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Collisional relaxation of collective motion in a finite Fermi liquid
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Finite size effects in the equilibrium phase space density distribution function are taken into account for
calculations of the relaxation of collective motion in finite nuclei. Memory effects in the collision integral and
the diffusivity and the quantum oscillations of the equilibrium distribution function in momentum space are
considered. It is shown that a smooth diffyEermi-type equilibrium distribution function leads to a spurious
contribution to the relaxation time. The residual quantum oscillations of the equilibrium distribution function
eliminates the spurious contribution. It ensures the disappearance of the gain and loss terms in the collision
integral in the ground state of the system and strongly reduces the internal collisional width of the isoscalar
giant quadrupole resonanc¢$0556-281®8)01807-X]

PACS numbds): 21.60.Ev, 24.30.Cz

[. INTRODUCTION contains the diffusivity of the Fermi surface even at zero
temperatur¢ 18—23. Both these features are due to particle
The relaxation of nuclear collective motion toward ther- reflections on potential walls.
mal equilibrium has been described in great detail within the The diffusivity of the Fermi surface in momentum space
framework of kinetic theory, taking into account the collision increases in the vicinity of the nuclear surfd@2] and thus
integral[1-9]. In this theory, the damping of the collective enhances the effective particle scattering there because of the
motion appears due to the interparticle collisions on the dydecrease of the Pauli blocking effect. It can be shf®irihat
namically deformed Fermi surface. It has already beerihe use of a simple Fermi distribution function
shown by Landa(i10,1]] that both temperature and memory
effects are extremely important for successful applications of . E(r 5) A
kinetic theory to the relaxation processes in a Fermi system. feqe(r,p)= 1+exp{'— ) , 2
However, only very little attention has been paid to the study a(r)
of the peculiarities of the collision integral in a finite Fermi
system caused by particle reflections on the boundary. ~ Wwith r-dependent diffusivity paramete(r), instead of they
In kinetic theory, the collision integral depends crucially function of Eq.(1), for the equilibrium distribution function
on the phase-space distribution functibfr,p). The main  fe(r,p) in the collision integral, leads to a significant en-
aim of this paper is to apply the quantum Wigner phasehancement of the damping of the nuclear giant multipole
space distribution function, also known as the Wigner transtesonances. However, there is a conceptual disadvantage for
form [12], to the evaluation of the collision integral in a the application of the Fermi distribution functid@q,F(F, p)
finite Fermi system. The Wigner distribution function with a(r)#0 to the collision integral. Namely, with this
(WDF) is defined as the Fourier transform of the one-bodyfunction the gain and loss terms in the collision integral are
density matrix over the relative coordinates. It possesses segach nonzero for the ground state of the system, where the
eral nice propertiegl 3,14 which justify its interpretation as probability current should be absent by definition. We show
the gquantum mechanical analog of the classical phase-spage this work that in order to overcome this difficulty the
distributi_on function. The WDF i_s u_seful in providing are- gmooth quantum distribution functio?leq(F, 5) should be
formulation of quantum mechanics in terms of classical con- S o S . o
cepts[15,16 and a good starting point for semiclassical ap_used for fe{r,p) in t_he collision integral in_the .k|r_1et|.c
proximations{17]. L.andau—V'Iasov equaflon. In contrast to the Ferrm .dlst.nbu—
Traditionally, the equilibrium phase-space density distri-fion function feqg(r,p), the smooth quantum distribution
bution functionf(r,p) in the collision integral is replaced fUNCtion fe{r,p) contains residual oscillationsl9,23 en-
by the onef o (1 5) taken in the Thomas-Fermi approxi- suring thg above-mentloned.condmon ]‘qr thg disappearance
o TiEieq TR ES of the gain and loss terms in the collision integral for the
mation: : . o :
ground state and reducing the internal collisional width of
the giant multipole resonances.
feq,TF(F,ﬁ): O(N—E(r,p)), (1) In this paper we pay attention mainly to finite size and
memory effects in the relaxation processes in finite Fermi
.. systems. In Sec. Il we obtain a general expression for the
where () is the step function an&(r,p) is the classical width of the giant multipole resonances at zero temperature
single-particle energy. This is reasonable for an infiniteof the nucleus starting from the collisional Landau-Vlasov
Fermi system. In the case of a finite Fermi system, the quarequation. In Sec. Ill we study the influence of memory ef-
tum distribution functionf.(r,p) fluctuates strongly and fects and the diffusivity of the Fermi surface on the relax-
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ation time. We use the smeared-out Wigner distribution -,

function~feq(F, f)) of the three-dimensional harmonic oscilla- 1 f dpp~Y0dSt

tor and of the Woods-Saxon potential for the calculations of P G
.. . . . 2 > 5

the collision integral. A summary and conclusions are given f dpp“Yoof

in Sec. IV.

Here 8St=8SH(r,p,t) is a collision integral linearized iaf.

In the case of small eigenvibrations with eigenfrequency
=wo+iI'/2%, wherewqy andI” are real, the collision integral
can be transformed, taking into account also memory effects,
as[5,27]

IIl. DAMPING OF COLLECTIVE EXCITATIONS
IN KINETIC THEORY

The kinetic equation for a small variatiaf (r,p,t) of the
distribution function can be transformed to a &gfinite) of
equations for the moments &f(r,p,t) in p space, namely,

. . s > > gdp,dpsdp,
the local particle densitgp, velocity fieldu, pressure tensor  6S{r,p,t)= [ —————

.2 s0
W({Pj})jgl 5_fJ 3

.z, tC.; sed11,24. The first-order moment of the kinetic (27h)°
equation has the form of the Euler-Navier-Stokes equation 1 R
and is given hy[24,25 X 5fj§[5(AE+ﬁwo)+ S(AE—hwg)]8(Ap),
d a | 6% d 9
mpeqa_tua+Pean ; p+ aTanZO- 3 _
GNP [ eq Y whereW({p;}) is the probability of the scattering of nucle-

d'in the followi . q Ki d_ons near the Fermi surfacg=4 is the spin-isospin degen-
Here and in the following expressions, repeated greek in laracy factor, and

cesa,B,v=1,2,3 are to be understood as summed over. The
variation of the local particle densify and the velocity field Q=(1—f)(1—f)fafs—F1fa(1—f3)(1—1y),
u, in Eqg. (3) are defined by

_ s AE=E;+E,~Es—Es,  AP=pi+Po—Ps—Pa;
dp -_g( dp p
op=g of, u=- —of. (4 5 - . . .
(27h)3 pJ (27h)3m Ej=pj/2m+V(r;) is the classical single-particle energy,

) ) o [5155, andV(F) is the nuclear mean field.
The quantityr .4 is the deviation of the pressure tensor from e will follow the arguments of the Fermi-liquid theory
its equilibrium partPeq due to the Fermi-surface deforma- of Ref.[24] and assume that the dynamical component of the

tion, distribution functionsf(r,p,t) has the form
Waﬂzg dﬁ (Pa—Mu,)(pg—mup) 5f, (5) 5f(F5t)=—%v(F5t) (10)
m (27Tﬁ)3 1M JE iMal)y
and the equilibrium pressur,, is given by where »(r,p,t) are unknown functions. The functions
., »(r,p,t) depend on the orientatiop only because of the
= ng dp L — ES _ (6) sharp energy dependence of the faatbg,/JE in Eg. (10),
& (2rk)3 2m o1 37K which is localized at the Fermi momentupa(r). We point

out that the smooth region of the equilibrium distribution
where&y, is the kinetic energy density. The internal energyfunction fe{r,p) in momentum space appears in a classi-
density£ in Eq. (3) contains both kinetic and potential en- cally forbidden region aE<V(r). However, this region is
ergy densities€= Eint+ Epor, Where&yy is the potential en-  jpsent in the space integral in E). Thus,
ergy density.

Equation(3) is not closed because it contains the pressure .. . R . R

tensora,z given by the second-order moment of the distri- V(r,p,t)%V(F,pp(f),p,t)=% Vim(H,D)Yim(p). (1D
bution function &f(r,p,t), Eq. (5). We will follow the
nuclear fluid dynamic approach of Ref&,3,6] and take into

t the d ic Fermi-surf distorti N i An exact evaluation of the nine-dimension integralﬁin
account the dynamic Fermi-surface distortions up to mu I'space in Eq.9) is a very complicated problem. We will

polarity | =2. The secongh moment of the kinetic equation follow the Abrikosov-Khalatnikov methof24] improved in
leads then to a closed differential equation for the pressurgef. [28]. Let us assume that the scattering probability
tensorm,;. Namely (see Refs[3,6,8,9,26), W({f)]-}) in Eq. (9) depends on two scattering angkeand ¢
9 o, dug 2 U, Tap only (see Ref[24]), whered is the angle betweep, zindgz,
EﬂaﬁﬁL Peg FB+E_§ 5a,8?'8 == . (7 and ¢ is the angle between the planes formed Ipy,0,)

and (p3,p.), i.e.,

The local relaxation timer, in Eq. (7) is caused by the .
interparticle scattering on the deformed Fermi surface: W({p;H)=W({p;=pe(r),0,¢}). 12
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To evaluate the collision integral, E¢), we will use the 1 9 9
Abrikosov-Khalatnikov transformatiof24,28: Mped oS+ =~ (IM H‘L’a)ﬁ'*'&r (Rell;,)B

dp,dpsdp, - (8% o

e T S(AD)( - - - ) = =

f (2mmys CAPC) beigr || 5,2) ar, et [B=0, (18
eq
m [ dQde, .
A~ .. where we have used the following form for the traceless part
2(277?1)6J cos oiz 1 F2dBdB( ), g P

waB(F,t) of the momentum flux tensor:
(13 . . -
T o1 D) =TI 4(1) Boe' = B(1)Re TT44(T)
whered() =sin #déd¢ and ¢, is the azimuthal angle of the
momentunp, in the coordinate system with tizeaxes along +£,B(t)|m H;’B(F). (19)
w

|51. We point out that the angle varies only from O tom

because the particles are indistinguishable. - , . )
Using Eq.(13), the collision integral, Eq9), can be writ- Mult|ply|neg Eq. (18) by v,, summing over, and integrat

ten in the form ing overr space, we obtain the dispersion equation for the
eigenfrequencyo:
3

Toipey Mm(TDYin(P) ~Bw?+iwA(w)+C(w)=0. (20

4 Here, B is the hydrodynamical mass coefficigf#9] with
_ respect to the collective variabjg(t):
X,-Z’l (W(8,$)Pi(cos 8)) (11 +1{7)). P ()

(14) BZmJ dl?pecpz. (21

SSUr,p,t)=—

The symbok - - -) denotes averaging over angles of the rela-The gissipative termA(w) and the stifiness coefficient
tive momentum of the colliding particles, C(w)=C+C'(w) are given by

(W(6,$)P(cos b))

1 . 0
C(rsing [edd A(w)z;f dro o 5= (Im 117,) (22)
_fo decoselzfo EW(9,¢)P|(COSGJ-), (15 i
where cosf=(p;py), i.e., =46, and . f d*( 525) 3 ( )r 3
= n— - PedVv ’
cos O;=[cog 0/2) ]2 +[sin( 6/2)]2cos ¢, 8p?| I ped
_ 2_Teai 2
cos 6,=[cog 6/2) ] —[sin( 6/2)]-cos ¢, C’(w):f dFvaa(:V(Rera)- (24

P,(cos¥) is a Legendre polynomial, and
We point out that the definition of the stiffness coefficiént

9feqj0Q SAE+H coincides with the one for the stiffness coefficient in the
JE; of; . (AEZAwo). traditional liquid drop mode{LDM) for the nucleus. In con-

q trast, the additional contributioB’ () to the stiffness coef-
We now return to the dynamical equatié®). Let us in- ficient is absent in the LDM and represents the influence of
the dynamical Fermi-surface distortion on the conservative
forces in the Fermi system. Finally, the dissipative term
A(w) appears due to interparticle scattering on the distorted
Fermi surface.

|§i>:J dE,dE;dE,
Veq

troduce the displacement fiej(r,t) related to the velocity
field u(r,t) as

G(r t)= i)?(? t). (16) To evaluate the coefficients(w) andC’ (w), we will use
gttt the third equation of motiofi7). Let us rewrite Eq(7) in the
form
We look for the displacement fielgi(r,t) in the following )
separable form: J _
EWQB_FT_ZWQIB—_PEQAQB, (25)
X(r,H)=B(u(r), (17
where
whereB(t) = Boe'“!. Substituting Eqs(16) and(17) into Eq. p p 5 P
(3), one obtains the equation of motion for the collective A Ya Mg _< Ua (26)

variable B(t): B grg or, 37*Farg
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Taking Egs.(16), (19), and(25), one obtains

B Rell® B+—,6' Im IIg,+ — ,BReH 172'3 Im 113,
=~ PegBAop. @7
Here,
Kaﬁzav%%—zaw% 28)
arg dr, 3 g

Equation(27) can be represented as a set of equations

motion for both the real and the imaginary partseof

2% —
—T Rellgs— 2 wolm Mg+ ——Re Tl s~ T Peqh 15=0,

(29

2h —
2hwgRell,—T' Im H§B+T—2Im I35+ 2 woP e o5=0,

(30

where Im @)=I'/(24).

In the case of small damped collective motion, we find,

from Eq. (27),
(0o72)? —
Rell?,=—Poe——A g, (31
g “+ (wer,)? g
Im 1¢,= — P, — 22§ 32)
m =—Peg——=Aus-
N (wgrp)?

Finally, we have, from Eqs(22), (24), (31), and (32) (see
also Ref.[26]),

Alwg) f 4P — 2 7 Pa 33
wo) = r . Sllav 4. s
0 eq1+(on2)2 arv
- (wom2)? — dv,

C'(w =JdrP _tooTa) T Ma (3
( O) eq1+(a)072)2 ﬁrv
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fdFPquaV(ava/orV)worzl[1+(worz)Z]

:hﬁ)o .
[ TPt a0 190 ) 00711+ (0572)7

(37)

In the case of an isoscalar giant quadrupole resonance

(GQR) one can assumig8,4,17 that the displacement field
J(F) is the irrotational one and is given b§7=(—x,

—v,2z). We have thenxavav /or ,=8. Furthermore, the
LDM stiffness coefficientC gives a negligible contribution

0{0 the total valueC(w) [3,17] and Eq.(37) is transformed as

f dFPeqa)072/[1+(onz)2]

f dFPec{ (1)072)2/[1+ (wOTZ)Z]

Finally, in the rare collision regimeay7>1) Eq. (398) is

reduced as
r, hf dr— /fdrPeq

Ill. RESULTS OF NUMERICAL CALCULATIONS

(39

To study the space distribution of the collective damping,
we will introduce the local damping parametgr,w,) re-
lated to the widthl':

rzf dré(r,wo), (40)
where[see Eq.(38)]

hwoPegwo2 /[ 1+ (wo7)?]
f dFF’ed(onz)z/[lJr (woT2)°]

&(r,wo) = (41)

is always a positive quantity. The local relaxation timge
= 7,(r,wg) can be obtained by substituting E44) into Eq.
(8) and is given by

In the same case of small damped collective motion, the

dispersion equatiof20) is transformed as

-B

wi+i—wg| +iwoA(wg) +C(wg)=0. (35

3
Thus,

E(wo)
B

A(wg)
B

2

wi= . T=# (36)

Using Eqgs.(36), (33), and(34) we obtain the widtH™ as

woA(wo)

F ﬁ(A)O
C(wo)

1 3
W( 6,
ma(hwo) 16 4h6< (6.6))
R(H) 4+ R(7)
= , (42
f dE(E— Ve ¥29f gl IE
Veq
where
R(*)= J dEldEszng4 — Ve ¥28(AE£fiwy)

. Ifeq2 0Q
2 0B, Ofeqo

f7feq,1 6Q
0By Ofeqa
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dfeqs 6Q from Ref.[8]. We will also use the following expression for
+(1+co—dy)—— )

TEs Sfeqd’ (43 the energyfi w, of the isoscalar GQRAiwo=60A"13 MeV.
’ The numerical calculations will be performed for both the
and the coefficients, andd, are given by spherical harmonic oscillatofHO) potential well and the
Woods-SaxonWS) potential.
C2=(WP,(cos 0))/{W),

P A. Spherical harmonic oscillator potential
d,= < 3w sin“z sin2¢> / (W). (44) We will use the harmonic oscillator potential in the form

To evaluate the relaxation tinid2), we will study, first of Vedr)= %mﬂzrz, (49)

all, the collision integraBt.(r,p) in the ground state of the

system which is given bjsee also Eq(9)] where2Q=41A"12 MeV. For “magic” nuclei in the ab-

sence of a spin-orbit interaction, the smeared-out quantum

.- dp,dpsdps. - N ol
St(r.p)= %W({pj})qeqamagmp). distribution functionf.(r,p) in a HO potential is given by
™ 19
45 [19]
We will introduce also the total gain and loss fluxes of the T (rop=f —8e ¢ —DXL2(2e)n.. (50
probability in the ground state. They are given, respectively, ed " P)=led€) k§=:O( VLidze)n (50
by
Here, Li(¢€) is the associated Laguerre polynomial aad
. gdpdp,dpsdps - =p?/mhQ+mQr/A=2E/4Q is the dimensionless energy
Jeqvga‘":J’ ! (2mh)® Wb parameter. The smooth occupation numbegsare intro-
duced as
X[l_feq,]][l_feq,z-lfeq,3feq,46(AE)5(Ap) B M
~ A ~
(46) nk:f ‘ dxi(x)+ El a2/x,§2,u—l()\k)l (51)
Cw =

and
where{(x) is the averaging function chosen as

- gd E’ld 62d 53d 54
Jeq, loss— 5

W .
P g(x):%exz.
> an
><[1_feq,:’.][]-_feq,ll:lfeq,lfeq,Zé\(AE)5(Ap)-
(47 The second term in E¢51) contains the so-called Strutinsky
curvature corrections and is given by
One can see from both definitions, E¢46) and (47), that
Jeq, gair=Jeq, loss aNd Ste(r,p) =0, as it should be for the £ (x)= (_1)ne—x2H (x)
equilibrium state of system. Moreover, in the case of the n Jr mas
ground state of the system, both fluxég, gain@nd Jeg, oss
have to disappear separately. This is not the case, howeveryithere H,(x) are the Hermite polynomials, a,,
the Fermi distribution functiori.,r [see Eq(2)] is used for =(—1)™(22"n!), and X,= (Eg—E)/y. The quantitiesE,
the equ.ili.brium di§tribution functioﬁeq of the ground state andE, are the Fermi energy and single-particle energies in
of_ thg finite Fermi system in Eq$46) and (47). To avoid _the mean fieldV,r), respectively, andy is an averaging
this disadvantage we will use the smeared-out quantum dlﬁjarameter_
tribution function"feq in both Eqgs.(46) and (47). To control The results of numerical calculatioisee also Refl.19])
the disappearance of the gain and loss fluxes, we will introgt the smooth distribution functioﬁeq(e) of Eq. (50) are
duce the relative contribution of the probability fluxes  shown in Fig. 1. The solid line 1 gives the behavior of the
Jeq, gainOF Jeq, loss€Vvaluated withf o= f, to the correspond- smooth distribution function for the value of the smearing

ing values evaluated withyq=feqf, i.€., parametery=2.51() and 2\ =6, the order of the curvature
_ correction polynomial in Eq(51). We point out that these
a=1Jeq, gaik 1 feqt )/ Jeq, gaik i feqr)) values of the smearing parameter and correction polynomial
- are localized in the so-called plateau region for the shell
=Jeq, losé1 feq)/ Jeq, 1osé{ Feqr})- (48)  correctionsU to the binding energy, i.e., wheB does not

Below we will apply our approach to the isoscalar GQR.deloend ony [30]

We will assume that the scattering probabiltyin Eqgs.(42) . The smogtg distripljltionfl;ungtiomeq(e) hexhibits Qslcilla-f
and(44) is angle independent, i.al, = 4/5 andc,= 1/5, and tions caused by particle reflections on the potential surface.

the magnitude ofV can be obtained from the nuclear matter The mean behaviofi.e., without the OSCi”aﬂOQSQf?eq(f)
estimate of the parameter=15724°/m3(W)=9.2 MeV  can be approximated by the Fermi functitle(r,p) of Eq.
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ct (MeV)

O L L L
50 100 150 200 250
€ A

FIG. 1. The equilibrium distribution function as a function of FIG. 3. The diffusivity parameter of the smooth distribution
the dimensionless parameterfor a nucleus with mass numbar  function of Eq.(50) versus the mass numbg, calculated for a
= 224, calculated for a spherical HO potential. Solid lines 1 and 2spherical HO potential withy=2.5Q: For curve 1 we use Eq.
show the smooth distribution function obtained using the averaging52), for curve 2 we use Eq¢54), and the dashed curve is obtained
procedure of Eq(50) with y=2.5.0Q and the Fermi distribution from the fitting formula of Eq(55).
function of Eq.(2) with parametera from Eq. (55), respectively.
The dashed line shows the Thomas-Fermi distribution fundtipn = pz/mﬁQ for different distances. We can see from this
The dotted line shows the distribution function of Ea7) with n f|gure that the d|ffus|v|ty parameta' is almost |ndependent
=0.86 providing the disappearance of the probability fluxes in theyf the distance . This fact is a feature of the HO potential
ground state of the nucleus. well. Note that the analogous diffusivity parameter for the
Woods-Saxon potential is a stronglydependent function
increasing near the potential wall; see below and Refs.
[22,23. Following Ref.[23], the diffusivity parametea of
the quantum distribution functiofi,, in momentum space

(2), where the chemical potentialis fixed by the condition
of conservation of particle numbé:

_gf (r p) can be estimated using the expansiorf gfin the Hermite
(27 ﬁ)3 Fear polynomials. The result reads
The solid line 2 in Fig. 1 shows the behavior of the Fermi Gt %re' (52)
distribution functionf ¢ (r,p) of Eq. (2) with the parameter 272
a taken from Eq.(55). The dashed line in Fig. 1 gives the
simple Thomas-Fermi approximation, E@). The parameter&, andG; depend on the mean fieM,((r)
In Fig. 2 we show the smooth distribution functio?ga as and are given byin the lowest order ofi’)
functions of the dimensionless kinetic energyy, 22
. GZ=—4— Vedr)+Ve q(r)}

ﬁ2 p2
- _ _ | i 24 =

2
FVéq(r)+V’éq(r)”, (53)

where a prime means anderivative. For the HO potential
one hasG,=—3(%#0)?/4 andG;=— (#Q)3\/2. The diffu-
sivity parametera can be also estimated from a fit of the

smooth distribution funct|orfeq and its derivativedf, q/dE

to the corresponding values of the Fermi d|str|but|0n func-

tion, Eq.(2), within some smeared out interva y near the
Fermi energyE:. Namely, one has the following estimate:

feq

0.5

0 5 10 15 20 1 B &
Er+y/2
€ _ J Ftv dE eq( eq

a== _ —.
v E—712 dfey/dE

(54

FIG. 2. The smooth distribution function of E(0) as a func- . . .
tion of the dimensionless kinetic energs,=p2/mAiQ, for a Note that Eq.(54) gives an exact result for the diffusivity

nucleus with mass numbér= 224, calculated for a spherical HO parameten if the distribution functlorlfec| coincides with the
potential with y=2.5:€. The different curves correspond to the Fermi distribution function of Eq(2).
distances =0, 3, and 6 fm to the center of the nucleus. The solid lines 1 and 2 in Fig. 3 show the numerical
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1 4
05
WS
Tl >
HO
705 L
,w 1 1 1 1 _1 1
100 130 160 190 220 250 2 2.5 3
A 7/n0)
FIG. 4. The relative probability fluxes as given by E¢8) FIG: 5. Dependen_ce of_ the relative prob_abi_lity fluxesn the
versus the mass numbarfor both HO and WS potentials. averaging parametey in units of2(): For solid line 2 we use the

Abrikosov-Khalatnikov transformation, E¢13), and for solid line

Its for th f . f b 1 we use the transformation, E6), for the momentum integrals
results for the parameter as a function of mass nUMb&r i e coliision integral, Eq(9). The calculations were performed

obtained using both expressiof&2) and (54), respectively. o the nucleus withA=224 in the HO potential well.
A discrepancy between the results presented by curves 1 and

2 appears because the expresskf) takes into account the where x=min(1, \/Ds(p1+p2 p3)/p1p2) The solid line 1

lowest orders of eXpanSion of the distribution fUnCtif}!}l in F|g 5 g|ves the behavior of the ram:pas a function of the
over the Hermite polynomials; see Rg23]. We have also  smoothing parametey as obtained from Eq(48) by apply-

established the following simple dependence for the diffu- ing the transformation, Eq56), to the calculations of the
sivity parametera for the spherical HO potential well, ob- probability fluxes, Eqs(46) and (47). A strong deviation of

tained from Eq(54) with y= y/2=1.25:(): this result forg from the analogous one obtained using the
Abrikosov-Khalatnikov procedure, Eq13) (the solid line
a~10.2A-16 MeV. (55) 2), appears for small magnitudes of the smoothing parameter

v. This is because the smeared-out distribution functha[p

oscillations grow with the decrease of the smoothing param-
The result of the numerical calculation of the dlfoS|V|ty pa- eterny and the accuracy of the Abrikosov-Khalatnikov trans-
rametera, Eq (55), is shown in Flg 3 by the dashed line. formation, Eq(]_s)’ also decreases.

We will return now to the problem of evaluating the re-  The results of the numerical calculations of the local re-
laxation time, Eq(8). In Fig. 4 we have plotted the ratpas  |axation time[more precisely, the inverse valéér,(r,wo)]
obtained from Eq(48) as a function of the mass numb&r  of Eq. (42) for the isoscalar GQR in the nucleus with
[curve HO for the harmonic oscillator potentigd9)]. We =224 are shown in Fig. 6. We point out that the use of the
have used here the Fermi distribution functi@ W.'th P&~ Fermi distribution function(2) instead of~feq] in Eq. (42
rametera from Eq. (55). As can be seen from Fig. 4, the (the solid curve 2 in Fig. Bleads to much stronger damping
effect of the quantum oscillations for the smeared-out distri-

b th an analogous calculations W|l1gq, from Eg. (50) (solid
ution functionfg; =T, egj '€ads to an essential COMPensa- ;e 1),
tion of the gain and loss probability fluxes. A small nonzero To give a simple phenomenological prescription for the

contribution (about .10 20 % in F'g yaremains in part be- removal of the nonphysical probability flux¢46) and (47)
cause of the Abrikosov-Khalatnikov transformation, EQ.j, yhe ground state of a system, we will introduce the modi-
(13, used earlier, which implies a localization of the mo- fied distribution function

mentum p, near the Fermi surface in E@9). In order to

check this statement, we will use a more general transforma- Feq= feqr ™ 7]A"f'eq_ (57)
tion of the momentum integrals in the collision integral, Eq.

(9), with an arbitrary value of the momentum, suggested Here, fqqg is the Fermi distribution functioii2) with diffu-

in Ref.[7]: sivity parametema from Eq. (55), andA"f‘eq is given by

. Afe=Teq—f
dp-,dp-.d R eq eq eqF

(27rfi)6 where"f'eq is the smooth distribution function of E¢G0). A
numerical calculation of the probability fluxelk gain EQ.

f dE,dE4[ /_F P2+ 2p.pok (46), andJeq, 10ss EQ. (47), with fo, replaced byFqq, shows

167 4ﬁ4 that both probability fluxes disappear gt=0.86 for the

nucleus withA = 224. The corresponding distribution func-
—VP1t P2 2p1Pak](- ), (56)  tion F,q is shown in Fig. 1 as the dotted line. The local
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FIG. 6. The local damping parametét/ ,(r,wo) for the FIG. 7. The damping factoé(r,w,) as a function of the dis-

nucleus withA=224, calculated for a spherical HO potential. The i3ncer. The notation is the same as in Fig. 6.
different curves correspond to the different equilibrium distribution
functions in Eq.(42): For curve 1 we use the smooth distribution
function of Eq.(50) with averaging parameter=2.5:(), for curve

2 we use the Fermi distribution functid@) with a from Eg. (55),
and for curve 3 we use the distribution function from Egj7). The
dashed line shows the result obtained using the Thomas-Fermi di
tribution function of Eq.(1).

collisional width of the isoscalar GQFR6]. In contrast, the
analogous calculation with the smooth Fermi distribution
function (2) (solid line 2 largely overestimates the contribu-
;i_on of collisional damping. Note that the small nonzero
probability fluxes appearing ifeq, gain EQ. (46), andJeq joss

Eq. (47), evaluated With~feq from Eq. (50) lead to a very
relaxation time from Eq(42) obtained with modified distri- small contribution to the final result for the width. This can
bution function from Eq.57) is shown in Fig. 6 as solid be seen in Fig. 8 from a comparison of both curves 1 and 3.
curve 3. It should be remembered that the two last results

(curves 1 and Bare more correct in the sense of the com- B. Woods-Saxon potential

pensation of the probability fluxes in the ground state of the i i o
system. Both these results show strong oscillations of the W€ have applied above the HO Wigner distribution func-
local relaxation time within the nuclear volume and amplifi- 10N t0 the calculations of the collision integral in a finite
cation of the damping in the surface region of the nucleusFermi system. This distribution function contains both im-

This feature of the finite Fermi system arises due to the fadpOrtant ingredients of influence of the multiple particle re-
that the equilibrium distribution functio'ﬁeq, Eq. (50), fluc- flections from the potential surface: the diffusivity and the

. e . oscillations of the distribution function in momentum space.
tuates strongly and contains the diffusivity of the Fermi sur- b

face. It is interesting to note that, excluding the osciIIationsHowever’ the realistic nuclear potential well has a finite
o 9 ' 9 A epth, providing stronger surface effects than the ones in the
in the nuclear volume, the result noted as curve 3 in Fig.

with full compensation of the probability fluxes in the O mean field. We will give below an analysis for the case

ground state is in good agreement with the oriérf)r of the WS potential in the form
obtained using the simple Thomas-Fermi distribution func-
tion of Eq. (1) [the dashed line in Fig. 6 withA{ ,)1r
=3(hwo)?l(4m2a)]. %

We point out that the quantum calculations represented in
Fig. 6 by curves 1 and 3 have been done with a quite large
smoothing parametey=2.5:(). A decrease ofy leads to
negative values of the local relaxation timgr,wg) in some
regions ofr. The behavior of the damping facté(r, ) is
shown in Fig. 7. It is necessary to stress that nonzero damp-
ing in a cold Fermi system appears only because of memory
effects in the collision integral).

The results of numerical calculations of the widthof the
isoscalar GQR as a function of the mass nun#are shown . . ,
in Fig. 8. As can be seen from this figure, the smooth distri- 0 50 100 150 200 250

bution function"f'eq from Eq.(50) leads to the contribution of A
the collisional relaxation to the isoscalar GQR widgolid
line 1) which does not exceed 30-50 % of the experimental F|G. 8. The collisional width of the isoscalar giant quadrupole
values. This result is similar to the one obtained with theresonances obtained by using E40) with £(r,w,) from Fig. 7.
sharp Thomas-Fermi distribution functigi) (the dashed The notation is the same as in Fig. 7. The experimental data were
line) and agrees with the earlier calculation of the internaltaken from Refs[31,32.

8

[ (MeV)
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3 6 9 12 FIG. 10. The equilibrium distribution function in the WS poten-
tial as obtained from the semiclassical expansion on the Hermite
r(fm) polynomials, Eq(59), with N=3.

FIG. 9. The diffusivity parametea of the equilibrium distribu- S s . L
tion function in momentum space as a function of the distanite HereE(r,p) is the classical energy of the particle in the WS

the center of the nucleus for both harmonic oscillgmirve HQ potential:
and Woods-Saxofcurve WS potentials. 2

E(T,P)= 3+ Virs(1).
Vs(r)=Vo/{1+exd (r —Rg)/d]}. (58)

We have adopted the parametevg=—44 MeV, R, The local diffusivitya(r) is evaluated from E¢53) with G;

—1.27A3 fm. andd=0.67 fm. taken in the so-called surface approximation
An exact quantum calculation of the equilibrium distribu- [Vedr)~VedRo) =01 [9]:
tion functlonfeq(r,p) for the WS potential is a rather com- 72
plicated problem. We will use the result of Rg23] for the G,=— m[—veq(r }
semiclassical expansion cbgq(F, 5) in the Hermite polyno-
mials. This gives hY:
F
] \ Ly . Gi= {(Vq) +— —Veq( )”
fedT,P)= Z - q><">( (59 _ _
n=0 - o =g, where pe(r) =#[3m2pe{r)/2]*? is the Fermi momentum

taken in the local density approximation. The results of nu-

Here ®(y)=[1+erf(y/\2)]/2 is the normal distribution Merical calculations of the parametg(r) are plotted in Fig.
function, erfy) is the error functiond@=®, and the index 9 for both HO and WS distribution functions. We can see

n at®™[(x— )/ o] denotes the derivative ofn order. We  that the parametea(r) for the WS potential well is peaked
will take into account terms with<3 in the expansiosg). I the vicinity of the nuclear surface. The distribution func-

The corresponding coefficients, are given by tion fe(r,p) smeared out over anglesinspace is plotted in
bo=1, by=E(r,p)—p, by=Gp+bi-0o?, ®
bs=G3+b5+3by(G,—d?),
where G, and G5 are obtained from Eq(53). The coeffi- = 4t
cientsu and o can be found by solving the following non- % 2
linear equations: ~
l‘N
b,=b}+6b2(G,— 0?)+4b,;G3+30%(0%2—2G,)=0, E 2t
1
bs=150"b; — 100%(b3+3b,G,+ G3) —b}— 103G, R,
—10b7G4=0. 0 . . . l.
0 2 4 6 8 10
Following Eg. (2), the mean behavior of(r,p), Eq. r(fm)

(59), can be approximated by the following Fermi function:

l+exr{—E(r'p)_)\
a(r)

FIG. 11. The local damping parametérr,(r,wp) for the
-1 nucleus withA= 224, calculated for a spherical WS potential. For
) (60) curve 1 we use the equilibrium distribution functi¢s9) and for

f r,p)=
eqwd!,P) curve 2 we use the Fermi distribution functiéso).




PRC 58 COLLISIONAL RELAXATION OF COLLECTIVE MOTION ... 207

3 8
— [
™ 7
& = 6|
§—
~ ®
> =
L] ~—’ 4}
< -
Mo ol \
s - 1
O 1 1 1 1
0 0 50 100 150 200 250
r(fm) A

. ) . FIG. 13. The collisional width of the isoscalar giant quadrupole
FIG. 12. The damping factcf in the case of the WS potential. | o5onances obtained by using E4O) with &(r,w,) from Fig. 12.

The notation is the same as in Fig. 11. The notation of curves 1 and 2 is the same as in Fig. 12. The dashed
curve is from Fig. 8. The experimental data were taken from Refs.
[31,32.

Fig. 10. It contains both diffusivity and oscillations in
space which depend on the distamcén Fig. 4 we show the mite polynomials; see Ref23].
ratio q as defined by Eq(48) (curve WS. We have used It was shown that the general condition for the disappear-
there the Fermi distribution function, E(0), instead of the ance of the gain and loss probability fluxes in the ground
smooth distribution functiorfeqr in Eq. (48). One can see state of system can be reached due to the occurrence of quan-
that the occurrence of the quantum oscillations in thetum oscillations in the distribution function in momentum
smeared-out distribution functioﬁeq leads to an essential space in the nuclear volume. The diffuse tail of the distribu-
compensation of the gain and loss probability fluxes. tion function in momentum space leads to an increase of the
The local relaxation parametét2) and the damping fac- collisional damping of the collective motion in the surface
tor (41) are shown in Figs. 11 and 12, respectively. It can be'egion of the nucleus and thus to an increase of the isoscalar
seen that the collisional damping is more pronounced in th&QR width. However, this increase is strongly reduced due
case of the WS potential than in the HO one shown in Figsto the above-mentioned oscillations of the equilibrium distri-
6 and 7. We point out also that the occurrence of the quanbution functions appearing in the collision integral, £@).
tum oscillations in the equilibrium distribution function As a result the collisional width of the isoscalar GQR does
strongly reduces the relaxation processes in the finite Ferniiot exceed 30—50 % of the experimental value and agrees
system. The total collisional width of the isoscalar GQR as With estimates of the width where the sharp Thomas-Fermi
a function of the mass numbér evaluated for the WS po- distribution function(i.e., in the absence of the diffusivity
tential is shown in Fig. 13. The final resulolid line 1) and quantum oscillationss used. The collisional damping in
agrees with above calculation of the collisional width in thea cold Fermi system arises only because of memory effects

HO potential; see the dashed line in Fig. 8. in the collision integral9).
To describe the experimental values of the multipole giant

resonances additional contributions from other spreading
sources, such as the fragmentation width in random phase
Starting from the collisional kinetic equation we have de-approximation calculations or its representation through one-
rived the isoscalar GQR width for a finite nucleus taking intobody dissipatior(see Ref[8]) have to be taken into account.
account the memory effects and the peculiarities of the equWe pointed out also that surface effects in the collisional
librium distribution functionf ., caused by the multiple re- damping are manifested more distinctly in the Woods-Saxon
flections of particles on the potential wall. The equilibrium potential where the diffusivity parametea(r) of the distri-
distribution function contains both smooth and oscillatingbution function in momentum space risdependent and in-
components. The smooth Componentfgd‘ can be approxi- creases within the surface region of the nucleus.
mated by the Fermi distributiof2) with anr-dependent dif-
fusivity parametea(r) in momentum space. The diffusivity
parameten(r) is almost independent of the distanci the

case of the harmonic oscillator potential well and is a Thjs work was supported in part by the U.S. National
strongly r-dependent function in the case of the Woods-Science Foundation under Grant No. PHY-9413872 and the
Saxon potential, increasing near the potential wall. We hav@NTAS under Grant No. 93-0151. We are grateful for this
demonstrated numerica”y that the smooth part of the equiﬁnancia| Support_ One of uS\/MK) thanks Professor P.
librium distribution function can be SatiSfa.Ctorily described Schuck for Stimu|ating discussions and the Cydotron Insti-
by using the semiclassical expansionfg{(F, 5) on the Her-  tute at Texas A&M University for the kind hospitality.
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