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Partial conservation of axial current constraints on pion production or absorption
within nonrelativistic nuclear dynamics

V. Dmitrašinović1 and T. Sato2
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2Department of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan
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We show the necessity of two-nucleon axial currents and associated pion emission or absorption operators
for the partial conservation of the axial current~PCAC! nuclear matrix elements with arbitrary nuclear dynam-
ics described by a nonrelativistic Schro¨dinger equation. As examples we construct such nonrelativistic axial
two-body currents in the linear- and the heterotic (gA51.26) s models, with an optional isoscalar vector (v)
meson exchange. The nuclear axial current matrix elements obey PCAC only if the nuclear wave functions
used in the calculation are solutions to the Schro¨dinger equation with the static one-meson-exchange potential
constructed in the respective (s) model. The same holds true for the nuclear pion production amplitude, since
it is proportional to the divergence of the axial current matrix element, by virtue of PCAC. Thus we found a
consistency condition between the pion creation or absorption operator and the nuclear Hamiltonian. We
present examples drawn from our models and discuss the implication of our results for one-pion-two-nucleon
processes.@S0556-2813~98!00310-0#

PACS number~s!: 25.30.2c, 11.40.Ha, 25.80.Hp, 25.10.1s
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I. INTRODUCTION

In an earlier publication@1# a systematic study of axia
current ~partial! conservation was begun in the Beth
Salpeter~BS! approach to nuclear bound states. There it w
found that partial conservation of axial current~PCAC! puts
constraints not only on the form of the axial current opera
but also on the nuclear wave function, by way of fixing t
‘‘potential’’ entering the nuclear BS equation. Since the pi
production or absorption amplitude is an integral part of
conserved axial current nuclear matrix element, the sa
constraints are imposed on it as well. It stands to reason
the same kind of constraint will carry over into the nonre
tivistic ~NR! formalism.1 In this paper we extend the work i
Ref. @1# to the nonrelativistic description of the nucleus. W
do not make a direct nonrelativistic reduction of the B
equations and amplitudes from Ref.@1#, for they are well
known not to have a good NR limit, but rather use this r
erence as a guide to developing the corresponding re
within the Schro¨dinger equation approach. We shall sho
that even at this nonrelativistic level there are differen
between the various versions of thes model used in Ref.@1#.

The aforementioned PCAC consistency condition
tween the~elementary! pion production mechanism and th
NN potential determining the nuclear wave equation is
novel feature promising to introduce a higher level of logic
coherence into present-day calculations of pion produc
on nuclear targets. As an example one may consider
pp→p0pp andpp→p1d reactions. There, in particular, th

1The idea that PCAC determines the pion-nuclear production
erator has been around at least since the work of Blin-Stoyle
Tint @2#. But the notion that the nuclear wave functions entering
same pion production amplitude are also constrained by the PC
appears to be new.
PRC 580556-2813/98/58~4!/1937~11!/$15.00
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p-production mechanism~operator! has often been consid
ered without any reference to the nuclear wave functio
@2,3#. Several models involving scalars-meson-exchange
pion production ‘‘current,’’ besides thep-exchange one,
have been proposed@4,5#. We shall show here exactly whic
s-meson-exchangep-production operator must be include
and how when the two-nucleon potential contains a o
s-exchange term, andvice versa. It turns out that this
p-production operator is rather sensitive to the details of
s model used. We also analyze thev-meson-exchange
p-production operator required by the presence of
v-meson-exchange potential.

This paper falls into five sections. After the Introductio
in Sec. II, we define the context of our analysis and pro
our most general result: the necessity of two-body axial c
rents for interacting two-~or more! particle systems obeying
nonrelativistic quantum mechanics. In Sec. III we constr
two-nucleon axial currents that respect PCAC at the leve
nuclearmatrix elements, starting from three underlying re
tivistic chirally symmetric meson-nucleon mod
Lagrangians. In Sec. IV we present the three correspond
sets of two-nucleonp-production operators as an example
the main proposition and we discuss the results. In Sec. V
summarize and draw the conclusions.

II. PARTIAL CONSERVATION OF
NUCLEAR AXIAL CURRENT

The notion of PCAC is both historically and conceptua
the foundation of chiral symmetry in hadronic interaction
Modern implementations of this symmetry, such as
nuclear chiral perturbation theory (NxPT), however, do not
emphasize that point. In the following we shall try an
present another viewpoint of PCAC that will bear signi
cance to nuclear physics in general and pion-nuclear p
cesses in particular. In short, PCAC states that the hadr
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1938 PRC 58V. DMITRAŠINOVIĆ AND T. SATO
axial currentJm5
a must satisfy the following continuity equa

tion:

]mJm5
a 52 f pmp

2 Pa, ~1!

or equivalently

“•J5
a~R!1

]r5
a~R!

]t
52 f pmp

2 Pa~R!, ~2!

where Pa is the ~canonical! pion field operator. In the
quantum-mechanical framework this can be written as
equation relating the divergence of the three-current and
commutator of the Hamiltonian and the axial charge dens

“•J5
a~R!1 i @H,r5

a~R!#52 f pmp
2 Pa~R!. ~3!

This equation is a consequence of the~exact! Heisenberg
equations of motion. Now we specialize to nonrelativis
nuclear physics by limiting ourselves to that subspace of
complete Hilbert space that contains at most two~real!
nucleons interacting by exchanging one~virtual! meson at a
time. There the total Hamiltonian of the nucleusH is the sum
of the kinetic and potential energiesH5T1V of the nucle-
ons, and the total axial currentJ5

a(R) consists of one- and
two-nucleon parts. We assume that the axial charge den
r5

a 2 is well approximated by its one-nucleon part3 r5,12b
a .

This assumption agrees with—indeed it follows from—o
fundamental assumption of nonrelativistic nuclear dynam
This means that all~relativistic! operators are expanded
powers of 1/M ; this provides a convenient bookkeeping d
c
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e
d

n
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:
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vice in what follows. As shall be shown below, the~partial!
continuity equation~3! strongly constrains~the longitudinal
part of! the nuclear axial current, and in particular its tw
nucleon, or meson-exchange part.

We may break up the axial current conservation equa
into one- and two-body parts without loss of generality. T
divergence of the complete one-body current equals2 i
times the commutator of the kinetic energyT and the one-
body axial charge density

“•J5
a~12body!52 i @T,r5~12body!#2 f pmp

2 Pa~12body!,
~4!

is of O(M 22), i.e., zero to leading order in 1/M , due to
similar momentum dependences of the kinetic energyT and
the axial charge densityr5

a(12body) operators, as well as t
the absence of nondiagonal isospin operators fromT. There-
fore, the test of conservation of the complete nuclear a
current is whether or not the potentialV commutes with the
one-body axial charge density. It turns out that, due to
momentum operator inside ofr5

a(12body), only a com-
pletely trivial, viz. a spatially everywhere constant potent
commutes with the axial charge. In nuclear physics, the
fore, onealwaysneeds a two-body axial current axial curre
J5

a(22body)5( j ,k
A J5,(jk)(22body) to compensate for th

temporal change of the axial charge density.
To show this formally we note that in general there a

two possible sources of the noncommutativity of meson
change potentialV and the one-body axial charge dens
r5

a : ~i! noncommuting isospin factors; and~ii ! noncommut-
ing spin-spatial factors, as can be seen from the identity
“•J5
a~22body!52 i @V,r5

a#2 f pmp
2 Pa~22body!5

i

2(i 51

A

(
j ,k

A F t~ i !
a

2M
,I ~ jk !G$V~ jk ! ,$s~ i !•“ ~ i ! ,d~R2r ~ i !!%%

2
i

2 (
i 51

A

(
j ,k

A H t~ i !
a

2M
,I ~ jk !J @V~ jk ! ,$s~ i !•“ ~ i ! ,d~R2r ~ i !!%#2 f pmp

2 Pp
a ~22body!, ~5!
t-

ity

y,

all
for

that
ost
where the two-body potentialV( jk)5I ( jk)V( jk) is a product of
its isospinI ( jk) and spin-spatialV( jk) parts. Since

@V~ jk ! ,$“ ~ i ! ,d~R2r ~ i !!%#}d~R2r ~ i !!d i j @“ ~ j ! ,V~ jk !#Þ0,
~6!

2In the following we shall drop the ‘‘index variable’’R in the
current and charge operators, except when necessary to avoid
fusion.

3The subleading~relativistic! correction to the axial charge
density operator contains two-body terms that modify the follow
analysis somewhat, but cannot change its main conclusion, du
an intrinsically different tensor structure of the one- and two-bo
operators.
and the isospin anticommutator$t ( i )
a ,I ( jk)%Þ0 does not van-

ish for at least one value ofa51,2,3, we see that the nex
to-the-last line in Eq.~5! does not vanish, and thencethe
commutator of the potential and the axial charge dens
does not vanish for any potentialVjk , except the trivial one,
i.e., a constant:Vjk5const.4 In other words,axial meson ex-
change currents (MEC’s)J5

a(22body) are always necessar

on-

to
y

4This argument does not furnish a formal proof so long as
possible spin and isospin operators have not been examined
accidental vanishing of their anticommutators withs( i ) and t ( i )

a ,
respectively. Our proposition has been confirmed in all cases
we have studied so far, which cases constitute some of the m
important parts of the nuclearNN potential.
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PRC 58 1939PARTIAL CONSERVATION OF AXIAL CURRENT . . .
so long as two nucleons interact and their dynamics can
described by quantum mechanics.5 The same conclusions, o
course, hold in nonrelativistic~NR! quark models, i.e., axia
two-quark currents are always necessary in NR quark m
els, as well. It is the compelling nature of this argument t
makes it distinct from previous arguments along similar lin
@6,7#.

This is perhaps a somewhat surprising result in view
the fact that the EM current conservation doesnot require
MEC’s for many parts of the nuclear potential, e.g., for t
contributions from the exchange of neutral mesons. Henc
will be our task to construct axial MEC’s associated with t
exchange of the most important, i.e., the lightest, meso
Thep-exchange axial current has been known for some t
@8,9#, so we shall not repeat its derivation here. In this pa
we shall concentrate on the isoscalar scalar (s) and vector
(v) mesons. The isovector vector (r) meson cannot be in
troduced in a model-independent way, so we leave it
another occasion.

To reveal the necessity of consistency between
nuclear wave functions and the nuclear pion producti
absorption amplitude we must remember that the oper
equation~3! describing PCAC is just a shorthand for th
same statement aboutall axial current nuclear matrix ele
ments ^Jm5

a & f i . In momentum space the Heisenberg eq
tions of motion lead to

qm^Jm5
a & f i5q•^J5

a& f i2~Ef2Ei !^r5
a& f i

5q•^J5
a& f i2^@H,r5

a#& f i

5 i S f pmp
2

q22mp
2 D ^Gp

a & f i.2 i S f pmp
2

q21mp
2 D ^Gp

a & f i ,

~7!

only if the initial and final statesuC f ,i& are solutions to the
nuclear Schro¨dinger equationHuCn&5EnuCn& ~here q0
5Ef2Ei). We used the abbreviation̂A& f i5^C f uAuC i&.
Thus,the nuclear pion absorption/emission amplitude^Gp

a & f i

must be evaluated using a pion absorption/emission oper
Gp

a that matches the nuclear dynamics leading to the nucl
wave functionsuCn&, if the result is to agree with PCAC.In
the last line of Eq.~7! we usedq25q0

22q2, which is true for
elastic scattering in the Breit frame, i.e., whenq05Ef2Ei
50.

The idea of consistency of nuclear wave functions a
MEC’s is not a new one: it has been a part of the elec
nuclear physics ‘‘folklore’’ for some time. The extension
this idea to the axial currents and pion production amplitu
seems to be less well known. In the following we shall ap
this idea to nuclear axial currents in several variations of
s model withv mesons.

5This does not mean, however, that we know how to const
axial MEC’s that obey PCAC for arbitraryNN potentials. Presently
we know how to calculate only those axial MEC’s that are rela
to potentials that are based on chiral Lagrangian models. Meth
ordinarily used for electromagnetic~EM! MEC’s do not seem to
work here, cf. Ref.@1#.
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III. AXIAL CURRENTS IN s MODELS

We shall use two of thes models already developed i
Ref. @1#. As is well known, the pseudoscalar and t
pseudovector, or gradient,pNN couplings reduce to the
same one-pion-exchange potential~OPEP! to leading order
in nonrelativistic~NR! expansion. At first sight one migh
think that this implies identical axial MEC’s in the linear an
nonlinear-s models. This is not so because the linears
model one-boson-exchange potential~OBEP! includes a
s-exchange potential as well, whereas the nonlinear mo
does not. Moreover, the difference between the ‘‘heterotics
model’’ and the other twos models persists, although in a
unusual way: its~spatial! axial current is renormalized by
factorgA , though the axial charge is not. In the following w
look at each model separately. Subsequently we add
isoscalar-vector mesonv, which plays an important role by
providing short-range repulsion and is chirally invariant
itself. That brings about new terms into the axial current a
the pion production operator in a way that is consistent w
PCAC.

A. The one-body current

The one-body part of the nuclear axial current is the s
over all nucleons of thedirect axial current and thepion pole
term, see Fig. 3~a! in Ref. @1#. In configuration space this
takes its usual nonrelativistic form

J5
a~12body!5gA(

i 51

A t~ i !
a

2 Fs~ i !2“RS s~ i !•“R

~¹R
2 2mp

2 ! D G
3d~R2r ~ i !!. ~8!

The axial charge density

r5
a~12body!52 igA(

i 51

A t~ i !
a

2M
$s~ i !•“ ~ i ! ,d~R2r ~ i !!%,

~9!

on the other hand, is takenwithout the pion-pole contribu-
tion. This simplifying assumption is justifiedex post factoby
the fact that it does not prevent a successful construction
consistent approximation. This does not mean that one c
not find, or should not search for approximations that av
this assumption.

The axial coupling constantgA is either unity, as in the
linear-s model, or its measured value 1.26 in the spatial p
of the axial current Eq.~8!, and unity in the axial charge Eq
~9! of the heterotics model of Ref.@1#. ~For more on this,
see the Appendix.! We also neglect all nucleon electrowea
form factors. This should be adequate for the purpose
describing the static properties of the nucleus. The nuc
matrix element of the direct one-body axial current is d
picted in Fig. 1~a!, whereas the pion-pole part can be co
structed by attaching the axial current ‘‘wavy line’’ to th
external pion in Fig. 4~a!.

(a) Linears model. The i th-nucleon current in the linear
s model, i.e., with a unit~‘‘normalized’’! nucleon axial cou-
pling, in momentum space reads

J5,~ i !
a ~pi8 ,pi !5

t~ i !
a

2 Fs~ i !2qS s~ i !•q

q21mp
2 D G , ~10!

ct

d
ds
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FIG. 1. Effective nonrelativistic Feynman dia
grams contributing to the one-~a! and the two-
body axial current nuclear matrix element~b!.
Each graph consists of a ‘‘direct’’ term and
‘‘pion pole’’ term. We display only the direct
terms here. In the nonlinear-s model there are
only graphs 1~a! and 1~b!. The dashed line de
notes a pion, the solid line denotes a nucleon, a
the wavy line is the external axial curren
~source!.
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where q5pi82pi , and satisfies the nonrelativistic~static!
version of the single-fermion axial Ward-Takahashi ident

q•J5,~ i !a~pi8 ,pi !5S f pmp
2

q21mp
2 D g0t~ i !

a S s~ i !•q

2M D
.2 i S f pmp

2

q22mp
2 DGp

a ~pi8 ,pi ;12body!

5 i S f pmp
2

q21mp
2 DGp

a ~pi8 ,pi ;12body!, ~11!

which follows from the Goldberger-Treiman~GT! relation
M5g0f p . We use the same symbol for operators in config
ration and momentum space. The second line on the ri
hand side of Eq.~11! is the single-nucleon pion absorptio
operator multiplied by the divergence of the axial curre
factor f pmp

2 and the static pion propagator (q21mp
2 )21. We

see that the pion absorption operator arises naturally from
divergence of the axial current. Both in this and in the h
erotic s model the one-body axial charge operator Eq.~9!
does not contain the factorgA , i.e., in momentum space
reads

r5,~ i !
a ~pi8 ,pi !5

t~ i !
a

2
s~ i !•S pi81pi

2M D , ~12!

for proof, see the Appendix.
(b) Heterotics model. In the heterotics model the GT

relation is modified togAM5gpNNf p , wheregA51.26 and
the one-body current becomes

J5,~ i !
a ~pi8 ,pi !5gA

t~ i !
a

2 Fs~ i !2qS s~ i !•q

q21mp
2 D G , ~13!

which satisfies the single-nucleon axial Ward-Takaha
identity

q•J5,~ i !
a ~pi8 ,pi !5 f pS mp

2

q21mp
2 D gpNNt~ i !

a S s~ i !•q

2M D
.2 i S f pmp

2

q22mp
2 DGp

a ~pi8 ,pi ;12body!

5 i S f pmp
2

q21mp
2 DGp

a ~pi8 ,pi ;12body!, ~14!

since @T,r5
a(12body)#501O(M 22). The spatial parts of

one-nucleon axial currents in the two models are alm
-
t-

t

he
-

i

st

identical in the NR limit, the only difference being the ove
all factor gA . As stated above, the axial charges in the t
models are identical~see the Appendix!.

B. Two-nucleon axial current

Having shown that in order to have a partially conserv
axial current in a nonrelativistic nuclear model, one mu
have two-nucleon axial currents, we turn towards constru
ing such MEC’s. The two-body currentsJ5(22b) appropri-
ate to the meson exchange two-nucleon potentials will
constructed and we shall show that they lead to PCAC.
construct these ‘‘meson exchange currents’’ by nonrelativ
tic reduction of covariant Feynman amplitudes in spec
chiral models.

Due to the presence of gradient operators it will be to o
advantage to work in the momentum space. Definition of
Fourier transform of two-body currents into momentu
space can be found in Ref.@8#, among others. The curren
conservation relation in momentum space can now be w
ten as

q•J5
a~22body!5@V~22body!,r5

a~12body!#

2 i S f pmp
2

q21mp
2 DGp

a ~22body!. ~15!

We repeat that this equation follows from only two assum
tions: ~i! PCAC, and ~ii ! quantum mechanics. As state
above, the only ‘‘sure-fire’’ way of constructing an axia
MEC that satisfies PCAC that we know of is to start from
relativistic chiral Lagrangian model. We shall use the tw
variations of the linear-s model already utilized in Ref.@1#
and the simplestvNN interaction Lagrangian that preserve
chiral symmetry.

FIG. 2. The ‘‘meson-in-flight’’ graph contributing to the axia
current in the linear and the heterotics models. The zig-zag line
denotes as meson. One must keep all four graphs in Figs. 1~a!,
1~b! and 2, 3 in both the linear and the heterotics model.
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1. Linear-s model

To construct the partially conserved nonrelativistic ax
two-nucleon current in this model we start from the cor
sponding covariant amplitude. A nonrelativistic expansion
powers of 1/M leads to three terms ofO(1/M ): ~i! one due
to the meson-in-flight diagrams, Fig. 2 plus their pion-po
counterparts, Fig. 5,@the covariant current that defines th
amplitude can be found in Eqs.~33!, ~34! of Ref. @1##:
d

th

ve
l
-
n

AI
a~k1 ,k2 ,q!5

g0
2

2M
t~1!

a Fk12k21qS f pgspp

q21mp
2 D G

3
s~1!•k1

~k2
21ms

2 !~k1
21mp

2 !
1~1↔2!, ~16!

where k i5pi2pi8 , i 51,2; and f pgspp5ms
22mp

2 . Three-
momentum conservation readsk11k21q50. This MEC
alone is not sufficient for PCAC, as can be seen from
corresponding divergence, which reads
q•AI
a~k1 ,k2 ,q!5

g0
2

2M
t~1!

a Fk2
22k1

21~ms
22mp

2 !2 f pmp
2 S gspp

q21mp
2 D G s~1!•k1

~k2
21ms

2 !~k1
21mp

2 !
1~1↔2!

52
g0

2

2M Ft~1!
a s~1!•k1

k2
21ms

2 1~1↔2!G1
g0

2

2M Ft~1!
a s~1!•k1

k1
21mp

2 1~1↔2!G1O~ f pmp
2 !

5@Vs ,r5
a#1

g0
2

2M Ft~1!
a s~1!•k1

k1
21mp

2 1~1↔2!G1
g0

2

2M Ft~1!
a s~1!•q

k2
21ms

2 1~1↔2!G1O~ f pmp
2 !, ~17!
r
e
ro-
la-
of

re
c-
the
nd
an-
in

ear
where the one-meson-exchangeNN potential in the linear-s
model reads

V22b~p!5Vs~p!1Vp~p!

52
g0

2

p21ms
2 1tW ~1!•tW ~2!S s~1!•p

2M D S s~2!•p

2M D
3S g0

2

p21mp
2 D

52
g0

2

p21ms
2 1O~1/M2!. ~18!

Note that the s-exchange potential is ofO(1/M051),
whereas thep-exchange potential is ofO(1/M2). Conse-
quently, the commutator of the potential and the one-bo
axial charge also fall into two distinct orders in 1/M . This
fact allows an apparently clean and simple separation of
s-exchange current effects from thep-exchange ones. In
this paper we are primarily interested in thes-exchange cur-
rents, so we leave thep-induced ones aside, as they ha
been extensively studied in the literature@8,9#.

The commutator on the right-hand side of Eq.~15! is

@V22b ,r5
a#5@Vs ,r5

a#1O~1/M3!

5
g0

2

2M Ft~1!
a s~1!•k2

k2
21ms

2 1~1↔2!G1O~1/M3!.

~19!

We see that thes exchange leads to terms ofO(1/M ),
whereas thep exchange leads to terms ofO(1/M3) in the
commutator. Comparing Eq.~19! with the divergence of the
y

e

axial two-body current Eq.~17! we see that we are rather fa
from having thes-exchange potential commutator on th
right-hand side. There are four terms left over: two are p
portional to thep propagator thus indicating perhaps a re
tionship to the p-exchange current, but also being
O(1/M ), i.e., two orders in 1/M lower than the lowest ex-
pectedp-exchange current contribution. The other two a
proportional to thes propagator. In other words, our expe
tations do not square well with these initial results. So,
question is: whence do these ‘‘extra’’ terms come from a
is there something that might compensate for them? The
swer is that among the apparently ‘‘higher-order’’ terms
the axialp-exchange currents there are two such ones.

~i! One is thep-exchange axial current, Fig. 4~b!,

AII
a~k1 ,k2 ,q!52

g0
3

2M2S f pq

q21mp
2 D Ft~1!

a s~1!•k1

k1
21mp

2 1~1↔2!G ,
~20!

that is actually one order in 1/M lower than naively ex-

FIG. 3. s-meson-exchange current contributing to the nucl
pion production matrix element. It consists of a ‘‘pair,’’ orZ-graph
time-ordered contribution in the linear-s model to which the el-
ementarypsNN vertex is added in the heterotic model.



ex

n

a-

1942 PRC 58V. DMITRAŠINOVIĆ AND T. SATO
pected, due to the validity of the Goldberger-Treiman~GT!
relation f pg05M in the linears model. Thus

AII
a~k1 ,k2 ,q!52

g0
2

2M S q

q21mp
2 D Ft~1!

a s~1!•k1

k1
21mp

2 1~1↔2!G .
~21!

This current is due to an effective two-pion-nucleon vert
which is really a time-orderedZ graph arising in the NR
reduction of the nucleon Feynman propagator~the so-called
pair current9!, and is not an ‘‘elementary’’ interaction term i
the Lagrangian. The divergence of this axial MEC is

q•AII
a~k1 ,k2 ,q!52

g0
2

2M Ft~1!
a s~1!•k1

k1
21mp

2 1~1↔2!G
1O~ f pmp

2 !. ~22!
n
a

o-
ar

e

e
E

n

ir

e

,

~ii ! Similarly, there is as-exchangeZ graph, Fig. 6, as
well

AIII
a ~k1 ,k2 ,q!52

g0
2

2M S q

q21mp
2 D Ft~1!

a s~1!•q

k2
21ms

2 1~1↔2!G .
~23!

Its divergence is

q•AIII
a ~k1 ,k2 ,q!52

g0
2

2M Ft~1!
a s~1!•q

~k2
21ms

2 !
1~1↔2!G

1O~ f pmp
2 !, ~24!

which is exactly what we need to bring the continuity equ
tion ~17! in the linear-s model into the canonical form~15!.

Thus, the complete nonrelativistic axial MEC toO(1/M )
in the linear-s model is
J5,22b
a ~k1 ,k2 ,q!5AI

a~k1 ,k2 ,q!1AII
a~k1 ,k2 ,q!1AIII

a ~k1 ,k2 ,q!

5
g0

2

2M
t~1!

a H Fk12k21qS f pgspp

q21mp
2 D G s~1!•k1

~k2
21ms

2 !~k1
21mp

2 !
2S q

q21mp
2 D F s~1!•k1

k1
21mp

2 1
s~1!•q

k2
21ms

2 G J 1~1↔2!.

~25!
o-
la-
in

t

le-
in

f
f
-

ds
Thus, Eq.~25! uniquely fixes the pion production/absorptio
operatorGp

a in the one-boson-exchange potential approxim
tion to the linear-s model. This operator is to be used t
gether with theO(1/M3)p-exchange operators and nucle
wave functions that are solutions to the Schro¨dinger equation
with the above one-pion1 s-exchangeNN potential.

The resulting MEC operator is perhaps somewhat un
pected: certainly the first~‘‘meson-in-flight’’! term is not a
surprise, but the presence of the second~‘‘pion seagull’’!
term might seem a little odd at first: One would have be
hard pressed to correctly guess the second term in the M
without the benefit of guidance by the linear-s model. Thus
we have expanded the nuclear interaction to include o
s-exchangeNN potential ~beside the OPEP! in a manner
that is consistent with PCAC, but still withgA51. Next, we
shall relax that assumption. Once again, we resort to a ch
Lagrangian model for guidance.

2. Heterotics model

The heterotics model differs from the linear one by th
presence ofgA in the GT relation,gpNNf p5gAM , and in the
-

x-

n
C

e-

al

spatial part of the axial current~8!, butnot in the axial charge
~9!. ~For a proof of this statement, see the Appendix.! This
variation induces some curious changes in the axial tw
nucleon currents. To begin with, there are two types of re
tivistic Born approximation Feynman diagrams, depicted
Figs. 1~b!, 4~b!, and Fig. 6.@The complete relativistic curren
consists of the sum of Eqs.~41!, ~47!, and ~51!, and its di-
vergence in the sum of Eqs.~42!, ~48!, and~52! in Ref. @1#.#
By evaluating its matrix element between on-shell sing
nucleon states and making the nonrelativistic expansion
powers of 1/M , one finds a host ofp-exchange currents o
O(1/M3), and two different s-exchange currents o
O(1/M ). One of them is the familiar meson-in-flight dia
gram~1 its exchange!, Fig. 2, but rescaled by a factor ofgA :

AI
a~k1 ,k2 ,q;h!5gA

g0
2

2M
t~1!

a Fk12k21qS f pgspp

q21mp
2 D G

3
s~1!•k1

~k2
21ms

2 !~k1
21mp

2 !
1~1↔2!, ~26!

for which the current divergence in momentum space rea
q•AI
a~k1 ,k2 ,q;h!5gA

g0
2

2M
t~1!

a Fk2
22k1

21q2S f pgspp

q21mp
2 D G s~1!•k1

~k2
21ms

2 !~k1
21mp

2 !
1~1↔2!

5gA@Vs ,r5
a#1gA

g0
2

2M Ft~1!
a s~1!•k1

k1
21mp

2 1~1↔2!G1gA

g0
2

2M Ft~1!
a s~1!•q

k2
21ms

2 1~1↔2!G1O~ f pmp
2 !. ~27!
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The one-meson-exchangeNN potential in the heterotics
model reads

V2-b~p!5Vs~p!1Vp~p!

52
g0

2

p21ms
2 1tW ~1!•tW ~2!S s~1!•p

2M D S s~2!•p

2M D
3S gpNN

2

p21mp
2 D

52
g0

2

p21ms
2 1O~1/M2!, ~28!

andgpNN5gAg0 , due to the GT relation.
Similarly, the pionZ graph, Fig. 1~b!, contribution is also

renormalized by factorgA :

AII
a~k1 ,k2 ,q;h!52gA

g0
3

2M2S qf p

q21mp
2 D

3Ft~1!
a s~1!•k1

k1
21mp

2 1~1↔2!G
52gA

g0
2

2M S q

q21mp
2 D

3Ft~1!
a s~1!•k1

k1
21mp

2 1~1↔2!G . ~29!

The divergence of this axial MEC is

q•AII
a~k1 ,k2 ,q;h!52gA

g0
2

2M Ft~1!
a s~1!•k1

k1
21mp

2 1~1↔2!G
1O~ f pmp

2 !. ~30!
Finally, in the heterotics model in addition to the
s-exchangeZ graph, Fig. 6, contribution

AIII
a ~k1 ,k2 ,q;h!52

g0
2

2M
t~1!

a S q

q21mp
2 D s~1!•q

k2
21ms

2 1~1↔2!,

~31!

there is also an elementaryAm
a sNN axial current vertex, Fig.

3, and apsNN vertex-induced MEC, Fig. 6,

AIV
a ~k1 ,p2 ,q;h!52 f pS gA21

f p
D g0

2

2M

t~1!
a

~k2
21ms

2 !

3F2s~1!1S q

q21mp
2 D s~1!•~k22q!G

1~1↔2!. ~32!

The divergence of the sum of these last two axial MEC’s

q•AIII 1 IV
a ~k1 ,k2 ,q;h!52

g0
2

2M

t~1!
a

k2
21ms

2 @~gA21!s~1!•~k2

1q!1s~1!•q#1~1↔2!

1O~ f pmp
2 !, ~33!

which is exactly what we need to complete the continu
equation~15!.

The sum of these three axial MEC’s together with t
one-body~impulse approximation! terms plus theO(1/M2)
pion-exchange currents which we consistently suppresse
this paper, constitute the complete, PCAC-obeying axial c
rent:
-

s

c
lid
J5,2-b
a ~k1 ,k2 ,q;h!5AI

a1AII
a1AIII

a 1AIV
a 5

g0
2

2M
t~1!

a H gAFk12k21qS f pgspp

q21mp
2 D G s~1!•k1

~k2
21ms

2 !~k1
21mp

2 !

2S q

q21mp
2 D FgA

s~1!•k1

k1
21mp

2 1
s~1!•q

k2
21ms

2 G2S gA21

k2
21ms

2 D F2s~1!1S q

q21mp
2 D s~1!•~k22q!G J 1~1↔2!. ~34!

FIG. 4. Effective nonrelativistic Feynman dia
grams contributing to the one-~a! and the two-
body pion production nuclear matrix element~b!.
In the nonlinear-s model there are only graph
1~a! and 1~b!. The pion-exchange current~b! con-
sists of a ‘‘pair,’’ orZ-graph time-ordered contri-
bution in the linear-s model to which the el-
ementaryppNN vertex is added in the heteroti
model. The dashed line denotes a pion, the so
one a nucleon.
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Most of this current is new: specifically, terms~II, III, IV !
have not been considered before, only the first term~I! hav-
ing been derived in Refs.@10,11#. This current satisfies
PCAC

q•J5,22b
a ~k1 ,k2 ,q;h!5@Vs ,r5

a#1O~ f pmp
2 !. ~35!

This equation uniquely fixes the pion production/absorpt
operator in the OBEP approximation to the nuclear dyna
ics in the heterotics model as the ‘‘O( f pmp

2 )’’ term, to be
evaluated in the next section. We see that, by a curious
of events, the divergence of the complete axial current~35!
equals the divergence found in the linears model ~27!,
modulo differentO( f pmp

2 ) terms, of course. In other words
we have exactly the same commutator of the o
s-exchange potential~OSEP! and the axial charge in thes
two s models, despite manifest differences between th
axial currents. This fact is a consequence of identical a
charges and OSEP in the two models, the former being
subtle effect explained in the Appendix. Finally we turn
the v exchange.

3. Omega meson exchange

One may include thev-meson-exchange potential

Vv~p!5
gv

2

p21mv
2 ~36!

into the nuclear HamiltonianH at no peril to chiral symme-
try because it is an isoscalar vector field which is chira
invariant by itself in both the linear and the nonlinear re
ization. As is well known, the main benefit of including th
term into the nucleon-nucleon potential is that it provid

FIG. 5. The ‘‘meson-in-flight’’ graph contributing to the linea
and the heterotics models. The zig-zag line denotes as meson.
One must keep all four graphs in Figs. 1~a!, 1~b! and 2, 3 in both the
linear and the heterotics model.

FIG. 6. s-meson-exchange current contributing to the nucl
pion production matrix element. It consists of a ‘‘pair,’’ orZ-graph
time-ordered contribution in the linear-s model to which the el-
ementarypsNN vertex is added in the heterotic model.
n
-

rn

-

ir
al

-

s

short-range repulsion that is otherwise absent from thes
models. The nuclear potential withp,s,v exchange has suf
ficient attraction to bind the deuteron and enough repuls
to keep it weakly bound. The associated axial MEC is, F
7,

J5,v
a ~k1 ,k2 ,q!52 f pgpNN

gv
2

2M2S q

q21mp
2 D

3Ft~1!
a s~1!•k2

k2
21mv

2 1~1↔2!G . ~37!

This completes the construction of the PCAC-constrain
axial current in models with OBEP based on thep,s, andv
mesons. Ther meson was deliberately omitted since its co
tribution is ~highly! model dependent.

IV. PION PRODUCTION OPERATORS

The one-body pion production operator is well known,
well as the two-body one associated with pion exchange.
shall therefore concentrate on the MEC’s that are associ
with other meson (s andv) exchanges, as specified by th
PCAC constraint Eq.~15!.

A. Linear s model

It follows from Eq. ~15! and the linear-s model axial
current Eq.~25! that

Gp22b
a ~k1 ,k2 ,q!5GpI

a ~k1 ,k2 ,q!1GpII
a ~k1 ,k2 ,q!

1GpIII
a ~k1 ,k2 ,q!

5 i
g0

3

2M2 t~2!
a F s~2!•k2

k2
21mp

2 1
s~2!•q

k1
21ms

2 G
2 igspp

g0
2

2M
t~2!

a s~2!•k2

~k1
21ms

2 !~k2
21mp

2 !

1~1↔2!, ~38!

as the complete linear-s model pion production operator t
this order in 1/M . This result corresponds to Figs. 4~b!, 5, 6.

r FIG. 7. Thev-exchange current contributing to the nuclear pi
production matrix element. The curly line denotes anv meson.
This graph can be added to alls models without disturbing their
chiral symmetry.
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Although it has long been known that the corresponding covariant amplitude is chirally symmetric, we are not aware of
having used the MEC~38! in nuclear physics.

B. Heterotic s model

As stated before, the main difference between the linear and the heterotics models is the axial coupling constantgA , which
is induced by the new derivative-coupled interactions. The latter, in turn, renormalize one old graph, Fig. 5, and cre
new elementary diagrams: Figs. 6 and Fig. 4~b!.6 Thus one finds

Gp2-b
a ~k1 ,k2 ,q;h!5GpI

a ~k1 ,k2 ,q;h!1GpII
a ~k1 ,k2 ,q;h!1GpIII

a ~k1 ,k2 ,q;h!1GpIV
a ~k1 ,k2 ,q;h!5 i

g0
3

2M2 t~2!
a FgA

s~2!•k2

k2
21mp

2

1
s~2!•q

k1
21ms

2 1~gA21!
s~2!•~k12q!

k1
21ms

2 G2 igsppgA

g0
2

2M
t~2!

a s~2!•k2

~k1
21ms

2 !~k2
21mp

2 !
1~1↔2!. ~39!
in

n
s
on

s

he

-

ti
z

m
s
n
o

on
ra

w
w
tio

ira

el
els.

ate
to

eo-

on
e-

d
-

ts.
ap-

e.
is.
the

tor

s,

re,
out

de-

sed

b
er n-
This is the complete two-body pion-production operator
the heterotics model, though with allO(1/M3) pion-
exchange two-body operators excluded. This operator is o
to be used with nuclear wave functions that are solution
the Schro¨dinger equation with the aforementioned one-pi
1 s-exchangeNN potential, Eq.~28!.

C. Omega meson exchange

The v-exchangep-production operator, Fig. 7, to thi
order in 1/M is

Gpv
a ~k1 ,k2 ,q!52 igv

2 gpNN

2M S t~1!
a s~1!•k2

k2
21mv

2 1~1↔2! D .

~40!

Note the utter functional dissimilarity between this and t
two s-MEC’s Eqs.~38!, and~39!, despite the fact that both
are due to terms in theNN potential that are indistinguish
able to this order in nonrelativistic expansion,viz. the isos-
calar one-vector- and the scalar-meson exchange poten
in Eqs. ~36!, and ~28! respectively. Specifying the Lorent
structure of theNN potential distinguishes the vector- from
the scalar-exchange induced terms, but even then the a
guity between the two kinds of scalar MEC’s is survive
This fact brings into focus the intrinsic and apparently intra
sigent ambiguities associated with attempts to construct c
sistent axial MEC’s starting from theNN potential@12#. At
this stage the only formalism that allows systematic c
struction of consistent is based on relativistic chi
Lagrangians.

We believe the preceding results to be important for t
reasons:~i! They provide several explicit examples of ho
PCAC taken as an underlying principle leads to classifica
and construction of admissible~PCAC-consistent! approxi-
mations to nuclear axial current matrix elements in ch

6Scalar meson exchange currents have been introduced into
analysis ofpp→p0pp on anad hocbasis@4,5#. Those papers are
different from ours in that they do not include the pion-s-exchange
graph, nor was there any concern shown for the consistency
tween the nuclear wave functions and the pion production op
tors.
ly
to

als

bi-
.
-
n-

-
l

o

n

l

models.~ii ! They specify PCAC-consistent, apparently nov
pion production operators in several OBEP nuclear mod
Besides thepp→p0pp reaction,@13#, these results ought to
also be directly applicable to studies of thepp→p1d reac-
tion @14#.7

V. SUMMARY AND CONCLUSIONS

In summary, in this paper we have used PCAC to rel
the nuclear axial current and pion production operators
each other, and to the two-nucleon potential, in nuclear th
ries based on the nonrelativistic Schro¨dinger equation. We
focused in particular on the axial- and pion-producti
MEC’s related to the exchange of the lightest isoscalar m
sons withJP501,12, i.e., tos,v mesons.~Pions have been
treated elsewhere@8,9#, and ther meson contributions are
highly model dependent.! We constructed axial currents an
pion production operators in two variations of the linears
model, withgA51, orgA51.26, with or withoutv exchange
and showed explicitly that they satisfy the PCAC constrain

In the process we also made several assumptions and
proximations:

~i! We neglected the pion-pole term in the axial charg
This is justifiable since no need arose for it in our analys

~ii ! We neglected all retardation effects, as well as
recoil MEC’s.

~iii ! We neglected all isovector-vector and/or axial vec
meson exchanges.

~iv! We did not include nucleon or meson form factor
either electroweak or strong.

Another objection, perhaps of a more theoretical natu
can be raised against the present calculation: to talk ab
meson production in a NR potential theory~where such me-
son degrees of freedom have been ‘‘integrated out’’! seems
self-contradictory. We have side-stepped this problem by
fining the pion production operator as theO( f pmp

2 ) term in
the divergence of the axial current Eq.~7!, in analogy with
the relativistic PCAC result. This issue can be addres

the

e-
a-

7This includes the nuclear chiral perturbation theory (NxPT),
which in the present OBE approximation, is just the one-pio
exchange term that was previously treated in Refs.@8,9#
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more deeply within the Fukuda-Sawada-Taketani-Oku
Nishijima method for constructing effective nuclear theor
@15#, and we are currently working on it.

Partial conservation of the axial current ought to be
important criterion in the construction of both nuclear tw
body, or meson-exchange axial current operators, and
nuclear two-body pion-production operators. The latter a
from two sources:~i! ‘‘elementary’’ meson-nucleon vertice
present in the chiral Lagrangian; and~ii ! ‘‘effective’’ meson-
nucleon vertices due to the time-orderedZ graphs, also
known as pair currents. They have not, to our knowled
been examined from the present viewpoint, with the exc
tion of Refs.@8,9# on the one-pion-exchange axial curren
and the early work by Blin-Stoyle and Tint@2# on nuclear
pion production. Our study is only the first step in joinin
these two ideas and extending them to include light isosc
mesons (s,v).

This work is based on two fundamental assumptions:~i!
quantum mechanics; and~i! PCAC. Although our examples
were drawn from two specific sigma models, they exemp
a far more general relation between the nuclear Hamilton
and the nuclear pion production operator. Indeed such a
lation must hold in any calculation based on the two afo
mentioned principles, and in nuclear chiral perturbat
theory in particular. This relationship is almost complete
unexplored in the last mentioned setting, a situation t
must be remedied.

Note added in proof.We learned of the related work by S
M. Ananyan@16# only after the present paper had been s
mitted.

ACKNOWLEDGMENTS

The authors would like to thank Kuniharu Kubodera a
Fred Myhrer for valuable discussions and comments on
manuscript, as well as for providing an opportunity for th
collaboration to take place. We also wish to thank T. No
for help in checking the calculations.

APPENDIX: AXIAL CHARGE DENSITY
IN THE HETEROTIC s MODEL

The heterotics model is a chirally symmetric field
theoretic model that leads to an axial current with arbitr
gA(Þ1), and a mixture of pseudoscalar and pseudove
pion-nucleon couplings@1#. The Lagrangian density of thi
model is given by
-
s

n

of
e

,
-

ar

y
n
e-
-

n

t

-

e

i

y
or

L5c̄ i]”c2g0c̄@s1 ig5p•t#c1
1

2
~]mf!22V~f2!

1S gA21

f p
2 D F S c̄gm

t

2
c D •~p3]mp!

1S c̄gmg5

t

2
c D •~s]mp2p]ms!G , ~A1!

wheref5(s,p) is a column vector andV is the same po-
tential as in the linears model. The~partially conserved!
axial-vector Noether current in this model reads

Jm5
a 5S c̄gmg5

t

2
c D a

2~p]ms2s]mp!a1S gA21

f p
2 D

3F S c̄gmg5

t

2
c•pDpa1s2S c̄gmg5

t

2
c D a

1sS c̄gm

t

2
c3pD aG . ~A2!

After shifting thes field this can be written as

Jm5
a 5gAS c̄gmg5

t

2
c D1 f p]mp1~s]mp2p]ms!a

1S gA21

f p
2 D F S c̄gmg5

t

2
c•pDpa1s~2 f p1s!

3S c̄gmg5

t

2
c D a

1~ f p1s!S c̄gm

t

2
c3pD aG . ~A3!

Thus we see that the nucleon axial current has acquire
new coupling constant:gAÞ1, which was the purpose of thi
model.

The ~new! derivative coupling terms in the Lagrangia
~A1! modify the canonical momenta as follows:

Ps5ṡ2S gA21

f p
2 D S c†g5

t•p

2
c D , ~A4!

Pp
a 5ṗa1S gA21

f p
2 D F S c†

t3p

2
c D a

1sc†g5

t a

2
cG .

~A5!

We see that the axial charge retains its linear-s model form
when written out in terms of canonical fields and their as
ciated momenta:

r5
a5J05

a 5c†g5

ta

2
c2~p aPs2sPp

a !. ~A6!

Hence we see that the axial charge carried by the nucleo
unchanged as compared with the one in the linear-s model,
i.e., we havegA51 here, which was to be proven.
.
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