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One loop corrections to quantum hadrodynamics with vector mesons
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The renormalized elastig scattering amplitude to one loop is calculated in the chiral limit in¢treodel
and in a quantum hadrodynamic mod®HD-III) with vector mesons. It is argued that QHD-III reduces to the
linear ¢ model in the limit that the vector meson masses become large. The pion decay constant is also
calculated to 1-loop in the- model, and at tree level in QHD-III; it is shown that the coefficient of the tree
level term in the scattering amplitude equélsz. The 1-loop correction oF , in QHD-III violates strong
isospin current conservation. Thus, it is concluded that QHD-III can, at best, only describe the strongly
interacting nuclear sectofS0556-28188)05309-4

PACS numbdps): 21.30.Fe, 24.10.Jv, 13.20.Cz

QCD is very successful at describing hadronic interacimalizable theory. To 1-loop, it is also argued that the gauge
tions at highQ? where perturbation theory is applicable. At bosons decouple in the limih,— . Note that QHD-III re-
low Q2 however, nonperturbative methods must be used anduces to the lineas- model wherg,=0. Second, pion decay
most quantitative predictions can not be extracted directlys analyzed by looking at the axial current matrix element
from QCD. Models that are designed to describe I  (O|A,|#’) in the o model to 1-loop; from it, the pion decay
hadronic interactions must be guided by the symmetries o¢onstant is identified. To renormalize the pion decay con-
QCD and phenomenology. It is a fact that QCD possessesfant, the same counterterms evaluate®{@}) are used,
global SU(2) X SU(2)g symmetry and that large scale pro- and it is verified that the coefficient of the tree-level term in
cesses must involve meson loops because of confinemenrt!~~— = IS the inverse square of the pion decay constant to
Phenomenology also reveals the existence of conserved velkis order. The matrix eleme0|A, | ') is next considered
tor and (partially) conserved axial vector currents. QHD-III in QHD-III so as to identify the pion decay constant in that
[1] is a relativistic quantum field theory that incorporatesmodel. At tree level, the pion decay constant of theodel
these features: in this model, hadrons are the effective dds replaced by H2=1/05+g2/m2. To next order, it is
grees of freedom and the vector mesons that couple to thed@und that the 1-loop corrections violate local current con-
currents, thep and thea,, are introduced as the gauge Servation in this model; this matrix element to 1-loop is
bosons of a local SU(2)X SU(2)s o —  model with pions therefqrg neither gauge-invariant nor renormalizable: to that
(see below The vector mesons are made massive via th@'derit is not an S-matrix element of the theofhus the

Figos mechaisrahough he Higgs salars o not cot- 048 C21  est provide & phenomenclogical descripton o
ute to the order considered in this papand the model is rongly 9! X P P
renormalizable. forming these calculations, the QHD-III counterterm La-

A further motivation for QHD-III is the fact that simpler grangian with c_oeﬁ|C|ent$5Z,5ﬂ,5A,5gp, -} is der_lved.
versions of QHD based ofN;o,w} and{N:o,®,7} have The mode_l is -constructed as follows: stgrt with tbe
had significant phenomenological succE&k hence, it is of ~— @ Model with piong2] (we use the conventions [1]):

interest to see how far this description can be extended. A

similar model with vector mesons was developedidh For L=yliy*(9,+1guV,) —ga(stiysT m) 14
models with vector mesons in nonlinear chiral Lagrangians, 1
see[4(a),4(b),4(c),4(d),4(e)]. For early work on the subject, + E(aﬂsaﬂer d,m*m)

see[4(f)]. The consequences of the present model have not

yet been explored. In the final analysis, the currents of QHD- 1
Il allow the theoretical exploration of strongly interacting - ZMSZJF mr—v?)% - 2Pk
systems and processes, while incorporating meson loop cor-
rections. 5
This paper calculates to 1-loop the two simplest ampli- + MV, VEest Lo, (1)

tudes in the meson sector of this modle baryon sector is

not included in this initial investigation 77 scattering and  wherees is the chiral symmetry violating term ang} is the

pion decay. First, the invariantrm scattering amplitude counterterm Lagrangian. The QHD-IIl Lagrangian is con-

M . is calculated to 1-loop t@(g%) and toO(g2g%)  structed as followsdetails are given ifil]): this Lagrangian

in the limit m§>m§>s with m_,=0. To renormalize this is first made locally invariant under SU(2¥ SU(2)g; this
scattering amplitude, the divergent parts of the countertermeesults in the appearance of the andr, gauge bosons

are extracted from the, o> and o vertex functions, and it coupled to conserved currents. These bosons are given mass
is shown that these counterterms cancel all the divergenceakrough the Higgs mechanism. The mass matrix is then di-
in M. . tO O(gi) and toO(g,zTgﬁ), as well as the di- agonalized and the, andr , fields are replaced by the new
vergences in ther 4-point function as expected in a renor- generalized coordinates, thg anda,, . TheO(4) symmetry
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is spontaneously broken by giving the scalar field a vacuum Pya Ps,c
expectation value§= oy— o with 0g=M/g,). This in turn >
yields a bilinear term in the Lagrangian that must now be
diagonalized by redefining the pion amg field. The end - -
result for the meson sector is Psh P, d
1 mf‘ FIG. 1. 77 scattering.
EUWZE 1-— |9, mo"m
P 1 1 2 ©
2 O=——Z2F= 75
+( 29 wTtg,08,+0,mXp, P 16779
) Here, 1F2=1/0i=g%/M?, {5,,5,,58,} are of O(g?),
i E J,0—g %77~a —m2o? and u parametrizes the renormalization conditions. The am-
2 H ’m, H 7 plitude M does not depend op; the counterterms and the
m running coupling constant conspire to ensure that. The sub-
—Q,Z)an“ oa,+ —aﬂ'XpM scripts are defined in Fig. 1 and twenty diagrams contributed
m, to the above result. Note the first term fhis just the tree-
2 m2 level amplitude. Note also that the unitary corrections in the
+g. 2ol o2+ _2772 second line of equatio¥) has the log structure in Mandel-
2|V| stam variables first derived by Lehmaf#. The divergent
2 2 2 parts of the counterterms are obtained by consideringsthe
_9378"':/'02 o2+ _2772 +L! ) 1-point, 2-point and 3-point functions. The result to 1-loop is
3¢2 m e .
In the above, they; mass is given bynz=m>+g’aj with ST TS M2 1621 | 2] AT 726, (7)

m, the p mass andj,, the p-nucleon coupling constant. Equa-
tion (2) is referred to as the “diagonalized Lagrangian” and
reduces to the linear model wheng,=0. £, contains the
“new” interactions that appear when the pion aadfields
are redefined; t@(g?) it is given by

with &, finite. One can check by direct substitution that the
above counterterms determined from the scalar sector cancel
the divergences occurring in thew scattering amplitude.
This verifies the counterterms calculatec[@j

5 For the scattering amplitude t(D(g g) the gauge
,_9p%0 bosons from QHD-III contribute another fn‘ty diagrams. The
= R . I3
Lo mpz Lodym-otm=m-d,mi"c]. @ corrections to the parametesa, and a, are
The scattering amplitude is considered first26g?) by gp 1 m2 2 Zoom?
putting g,=0 and then ta?(g2%g?2). The loop integrals are op= 1672 12+6_§ In _§+9_§

done using dimensional regularization in the mefrig,—,

—,—), and it is assumed tha,=e=0 as well asm?>m? m; 131
; o X|T +indr—In —+ —
>s,t,u wheres, t andu are the Mandelstam variablé®r u? 162
discussions regarding tme,— oo limit of the linearo model, ) )
see[2,5,6,7). To O(g?) in the t-channel, the amplitude is g, g9, 2
T +2-56, +|8=5 +—(8,+6,), (8
Macpd= M acdpg With m "% m, op 0(2)( wto, (@
_ 2 2., .2
M=[Bt+ at°+ ay(s°+u9)] 1 9!2) 6 c m 85
L1t t2I SLOEINPPI 5a1__3m_§167zri+'”4”_'”_2_ﬁ
62| 2 M Y ) , i
9 590 9, 4 9 Ou
_ _ -85 —F+2—5 —S—-4-5%
| s 1 3U2+ P —2) I — @) mm2 “m2m? m’m?
X1n Eg 12( uc+s ) n Ez , p e p e p
2
+ 26,+ 6y), 9
1 3 m2 . m( PRV 9
5 192 1 [26 m] g9
- 0ar=z3 —5 72— +|n—z 25 —. (10
“In Tzt g 208160 (5) F?m? 167 9 " mp p My
1 1 49 5 Now, in Egs.(8)— (10) and in the coefficient of the log terms
2_ .
U= — —p —— — [25,+6,], in Eq. (4), 1FF 1/0'0+g /m to O(g3g ) as required by
! F* 167 18 in woo unitarity. The counterterms become
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€ € that the 1-loop corrections are finite constants in the heavy
3 m?2 r > Il mass limit subject to the above constraint. They are thus
-2 g2 . - . 2 iqi i i DUt
8,= 5 (gp Ug> 16:2 Oy 26,, 6,~6g, 162 negligible with respect to the quadratic contributionsfdn

Hence, the gauge boson contribution to the scattering ampli-
tude becomes negligible in the heavy mass limit: the QHD-
The calculation is carried out in the unitary gauge. It is'! scattering amplitude reduces to tkemodel amplitude in
shown that the divergent contributions to amplitudes in thehe limit m,—o with m 2/mi=1 but finite!

scalar sector are gauge invariant; this is proved using the The decouplmg of theil and thep can be understood
non-diagonalized Lagrangian which maintains explicit cur-more generally as follows: from the Lagrangian given in Eq.
rent conservation at each step. Hefg, can be determined (2) and the definition ofn,, it is seen that the gauge bosons
from p decay, and it is finite. Note thag has acquired a decouple from ther and theo when the gauge fields are
divergence. Upon substitution of EfL1) into Egs. (8) and rescaled according tp,=p,/m, anda,=a,/m, and the
(9), it is found that the amplitude is nofinite to O(g> 29, ). limit m,— o is taken,; this procedure results in the Lagrang-
note that ther 4-point function is also made finite with ‘these ian of the linearo model (for a similar discussion in the
counterterms. Hence, ther scattering amplitude is now rid linear o model seg?2]). This suppression in inverse powers

11

of all infinities (as is the entire scalar sector of the mass is essentially the decoupling theoféd].
Consider pion decay in the model. From the axial cur- Now consider pion decay in QHD-IIl. When the 1-loop
rent,F . is calculated to 1-loop to be correction of the matrix elemerd|A, |7') is evaluated us-
5 ing the axial current derived from the QHD-III Lagrangian, it
0, 3 mg € is found that the counterterms given in Efjl) fail to cancel
F”_UO‘ 1+ ?Jr 3272 U_S [F E) in 4 all of the divergences; it is also explicitly found that this

matrix element is not gauge invariant to 1-loop in QHD-III.
(12) This violation of current conservation occurs because the

pion acquires a strong isospin charge when the vector me-

sons are introduced as gauge bosons as is the case in QHD-
First, note that the counterterms given in E@). cancel the |II; hence, in a process which destroys strong isospin charge
divergences irF .. Second, notice that t&(g%), F.?is  such as pion decay, vector and axial-vector isospin current
identical to B given in Eq.(5). This verifies a well known conservation is violatetiand that process is not an S-matrix

2
|n—2+
M

—(6, +5)\)’

property of theo model in the chiral limif10]. element of QHD-II.
From the axial current of QHD-IIl, the tree level pion  In summary the renormalizedr scattering amplitude
decay constant is found to be has been calculated to 1-loop in thanodel and in QHD-III
) 1 in the chiral limit for small external momenta with respect to
_m, 9 , the masses. The pion decay constant has been calculated to
F’T_Hao = 1* Hi”o) To, (13 1.00p in theo model and it is shown explicitly thaft ;2

= B. It is also shown that this relation holds at tree level in
or 1F2=1/05+g?/m>. This result was first obtained by QHD-Ill. Itis argued that the gauge bosons decouple from
Gasiorowicz and Geffef@] (see alsd4(b)]). From the first the pion and ther in the heavy mass limit. The 1-loop cor-
term in Eq.(8), it is seen that the relationship between therection toF . in QHD-IIl is seen to violate strong isospin
p|on decay constant and ther Scattenng amp“tude in the current Conservaﬂon thus the model can at best describe the

chiral limit is also verified in QHD-III at tree level. strongly interacting nuclear sector.

Cen3|der theO(ngg’Z,) corrections 1o thers scattenr_lg The author would like to thank J.D. Walecka for his guid-
amplitude, Eqs_(8)—(10). As m,—e, day, 5‘“2_.’.0' ThiS  ance and useful discussions during the completion of this
can be seen directly from Eq&) and(10) by noticing tr21at work. He would also like to thank C. Carlson, J. Goity, and
to this order(i) &, is finite in this limit and(ii) the O(1/m;)  \1. Sher for very worthwhile discussions. This work was
terms are to be neglected so that the only surviving contrisupported under U.S. DOE Grant No. DE-FGO2-
butions from the counterterms are those of thenodel in  97ER41023.

Eq. (7). Note also that the tree-level correction@®fthe first

term of Eq.(8)] goes to zero in that limit. However, in this
amplitude, the limitm,— o must be taken without violating
the constra|mm2/m >1 but finite. This constraint implies tree-level terms in the limitn, ,m,—c, taking these limits in our

t_he appeargmce of a ne(wuad_ratl() dlverge_nce in3 propor- scattering amplitude is questionable since we used perturbation
tional to m>. The Inm’/u? divergences in3 and &8 are theory to obtain our result. However, 4-point functions can be used
already absorbed in the renormalization of the parameters @$ construct effective Lagrangians in the heavy mass li6iitand

the Lagrangian and need not be considered further. The newr scattering amplitude would have the same structure as that ef-
quadratic divergence i renormalizes the pion decay con- fective Lagrangian.

stant to 1-loop in exactly the same fashion;[B7], it is 2Electromagnetic charge also disappears in pion decay. Of course,
shown quite generally that the linearmodel reduces to the it is carried off in the lepton sector. The author knows of no simple
nonlinear o model in the limitm,— and that quadratic way to fix up strong vector and axial vector isospin current conser-
divergences have no observable effect to 1-loopi8nnote  vation in this model for pion decay.

1Since the 1-loop corrections j& and 88 become larger than the



1856 BRIEF REPORTS PRC 58

[1] B. D. Serot and J. D. Walecka, Acta Phys. Pol.2B 655 [5] J. Gasser and H. Leutwyler, Ann. Phyd\.Y.) 158 142

(1992. (1984.

[2] J. D. Walecka,Theoretical Nuclear and Subnuclear Physics [6] R. Akhoury and York-Peng Yao, Phys. Rev. 25, 3361
(Oxford University, New York, 1996 (1982.

[3] S. Gasiorowicz and D. Geffen, Rev. Mod. Phykl, 531 [7] T. Appelquist and C. Bernard, Phys. Rev.2B, 425(1981).
(1969. . . . [8] H. Lehmann, Phys. Letd1B, 529 (1972.

[4] (a) Fayyazuddin and Riazuddin, Phys. Rev3§ 2768(1987); [9] M. E. Peskin and D. V. Schroedein Introduction to Quan-
(b) U. MeiBner, Phys. Repl61, 213 (1988; (c) G. Ecker, J. tum Field Theory(Addison-Wesley, New York, 1995Chap.
Gasser, A. Pich, and E. de Rafael, Nucl. Php821, 311 11

(1989; (d) G. Ecker, J. Gasser, H. Leutwyler, A. Pich, and E.
de Rafael, Phys. Lett. R23 425 (1989; (e) M. Bando, T.
Kugo, and K. Yamawaki, Nucl. Phy&259, 493(1985; (f) J.
Schwinger, Phys. Let24B, 473(1967).

[10] S. Weinberg,The Quantum Theory of Fields (Cambridge
University Press, Cambridge, England, 1896 200.
[11] T. Appelquist and J. Carazzone, Phys. Red.1D2856(1975.



