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Collisional relaxation of collective motion in a finite Fermi liquid
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Finite size effects in the equilibrium phase space density distribution function are taken into account for
calculations of the relaxation of collective motion in finite nuclei. Memory effects in the collision integral and
the diffusivity and the quantum oscillations of the equilibrium distribution function in momentum space are
considered. It is shown that a smooth diffuse~Fermi-type! equilibrium distribution function leads to a spurious
contribution to the relaxation time. The residual quantum oscillations of the equilibrium distribution function
eliminates the spurious contribution. It ensures the disappearance of the gain and loss terms in the collision
integral in the ground state of the system and strongly reduces the internal collisional width of the isoscalar
giant quadrupole resonances.@S0556-2813~98!01807-X#

PACS number~s!: 21.60.Ev, 24.30.Cz
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I. INTRODUCTION

The relaxation of nuclear collective motion toward the
mal equilibrium has been described in great detail within
framework of kinetic theory, taking into account the collisio
integral @1–9#. In this theory, the damping of the collectiv
motion appears due to the interparticle collisions on the
namically deformed Fermi surface. It has already be
shown by Landau@10,11# that both temperature and memo
effects are extremely important for successful application
kinetic theory to the relaxation processes in a Fermi syst
However, only very little attention has been paid to the stu
of the peculiarities of the collision integral in a finite Ferm
system caused by particle reflections on the boundary.

In kinetic theory, the collision integral depends crucia
on the phase-space distribution functionf (rW,pW ). The main
aim of this paper is to apply the quantum Wigner pha
space distribution function, also known as the Wigner tra
form @12#, to the evaluation of the collision integral in
finite Fermi system. The Wigner distribution functio
~WDF! is defined as the Fourier transform of the one-bo
density matrix over the relative coordinates. It possesses
eral nice properties@13,14# which justify its interpretation as
the quantum mechanical analog of the classical phase-s
distribution function. The WDF is useful in providing a re
formulation of quantum mechanics in terms of classical c
cepts@15,16# and a good starting point for semiclassical a
proximations@17#.

Traditionally, the equilibrium phase-space density dis
bution functionf eq(rW,pW ) in the collision integral is replaced
by the one,f eq ,TF(rW,pW ), taken in the Thomas-Fermi approx
mation:

f eq,TF~rW,pW !5u„l2E~rW,pW !…, ~1!

whereu(x) is the step function andE(rW,pW ) is the classical
single-particle energy. This is reasonable for an infin
Fermi system. In the case of a finite Fermi system, the qu
tum distribution function f eq(rW,pW ) fluctuates strongly and
PRC 580556-2813/98/58~1!/198~11!/$15.00
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contains the diffusivity of the Fermi surface even at ze
temperature@18–23#. Both these features are due to partic
reflections on potential walls.

The diffusivity of the Fermi surface in momentum spa
increases in the vicinity of the nuclear surface@22# and thus
enhances the effective particle scattering there because o
decrease of the Pauli blocking effect. It can be shown@9# that
the use of a simple Fermi distribution function

f eq,F~rW,pW !5S 11expFE~rW,pW !2l

a~r !
G D 21

, ~2!

with r -dependent diffusivity parametera(r ), instead of theu
function of Eq.~1!, for the equilibrium distribution function
f eq(rW,pW ) in the collision integral, leads to a significant e
hancement of the damping of the nuclear giant multip
resonances. However, there is a conceptual disadvantag
the application of the Fermi distribution functionf eq,F(rW,pW )
with a(r )Þ0 to the collision integral. Namely, with this
function the gain and loss terms in the collision integral a
each nonzero for the ground state of the system, where
probability current should be absent by definition. We sh
in this work that in order to overcome this difficulty th
smooth quantum distribution functionf̃ eq(rW,pW ) should be
used for f eq(rW,pW ) in the collision integral in the kinetic
Landau-Vlasov equation. In contrast to the Fermi distrib
tion function f eq,F(rW,pW ), the smooth quantum distributio
function f̃ eq(rW,pW ) contains residual oscillations@19,23# en-
suring the above-mentioned condition for the disappeara
of the gain and loss terms in the collision integral for t
ground state and reducing the internal collisional width
the giant multipole resonances.

In this paper we pay attention mainly to finite size a
memory effects in the relaxation processes in finite Fe
systems. In Sec. II we obtain a general expression for
width of the giant multipole resonances at zero tempera
of the nucleus starting from the collisional Landau-Vlas
equation. In Sec. III we study the influence of memory
fects and the diffusivity of the Fermi surface on the rela
198 © 1998 The American Physical Society
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PRC 58 199COLLISIONAL RELAXATION OF COLLECTIVE MOTION . . .
ation time. We use the smeared-out Wigner distribut
function f̃ eq(rW,pW ) of the three-dimensional harmonic oscill
tor and of the Woods-Saxon potential for the calculations
the collision integral. A summary and conclusions are giv
in Sec. IV.

II. DAMPING OF COLLECTIVE EXCITATIONS
IN KINETIC THEORY

The kinetic equation for a small variationd f (rW,pW ,t) of the
distribution function can be transformed to a set~infinite! of
equations for the moments ofd f (rW,pW ,t) in pW space, namely
the local particle densitydr, velocity fielduW , pressure tenso
pab , etc.; see@11,24#. The first-order moment of the kineti
equation has the form of the Euler-Navier-Stokes equa
and is given by@24,25#

mreq

]

]t
ua1req

]

]r a
S d2E

dr2D
eq

dr1
]

]r n
pna50. ~3!

Here and in the following expressions, repeated greek in
cesa,b,n51,2,3 are to be understood as summed over.
variation of the local particle densityr and the velocity field
ua in Eq. ~3! are defined by

dr5gE dpW

~2p\!3
d f , uW 5

g

rE dpW

~2p\!3

pW

m
d f . ~4!

The quantitypab is the deviation of the pressure tensor fro
its equilibrium partPeq due to the Fermi-surface deforma
tion,

pab5
g

mE dpW

~2p\!3
~pa2mua!~pb2mub!d f , ~5!

and the equilibrium pressurePeq is given by

Peq5gE dpW

~2p\!3

p2

2m
f eq[

2

3
Ekin , ~6!

whereEkin is the kinetic energy density. The internal ener
densityE in Eq. ~3! contains both kinetic and potential en
ergy densities:E5Ekin1Epot, whereEpot is the potential en-
ergy density.

Equation~3! is not closed because it contains the press
tensorpab given by the second-order moment of the dist
bution function d f (rW,pW ,t), Eq. ~5!. We will follow the
nuclear fluid dynamic approach of Refs.@2,3,6# and take into
account the dynamic Fermi-surface distortions up to mu
polarity l 52. The secondpW moment of the kinetic equation
leads then to a closed differential equation for the press
tensorpab . Namely~see Refs.@3,6,8,9,26#!,

]

]t
pab1PeqS ]ua

]r b
1

]ub

]r a
2

2

3
dab

]ua

]r b
D52

pab

t2
. ~7!

The local relaxation timet2 in Eq. ~7! is caused by the
interparticle scattering on the deformed Fermi surface:
n

f
n

n

i-
e

e

i-

re

1

t2
52

E dpW p2Y20dSt

E dpW p2Y20d f

. ~8!

HeredSt[dSt(rW,pW ,t) is a collision integral linearized ind f .
In the case of small eigenvibrations with eigenfrequencyv
5v01 iG/2\, wherev0 andG are real, the collision integra
can be transformed, taking into account also memory effe
as @5,27#

dSt~rW,pW ,t !5E gdpW 2dpW 3dpW 4

~2p\!6
W~$pW j%!(

j 51

4
dQ

d f j
U

eq

3d f j

1

2
@d~DE1\v0!1d~DE2\v0!#d~DpW !,

~9!

whereW($pW j%) is the probability of the scattering of nucle
ons near the Fermi surface,g54 is the spin-isospin degen
eracy factor, and

Q5~12 f 1!~12 f 2! f 3f 42 f 1f 2~12 f 3!~12 f 4!,

DE5E11E22E32E4 , DpW 5pW 11pW 22pW 32pW 4 ;

Ej5pj
2/2m1V(rW j ) is the classical single-particle energ

pW 1[pW , andV(rW) is the nuclear mean field.
We will follow the arguments of the Fermi-liquid theor

of Ref. @24# and assume that the dynamical component of
distribution functiond f (rW,pW ,t) has the form

d f ~rW,pW ,t !52
] f eq

]E
n~rW,pW ,t !, ~10!

where n(rW,pW ,t) are unknown functions. The function
n(rW,pW ,t) depend on the orientationp̂ only because of the
sharp energy dependence of the factor] f eq/]E in Eq. ~10!,
which is localized at the Fermi momentumpF(r ). We point
out that the smooth region of the equilibrium distributio
function f eq(rW,pW ) in momentum space appears in a clas
cally forbidden region atE,V(rW). However, this region is
absent in the space integral in Eq.~9!. Thus,

n~rW,pW ,t !'n„rW,pF~r !,p̂,t…5(
lm

n lm~rW,t !Ylm~ p̂!. ~11!

An exact evaluation of the nine-dimension integral inpW
space in Eq.~9! is a very complicated problem. We wil
follow the Abrikosov-Khalatnikov method@24# improved in
Ref. @28#. Let us assume that the scattering probabil
W($pW j%) in Eq. ~9! depends on two scattering anglesu andf

only ~see Ref.@24#!, whereu is the angle betweenpW 1 andpW 2,
and f is the angle between the planes formed by (pW 1 ,pW 2)
and (pW 3 ,pW 4), i.e.,

W~$pW j%!'W~$pj5pF~r !,u,f%!. ~12!
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200 PRC 58KOLOMIETZ, LUKYANOV, PLUJKO, AND SHLOMO
To evaluate the collision integral, Eq.~9!, we will use the
Abrikosov-Khalatnikov transformation@24,28#:

E dpW 2dpW 3dpW 4

~2p\!6
d~DpW !~••• !

'
m3

2~2p\!6E dVdf2

cosu/2
dE2dE3dE4~••• !,

~13!

wheredV5sin ududf andf2 is the azimuthal angle of the
momentumpW 2 in the coordinate system with thez axes along
pW 1. We point out that the anglef varies only from 0 top
because the particles are indistinguishable.

Using Eq.~13!, the collision integral, Eq.~9!, can be writ-
ten in the form

dSt~rW,pW ,t !52
m3

16p4\6(l ,m n lm~rW,t !Ylm~ p̂!

3(
j 51

4

^W~u,f!Pl~cosu j !&~ I j
~1 !1I j

~2 !!.

~14!

The symbol̂ •••& denotes averaging over angles of the re
tive momentum of the colliding particles,

^W~u,f!Pl~cosu j !&

5E
0

p

du
sin u

cosu/2E0

pdf

2p
W~u,f!Pl~cosu j !, ~15!

where cosuj[(p̂jp̂1), i.e., u2[u, and

cosu35@cos~u/2!#21@sin~u/2!#2cosf,

cosu45@cos~u/2!#22@sin~u/2!#2cosf,

Pl(cosu) is a Legendre polynomial, and

I j
~6 !5E

Veq

`

dE2dE3dE4

] f eq,j

]Ej

dQ

d f j
U

eq

d~DE6\v0!.

We now return to the dynamical equation~3!. Let us in-
troduce the displacement fieldxW (rW,t) related to the velocity
field uW (rW,t) as

uW ~rW,t !5
]

]t
xW ~rW,t !. ~16!

We look for the displacement fieldxW (rW,t) in the following
separable form:

xW ~rW,t !5b~ t !vW ~rW !, ~17!

whereb(t)5b0eivt. Substituting Eqs.~16! and~17! into Eq.
~3!, one obtains the equation of motion for the collecti
variableb(t):
-

mreqvab̈1
1

v

]

]r n
~ Im Pna

v !ḃ1
]

]r n
~Re Pna

v !b

2req

]

]r a
F S d2E

dr2D
eq

]

]r n
~reqvn!Gb50, ~18!

where we have used the following form for the traceless p
pab(rW,t) of the momentum flux tensor:

pab~rW,t ![Pab
v ~rW !b0eivt5b~ t !Re Pab

v ~rW !

1
1

v
ḃ~ t !Im Pab

v ~rW !. ~19!

Multiplying Eq. ~18! by va , summing overa, and integrat-
ing over rW space, we obtain the dispersion equation for
eigenfrequencyv:

2Bv21 ivA~v!1C̃~v!50. ~20!

Here, B is the hydrodynamical mass coefficient@29# with
respect to the collective variableb(t):

B5mE drWreqv
2. ~21!

The dissipative termA(v) and the stiffness coefficien
C̃(v)5C1C8(v) are given by

A~v!5
1

vE drWva

]

]r n
~ Im Pna

v ! ~22!

and

C5E drWS d2E
dr2D

eq

F ]

]r n
~reqvn!G2

, ~23!

C8~v!5E drWva

]

]r n
~Re Pna

v !. ~24!

We point out that the definition of the stiffness coefficientC
coincides with the one for the stiffness coefficient in t
traditional liquid drop model~LDM ! for the nucleus. In con-
trast, the additional contributionC8(v) to the stiffness coef-
ficient is absent in the LDM and represents the influence
the dynamical Fermi-surface distortion on the conserva
forces in the Fermi system. Finally, the dissipative te
A(v) appears due to interparticle scattering on the distor
Fermi surface.

To evaluate the coefficientsA(v) andC8(v), we will use
the third equation of motion~7!. Let us rewrite Eq.~7! in the
form

]

]t
pab1

1

t2
pab52PeqLab , ~25!

where

Lab5
]ua

]r b
1

]ub

]r a
2

2

3
dab

]ua

]r b
. ~26!
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Taking Eqs.~16!, ~19!, and~25!, one obtains

ḃ Re Pab
v 1

1

v
b̈ Im Pab

v 1
1

t2
bRe Pab

v 1
1

vt2
ḃ Im Pab

v

52PeqḃL̄ab . ~27!

Here,

L̄ab5
]va

]r b
1

]vb

]r a
2

2

3
dab

]va

]r b
. ~28!

Equation ~27! can be represented as a set of equations
motion for both the real and the imaginary parts ofv:

2G Re Pab
v 22\v0Im Pab

v 1
2\

t2
Re Pab

v 2GPeqL̄ab50,

~29!

2\v0Re Pab
v 2G Im Pab

v 1
2\

t2
Im Pab

v 12\v0PeqL̄ab50,

~30!

where Im (v)[G/(2\).
In the case of small damped collective motion, we fin

from Eq. ~27!,

Re Pab
v 52Peq

~v0t2!2

11~v0t2!2
L̄ab , ~31!

Im Pab
v 52Peq

v0t2

11~v0t2!2
L̄ab . ~32!

Finally, we have, from Eqs.~22!, ~24!, ~31!, and ~32! ~see
also Ref.@26#!,

A~v0!5E drWPeq

t2

11~v0t2!2
L̄an

]va

]r n
, ~33!

C8~v0!5E drWPeq

~v0t2!2

11~v0t2!2
L̄an

]va

]r n
. ~34!

In the same case of small damped collective motion,
dispersion equation~20! is transformed as

2BS v0
21 i

G

\
v0D1 iv0A~v0!1C̃~v0!50. ~35!

Thus,

v0
25

C̃~v0!

B
, G5\

A~v0!

B
. ~36!

Using Eqs.~36!, ~33!, and~34! we obtain the widthG as

G5\v0

v0A~v0!

C̃~v0!
of

,

e

5\v0

E drWPeqL̄an~]va /]r n!v0t2 /@11~v0t2!2#

C1E drWPeqL̄an~]va /]r n!~v0t2!2/@11~v0t2!2#

.

~37!

In the case of an isoscalar giant quadrupole resona
~GQR! one can assume@3,4,17# that the displacement field

vW (rW) is the irrotational one and is given byvW 5(2x,
2y,2z). We have thenLan]va /]r n58. Furthermore, the
LDM stiffness coefficientC gives a negligible contribution
to the total valueC̃(v) @3,17# and Eq.~37! is transformed as

G>\v0

E drWPeqv0t2 /@11~v0t2!2#

E drWPeq~v0t2!2/@11~v0t2!2#

. ~38!

Finally, in the rare collision regime (v0t@1) Eq. ~38! is
reduced as

G r.\E drW
Peq

t2
Y E drWPeq. ~39!

III. RESULTS OF NUMERICAL CALCULATIONS

To study the space distribution of the collective dampin
we will introduce the local damping parameterj(r ,v0) re-
lated to the widthG:

G[E drWj~r ,v0!, ~40!

where@see Eq.~38!#

j~r ,v0!5
\v0Peqv0t2 /@11~v0t2!2#

E drWPeq~v0t2!2/@11~v0t2!2#

~41!

is always a positive quantity. The local relaxation timet2
[t2(r ,v0) can be obtained by substituting Eq.~14! into Eq.
~8! and is given by

1

t2~r ,v0!
52

m3

16p4\6
^W~u,f!&

3
R~1 !1R~2 !

E
Veq

`

dE~E2Veq!
3/2] f eq/]E

, ~42!

where

R~6 !5E
Veq

`

dE1dE2dE3dE4~E12Veq!
3/2d~DE6\v0!

3S ] f eq,1

]E1

dQ

d f eq,1
1c2

] f eq,2

]E2

dQ

d f eq,2
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1~11c22d2!
] f eq,3

]E3

dQ

d f eq,3
D , ~43!

and the coefficientsc2 andd2 are given by

c25^WP2~cosu!&/^W&,

d25 K 3W sin4
u

2
sin2f L Y ^W&. ~44!

To evaluate the relaxation time~42!, we will study, first of
all, the collision integralSteq(rW,pW ) in the ground state of the
system which is given by@see also Eq.~9!#

Steq~rW,pW !5E gdpW 2dpW 3dpW 4

~2p\!6
W~$pW j%!Queqd~DE!d~DpW !.

~45!

We will introduce also the total gain and loss fluxes of t
probability in the ground state. They are given, respective
by

Jeq, gain5E drW1

gdpW 1dpW 2dpW 3dpW 4

~2p\!9
W~$pW j%!

3@12 f eq,1#@12 f eq,2# f eq,3f eq,4d~DE!d~DpW !

~46!

and

Jeq, loss5E drW1

gdpW 1dpW 2dpW 3dpW 4

~2p\!9
W~$pW j%!

3@12 f eq,3#@12 f eq,4# f eq,1f eq,2d~DE!d~DpW !.

~47!

One can see from both definitions, Eqs.~46! and ~47!, that
Jeq, gain5Jeq, loss and Steq(rW,pW )50, as it should be for the
equilibrium state of system. Moreover, in the case of
ground state of the system, both fluxesJeq, gain and Jeq, loss
have to disappear separately. This is not the case, howev
the Fermi distribution functionf eq,F @see Eq.~2!# is used for
the equilibrium distribution functionf eq of the ground state
of the finite Fermi system in Eqs.~46! and ~47!. To avoid
this disadvantage we will use the smeared-out quantum
tribution function f̃ eq in both Eqs.~46! and ~47!. To control
the disappearance of the gain and loss fluxes, we will in
duce the relative contributionq of the probability fluxes
Jeq, gainor Jeq, lossevaluated withf eq5 f̃ eq to the correspond-
ing values evaluated withf eq5 f eq,F , i.e.,

q5Jeq, gain~$ f̃ eq%!/Jeq, gain~$ f eq,F%!

[Jeq, loss~$ f̃ eq%!/Jeq, loss~$ f eq,F%!. ~48!

Below we will apply our approach to the isoscalar GQ
We will assume that the scattering probabilityW in Eqs.~42!
and~44! is angle independent, i.e.,d254/5 andc251/5, and
the magnitude ofW can be obtained from the nuclear matt
estimate of the parametera[15p2\5/m3^W&59.2 MeV
,

e

, if

is-

-

.

from Ref. @8#. We will also use the following expression fo
the energy\v0 of the isoscalar GQR:\v0560A21/3 MeV.
The numerical calculations will be performed for both t
spherical harmonic oscillator~HO! potential well and the
Woods-Saxon~WS! potential.

A. Spherical harmonic oscillator potential

We will use the harmonic oscillator potential in the for

Veq~r !5
1

2
mV2r 2, ~49!

where\V.41A21/3 MeV. For ‘‘magic’’ nuclei in the ab-
sence of a spin-orbit interaction, the smeared-out quan
distribution functionf̃ eq(rW,pW ) in a HO potential is given by
@19#

f̃ eq~rW,pW ![ f̃ eq~e!58e2e(
k50

`

~21!kLk
2~2e!ñk . ~50!

Here, Lk
n(e) is the associated Laguerre polynomial ande

5p2/m\V1mVr 2/\[2E/\V is the dimensionless energ
parameter. The smooth occupation numbersñk are intro-
duced as

ñk5E
2`

l̃k
dxz~x!1 (

m51

M

a2mz2m21~ l̃k!, ~51!

wherez(x) is the averaging function chosen as

z~x!5
1

Ap
e2x2

.

The second term in Eq.~51! contains the so-called Strutinsk
curvature corrections and is given by

zn~x!5
~21!n

Ap
e2x2

Hn~x!,

where Hn(x) are the Hermite polynomials, a2n

5(21)n/(22nn!), and l̃k5(EF2Ek)/g. The quantitiesEF
andEk are the Fermi energy and single-particle energies
the mean fieldVeq(r ), respectively, andg is an averaging
parameter.

The results of numerical calculations~see also Ref.@19#!

of the smooth distribution functionf̃ eq(e) of Eq. ~50! are
shown in Fig. 1. The solid line 1 gives the behavior of t
smooth distribution function for the value of the smeari
parameterg52.5\V and 2M56, the order of the curvature
correction polynomial in Eq.~51!. We point out that these
values of the smearing parameter and correction polynom
are localized in the so-called plateau region for the sh
correctiondU to the binding energy, i.e., wheredU does not
depend ong @30#.

The smooth distribution functionf̃ eq(e) exhibits oscilla-
tions caused by particle reflections on the potential surfa
The mean behavior~i.e., without the oscillations! of f̃ eq(e)
can be approximated by the Fermi functionf eq,F(rW,pW ) of Eq.
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~2!, where the chemical potentiall is fixed by the condition
of conservation of particle numberA:

A5gE drWdpW

~2p\!3
f eq,F~rW,pW !.

The solid line 2 in Fig. 1 shows the behavior of the Fer
distribution functionf eq,F(rW,pW ) of Eq. ~2! with the parameter
a taken from Eq.~55!. The dashed line in Fig. 1 gives th
simple Thomas-Fermi approximation, Eq.~1!.

In Fig. 2 we show the smooth distribution functionsf̃ eq as
functions of the dimensionless kinetic energyekin

FIG. 1. The equilibrium distribution function as a function
the dimensionless parametere, for a nucleus with mass numberA
5 224, calculated for a spherical HO potential. Solid lines 1 an
show the smooth distribution function obtained using the averag
procedure of Eq.~50! with g52.5\V and the Fermi distribution
function of Eq.~2! with parametera from Eq. ~55!, respectively.
The dashed line shows the Thomas-Fermi distribution function~1!.
The dotted line shows the distribution function of Eq.~57! with h
50.86 providing the disappearance of the probability fluxes in
ground state of the nucleus.

FIG. 2. The smooth distribution function of Eq.~50! as a func-
tion of the dimensionless kinetic energyekin5p2/m\V, for a
nucleus with mass numberA5 224, calculated for a spherical HO
potential with g52.5\V. The different curves correspond to th
distancesr 50, 3, and 6 fm to the center of the nucleus.
i

5p2/m\V for different distancesr . We can see from this
figure that the diffusivity parametera is almost independen
of the distancer . This fact is a feature of the HO potentia
well. Note that the analogous diffusivity parameter for t
Woods-Saxon potential is a stronglyr -dependent function
increasing near the potential wall; see below and Re
@22,23#. Following Ref.@23#, the diffusivity parametera of
the quantum distribution functionf eq in momentum space
can be estimated using the expansion off eq in the Hermite
polynomials. The result reads

a.AG21FG3

2 G2/3

. ~52!

The parametersG2 andG3 depend on the mean fieldVeq(r )
and are given by~in the lowest order of\2)

G252
\2

4mF2

r
Veq8 ~r !1Veq9 ~r !G ,

G352
\2

4mF @Veq8 ~r !#21
p2

3mS 2

r
Veq8 ~r !1Veq9 ~r ! D G , ~53!

where a prime means anr derivative. For the HO potentia
one hasG2523(\V)2/4 andG3.2(\V)3l/2. The diffu-
sivity parametera can be also estimated from a fit of th
smooth distribution functionf̃ eq and its derivatived f̃eq/dE
to the corresponding values of the Fermi distribution fun
tion, Eq.~2!, within some smeared out intervalg̃<g near the
Fermi energyEF . Namely, one has the following estimate

a5
1

g̃
E

EF2g̃/2

EF1g̃/2
dE

f̃ eq~ f̃ eq21!

d f̃eq/dE
. ~54!

Note that Eq.~54! gives an exact result for the diffusivity
parametera if the distribution functionf̃ eq coincides with the
Fermi distribution function of Eq.~2!.

The solid lines 1 and 2 in Fig. 3 show the numeric

2
g

e

FIG. 3. The diffusivity parameter of the smooth distributio
function of Eq. ~50! versus the mass numberA, calculated for a
spherical HO potential withg52.5\V: For curve 1 we use Eq
~52!, for curve 2 we use Eq.~54!, and the dashed curve is obtaine
from the fitting formula of Eq.~55!.
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results for the parametera as a function of mass numberA
obtained using both expressions~52! and ~54!, respectively.
A discrepancy between the results presented by curves 1
2 appears because the expression~52! takes into account the
lowest orders of expansion of the distribution functionf̃ eq
over the Hermite polynomials; see Ref.@23#. We have also
established the following simpleA dependence for the diffu
sivity parametera for the spherical HO potential well, ob
tained from Eq.~54! with g̃5g/251.25\V:

a'10.2A21/6 MeV. ~55!

The result of the numerical calculation of the diffusivity p
rametera, Eq. ~55!, is shown in Fig. 3 by the dashed line.

We will return now to the problem of evaluating the r
laxation time, Eq.~8!. In Fig. 4 we have plotted the ratioq as
obtained from Eq.~48! as a function of the mass numberA
@curve HO for the harmonic oscillator potential~49!#. We
have used here the Fermi distribution function~2! with pa-
rametera from Eq. ~55!. As can be seen from Fig. 4, th
effect of the quantum oscillations for the smeared-out dis
bution function f eq,j5 f̃ eq,j leads to an essential compens
tion of the gain and loss probability fluxes. A small nonze
contribution ~about 10–20 % in Fig. 4! remains in part be-
cause of the Abrikosov-Khalatnikov transformation, E
~13!, used earlier, which implies a localization of the m
mentumpW j near the Fermi surface in Eq.~9!. In order to
check this statement, we will use a more general transfor
tion of the momentum integrals in the collision integral, E
~9!, with an arbitrary value of the momentumpj , suggested
in Ref. @7#:

E dpW 2dpW 3dpW 4

~2p\!6
d~DpW !d~DE!~••• !

5
m3

16p4\4p1
E dE2dE3@Ap1

21p2
212p1p2k

2Ap1
21p2

222p1p2k#~••• !, ~56!

FIG. 4. The relative probability fluxes as given by Eq.~48!
versus the mass numberA for both HO and WS potentials.
nd

i-
-

.

a-
.

wherek5min„1,Ap3
2(p1

21p2
22p3

2)/p1
2p2

2
…. The solid line 1

in Fig. 5 gives the behavior of the ratioq as a function of the
smoothing parameterg as obtained from Eq.~48! by apply-
ing the transformation, Eq.~56!, to the calculations of the
probability fluxes, Eqs.~46! and ~47!. A strong deviation of
this result forq from the analogous one obtained using t
Abrikosov-Khalatnikov procedure, Eq.~13! ~the solid line
2!, appears for small magnitudes of the smoothing param
g. This is because the smeared-out distribution functionf̃ eq,j
oscillations grow with the decrease of the smoothing para
eterg and the accuracy of the Abrikosov-Khalatnikov tran
formation, Eq.~13!, also decreases.

The results of the numerical calculations of the local
laxation time@more precisely, the inverse value\/t2(r ,v0)#
of Eq. ~42! for the isoscalar GQR in the nucleus withA
5224 are shown in Fig. 6. We point out that the use of
Fermi distribution function~2! instead of f̃ eq,j in Eq. ~42!
~the solid curve 2 in Fig. 6! leads to much stronger dampin
than analogous calculations withf̃ eq,j from Eq. ~50! ~solid
curve 1!.

To give a simple phenomenological prescription for t
removal of the nonphysical probability fluxes~46! and ~47!
in the ground state of a system, we will introduce the mo
fied distribution function

Feq5 f eq,F1hD f̃ eq. ~57!

Here, f eq,F is the Fermi distribution function~2! with diffu-
sivity parametera from Eq. ~55!, andD f̃ eq is given by

D f̃ eq5 f̃ eq2 f eq,F ,

where f̃ eq is the smooth distribution function of Eq.~50!. A
numerical calculation of the probability fluxesJeq, gain, Eq.
~46!, andJeq, loss, Eq. ~47!, with f̃ eq replaced byFeq, shows
that both probability fluxes disappear ath50.86 for the
nucleus withA 5 224. The corresponding distribution func
tion Feq is shown in Fig. 1 as the dotted line. The loc

FIG. 5. Dependence of the relative probability fluxesq on the
averaging parameterg in units of \V: For solid line 2 we use the
Abrikosov-Khalatnikov transformation, Eq.~13!, and for solid line
1 we use the transformation, Eq.~56!, for the momentum integrals
in the collision integral, Eq.~9!. The calculations were performe
for the nucleus withA5224 in the HO potential well.
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relaxation time from Eq.~42! obtained with modified distri-
bution function from Eq.~57! is shown in Fig. 6 as solid
curve 3. It should be remembered that the two last res
~curves 1 and 3! are more correct in the sense of the co
pensation of the probability fluxes in the ground state of
system. Both these results show strong oscillations of
local relaxation time within the nuclear volume and ampl
cation of the damping in the surface region of the nucle
This feature of the finite Fermi system arises due to the
that the equilibrium distribution functionf̃ eq, Eq. ~50!, fluc-
tuates strongly and contains the diffusivity of the Fermi s
face. It is interesting to note that, excluding the oscillatio
in the nuclear volume, the result noted as curve 3 in Fig
with full compensation of the probability fluxes in th
ground state is in good agreement with the one (\/t2)TF
obtained using the simple Thomas-Fermi distribution fu
tion of Eq. ~1! @the dashed line in Fig. 6 with (\/t2)TF
53(\v0)2/(4p2a)#.

We point out that the quantum calculations represente
Fig. 6 by curves 1 and 3 have been done with a quite la
smoothing parameterg52.5\V. A decrease ofg leads to
negative values of the local relaxation timet2(r ,v0) in some
regions ofr . The behavior of the damping factorj(r ,v0) is
shown in Fig. 7. It is necessary to stress that nonzero da
ing in a cold Fermi system appears only because of mem
effects in the collision integral~9!.

The results of numerical calculations of the widthG of the
isoscalar GQR as a function of the mass numberA are shown
in Fig. 8. As can be seen from this figure, the smooth dis
bution functionf̃ eq from Eq.~50! leads to the contribution o
the collisional relaxation to the isoscalar GQR width~solid
line 1! which does not exceed 30–50 % of the experimen
values. This result is similar to the one obtained with t
sharp Thomas-Fermi distribution function~1! ~the dashed
line! and agrees with the earlier calculation of the inter

FIG. 6. The local damping parameter\/t2(r ,v0) for the
nucleus withA5224, calculated for a spherical HO potential. T
different curves correspond to the different equilibrium distributi
functions in Eq.~42!: For curve 1 we use the smooth distributio
function of Eq.~50! with averaging parameterg52.5\V, for curve
2 we use the Fermi distribution function~2! with a from Eq. ~55!,
and for curve 3 we use the distribution function from Eq.~57!. The
dashed line shows the result obtained using the Thomas-Ferm
tribution function of Eq.~1!.
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collisional width of the isoscalar GQR@6#. In contrast, the
analogous calculation with the smooth Fermi distributi
function ~2! ~solid line 2! largely overestimates the contribu
tion of collisional damping. Note that the small nonze
probability fluxes appearing inJeq, gain, Eq. ~46!, andJeq, loss,
Eq. ~47!, evaluated withf̃ eq from Eq. ~50! lead to a very
small contribution to the final result for the width. This ca
be seen in Fig. 8 from a comparison of both curves 1 and

B. Woods-Saxon potential

We have applied above the HO Wigner distribution fun
tion to the calculations of the collision integral in a fini
Fermi system. This distribution function contains both im
portant ingredients of influence of the multiple particle r
flections from the potential surface: the diffusivity and t
oscillations of the distribution function in momentum spac
However, the realistic nuclear potential well has a fin
depth, providing stronger surface effects than the ones in
HO mean field. We will give below an analysis for the ca
of the WS potential in the form

is-

FIG. 7. The damping factorj(r ,v0) as a function of the dis-
tancer . The notation is the same as in Fig. 6.

FIG. 8. The collisional width of the isoscalar giant quadrupo
resonances obtained by using Eq.~40! with j(r ,v0) from Fig. 7.
The notation is the same as in Fig. 7. The experimental data w
taken from Refs.@31,32#.
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VWS~r !5V0 /$11exp@~r 2R0!/d#%. ~58!

We have adopted the parametersV05244 MeV, R0
51.27A1/3 fm, andd50.67 fm.

An exact quantum calculation of the equilibrium distrib
tion function f eq(rW,pW ) for the WS potential is a rather com
plicated problem. We will use the result of Ref.@23# for the
semiclassical expansion off eq(rW,pW ) in the Hermite polyno-
mials. This gives

f eq~rW,pW !5 (
n50

N
bn~21!n

n!
F~n!S x2m

s D U
x5EF

. ~59!

Here F(y)5@11erf(y/A2)#/2 is the normal distribution
function, erf(y) is the error function,F (0)[F, and the index
n at F (n)@(x2m)/s# denotes thex derivative ofn order. We
will take into account terms withn<3 in the expansion~59!.
The corresponding coefficientsbn are given by

b051, b15E~rW,pW !2m, b25G21b1
22s2,

b35G31b1
313b1~G22s2!,

where G2 and G3 are obtained from Eq.~53!. The coeffi-
cientsm ands can be found by solving the following non
linear equations:

b4[b1
416b1

2~G22s2!14b1G313s2~s222G2!50,

b5[15s4b1210s2~b1
313b1G21G3!2b1

5210b1
3G2

210b1
2G350.

Following Eq. ~2!, the mean behavior off eq(rW,pW ), Eq.
~59!, can be approximated by the following Fermi functio

f eq,WS~rW,pW !5S 11expFE~rW,pW !2l

a~r !
G D 21

. ~60!

FIG. 9. The diffusivity parametera of the equilibrium distribu-
tion function in momentum space as a function of the distancer to
the center of the nucleus for both harmonic oscillator~curve HO!
and Woods-Saxon~curve WS! potentials.
HereE(rW,pW ) is the classical energy of the particle in the W
potential:

E~rW,pW !5
p2

2m
1VWS~r !.

The local diffusivitya(r ) is evaluated from Eq.~53! with Gj
taken in the so-called surface approximati
@Veq9 (r )'Veq9 (R0)50# @9#:

G252
\2

4mF 2

R0
Veq8 ~r !G ,

G352
\2

4mF ~Veq8 !21
pF

2

3mS 2

R0
Veq8 ~r ! D G ,

where pF(r )5\@3p2req(r )/2#1/3 is the Fermi momentum
taken in the local density approximation. The results of n
merical calculations of the parametera(r ) are plotted in Fig.
9 for both HO and WS distribution functions. We can s
that the parametera(r ) for the WS potential well is peaked
in the vicinity of the nuclear surface. The distribution fun
tion f eq(rW,pW ) smeared out over angles inpW space is plotted in

FIG. 10. The equilibrium distribution function in the WS pote
tial as obtained from the semiclassical expansion on the Herm
polynomials, Eq.~59!, with N53.

FIG. 11. The local damping parameter\/t2(r ,v0) for the
nucleus withA5224, calculated for a spherical WS potential. F
curve 1 we use the equilibrium distribution function~59! and for
curve 2 we use the Fermi distribution function~60!.
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Fig. 10. It contains both diffusivity and oscillations inpW
space which depend on the distancer . In Fig. 4 we show the
ratio q as defined by Eq.~48! ~curve WS!. We have used
there the Fermi distribution function, Eq.~60!, instead of the
smooth distribution functionf eq,F in Eq. ~48!. One can see
that the occurrence of the quantum oscillations in
smeared-out distribution functionf̃ eq leads to an essentia
compensation of the gain and loss probability fluxes.

The local relaxation parameter~42! and the damping fac
tor ~41! are shown in Figs. 11 and 12, respectively. It can
seen that the collisional damping is more pronounced in
case of the WS potential than in the HO one shown in F
6 and 7. We point out also that the occurrence of the qu
tum oscillations in the equilibrium distribution functio
strongly reduces the relaxation processes in the finite Fe
system. The total collisional widthG of the isoscalar GQR a
a function of the mass numberA evaluated for the WS po
tential is shown in Fig. 13. The final result~solid line 1!
agrees with above calculation of the collisional width in t
HO potential; see the dashed line in Fig. 8.

IV. SUMMARY AND CONCLUSIONS

Starting from the collisional kinetic equation we have d
rived the isoscalar GQR width for a finite nucleus taking in
account the memory effects and the peculiarities of the e
librium distribution functionf eq caused by the multiple re
flections of particles on the potential wall. The equilibriu
distribution function contains both smooth and oscillati
components. The smooth component off eq can be approxi-
mated by the Fermi distribution~2! with an r -dependent dif-
fusivity parametera(r ) in momentum space. The diffusivit
parametera(r ) is almost independent of the distancer in the
case of the harmonic oscillator potential well and is
strongly r -dependent function in the case of the Wood
Saxon potential, increasing near the potential wall. We h
demonstrated numerically that the smooth part of the e
librium distribution function can be satisfactorily describ
by using the semiclassical expansion off eq(rW,pW ) on the Her-

FIG. 12. The damping factorj in the case of the WS potentia
The notation is the same as in Fig. 11.
e
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mite polynomials; see Ref.@23#.
It was shown that the general condition for the disappe

ance of the gain and loss probability fluxes in the grou
state of system can be reached due to the occurrence of q
tum oscillations in the distribution function in momentu
space in the nuclear volume. The diffuse tail of the distrib
tion function in momentum space leads to an increase of
collisional damping of the collective motion in the surfa
region of the nucleus and thus to an increase of the isosc
GQR width. However, this increase is strongly reduced d
to the above-mentioned oscillations of the equilibrium dis
bution functions appearing in the collision integral, Eq.~9!.
As a result the collisional width of the isoscalar GQR do
not exceed 30–50 % of the experimental value and ag
with estimates of the width where the sharp Thomas-Fe
distribution function~i.e., in the absence of the diffusivity
and quantum oscillations! is used. The collisional damping in
a cold Fermi system arises only because of memory eff
in the collision integral~9!.

To describe the experimental values of the multipole gi
resonances additional contributions from other spread
sources, such as the fragmentation width in random ph
approximation calculations or its representation through o
body dissipation~see Ref.@8#! have to be taken into accoun
We pointed out also that surface effects in the collisio
damping are manifested more distinctly in the Woods-Sa
potential where the diffusivity parametera(r ) of the distri-
bution function in momentum space isr dependent and in-
creases within the surface region of the nucleus.
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FIG. 13. The collisional width of the isoscalar giant quadrupo
resonances obtained by using Eq.~40! with j(r ,v0) from Fig. 12.
The notation of curves 1 and 2 is the same as in Fig. 12. The da
curve is from Fig. 8. The experimental data were taken from R
@31,32#.
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