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3P2-3F 2 pairing in neutron matter with modern nucleon-nucleon potentials
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We present results for the3P2-3F2 pairing gap in neutron matter with several realistic nucleon-nucleon
potentials, in particular with recent phase-shift-equivalent potentials. We find that their predictions for the gap
cannot be trusted at densities abover'1.7r0 , wherer0 is the saturation density for symmetric nuclear matter.
In order to make predictions above that density, potential models which fit the nucleon-nucleon phase shifts up
to about 1 GeV are required.@S0556-2813~98!06010-5#
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I. INTRODUCTION

The presence of neutron superfluidity in the crust and
inner part of neutron stars is one of the features that is c
sidered well established in the physics of these compact
lar objects. At low density, and therefore in the outer part
a neutron star, the neutron superfluidity should be mainly
the 1S0 channel. At higher density, the nuclei in the cru
dissolve, and one expects a region consisting of a quan
liquid of neutrons and protons in beta equilibrium. The p
ton contaminant should be superfluid in the1S0 channel,
while neutron superfluidity is expected to occur mainly in t
coupled3P2-3F2 two-neutron channel. In the core of the st
any superfluid phase should finally disappear.

The presence of two different superfluid regimes is s
gested by the known trend of the nucleon-nucleon~NN!
phase shifts in each scattering channel. In both the1S0 and
3P2-3F2 channels the phase shifts indicate that theNN in-
teraction is attractive. In particular for the1S0 channel, the
occurrence of the well-known virtual state in the neutro
neutron channel strongly suggests the possibility of a pai
condensate at low density, while for the3P2-3F2 channel the
interaction becomes strongly attractive only at higher ene
which therefore suggests a possible pairing condensat
this channel at higher densities. In recent years the BCS
equation has actually been solved with realistic interactio
and the results confirm these expectations.

The 1S0 neutron superfluid is relevant for phenomena t
can occur in the inner crust of neutron stars, like the form
tion of glitches, which seem to be related to vortex pinni
of the superfluid phase in the solid crust@1#. The results of
different groups are in close agreement on the1S0 pairing
gap values and on its density dependence, which show
peak value of about 3 MeV at a Fermi momentum close
kF'0.8 fm21 @2–5#. All these calculations adopt the ba
NN interaction as the pairing force, and it has been poin
out that screening by the medium of the interaction co
strongly reduce the pairing strength in this channel@5–7#.
However, the issue of the many-body calculation of the p
ing effective interaction is a complex one and still far from
satisfactory solution.

Precise knowledge of the3P2-3F2 pairing gap is of para-
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mount relevance for, e.g., the cooling of neutron stars,
different values correspond to drastically different scenar
for the cooling process@8#. Unfortunately, only few and
partly contradictory calculations of this quantity exist in th
literature, even at the level of the bareNN interaction@9–13#.
However, when comparing the results, one should note
the NN potentials used in these calculations are not pha
shift equivalent; i.e., they do not predict exactly the sameNN
phase shifts. Furthermore, for the interactions used in R
@9–12# the predicted phase shifts do not agree accura
with modern phase-shift analyses, and the fit of theNN data
has typicallyx2/datum'3. During the last years, progres
has been made not only in the accuracy and the consist
of the phase-shift analysis, but also in the fit of realisticNN
potentials to these data. As a result, several newNN poten-
tials have been constructed which fit the world data forpp
andnp scattering below 350 MeV with high precision. Po
tentials like the recent ArgonneV18 @14#, the CD-Bonn@15#,
or the new Nijmegen potentials@16# yield a x2/datum of
about 1 and may be called phase-shift equivalent.

Our aim in this paper is to compare the predictions of
new potentials for the3P2-3F2 gap in neutron matter. We
will also, for the sake of completeness, include results w
some of the ‘‘old’’ interactions, namely, the Paris@17#, Ar-
gonneV14 @18#, and Bonn B@19# potentials. The main focus
will, however, be on the new, phase-shift-equivalent pot
tials, and whether the improved accuracy in the fits to theNN
scattering data leads to better agreement in the predict
for the 3P2-3F2 energy gap. If differences are found, we t
to trace them back to features of theNN potentials. To be
able to do so, we will keep the many-body formalism
simple as possible. First of all, we will use the bareNN
interaction as a kernel in the gap equations, and thus neg
higher-order contributions from, e.g., medium polarizati
effects. The in-medium single-particle energies will be c
culated in the Brueckner-Hartree-Fock~BHF! approxima-
tion, but we will also use free single-particle energies, b
cause this makes the comparison of the results with
various potentials more transparent, since any differences
then solely due to differences in the3P2-3F2 wave of the
potentials. We think it is useful to try to understand the
sults at the simplest level of many-body theory before p
1921 © 1998 The American Physical Society
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1922 PRC 58M. BALDO et al.
ceeding to include more complicated effects in the desc
tion of 3P2-3F2 pairing. As we will demonstrate, progress
the construction ofNN interactions is necessary before t
3P2-3F2 energy gap can be calculated reliably from micr
scopic many-body theory.

This work falls into six sections. The equations for so
ing the pairing gap are briefly reviewed in the next secti
while in Sec. III we discuss the reliability of various nume
cal approaches to the solution of the pairing gap. Feature
the various nucleon-nucleon interaction models emplo
are presented in Sec. IV, while our results for the pairing g
with these potentials are discussed in Sec. V. Finally,
summarize our findings in Sec. VI.

II. GAP EQUATION FOR THE 3P2-3F 2 CHANNEL

The gap equation for pairing in nonisotropic partial wav
is in general more complex than in the simplests-wave case,
in particular in neutron and nuclear matter, where the ten
interaction can couple two different partial waves@11,20#.
This is indeed the situation for the3P2-3F2 neutron channel.
In order to achieve a simplified, yet accurate, numeri
treatment, we use in this work the angle average approxi
tion explained in this section.

For the sake of a clear presentation, we disregard for
moment the spin degrees of freedom and the tensor inte
tion. Then, we start with the Gorkov equations@21#, which
involve the propagatorG(k,v), the anomalous propagato
F(k,v), and the gap functionD(k):

S v2e~k! 2D~k!

2D†~k! v1e~k!
D S G

F†D ~k,v!5S 1

0D , ~1!

wheree(k)5e(k)2m, m being the chemical potential an
e(k) the single-particle spectrum. The quasiparticle ene
E(k) is the solution of the corresponding secular equat
and is given by

E~k!25e~k!21uD~k!u2. ~2!

The anisotropic gap functionD(k) is to be determined from
the gap equation

D~k!52(
k8

^kuVuk8&
D~k8!

2E~k8!
. ~3!

The angle-dependent energy denominator in this equa
prevents a straightforward separation into the differ
partial-wave components by expanding the potential

^kuVuk8&54p(
l

~2l 11!Pl~ k̂–k̂8!Vl~k,k8! ~4!

and the gap function

D~k!5(
l ,m
A 4p

2l 11
Ylm~ k̂!D lm~k!. ~5!

However, after performing an angle average approxima
for the gap in the quasiparticle energy,
-
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uD~k!u2→D~k!2[
1

4pE dk̂uD~k!u25(
l ,m

1

2l 11
uD lm~k!u2,

~6!

the kernels of the coupled integral equations become iso
pic, and one can see that the differentm components become
uncoupled and all equal. One obtains the following equati
for the partial-wave components of the gap function:

D l~k!52
1

p
E

0

` Vl~k,k8!k82 dk8

Ae~k8!21@( l 8D l 8~k8!2#
D l~k8!. ~7!

Note that there is no dependence on the quantum numbm
in these equations; however, they still couple the compone
of the gap function with differentl (1S0 , 3P0 , 3P1 , 3P2 ,
1D2 , 3F2 , etc., in neutron matter! via the energy denomina
tor. Fortunately, in practice the different componentsVl of
the potential act mainly in nonoverlapping intervals in de
sity, and therefore also this coupling can usually be dis
garded.

The addition of spin degrees of freedom and of the ten
force does not change the picture qualitatively, and is
plained in detail in Refs.@11,20#. The only modification is
the introduction of an additional 232 matrix structure due to
the tensor coupling of the3P2 and 3F2 channels:

S D1

D3
D ~k!52

1

pE0

`

dk8k82
1

E~k8!

3S V11 2V13

2V31 V33
D ~k,k8!S D1

D3
D ~k8!, ~8a!

E~k!25@e~k!2e~kF!#21D~k!2, ~8b!

D~k!25D1~k!21D3~k!2. ~8c!

Heree(k)5k2/2m1U(k) are the single-particle energies, a
obtained from a Brueckner-Hartree-Fock calculation, wh
U(k) is the single-particle potential, calculated within th
‘‘continuous choice’’ scheme@22#. The quantities

Vll 8~k,k8!5E
0

`

drr 2 j l 8~k8r !Vll 8~r ! j l~kr !p/2 ~9!

are the matrix elements of the bare interaction in the differ
coupled channels (T51; S51; J52; l ,l 851,3).

It has been shown that the angle average approximatio
an excellent approximation to the true solution that involv
a gap function with ten components@11,13#, as long as one is
only interested in the average value of the gap at the Fe
surface,DF[D(kF), and not the angular dependence of t
gap functionsD1(k) andD3(k).

III. NUMERICAL SOLUTION

The solution of the system of Eqs.~8! is numerically not
trivial, especially if the gap turns out to be much smaller th
the Fermi energy. This is because of the well-known log
rithmic singularity of the BCS equation in the limit of zer
pairing gap. In order to control more closely the numeric
accuracy, we used in fact three different methods.
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One method is similar to the one described in Ref.@2#.
We first obtain a separable form of the interaction. Since
need a high accuracy, we directly diagonalize the interac
Vll 8(k,k8), taken in a discrete grid of momenta$ki%, and
then we choose the firstn eigenvalueslm with the largest
moduli and the corresponding eigenvectorsvm . One can
then write

Vll 8~ki ,kj !' (
m51

n

vm~ki !lmvm~kj !. ~10!

The gap function can then also be expanded in the s
eigenvectors, and the original equations reduce to a set on
algebraic equations. The latter can be solved for the co
cients of the expansion by iteration, following the sche
described in Ref.@2#. The rankn of the separable form is
increased until a high degree of convergence is reached.
advantage of the method is the possibility of using a v
fine momentum grid, since the algebraic equations are
tained by numerical integrations, for which extremely acc
rate interpolation methods can be used. In general, the
points must be particularly dense in the interval around
Fermi momentum, since there the kernel displays an
tremely narrow peak due to the small value of the pair
gap. Furthermore, in general, the convergence in the rann
is fast enough, and therefore the number of coupled eq
tions is never very large. However, the accuracy in the
agonalization procedure decreases with the rank of the
trix and it is difficult to have a precise estimate of the err

In the second method@23# one starts by solving the ga
equation for the case of a constant pairing gapD̄ in the
denominator. In a discrete momentum grid, this is equiva
to an eigenvalue problem, namely, to find the value ofD̄ for
which the kernel of the gap equation has eigenvalue 1.
corresponding eigenvector is a first estimate of the gap fu
tion, with the normalizationD(kF)5D̄. It is then inserted in
the kernel to solve for the next estimate ofD̄. In practice this
method converges extremely fast~after a few iterations! to
the final solution. The advantage of the method is that
original interaction is used, without resorting to a separa
form.

The third method is to solve the coupled3P2-3F2 gap
equations straightforwardly by iteration, starting from som
suitable initial approximation to the functionsD1(k) and
D3(k). Also in this method, the interaction is used in
original form. If the interaction has a strong repulsive co
as is the case in the1S0 channel, this method can be difficu
or even impossible to implement. However, the3P2-3F2 in-
teraction is relatively weak, and the iteration scheme wo
well in this channel, provided that a fine momentum grid
used around the Fermi momentum. Details of the numer
implementation of this method are given in Ref.@12#.

The comparison of the results obtained with the th
methods was quite rewarding. The numerical values of
gap functions were in excellent agreement and hardly dis
guishable in all figures presented here. Therefore, in disc
ing the results we will not specify the method by which th
were obtained. We believe that the agreement between
three methods gives enough confidence in the numerical
cision of the results.
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IV. NN INTERACTIONS

Before discussing the solutions of the coupled3P2-3F2

gap equations, we give a short description of the models
the NN interaction employed in this paper.

The older models, Paris, ArgonneV14, and Bonn B, are
described in detail in Refs.@17–19#. They all have a
x2/datum in the range 2–3. The ArgonneV14 potential is a
nonrelativistic, purely local potential. The Paris potential
corporates explicitp, 2p, and v exchange. For the short
range part a phenomenological approach is used. The
potential is parametrized in terms of local Yukawa function
The Bonn B potential is a one-boson-exchange~OBE! inter-
action, defined by the parameters of Table A.1 of Ref.@19#.

The ‘‘phase-shift-equivalent’’ potentials we will emplo
here are the recent models of the Nijmegen group@16#, the
ArgonneV18 @14# potential, and the charge-dependent Bo
potential~CD-Bonn! @15#. In 1993, the Nijmegen group pre
sented a phase-shift analysis of all proton-proton a
neutron-proton scattering data below 350 MeV with
x2/datum of 0.99 for 4301 data entries@24#. Fitted to this
phase-shift analysis, the CD-Bonn potential has ax2/datum
of 1.03 and the same is true for the Nijm-I and Nijm-
potentials of the Nijmegen group@16#. The ArgonneV18 po-
tential has ax2/datum of 1.09.

All these models are charge dependent. ArgonneV18 and
Nijm-II are nonrelativistic potential models defined in term
of local functions, which are attached to various~non-
relativistic! operators constructed from the spin, isospin, a
angular momentum operators of the interacting pair of nuc
ons. Such approaches to theNN potential have traditionally
been quite popular since they are numerically easy to us
configuration space calculations. The Nijm-I model is simi
to the Nijm-II model, but it includes also a momentum
dependent term@see Eq.~13! of Ref. @16##, which may be
interpreted as a nonlocal contribution to the central for
The CD-Bonn potential is based on the relativistic mes
exchange model of Ref.@19# which is nonlocal and cannot b
described correctly in terms of local potential functions. I
stead, it is represented most conveniently in terms of pa
waves.

Thus, the mathematical structure of the modern potent
is quite different, although they all predict almost identic
phase shifts within their range of validity. This means th
even though the potentials by construction give the sa
results on shell, their behavior off the energy shell may
quite different. The implications of these differences for t
symmetry energy of nuclear matter were discussed in R
@25#.

In order to illustrate the statements made above, and f
better understanding of the forthcoming results for the p
ing gaps, we show in Fig. 1 the predictions of the vario
potentials for the phase shifts in the3P2 (T51) channel.
They have been calculated by solving the Lippman
Schwinger equation as explained in Ref.@26#. The figure
shows predictions up toElab51.1 GeV, but clearly scattering
energies aboveElab5350 MeV amount to uncontrolled ex
trapolations beyond the intended range of validity of the p
tential models, which have been fitted to scattering data
low 350 MeV only. The plot displays also a scale
equivalent Fermi momenta according to the relationElab
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1924 PRC 58M. BALDO et al.
5(2kF)2/2m in order to facilitate the comparison with th
pairing gaps presented later. The reader can see that a
ratory energy of 350 MeV corresponds roughly to a Fer
momentumkF52.0 fm21. Therefore, calculations of th
3P2-3F2 energy gap at densities abovekF52.0 fm21 will
inevitably involve extrapolating the potential models.

In the same figure we also show the empiricalpp phase
shifts obtained by Arndtet al. in a recent phase-shift analys
@27#. Some differences between this phase-shift analysis
the phase shifts calculated with the potentials could
present in the figure, even below 350 MeV, because the
tentials are not fitted to the analysis of Arndtet al.The mod-
ern potentials fit the Nijmegen database@24#; the older ones
fit different analyses made in the 1970s and 1980s. Ne
theless, the four modern potentials considered here fit
the analysis of Arndtet al. below 350 MeV with a high
accuracy, while the old potentials~in particular theV14)
overshoot the empirical values already at lower scatte
energies, due to the fact that they have a higherx2/datum
than the new models.

In any case, aboveElab5350 MeV ~corresponding tokF
'2.0 fm21) sizable differences show up in the predictions
all potentials. The Nijm-II potential fits the phase shifts up
about 600 MeV rather well, but after that it severely over
timates them. This in turn means that the high-moment
components of the3P2 interaction will be too attractive
Nijm-I does fairly well up to about 500 MeV; from 500 t
700 MeV it underpredicts the phase shifts, while at energ
above 700 MeV the results are too high. The CD-Bonn
tential gives a similar behavior, but falls faster towards z
at high energies than Nijm-I and -II. ArgonneV18 gives 3P2

FIG. 1. 3P2 phase-shift predictions of different potentials up
Elab51.1 GeV, compared with the phase-shift analysis of Arn
et al. @27#. The ‘‘old’’ potentials are denoted by different symbol
the ‘‘modern’’ potentials by different line styles.
bo-
i

nd
e
o-

r-
so

g

f

-
m

s
-
o

phase shifts below the empirical ones over the whole ra
Elab5400– 1000 MeV. The old potentials display simila
variations, being generally too repulsive with Paris, the m
repulsive of all potentials, followed by Bonn B and Argonn
V14. In this paper we will further on focus on the new
phase-shift-equivalent potentials, since they are better fi
to modern scattering data. In summary, all potentials g
phase shifts which are too attractive aboveElab'700–
1000 MeV, and all except Nijm-II are too repulsive betwe
'350 MeV and'700– 1000 MeV.

V. RESULTS

Before presenting results for the energy gap, we point
some features of the gap equations which make the tren
the results understandable. In order to make the connec
to theNN interaction as transparent as possible, we start
discussing the case where the single-particle energies
given by their values in free space,e(k)5k2/2m.

In Fig. 2 we show, for the Nijm-I potential and variou
values of kF , the functionk2D1(k)/E(k) involved in the
3P2 component of the gap equations, normalized to unity
k5kF . The behavior of this function was found to be th
same for all potentials. Notice that this function is ve
strongly peaked aroundk5kF , implying that the diagonal
matrix element of the potential atk5kF gives the most im-
portant contribution toD1(kF) andD3(kF). Also, this figure
makes it clear why some care in choosing momentum m
points for the numerical integrations is needed. The funct
k2D3(k)/E(k) shows a similar, strongly peaked behavio
and thus the gap is largely determined by the matrix e
mentsV11(kF ,kF), V13(kF ,kF), andV33(kF ,kF).

To exemplify this, we have therefore plotted in Fig. 3 t
matrix elements forV11(kF ,kF) andV33(kF ,kF) as functions
of kF for the various modern potentials used in this work. U
to kF'2.0 fm21 the matrix elements are very similar, bu
after this point they deviate from each other, in line with t
phase-shift predictions shown in Fig. 1: In the3P2 and 3F2
waves, theV18 potential is the most repulsive, followed b
the CD-Bonn and the Nijm-I and Nijm-II potentials in tha
order. Similar conclusions can be reached for the coup
3P2-3F2 channel.

t

FIG. 2. 3P2 part of the integrand in the gap equations for va
ous densities and with the Nijm-I potential.
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A. Pairing gaps

Figure 4 contains a comprehensive collection of our
sults for the pairing gaps with the different potentials. W
start with the top part of the figure, which displays the resu
calculated with free single-particle energies. Differences
tween the results are therefore solely due to differences in
3P2-3F2 matrix elements of the potentials. The plot sho
results obtained with the old as well as with the mode
potentials. The results@with the notable exception of the Ar
gonneV14,1 which predicts also substantially different3P2
phase shifts~see Fig. 1!# are in good agreement at densiti
below kF'2.0 fm21, but differ significantly at higher den
sities. This is in accordance with the fact that the diago
matrix elements of the potentials are very similar belowkF
'2.0 fm21, corresponding to a laboratory energy for fr
NN scattering ofElab'350 MeV. This indicates that within
this range the good fit of the potentials to scattering d
below 350 MeV makes the ambiguities in the results for
energy gap quite small, since, to a first approximation~see
the discussion below!, the pairing gap can be derived i
terms of the phase shifts only.

However, we wish to calculate the gap also at densi
abovekF52.0 fm21. Then we need the various potentials
higher energies, outside of the range where they are fitte

1In a previous paper@10# one of the authors~M.B.! has claimed
much higher values for the gap with the ArgonneV14. It has been
checked that this was due both to a nonaccurate separable repr
tation of theNN potential and to a bug in the computer program
this channel.

FIG. 3. The diagonal part of the neutron-neutron potential
momentum space@Eq. ~9!# for the 3P2 ~top panel! and the 3F2

~bottom panel! partial waves obtained with the CD-Bonn
Nijmegen-I and -II, and ArgonneV18 potentials.
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scattering data. Thus there is no guarantee that the re
will be independent of the model chosen, and in fact
figure shows that there are considerable differences betw
their predictions at high densities, following precisely t
trend observed in the phase-shift predictions: The Argo
V18 is the most repulsive of the modern potentials, follow
by the CD-Bonn and Nijmegen-I and -II. Most remarkab
are the results obtained with Nijm-II: we find that the pr
dicted gap continues to rise unrealistically even atkF
'3.5 fm21, where the purely nucleonic description of matt
surely breaks down. From Table I, which contains a com
lation of gaps for the various potentials, one sees that
improved fit of the new potentials to scattering data leads
better agreement in their predictions for the gap. Thus,

en-

FIG. 4. Top panel: the angle-averaged3P2-3F2 gap in neutron
matter depending on the Fermi momentum, evaluated with
single-particle spectrum and different nucleon-nucleon potenti
Central panel: the gap evaluated with BHF spectra. Bottom pa
the gap with the CD-Bonn potential in different approximatio
schemes.
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1926 PRC 58M. BALDO et al.
fact that these potentials have been fit with high precision
the same set of scattering data eliminates some of the a
guities, and allows one to compare interactions in a way
possible with earlier models.

Since the potentials fail to reproduce the measured ph
shifts beyond Elab5350 MeV, the predictions for the
3P2-3F2 energy gap in neutron matter cannot be trus
abovekF'2.0 fm21. Therefore, the behavior of the3P2-3F2
energy gap at high densities should be considered as
known, and cannot be obtained until potential models wh
fit the phase shifts in the inelastic region aboveElab
5350 MeV are constructed. These potential models need
flexibility to include both the flat structure in the phase shi
above 600 MeV, due to theNN→ND channel and the rapid
decrease to zero atElab'1100 MeV.

We proceed now to the middle part of Fig. 4, where t
results for the energy gap using BHF single-particle energ
are shown~see Table II!. For details on the BHF calcula
tions, see, e.g., Ref.@22#. From this figure, two trends ar
apparent: First, the reduction of the in-medium nucleon m
leads to a sizable reduction of the3P2-3F2 energy gap, as
observed in earlier calculations@9–12#. Second, the newNN
interactions give again similar results at low densities, wh
beyondkF'2.0 fm21 the gaps differ, as in the case with fre
single-particle energies.

TABLE I. Collection of 3P2-3F2 energy gaps~in MeV! for the
various potentials considered in this paper. Free single-particle
ergies have been used.

kF (fm21) Bonn B Paris V14 CD-Bonn V18 Nijm I Nijm II

1.2 0.05 0.04 0.05 0.03 0.04 0.03 0.03
1.4 0.16 0.15 0.19 0.11 0.14 0.12 0.12
1.6 0.35 0.32 0.45 0.27 0.31 0.27 0.27
1.8 0.52 0.49 0.75 0.45 0.49 0.47 0.45
2.0 0.66 0.57 1.02 0.64 0.62 0.69 0.68
2.2 0.67 0.49 1.14 0.77 0.65 0.91 0.90
2.4 0.58 0.30 1.13 0.86 0.56 1.12 1.15
2.6 0.39 0.10 0.95 0.85 0.37 1.26 1.39
2.8 0.21 — 0.70 0.78 0.17 1.38 1.66
3.0 0.06 — 0.42 0.61 0.02 1.37 1.90

TABLE II. Collection of 3P2-3F2 energy gaps~in MeV! for the
various potentials considered in this paper. BHF single-particle
ergies have been used.

kF (fm21) Bonn B Paris V14 CD-Bonn V18 Nijm I Nijm II

1.2 0.05 0.04 0.05 0.04 0.04 0.04 0.04
1.4 0.16 0.11 0.18 0.10 0.10 0.10 0.10
1.6 0.34 0.22 0.38 0.18 0.17 0.18 0.18
1.8 0.52 0.26 0.60 0.25 0.23 0.26 0.26
2.0 0.64 0.22 0.74 0.29 0.22 0.34 0.36
2.2 0.65 0.14 0.75 0.29 0.16 0.40 0.47
2.4 0.56 0.01 0.66 0.27 0.07 0.46 0.67
2.6 0.37 — 0.42 0.21 — 0.47 0.99
2.8 0.19 — 0.23 0.17 — 0.49 1.74
3.0 0.02 — 0.08 0.11 — 0.43 3.14
o
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The single-particle energies at moderate densities
tained from the new potentials are rather similar, particula
in the important region nearkF . This is illustrated by a plot,
Fig. 5, of the neutron effective mass

m*

m
5S 11

m

kF

dU

dk U
kF

D 21

, ~11!

as a function of density. Up tokF'2.0 fm21 all results agree
very closely, but beyond that point the predictions diverge
the same manner as observed for the phase-shift predict
The differences of the BHF gaps at densities slightly abo
kF'2.0 fm21 are therefore mostly due to the differences
the 3P2-3F2 waves of the potentials, but at higher densiti
the differences between the gap are enhanced by differe
in the single-particle potentials. The reader should bea
mind that the single-particle energies contain contributio
from partial waves up tol<10. The largest differences aris
however, from contributions from the1S0 and 3P2-3F2 par-
tial waves; see also the discussion in Ref.@25#. An extreme
case is again the gap obtained with Nijm-II. It is caused
the very attractive3P2 matrix elements, amplified by the fac
that the effective mass starts to increase at densities a
kF'2.5 fm21 with this potential.

Finally, in the lower panel of Fig. 4, we illustrate th
effect of different approximation schemes with an individu
NN potential ~CD-Bonn!; namely, we compare the energ
gaps obtained with the free single-particle spectrum,
BHF spectrum, and an effective mass approximation,

e~k!5U01
k2

2m*
, ~12!

wherem* is given in Eq.~11!. In addition, also the gap in
the uncoupled3P2 channel, i.e., neglecting the tensor co
pling, is shown.

It becomes clear from Fig. 4 that the BHF spectrum forc
a reduction of the gap by about a factor of 2–3. However,
effective mass approximation should not be used when
culating the gap, because details of the single-particle sp
trum around the Fermi momentum are important in order
obtain a correct value. The single-particle energies in
effective mass approximation are too steep nearkF . We also
emphasize that it is important to solve the coupled3P2-3F2

n-

n-

FIG. 5. Effective masses derived from various interactions
the BHF approach.
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gap equations. By turning off the3P2-3F2 and 3F2 chan-
nels, one obtains a3P2 gap that is considerably lower tha
the 3P2-3F2 one. The reduction varies with the potentia
due to different strengths of the tensor force. For more
tailed discussions of the importance of the tensor force,
reader is referred to Refs.@9,11,12#.

B. Hints from the 3P2 phase shifts

The first calculation of the3P2 gap in neutron matter wa
carried out by Hoffberget al. @28# in 1970. They used the
weak-coupling expression for the energy gap to express
terms of the 3P2 phase shifts available at that time, an
obtained a maximum gap of around 1 MeV atkF'2.3
fm21. Since all interactions considered in the present pa
are fitted in the energy range 0–350 MeV, it would be int
esting to use the recent phase-shift analysis by Arndtet al.
@27# to get some hints on the behavior of the energy gap
higher densities. The phase shifts determine the interac
only on the energy shell; so to go from these ‘‘experime
tal’’ points to the energy gaps, we must make some rat
strong assumptions.

First of all, we switch off the interaction in the3F2 and
3P2-3F2 channels and consider pure3P2 pairing. We are
then left with only one gap equation to solve, and when
use the angle average approximation it is identical in form
the equation for1S0 pairing:

D1~k!52
1

pE0

`

dk8k82V11~k,k8!
D1~k8!

E~k8!
. ~13!

In a recent paper@4# two of the authors derived an expressi
for the 1S0 gap in neutron and nuclear matter in terms of t
phase shifts in this partial wave. This was possible beca
the interaction in this channel is to a good approximat
rank-1 separable at low energies due to the1S0 two-nucleon
virtual state@3,29#. No resonance or virtual state exists in t
3P2 channel, but we will nevertheless approximate the int
action in this channel by a rank-1 separable form

V11~k,k8!5lv~k!v~k8!, ~14!

wherel is a constant. The interaction can then be expres
in terms of the phase shifts as@4,30#

lv2~k!52
sind~k!

k
e2a~k!, ~15!

wherea(k) is given by a principle value integral

a~k!5
1

p
PE

2`

1`

dk8
d~k8!

k82k
, ~16!

and the phase shiftsd(k) are extended to negative momen
throughd(2k)52d(k). This prescription works only for a
purely attractive or purely repulsive interaction. The3P2
phase shifts change sign atElab'1100 MeV, and thus the
interaction goes from attractive to repulsive at this ener
We therefore cut the integral in Eq.~16! at k'3.6 fm21,
which corresponds toElab'1100 MeV. For a rank-1 sepa
-
e

in

er
-

at
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-
er

e
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se
n
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ed

.

rable interaction, the solution of Eq.~13! is given by
DFv(k), whereDF is the gap at the Fermi momentum foun
by solving

1

pE0

`

dk8k82
lv2~k8!

E~k8!
521. ~17!

Using phase shifts from the analysis of Arndtet al.
@27,31#, we constructed an interaction for the3P2 channel
according to the prescription above, and then proceede
solve Eq.~17! for DF . The results are shown in Fig. 6. Fo
comparison we also display the results of the following c
culation for the various potentials: we took the phase shift
energies up to 1100 MeV computed earlier and shown in F
1. From these we constructed a rank-1 separable approx
tion to the 3P2 wave of the various potentials, as describ
above, and then used this to solve the gap equation. As s
we have an as close as possible link with the calculat
based solely on the phase shifts of Arndtet al. @27,31#. This
allows us in turn to see directly the consequences of
failure of the potentials to fit the high-energy3P2 phase
shifts. When looking at Fig. 6 and reading the followin
discussion, one should bear in mind that the gap has an
ponential dependence on the interaction; so quite small
ferences in the matrix elements of the interaction can
translated into large differences in the energy gap. But
also makes the gap a good quantity to use when compa
interactions, as any difference is magnified.

Although the approximation made here should not
taken too seriously, the results indicate some important c
clusions about the3P2 waves of the recent nucleon-nucleo
interactions. All seem to have about the right amount of
traction at densities belowkF'2.0 fm21. Between kF
'2.0 fm21 andkF'3.0 fm21 all interactions except Nijm-II
seem to be a bit too repulsive. AbovekF'3.0, ArgonneV18
is probably too repulsive, while Nijm-I and -II are most ce
tainly too attractive, and the same probably also holds for
CD-Bonn. If one uses the weak-coupling expression for
gap,

DF'2eFe2V11~kF ,kF!/N~0!, ~18!

whereeF is the Fermi energy andN(0) the density of states
at the Fermi level, one sees that the gap vanishes where

FIG. 6. 3P2 gap calculated with separable potentials construc
directly from the3P2 phase shifts.
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interaction goes to zero. In our phase-shift approximati
this happens where the phase shifts change sign, akF
'3.6 fm21. The ArgonneV18 gap then seems to disappe
somewhat too early, while the other potentials give ga
which exist up to what are probably unrealistically high de
sities.

VI. CONCLUSION

We have presented new calculations of the pairing ga
the 3P2-3F2 channel for pure neutron matter as a function
density. With these calculations we have aimed at estab
ing on a firm basis the numerical value of the gap once
bare nucleon-nucleon interaction is used as the pairing in
action, since in this context contradictory results have b
presented in the literature. Three different numerical me
ods to solve the pairing gap have been employed in
paper. Since all three methods gave the same results
pairing gaps we have obtained should be reliable from
technical point of view.

However, our calculations have revealed that the beha
of the 3P2-3F2 gap at densities abovekF'2.0 fm21, corre-
sponding tor'1.7r0 , wherer0 is the nuclear matter satu
ration density, must be considered as largely unknown. U
this point the gap is increasing~the values atkF52.0 fm21

are about 0.6 MeV with free single-particle spectrum, a
about 0.3 MeV with BHF spectrum, independent of the p
cl.

m

th
.

l.

cl.

cl.

is,
s.

. C
,

s
-

in
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h-
e
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n
-

is
the
a

or

to

d
-

tential!, but how far in density this increase continues d
pends on the individual potentials, in line with their extrap
lations of the 3P2 phase-shift predictions. Bearing in min
that the Nijm-II potential fitted the empirical3P2 phase shift
rather well up toElab'600 MeV (kF'2.7 fm21), we can
deduce from Fig. 4 that the maximum gap with a free sp
trum is probably below 1 MeV. How high up in density th
gap exists must be left as an open question, although
phase shifts indicate that the gap should disappear at aro
kF53.6 fm21, corresponding tor'10r0 . At this point also
the purely nucleonic treatment of the dense medium is su
inappropriate.

Before a precise calculation of the3P2-3F2 pairing gap
can be made, one therefore needs a nucleon-nucleon p
tial that fits the phase shifts up toElab'1 GeV accurately. To
us, the construction of potential models, in which the inel
ticities aboveElab5350 MeV due to the opening of theND
channel are taken into account, seems to be more urgent
the evaluation of polarization effects on the3P2-3F2 gap
with the existing potential models.
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and E. P. J. van den Heuvel~Dordrecht, Kluwer, 1989!, p. 457.

@2# M. Baldo, J. Cugnon, A. Lejeune, and U. Lombardo, Nu
Phys.A515, 409 ~1990!.

@3# V. A. Kodel, V. V. Kodel, and J. W. Clark, Nucl. Phys.A598,
390 ~1996!.

@4# O” . Elgaro”y and M. Hjorth-Jensen, Phys. Rev. C57, 1174
~1998!.

@5# H.-J. Schulze, J. Cugnon, A. Lejeune, M. Baldo, and U. Lo
bardo, Phys. Lett. B375, 1 ~1996!.

@6# J. M. C. Chen, J. W. Clark, E. Krotschek, and R. A. Smi
Nucl. Phys.A451, 509 ~1986!; J. M. C. Chen, J. W. Clark, R
D. Dave, and V. V. Khodel,ibid. A555, 59 ~1993!.

@7# T. L. Ainsworth, J. Wambach, and D. Pines, Phys. Lett. B222,
173 ~1989!; J. Wambach, T. L. Ainsworth, and D. Pines, Nuc
Phys.A555, 128 ~1993!.

@8# S. Tsuruta, Phys. Rep.292, 1 ~1998!.
@9# L. Amundsen and E. O” stgaard, Nucl. Phys.A437, 487 ~1985!.

@10# M. Baldo, J. Cugnon, A. Lejeune, and U. Lombardo, Nu
Phys.A536, 349 ~1992!.

@11# T. Takatsuka and R. Tamagaki, Prog. Theor. Phys. Suppl.112,
27 ~1993!.

@12# O” . Elgaro”y, L. Engvik, M. Hjorth-Jensen, and E. Osnes, Nu
Phys.A607, 425 ~1996!.

@13# V. V. Khodel, Ph.D. thesis, Washington University, St. Lou
1997; V. A. Khodel, V. V. Khodel, and J. W. Clark, Phy
Rev. Lett.~submitted!.

@14# R. B. Wiringa, V. G. J. Stoks, and R. Schiavilla, Phys. Rev
51, 38 ~1995!.
-

,

@15# R. Machleidt, F. Sammarruca, and Y. Song, Phys. Rev. C53,
1483 ~1996!.

@16# V. G. J. Stoks, R. A. M. Klomp, C. P. F. Terheggen, and J
de Swart, Phys. Rev. C48, 792 ~1993!.

@17# M. Lacombeet al., Phys. Rev. C21, 861 ~1980!.
@18# R. B. Wiringa, R. A. Smith, and T. L. Ainsworth, Phys. Rev.

29, 1207~1984!.
@19# R. Machleidt, Adv. Nucl. Phys.19, 189 ~1989!.
@20# M. Baldo, U. Lombardo, and P. Schuck, Phys. Rev. C52, 975

~1995!.
@21# See, e.g., J. R. Schrieffer,Theory of Superconductivity

~Addison-Wesley, New York, 1964!, p. 248.
@22# J. P. Jeukenne, A. Lejeune, and C. Mahaux, Phys. Rep., P

Lett. 25C, 83 ~1976!.
@23# E. Krotscheck, Z. Phys.251, 135 ~1972!.
@24# V. G. J. Stoks, R. A. M. Klomp, M. C. M. Rentmeester, and

J. de Swart, Phys. Rev. C48, 792 ~1993!.
@25# L. Engvik, M. Hjorth-Jensen, R. Machleidt, H. Mu¨ther, and A.

Polls, Nucl. Phys.A627, 85 ~1997!.
@26# R. Machleidt, K. Holinde, and Ch. Elster, Phys. Rep.149, 1

~1987!.
@27# R. A. Arndt, C. H. Oh, I. I. Strakovsky, R. L. Workman, and F

Dohrmann, Phys. Rev. C56, 3005~1997!.
@28# M. Hoffberg, A. E. Glassgold, R. W. Richardson, and M. R

derman, Phys. Rev. Lett.24, 775 ~1970!.
@29# B. V. Carlson, T. Frederico, and F. B. Guimara˜es, Phys. Rev.

C 56, 3097~1997!.
@30# G. E. Brown and A. D. Jackson,The Nucleon-Nucleon Inter

action ~North-Holland, Amsterdam, 1976!.
@31# R. A. Arndt, ‘‘Interactive Dial-in ProgramSAID’’ ~URL http://

clsaid.phys.vt.edu/%7ECAPS/!.


