the SU®3) limit
of the neutron-proton interacting boson model
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M1 andE2 transition probabilities from th& =1 band, which is lowest in energy among the mixed-
symmetry bands, to fully symmetric states are derived analytically within the framework of i# I8tit of
the neutron-proton interacting boson model. To derive the electromagnetic transitions in closed forms, the
tensorial characters of the electromagnetic transition operators, which are taken in term8)ofSidrators,
are investigated in the pure ) limit. The properties oM 1 andE2 intrinsic matrix elements in the classical
limit of the present model and tH€2/M 1 mixing ratios for transitions of th&=1 band to fully symmetric
states are also studiel50556-28188)01010-3

PACS numbegs): 23.20—-g, 21.60.Fw

I. INTRODUCTION were obtained in studying the intrinsic states of the(3U
limit of the IBM-2 [16,17] are available for our calculations.

The interacting boson model, first proposed by Arima and=rom the electromagnetic transition rates and E#&M1
lachello[1], has been successful in explaining a large varietymixing ratios for transitions from thi€ =1 band to FS states,
of collective properties in even-even nuclei. The original ver-we investigate some of properties for thiel andE2 intrin-
sion of the interacting boson modéBM-1) does not distin- sic matrix elements in the classical limit, that is, for a large
guish the proton boson from the neutron boson. Motivated0son number.
by microscopic considerations of the model, the neutron- Since the present analysis is restricted to an exa¢8SU
proton interacting boson modélBM-2), in which proton symr_netry of th_e I_BM-_2, the results obtalneq in this paper
and neutron bosons are treated separately, was introduc@fPVide simple insight into the electromagnetic properties for
[2,3]. Within the framework of the IBM-2, a new quantum MS states _thhout complete numerical caIch_anns. There—
numberF spin was introduced to specify the proton-neutronfore' analytic formulas for th&#11 andE2 transition rates in

: . : the SU3) limit can be useful for a preliminary approach of
symmetric properties of the wave functif-4]. Fully sym- . oo .
metric (FS IBM-2 states with a maximaF spin of F electromagnetic properties in the range of deformed nuclei.

=Fax. Which are lowest in energy, are identical to the
IBM-1 states. In the IBM-2, a new class of mixed-symmetry
(MS) states withF#F . is predicted. The discovery of
low-lying collective 1" states in several deformed nuclei in
the rare-earth region confirmed the existence of MS states Among the various kinds of dynamic symmetries of the
with F=F,,—1 [5,6]. This 1" state corresponds to the IBM-2, in this paper we consider the $8) limit of the
bandhead of th& =1 excitation mode in the S@3) limit of IBM-2, where the proton and neutron degrees of freedom are
the IBM-2. M1 transition strengths to the*llevel in de- joined at the level of (6). The group chain in this limit is
formed nuclei, which are described by the SUimit of the  given by[18]

IBM-2, have been extensively analyzgfi-11], and F-spin

symmetry has been suggested to be strongly connected to theY=(8)®U,(6)2U . ,(6)5SU., (32044 (3207 ,(2).
investigation ofM1 transitions[12—15. In particular, Van @

Isackeret aﬂ. [1}] studied in detail the electromagnetic prop- the pasis states of the IBM-2 span the irreducible represen-
erties of 1", 2", and 3" states withF=F,,—1 via the tation (irrep) [N, ]®[N,] of U_(6)®U,(6), whereN_(N,) is

algebraic approach. , , the number of protorineutron bosons. U ,(6) is charac-
In the present work, we extend the previous studies foEerized by the irred N—f,f], whereN is the total boson

the electromagnetic transitions of MS states within the _ ;
number N=N_+N,), and the quantum numbers associated
framework of the S(B) limit of the IBM-2 and derive alge- N=N,+N,) d

. - with SU(3) and its subgroups are same as those of the IBM-1
braically theM1 andE2 transitions from the lowest M& 1] \aye functions in this limit are thus characterized by
=1 band to FS states to which the ground-state,@hand

the y bands belong. In order to expradgs andE2 transition IINLI®[N,;[N—f,f18(A ) kL M), 2)
rates in closed forms, we takd1 andE2 transition opera-

tors in terms of the S(B) generators and determine the ten-where 8 and « are labels necessary to completely specify
sor character for the S8) generators in a given group chain. U(6)DSU(3) and SUW3)D0O(3) reductions, respectively. To
In the process of reducing the matrix elements, knowledge a$implify the notation, the label@ and « will be omitted
the W(6)DSU(3) isoscalar factors and the(6)-reduced ma- when U6)DSU(3) and SU(3)D O(3) reductions are unique.
trix elements of the one-body boson operator is needed. AFhe irrep[N—f,f] of U, ,(6) is related td~ spin through
though those are not known in general, the results whicli-=N/2—f [11]. FS states are characterized by the ifidp
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corresponding to the maximum value & spin (F . Lg=L,qtLl,q (q=0%x1), (43
=N/2), while the lowest MS states are characterized by the
irrep [N—1,1] corresponding td-=F,,—1. In this paper, Qq=Qsq+tQ.q (04=0,21,%2), (4b)

we restrict only the ground-statg), the B, the vy, and the
lowest MSK=1 (m) bands which are most important in With

studying the collective properties of the low-lying levels in (1)
the IBM-2. They are denoted as =10(d}d, )¢ (58
LM)=|[N N,];[N]J(2N,0)LM 7 .~
|9,LM)=|[N-]&[N,;INJ2N,OLM), (33 Q= (dls,+51,) - I(d;dp)@' 0

|B,.LM)=[[N,]®[N,];[N](2N—4,2),k=0,LM),
(3b) wherep corresponds ter (proton or v (neutron bosons. For
analytic calculations of matrix elements, it is necessary to
ly,LM)=[[N,]®[N,];[N](2N—-4,2),k=2 M), know the tensorial properties of the operators within the
(30) group chain given in Eq(1). The one-body boson operator
transforms as @214 tensor under (6), andL, (Q,) trans-
(3¢ forms as the irreducible tensor operafﬁfl)(T(“)) under
SU(3) and its subgroupgll]. The phase and normallzatlon
The state given in Eq3d) belongs to th&K =1 band, which  factor for the tensor operator can be determined from the
is the lowest in energy among MS bands in the(3Uimit. definition of the irreducible tensor operatd'r““) under

Im,LM)=|[N,]®[N,];[N—1,1](2N—2,1)LM).

In the IBM-2, the generators of SU,(3) are given by SUR)DO(3) in the usual way 20]:
|
[ TMI= 2 ()L M+ el Gol ) L M) (6)

where Gy=Ly and Q. The matrix element ofL, can be easily calculated from the reduced matrix element
eymrs L ||L||()\,u)KL> JL(L+1)(2L+1)6, /b, . The matrix element of), can be calculated by using the Elliott
matrix elementg21] and the Vergados expansion coefficief2g]. On the other hand, via the Wigner-Eckart theorem, the
generators of S(B) can be put into the form20]

2
[Tig? Th]= E E<LM 1a /LM +a) (A ) kL (AD ) &' LY V) [ TE [ ) )T - (7)

The additional qguantum numbéris necessary, sinc@u) occurs twice in the Kronecker produck £)® (11) whenu#0.
Hecht[23] defined the quantum numbéms a special choice of the tensor operator with nonzero reduced matrix elements for
only one state&¢=1 and expressed the reduced matrix elemerk(&¥ in the intrinsic scheme as

N2+ P+ A +3N+3p ) 2
(AT (A w)) = 3 Og1- €)]

Vergados[22] defined the phases so as to ensure that thé€3)SID(3) isoscalar factor(ISF) is real and obtained the
SU(3)D0O(3) ISF's extensively. In the present work, we follow the phase convention adopted by Vergados. The reduced matrix
element ofT*YV) in the present model is the same as the corresponding matrix element in the intrinsic fEqef@d except
for a (\ w)-dependent phase factor. The phase of the reduced matrix element(if) Boequired to be positive fge=0 and
negative foru=1,2 for consistency with the definition of the 8)yDO(3) ISF's.

Comparing the results of E¢6) with (7), the tensor character of the 8) generator under S8)D0O(3) can be obtained.
Considering together with tensorial properties undé)JUSU(3) generators are expressed as the tensor forms

Lo=2Tig M (g=0,x1), (92

3
Qq= \[5 T (g=0+1,%2). (9b)

The matrix element of the tensor operator can be calculated analytically by applying the generalized Wigner-Eckart theorem.
The matrix element involves the generalized Clebsch-Gordan coefficient, which is written as the prodi@&DSW(3) ISF,
SUR)DO(3) ISF, and the ordinary Clebsch-Gordan coefficient according to Racah’s factorization lemma. The reduced matrix
element of thep-boson SW3) generator between the FS state &hd 1 band is written as
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(INASIN,LINTO ) L[| TRV IN, @ [N, IN=1,1](2N—-2,)L")
= V2L+1([N—1,1](2N—2,2);[2,24](1D)|[[NJ(A ) }{(2N—2,DL"; (1D || (A ) kL)
X([NLIQ[N,LINIITL N, I[N, ];[N—1,1]). (10)

The necessary (8)DSU(3) ISF'’s for this analysis arfl7]

2N-2
(IN—1,1](2N—2,1);[2,14](11)||[N](2N,0)) = — /T
N( '

2N+1
(IN-1,1(2N-21;214)(1D|[[NI2N-4.2) =\ yon 5 (11)

The U6)-reduced matrix element of the one-body boson operator connecting FS and MS states, which is denoted with four
bars in Eq.(10), has been obtained by using tRespin formalism and is given 446,17

(INASINLINTI TN, @ [N, ;[N - 1,1])

m

= —(INA2 [N LINJITE NS N, LIN- 13D = \ =7 (12

As E2 andM1 transition operators, we take the standard . N 3 5 N,
expression in the S@) limit of the IBM-2: B(M1:1,—0g)=7—(9-—9,) 32N=1) (15

T(E2)=e,Q,1€,Q,, (133
The B(M1) strengths of then—g transition forN=12 are

3 shown in Fig. 1. From Eq(14) and Fig. 1, an interesting
T(M1)=\/-— (9,L.+g,L,), (13b) result is obtained: for finite boson numbb the B(M1)
4 strength for themL—1—gL transition increases, whereas
) B(M1) strengths fomL+1—gL andmL—gL transitions
wheree, andg, (p=,v) are thep-boson effective charge gecrease as an increase of the angular momehtum
and thep-bosong factor, given in units ofe b and uy;, For a systematic analysis of the reduddd. transition

respectively. The matrix elements of the electromagneticbrobab”ities of thek =1 band to the ground-state band, it is

transition operators can be simply calculated by using Eqs;seful to expresB(M1) strengths in Eq(14) in the follow-
(9) and (10). The reducedV 1 transition probabilities from ing form:

the K=1 band the to the ground-state band are derived as

follows: )
B(M1;mL'—gL)=2(L'1,1-1|LO)2M2 (L,L"),
B(M1;mL—glL) (16)
~ , (2N=L)(2N+L+1) T
"4 9 TN m ~ B e
(149 ¥ - —
- mL-1 > gL
Zk’
B(M1:mL+1—gl) Z |
Z:‘ 0_1_\. /A/A _
3 , 2(L+2)(2N-L) N (145 > >zﬁ\
=27 979 GLrgnen—p NN 34D o SO
% ] mL+1~>gL\°\.
B(M1;mL—1—gL) '\.\.
0.0 T T T T T T T T T |\?
3 ,2(L—1)(2N+L+1) T o 4 8 12 16 20 24

=27 979 G NaN=T) NN (149 L

. FIG. 1. B(M1) strengths of the transition from th€=1 band
From Eg. (14b), the B(M1) strength for the 1—05  to the ground-state band for the total boson numier12 as a
transition is given as the well-known res{®,11] function of the angular momentuin
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TABLE I. Relative MZ(L,L") values between th&=1 band and thes,y bands. The reference
MZ.(L,L) values are given in Eq19).

2 2 2

M g(L,L’ M_(L,L’ M m(L,L’
L’ M M (L=even L (L=o0dd
M grn(L,L) M p(L,L) M (L, L)
N+L+1[ @eN-22-L P 2N+L+1 2N
L+1 —_
2N |(2N—22-L(L+1)+1 N 2N-L-1
L IN-L[ (@N-22+L+1 P 2N-L 2N
2N [(2N-22-L(L+1)+1 2N 2N+L
with 3 )
:E(gﬂ'_gv)
MZ(L,.L)=B(M1;mL—gL), (17a
><(2N—L—1)(2N+L)
2N N(N-1)%2N-3) "
2 _ 2
ML L+1)= oo Mg(LL), (17D
(L=odd), (190
Mém(L’L_l)ZZN—L Mém(L,L). (179 where ¢(N,L)=2(2N—2)2—L(L+1). In the present

model theB(M1) strengths for the transitions from tlke

=1 band to the ground-statg, and y bands have the com-
In the geometrical modeMém is interpreted as the square of mon parameter 3y, —g,)?N,N,/4=: therefore, the ratio of
the M1 intrinsic matrix element, which is independentlof two B(M1) strengths is independent of the adjustable pa-
[24]. However, in the present modeMém is dependent not rameters.

only onN, but onL. The B(M1) strengths from th& =1 In the classical limit, i.e., for a large boson numbér
band to the8 and y bands can be calculated from a similar M, (Wheref=g, B, andy) is independent of, and so it is
method and expressed as called theM 1 intrinsic matrix element. For transitions of the
K=1 band to the FS states, the magnitudes of NhE in-
B(M1;mL'—fL) trinsic matrix elements are given as
2 for f=p8 3NN

— ' 2 ' ’ T Ny

=(L'L3k—1Lk)*MEn(LLL) X 1 o) f=1y, Mg = SN 192—9.l, (209
(18)

3N, N,

wherek;=0 for the 8 band andk;=2 for the y band, re- M gml= 47N> 19-—0., (20b)

spectively. In Table | we lisM%,, andM? values relative
to the following values:

3NN
Myml =\ 55 197—0.] (200
M2, (L,L)=B(M1;mL— BL) ym 2mN?
3 ) The ratios of twoM 1 intrinsic matrix elements between the
=15 (9-79)) K=1 band and FS bands are free of the bogdactor: that
is, those are dependent only on the boson nunmefor
2[(2N—2)?—L(L+1)+1]? NN example, |Mgn/Mgy|=V1/2N and [M /M gn|= V1.
(N—1)2(2N—1)(2N—3)$(N,L) mNv) From Egs.(16) and(18), the ratio of two reducet1 tran-

sition probabilities fromL’ states of theK=1 band toL
(199 states of a band belongs to FS states depends on geometrical
factors. For  example, the ratio B(M1:mL'
L+ +
M2 (L L)=i(g g2 —gL)/B(M1:1;,—04) becomes
ym ! 477 w 14

B(MlnnLﬁegL)_(UJli—lhiD)zMQ“LJJHZ

8(2N—L—2)(2N+L—1) B(M1;1;,—04) | (11,1-1/00) Mgm(0,2) | °

X NN, (21)
(N=1)(2N—-3)#(N,L)

Since|Mgm(L,L")/Mgn(0,1)|=1 in the classical limit, the
(L=even, (190  ratio B(M1;mL'—gL)/B(M1;1,—0,) is identical to the
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: 12 ’ —
TABLE II. Relatlverm(L,L/z) values between thlg—l pand M/’;%(L,L)Z(ew—ev)z
and FS states. The referenté;(L,L) values are given in Eg.

(23). " 3[(2N—2)2+L(L+1)-3]?
AP PN 4(N-1)%(2N-1)(2N=3)$(N,L) " "
L’ Mgn(L,L") Mpm(L,L")
IV o (23
Mgm(L,L) Mn(L.L)
5 Mry?n(l-vl-):(eﬂ'_ev)z
2N 924 —
L+l ZNZ;“ e 3(N-L-2)@N+L-1)
(2N-2)>+L(L+1)-3 (N=1)(2N=3)p(N.L) NN
2N-L—-2 (2N+L+1)(2N—L—2)(2N+L—2)?
L+2
2N+L+1 [(2N—2)%+L(L+1)—3] (L=even, (230
2N - —2)2_|— 2
L—1 T 2N—-L (2N—-2)*—L—-3 =(e7,—ey)2
- 2N [(2N-2)%+L(L+1)-3
L, 2Ll (2N—L)(@2N+L+1)(2N-L—3)? SENZLZDENAL)
2N-L [(2N—22+L(L+1)—3P 8N(N—1)%(2N~-3)
’ |2 ’ NG L=od , (23
M/ (LL") M (L.L") ( d, (230
L, ’ ’
Mim(LL) Mim(L.L) whereg(N,L)=2(2N—2)2—L(L+1). For theM1 andE2
(L=even) (L=odd) transitions of I, and 2!, states to FS states, tlM 1) and
ON+L+1 N B(E2) strengths are identical with the results obtained by
L+1 - Van Isackeret al.[11]. In this work, we have extended their
2N 2N-L-1 work and calculated the electromagnetic transitions of all
L+o 2N+L+1 2N+L+2 states of theK=1 band to all allowed states of the ground-
IN—L—2 IN—L—1 state, theB, and they bands by using more general and
ON—L oN simple processes.
L—1 - - o In the classical limit, the magnitudes of the intrinsic ma-
2N 2N+L trix elements for theE2 transitions of theK=1 band are
L_o 2N—-L 2N—-L+1 given as
2N+L-1 2N+L
ﬂ'NV
|Mém| = AN |e7T_eV|1 (246)
result from the Alaga rule, which predicts it as the ratio of
two Clebsch-Gordan coefficient24]. Analogous results are 3NN
obtained forM 1 transitions of th&K =1 band to theB and y IML =\ =’ |e,— e, (24b
Am 8N2 T vl
bands.
With similar techniques, the reduc&® transition prob-
abilities for theK=1 band to the FS states can be calculated , 3NN,
and written as Ml =\ INT le.—e,|. (249
. ’ _ ’ 212 ’
B(E2;mL'—fL)=(L"1,2&—1|Lk)*M{y(L,L") From Egs.(20) and (24), the magnitudes of the ratio &2
2 for f=g,3 and M1 intrinsic matrix elements for transitions from the

1 forf=» (22 K=1 band to the ground-state, tgeand they bands are all

identical and independent of boson numbéri.e.,
wherek; =0 for g andB bands, and;=2 for they band. As M/
for the case of théV 1 transition,M'? is interpreted as the _fml_ \/E
square of théE2 intrinsic matrix element and is independent Mtm 2
of L in the geometrical model. In Table I, we list’? val-

ues for theE2 transitions of the< =1 band to the FS states Wheref=g, B, andy. This interesting result is caused by the
relative to the corresponding values folL— fL transitions, fact thatE2 andM1 transition operators have the same ten-

€—¢,
909,

: (29

which are given as sor character under(6) and SU3).
Significant information for the electromagnetic transitions
Mérzn(LiL) can also be obtained from the mixing rafizb,26
8(E2/M1)=0.83FE A(Li—Ly), (26)

, 32N-L)(2N+L+1)
8N?(2N—1)

:(ew_ev) NWNVl (23@

with the reduced mixing ratio
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TABLE Ill. Reduced mixing ratio6(mL’—fL) in units of y=/2(e,—e,)/(9,—3,)-

L’ A(mL’'—gL) A(mL'—BL) A(mL'—yL)
. _\/ 3 \/ 3 (2N-2)2+L(L+1)-3 3v3
(2L+1)(2L+3) 2L+ 1)(2L+3) (2N-2)7—L(L+ D) +1 (2L—1)(2L+3)
L+1 [ L L (2N—-2)2+L-2 _ L+4
L+2 L+2 (2N—=2)2-L JL(L+2)
L1 i+t [L+1(2N-2)2-L-3 L+3
L-1 L—1(2N—2)2+L+1 (L—1)(L+1)
B (LI T(E2)|IL;) m— vy transitions. If the effective charge and thdactor of
ALi—Ly= (L{ T(MD)|IL;)" (27) the bosons were determined, there is a fixed-sign relationship
betweenE2 andM1 intrinsic matrix elements; whee,, is
whereE,, is the energy of the transition in MeV anki(L; larger thane, (the g factor of the proton boson is generally

—Ly) ine b/uy. TheE2/M1 reduced mixing ratios for the larger than that of the neutron bogpthe signs ofE2 and
transition of K=1 to the FS states are listed in Table Ill. M1 intrinsic matrix elements are same for tme- 8 transi-
From the results given in Table IlI, it is shown that the mix- tion, whereas they are opposite for—g and m— y transi-
ing ratio is dependent on the facta (—e,)/(9,—9,) inthe  tions, in the classical limit of the present model. It is of
exact SU3) limit, and thus the ratio of twd&e2/M1 mixing interest that the sign of the mixing ratios for thel’ — 8L
ratios is independent of the adjustable parameters given igtansition is always opposite to that for thel’—gL tran-
Eq. (13). Form—g andm— y transitions, the reduced mix- sition.
ing ratios are proportional to the ratio of two Clebsch-
Gordan coefficients and have units of the ratioe# and
M1 intrinsic matrix elements in Eq25), i.e., lll. SUMMARY
, In this paperM 1 andE2 transition rates from the lowest
(L1221~ 1L k) e (29) mixed-symmetryK =1 band to fully symmetric states have
(L"1,1¢;—1|Lks) 29,-0, been derived via the algebraic approach. To express the elec-
tromagnetic transition probabilities in closed formél and
wherek¢=0 and 2 for them—g andm— y transitions, re- E2 transition operators have been defined in terms of the
spectively. This interesting result is analogous to the result ofienerators of Si{3) (p=,v) and have obtained the tensor
the geometrical model, in which the reduced matrix elementharacter in the S(3) limit of the neutron-proton interacting
of the electromagnetic transition operator is expressed as thshson modelB(M1) andB(E2) strengths contain a term
product of the geometrical factére., Clebsch-Gordan coef- which corresponds to the intrinsic matrix element in the geo-
ficient) and the intrinsic matrix element. However, for the metrical model. To interpret this term as the intrinsic matrix
m— 3 transition, the reduced mixing ratio contains an addi-element in the present model, we consider the classical limit
tional term which is dependent dvandL: (N—), in which this term is independent of angular mo-
mentum. In the classical limit, the ratio of two reduddéd
(or E2) transition probabilities from thé&=1 band to a
band of the FS states is only dependent on the ratio of two
Clebsch-Gordan coefficients. This result is analogous to the
Since f(N,L) approaches 1 in the limiN—o, A(mL’ one from the Alaga rule. Fan—g, m— 8, andm— v tran-
— BL) can also be expressed in the form of E28). Thus  sitions, the ratios oE2 andM 1 intrinsic matrix elements are
the classical limit of the present model corresponds to théndependent of the boson numbirand all are identical
geometrical model and the sign in E@5) could be deter- except the sign. It is shown that ti&2/M 1 mixing ratio of
mined. The ratio oE2 andM1 intrinsic matrix elements is the m— 3 transition has a sign opposite to that of time
positive for them— g transition and negative fan—g and  —g transition in the SB) limit of the IBM-2.

A(ML = kL) =—

(L'1,2-1|LO) Te,—e,
A(mML'—BL)=—"——"f(N,L)\/ =5 :
(L'1,1-1|LO) 29,9,

(29
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