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Electromagnetic transitions of theK51 band in the SU„3… limit
of the neutron-proton interacting boson model

J. H. Lee
Department of Physics, Dong-eui University, Pusan 614-714, Korea

~Received 24 April 1998!

M1 and E2 transition probabilities from theK51 band, which is lowest in energy among the mixed-
symmetry bands, to fully symmetric states are derived analytically within the framework of the SU~3! limit of
the neutron-proton interacting boson model. To derive the electromagnetic transitions in closed forms, the
tensorial characters of the electromagnetic transition operators, which are taken in terms of SU~3! generators,
are investigated in the pure SU~3! limit. The properties ofM1 andE2 intrinsic matrix elements in the classical
limit of the present model and theE2/M1 mixing ratios for transitions of theK51 band to fully symmetric
states are also studied.@S0556-2813~98!01010-3#

PACS number~s!: 23.20.2g, 21.60.Fw
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I. INTRODUCTION

The interacting boson model, first proposed by Arima a
Iachello@1#, has been successful in explaining a large vari
of collective properties in even-even nuclei. The original v
sion of the interacting boson model~IBM-1! does not distin-
guish the proton boson from the neutron boson. Motiva
by microscopic considerations of the model, the neutr
proton interacting boson model~IBM-2!, in which proton
and neutron bosons are treated separately, was introd
@2,3#. Within the framework of the IBM-2, a new quantum
numberF spin was introduced to specify the proton-neutr
symmetric properties of the wave function@2–4#. Fully sym-
metric ~FS! IBM-2 states with a maximalF spin of F
5Fmax, which are lowest in energy, are identical to t
IBM-1 states. In the IBM-2, a new class of mixed-symme
~MS! states withFÞFmax is predicted. The discovery o
low-lying collective 11 states in several deformed nuclei
the rare-earth region confirmed the existence of MS st
with F5Fmax21 @5,6#. This 11 state corresponds to th
bandhead of theK51 excitation mode in the SU~3! limit of
the IBM-2. M1 transition strengths to the 11 level in de-
formed nuclei, which are described by the SU~3! limit of the
IBM-2, have been extensively analyzed@7–11#, andF-spin
symmetry has been suggested to be strongly connected t
investigation ofM1 transitions@12–15#. In particular, Van
Isackeret al. @11# studied in detail the electromagnetic pro
erties of 11, 21, and 31 states withF5Fmax21 via the
algebraic approach.

In the present work, we extend the previous studies
the electromagnetic transitions of MS states within
framework of the SU~3! limit of the IBM-2 and derive alge-
braically theM1 andE2 transitions from the lowest MSK
51 band to FS states to which the ground-state, theb, and
theg bands belong. In order to expressM1 andE2 transition
rates in closed forms, we takeM1 andE2 transition opera-
tors in terms of the SU~3! generators and determine the te
sor character for the SU~3! generators in a given group chai
In the process of reducing the matrix elements, knowledg
the U~6!.SU~3! isoscalar factors and the U~6!-reduced ma-
trix elements of the one-body boson operator is needed.
though those are not known in general, the results wh
PRC 580556-2813/98/58~4!/2061~7!/$15.00
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were obtained in studying the intrinsic states of the SU~3!
limit of the IBM-2 @16,17# are available for our calculations
From the electromagnetic transition rates and theE2/M1
mixing ratios for transitions from theK51 band to FS states
we investigate some of properties for theM1 andE2 intrin-
sic matrix elements in the classical limit, that is, for a lar
boson number.

Since the present analysis is restricted to an exact SU~3!
symmetry of the IBM-2, the results obtained in this pap
provide simple insight into the electromagnetic properties
MS states without complete numerical calculations. The
fore, analytic formulas for theM1 andE2 transition rates in
the SU~3! limit can be useful for a preliminary approach o
electromagnetic properties in the range of deformed nuc

II. ELECTROMAGNETIC TRANSITIONS
FROM THE K51 BAND IN THE SU „3… LIMIT

OF THE IBM-2

Among the various kinds of dynamic symmetries of t
IBM-2, in this paper we consider the SU~3! limit of the
IBM-2, where the proton and neutron degrees of freedom
joined at the level of U~6!. The group chain in this limit is
given by @18#

Up~6!^Un~6!.Up1n~6!.SUp1n~3!.Op1n~3!.Op1n~2!.
~1!

The basis states of the IBM-2 span the irreducible repres
tation ~irrep! @Np# ^ @Nn# of Up~6!^Un~6!, whereNp(Nn) is
the number of proton~neutron! bosons. Up1n(6) is charac-
terized by the irrep@N2 f , f #, where N is the total boson
number (N5Np1Nn), and the quantum numbers associat
with SU~3! and its subgroups are same as those of the IBM
@19#. Wave functions in this limit are thus characterized b

u@Np# ^ @Nn#;@N2 f , f #b~lm!kLM &, ~2!

where b and k are labels necessary to completely spec
U~6!.SU~3! and SU~3!.O~3! reductions, respectively. To
simplify the notation, the labelsb and k will be omitted
when U~6!.SU~3! and SU(3).O(3) reductions are unique
The irrep@N2 f , f # of Up1n(6) is related toF spin through
F5N/22 f @11#. FS states are characterized by the irrep@N#
2061 © 1998 The American Physical Society
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2062 PRC 58J. H. LEE
corresponding to the maximum value ofF spin (Fmax
5N/2), while the lowest MS states are characterized by
irrep @N21,1# corresponding toF5Fmax21. In this paper,
we restrict only the ground-state~g!, the b, the g, and the
lowest MS K51 ~m! bands which are most important i
studying the collective properties of the low-lying levels
the IBM-2. They are denoted as

ug,LM &5u@Np# ^ @Nn#;@N#~2N,0!LM &, ~3a!

ub,LM &5u@Np# ^ @Nn#;@N#~2N24,2!,k50,LM &,
~3b!

ug,LM &5u@Np# ^ @Nn#;@N#~2N24,2!,k52,LM &,
~3c!

um,LM &5u@Np# ^ @Nn#;@N21,1#~2N22,1!LM &.
~3d!

The state given in Eq.~3d! belongs to theK51 band, which
is the lowest in energy among MS bands in the SU~3! limit.
In the IBM-2, the generators of SUp1n(3) are given by
e
Lq5Lp,q1Ln,q ~q50,61!, ~4a!

Qq5Qp,q1Qn,q ~q50,61,62!, ~4b!

with

Lr,q5A10~dr
†d̃r!q

~1! , ~5a!

Qr,q5~dr
†sr1sr

†d̃r!q
~2!2

A7

2
~dr

†d̃r!q
~2! , ~5b!

wherer corresponds top ~proton! or n ~neutron! bosons. For
analytic calculations of matrix elements, it is necessary
know the tensorial properties of the operators within
group chain given in Eq.~1!. The one-body boson operato
transforms as aT@2,14# tensor under U~6!, andLq (Qq) trans-
forms as the irreducible tensor operatorT1q

(11) (T2q
(11)) under

SU~3! and its subgroups@11#. The phase and normalizatio
factor for the tensor operator can be determined from
definition of the irreducible tensor operatorTkLM

(lm) under
SU~3!.O~3! in the usual way@20#:
ent
tt
the

ts for

matrix

heorem.

matrix
@Gq ,TkLM
~lm!#5 (

k8L8
^~lm!k8L8M1quGqu~lm!kLM &Tk8L8M1q

~lm! , ~6!

where Gq5Lq and Qq . The matrix element ofLq can be easily calculated from the reduced matrix elem
^(lm)k8L8uuLuu(lm)kL&5AL(L11)(2L11)dLL8dkk8 . The matrix element ofQq can be calculated by using the Ellio
matrix elements@21# and the Vergados expansion coefficients@22#. On the other hand, via the Wigner-Eckart theorem,
generators of SU~3! can be put into the form@20#

@Tlq
~11! ,TkLM

~lm!#5 (
k8L8

(
j51

2

^LM ,lquL8M1q&^~lm!kL;~11!l uu~lm!k8L8&j^~lm!uuT~11!uu~lm!&jTk8L8M1q
~lm! . ~7!

The additional quantum numberj is necessary, since~lm! occurs twice in the Kronecker product (lm) ^ (11) whenmÞ0.
Hecht@23# defined the quantum numberj as a special choice of the tensor operator with nonzero reduced matrix elemen
only one statej51 and expressed the reduced matrix element ofT(11) in the intrinsic scheme as

^~lm!uuT~11!uu~lm!&j5S l21m21lm13l13m

3 D 1/2

dj1 . ~8!

Vergados@22# defined the phases so as to ensure that the SU~3!.O~3! isoscalar factor~ISF! is real and obtained the
SU~3!.O~3! ISF’s extensively. In the present work, we follow the phase convention adopted by Vergados. The reduced
element ofT(11) in the present model is the same as the corresponding matrix element in the intrinsic scheme@Eq. ~8!# except
for a (lm)-dependent phase factor. The phase of the reduced matrix element in Eq.~7! is required to be positive form50 and
negative form51,2 for consistency with the definition of the SU~3!.O~3! ISF’s.

Comparing the results of Eq.~6! with ~7!, the tensor character of the SU~3! generator under SU~3!.O~3! can be obtained.
Considering together with tensorial properties under U~6!, SU~3! generators are expressed as the tensor forms

Lq52T1q
@2,14#~11! ~q50,61!, ~9a!

Qq5A3

2
T2q

@2,14#~11! ~q50,61,62!. ~9b!

The matrix element of the tensor operator can be calculated analytically by applying the generalized Wigner-Eckart t
The matrix element involves the generalized Clebsch-Gordan coefficient, which is written as the product of U~6!.SU~3! ISF,
SU~3!.O~3! ISF, and the ordinary Clebsch-Gordan coefficient according to Racah’s factorization lemma. The reduced
element of ther-boson SU~3! generator between the FS state andK51 band is written as
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^@Np# ^ @Nn#;@N#~lm!kLuuTr,l
@2,14#~11!uu@Np# ^ @Nn#;@N21,1#~2N22,1!L8&

5A2L11^@N21,1#~2N22,1!;@2,14#~11!uu@N#~lm!&^~2N22,1!L8;~11!l uu~lm!kL&

3^@Np# ^ @Nn#;@N#uiuTr
@2,14#uiu@Np# ^ @Nn#;@N21,1#&. ~10!

The necessary U~6!.SU~3! ISF’s for this analysis are@17#

^@N21,1#~2N22,1!;@2,14#~11!uu@N#~2N,0!&52A2N22

N

^@N21,1#~2N22,1!;@2,14#~11!uu@N#~2N24,2!&5A 2N11

N~2N23!
. ~11!

The U~6!-reduced matrix element of the one-body boson operator connecting FS and MS states, which is denoted w
bars in Eq.~10!, has been obtained by using theF-spin formalism and is given as@16,17#

^@Np# ^ @Nn#;@N#uiuTp
@2,14#uiu@Np# ^ @Nn#;@N21,1#&

52^@Np# ^ @Nn#;@N#uiuTn
@2,14#uiu@Np# ^ @Nn#;@N21,1#&5ANpNn

N21
. ~12!
r

et
q

a

s

is
As E2 andM1 transition operators, we take the standa
expression in the SU~3! limit of the IBM-2:

T~E2!5epQp1enQn , ~13a!

T~M1!5A 3

4p
~gpLp1gnLn!, ~13b!

whereer andgr (r5p,n) are ther-boson effective charge
and ther-boson g factor, given in units ofe b and mN ,
respectively. The matrix elements of the electromagn
transition operators can be simply calculated by using E
~9! and ~10!. The reducedM1 transition probabilities from
the K51 band the to the ground-state band are derived
follows:

B~M1;mL→gL!

5
3

4p
~gp2gn!2

~2N2L !~2N1L11!

N2~2N21!
NpNn ,

~14a!

B~M1;mL11→gL!

5
3

4p
~gp2gn!2

2~L12!~2N2L !

~2L13!N~2N21!
NpNn , ~14b!

B~M1;mL21→gL!

5
3

4p
~gp2gn!2

2~L21!~2N1L11!

~2L21!N~2N21!
NpNn . ~14c!

From Eq. ~14b!, the B(M1) strength for the 1m
1→0g

1

transition is given as the well-known result@9,11#
d

ic
s.

s

B~M1;1m
1→0g

1!5
3

4p
~gp2gn!2

8NpNn

3~2N21!
. ~15!

The B(M1) strengths of them→g transition forN512 are
shown in Fig. 1. From Eq.~14! and Fig. 1, an interesting
result is obtained: for finite boson numberN, the B(M1)
strength for themL21→gL transition increases, wherea
B(M1) strengths formL11→gL and mL→gL transitions
decrease as an increase of the angular momentumL.

For a systematic analysis of the reducedM1 transition
probabilities of theK51 band to the ground-state band, it
useful to expressB(M1) strengths in Eq.~14! in the follow-
ing form:

B~M1;mL8→gL!52^L81,121uL0&2Mgm
2 ~L,L8!,

~16!

FIG. 1. B(M1) strengths of the transition from theK51 band
to the ground-state band for the total boson numberN512 as a
function of the angular momentumL.
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TABLE I. Relative M f m
2 (L,L8) values between theK51 band and theb,g bands. The reference

M f m
2 (L,L) values are given in Eq.~19!.

L8 UMbm~L,L8!

Mbm~L,L!
U2 UMgm~L,L8!

Mgm~L,L!
U2 ~L5even! UMgm~L,L8!

Mgm~L,L !
U2

~L5odd!

L11
2N1L11

2N F ~2N22!22L

~2N22!22L~L11!11
G2 2N1L11

2N

2N

2N2L21

L21
2N2L

2N F ~2N22!21L11

~2N22!22L~L11!11
G2 2N2L

2N

2N

2N1L
of

t

ar

-

pa-

e

e

trical
with

Mgm
2 ~L,L !5B~M1;mL→gL!, ~17a!

Mgm
2 ~L,L11!5

2N

2N1L11
Mgm

2 ~L,L !, ~17b!

Mgm
2 ~L,L21!5

2N

2N2L
Mgm

2 ~L,L !. ~17c!

In the geometrical model,Mgm
2 is interpreted as the square

the M1 intrinsic matrix element, which is independent ofL
@24#. However, in the present model,Mgm

2 is dependent no
only on N, but onL. The B(M1) strengths from theK51
band to theb andg bands can be calculated from a simil
method and expressed as

B~M1;mL8→ f L !

5^L81,1kf21uLkf&
2M f m

2 ~L,L8!3 H2 for f 5b,
1 for f 5g,

~18!

wherekf50 for the b band andkf52 for the g band, re-
spectively. In Table I we listMbm

2 and Mgm
2 values relative

to the following values:

Mbm
2 ~L,L !5B~M1;mL→bL !

5
3

4p
~gp2gn!2

3
2@~2N22!22L~L11!11#2

~N21!2~2N21!~2N23!f~N,L !
NpNn ,

~19a!

Mgm
2 ~L,L !5

3

4p
~gp2gn!2

3
8~2N2L22!~2N1L21!

~N21!~2N23!f~N,L !
NpNn

~L5even!, ~19b!
5
3

4p
~gp2gn!2

3
~2N2L21!~2N1L !

N~N21!2~2N23!
NpNn

~L5odd!, ~19c!

where f(N,L)52(2N22)22L(L11). In the present
model theB(M1) strengths for the transitions from theK
51 band to the ground-state,b, andg bands have the com
mon parameter 3(gp2gn)2NpNn/4p: therefore, the ratio of
two B(M1) strengths is independent of the adjustable
rameters.

In the classical limit, i.e., for a large boson numberN,
M f m ~wheref 5g, b, andg! is independent ofL, and so it is
called theM1 intrinsic matrix element. For transitions of th
K51 band to the FS states, the magnitudes of theM1 in-
trinsic matrix elements are given as

uMgmu5A3NpNn

2pN
ugp2gnu, ~20a!

uMbmu5A3NpNn

4pN2
ugp2gnu, ~20b!

uMgmu5A3NpNn

2pN2
ugp2gnu. ~20c!

The ratios of twoM1 intrinsic matrix elements between th
K51 band and FS bands are free of the bosong factor: that
is, those are dependent only on the boson numberN, for
example, uMbm /Mgmu5A1/2N and uMgm /Mgmu5A1/N.
From Eqs.~16! and ~18!, the ratio of two reducedM1 tran-
sition probabilities fromL8 states of theK51 band toL
states of a band belongs to FS states depends on geome
factors. For example, the ratio B(M1:mL8
→gL)/B(M1:1m

1→0g
1) becomes

B~M1;mL8→gL!

B~M1;1m
1→0g

1!
5S ^L81,121uL0&

^11,121u00& D 2UMgm~L,L8!

Mgm~0,1!
U2

.

~21!

Since uMgm(L,L8)/Mgm(0,1)u51 in the classical limit, the
ratio B(M1;mL8→gL)/B(M1;1m

1→0g
1) is identical to the
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result from the Alaga rule, which predicts it as the ratio
two Clebsch-Gordan coefficients@24#. Analogous results are
obtained forM1 transitions of theK51 band to theb andg
bands.

With similar techniques, the reducedE2 transition prob-
abilities for theK51 band to the FS states can be calcula
and written as

B~E2;mL8→ f L !5^L81,2kf21uLkf&
2M f m8

2~L,L8!

3 H2 for f 5g,b,
1 for f 5g, ~22!

wherekf50 for g andb bands, andkf52 for theg band. As
for the case of theM1 transition,M 82 is interpreted as the
square of theE2 intrinsic matrix element and is independe
of L in the geometrical model. In Table II, we listM 82 val-
ues for theE2 transitions of theK51 band to the FS state
relative to the corresponding values formL→ f L transitions,
which are given as

Mgm82 ~L,L !

5~ep2en!2
3~2N2L !~2N1L11!

8N2~2N21!
NpNn , ~23a!

TABLE II. Relative M f m8
2(L,L8) values between theK51 band

and FS states. The referenceM f m8
2(L,L) values are given in Eq

~23!.

L8 UMgm8 ~L,L8!

Mgm8 ~L,L!
U2 UMbm8 ~L,L8!

Mbm8 ~L,L!
U2

L11
2N

2N1L11
2N1L11

2N F ~2N22!21L22

~2N22!21L~L11!23
G2

L12
2N2L22

2N1L11

~2N1L11!~2N2L22!~2N1L22!2

@~2N22!21L~L11!23#2

L21
2N

2N2L
2N2L

2N F ~2N22!22L23

~2N22!21L~L11!23
G2

L22
2N1L21

2N2L

~2N2L!~2N1L11!~2N2L23!2

@~2N22!21L~L11!23#2

L8 UMgm8 ~L,L8!

Mgm8 ~L,L!
U2

(L5even)

UMgm8 ~L,L8!

Mgm8 ~L,L!
U2

(L5odd)

L11
2N1L11

2N

2N

2N2L21

L12
2N1L11

2N2L22

2N1L12

2N2L21

L21
2N2L

2N

2N

2N1L

L22
2N2L

2N1L21

2N2L11

2N1L
f

d

Mbm82 ~L,L !5~ep2en!2

3
3@~2N22!21L~L11!23#2

4~N21!2~2N21!~2N23!f~N,L !
NpNn ,

~23b!

Mgm82 ~L,L !5~ep2en!2

3
3~2N2L22!~2N1L21!

~N21!~2N23!f~N,L !
NpNn

~L5even!, ~23c!

5~ep2en!2

3
3~2N2L21!~2N1L !

8N~N21!2~2N23!
NpNn

~L5odd!, ~23d!

wheref(N,L)52(2N22)22L(L11). For theM1 andE2
transitions of 1m

1 and 2m
1 states to FS states, theB(M1) and

B(E2) strengths are identical with the results obtained
Van Isackeret al. @11#. In this work, we have extended the
work and calculated the electromagnetic transitions of
states of theK51 band to all allowed states of the groun
state, theb, and theg bands by using more general an
simple processes.

In the classical limit, the magnitudes of the intrinsic m
trix elements for theE2 transitions of theK51 band are
given as

uMgm8 u5A3NpNn

4N
uep2enu, ~24a!

uMbm8 u5A3NpNn

8N2 uep2enu, ~24b!

uMgm8 u5A3NpNn

4N2 uep2enu. ~24c!

From Eqs.~20! and ~24!, the magnitudes of the ratio ofE2
and M1 intrinsic matrix elements for transitions from th
K51 band to the ground-state, theb, and theg bands are all
identical and independent of boson numberN, i.e.,

UM f m8

M f m
U5Ap

2 Uep2en

gp2gn
U, ~25!

wheref 5g, b, andg. This interesting result is caused by th
fact thatE2 andM1 transition operators have the same te
sor character under U~6! and SU~3!.

Significant information for the electromagnetic transitio
can also be obtained from the mixing ratio@25,26#

d~E2/M1!50.835EgD~Li→L f !, ~26!

with the reduced mixing ratio
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TABLE III. Reduced mixing ratiod(mL8→ f L) in units of Ap/2(ep2en)/(gp2gn).

L8 D(mL8→gL) D(mL8→bL) D(mL8→gL)

L 2A 3

~2L11!~2L13! A 3

~2L11!~2L13!

~2N22!21L~L11!23

~2N22!22L~L11!11
2

3)

~2L21!~2L13!

L11 A L

L12 2A L

L12

~2N22!21L22

~2N22!22L
2

L14

AL~L12!

L21 2AL11

L21 AL11

L21

~2N22!22L23

~2N22!21L11

L13

A~L21!~L11!
II.
x-

n
-
h-

lt
en
t

-
e
di

th

ship

ly

of

t
e
lec-

the
r

eo-
rix
imit
o-

two
the
D~Li→L f !5
^L f iT~E2!iLi&

^L f iT~M1!iLi&
, ~27!

whereEg is the energy of the transition in MeV andD(Li
→L f) in e b/mN . TheE2/M1 reduced mixing ratios for the
transition of K51 to the FS states are listed in Table I
From the results given in Table III, it is shown that the mi
ing ratio is dependent on the factor (ep2en)/(gp2gn) in the
exact SU~3! limit, and thus the ratio of twoE2/M1 mixing
ratios is independent of the adjustable parameters give
Eq. ~13!. For m→g andm→g transitions, the reduced mix
ing ratios are proportional to the ratio of two Clebsc
Gordan coefficients and have units of the ratio ofE2 and
M1 intrinsic matrix elements in Eq.~25!, i.e.,

D~mL8→k fL !52
^L81,2k f21uLk f&

^L81,1k f21uLk f&
Ap

2

ep2en

gp2gn
, ~28!

wherek f50 and 2 for them→g andm→g transitions, re-
spectively. This interesting result is analogous to the resu
the geometrical model, in which the reduced matrix elem
of the electromagnetic transition operator is expressed as
product of the geometrical factor~i.e., Clebsch-Gordan coef
ficient! and the intrinsic matrix element. However, for th
m→b transition, the reduced mixing ratio contains an ad
tional term which is dependent onN andL:

D~mL8→bL !5
^L81,221uL0&

^L81,121uL0&
f ~N,L !Ap

2

ep2en

gp2gn
. ~29!

Since f (N,L) approaches 1 in the limitN→`, D(mL8
→bL) can also be expressed in the form of Eq.~28!. Thus
the classical limit of the present model corresponds to
geometrical model and the sign in Eq.~25! could be deter-
mined. The ratio ofE2 andM1 intrinsic matrix elements is
positive for them→b transition and negative form→g and
tt.

tt.
in

of
t
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-

e

m→g transitions. If the effective charge and theg factor of
the bosons were determined, there is a fixed-sign relation
betweenE2 andM1 intrinsic matrix elements; whenep is
larger thanen ~the g factor of the proton boson is general
larger than that of the neutron boson!, the signs ofE2 and
M1 intrinsic matrix elements are same for them→b transi-
tion, whereas they are opposite form→g andm→g transi-
tions, in the classical limit of the present model. It is
interest that the sign of the mixing ratios for themL8→bL
transition is always opposite to that for themL8→gL tran-
sition.

III. SUMMARY

In this paper,M1 andE2 transition rates from the lowes
mixed-symmetryK51 band to fully symmetric states hav
been derived via the algebraic approach. To express the e
tromagnetic transition probabilities in closed forms,M1 and
E2 transition operators have been defined in terms of
generators of SUr(3) (r5p,n) and have obtained the tenso
character in the SU~3! limit of the neutron-proton interacting
boson model.B(M1) andB(E2) strengths contain a term
which corresponds to the intrinsic matrix element in the g
metrical model. To interpret this term as the intrinsic mat
element in the present model, we consider the classical l
(N→`), in which this term is independent of angular m
mentum. In the classical limit, the ratio of two reducedM1
~or E2) transition probabilities from theK51 band to a
band of the FS states is only dependent on the ratio of
Clebsch-Gordan coefficients. This result is analogous to
one from the Alaga rule. Form→g, m→b, andm→g tran-
sitions, the ratios ofE2 andM1 intrinsic matrix elements are
independent of the boson numberN and all are identical
except the sign. It is shown that theE2/M1 mixing ratio of
the m→b transition has a sign opposite to that of them
→g transition in the SU~3! limit of the IBM-2.
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