PHYSICAL REVIEW C VOLUME 58, NUMBER 3 SEPTEMBER 1998

7r-a, mixing at intermediate energies
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We describe the mixing of thgq pseudoscalar channel with the longitudimgl axial-vector channel,
making use of a generalized Nambu—Jona-Lasino model that includes a model of confinement. In addition to
the pion, we find)P=0" states at 1.18, 1.36, 1.47, 1.63, and 1.68 GeV. The first three of these states are in the
region of them(1300 excitation that is assigned a mass of 130M0 MeV and a width of 200-600 MeV in
the data tables. Our work, therefore, suggests#i800 may not represent a single stateqaf character.
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In a series of papers, we have been developing an effeddere,V(r)= xr exp(—ur), wherex is the “string tension”
tive field theory for quarks based upon the Nambu—Jonaand x is a small parameter introduced to soften the singu-
Lasino (NJL) model [1], supplemented with a relativistic larities of the Fourier transform of(r). We find
model of confinemenii2—6]. In the present work we extend
our considerations to the mixing between pseudoscalar states
and longitudinal axial-vector states, a phenomenon that is/“(K—K')=—8m«
usually called “m-a; mixing.” A novel feature of the
present study is that we are able to study this mixing in the
energy region & P?<3.0 Ge\%. We are particularly inter- in the case where we neglect energy transfer via the confin-
ested in the region where one finds th€1300. In the data ing field. In this work we have takep=0.020 GeV.
tables the energy is 136000 MeV, while the width is We begin our analysis by defining the polarization inte-
given as 200—-600 MeV7]. grals

In the following we first review our treatment of the
vacuum polarization diagrams that play an important role in
the NJL model. The confinement model eliminates cuts in
the P2 plane that would appear when the quark and antiquark
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both go on mass shell. Therefore, the vacuum polarization XiS(—P/2+k)], 4

integralsJ(P?) are real if we do not take into account decay "

into open channels, such ast vy, p+, etc. i 1PADY_(_ J . e
Next, we study thegq T matrix that describes the cou- N, (P)=(=L)neneTr (2m)* [IS(P/2+K)iT's

pling of the qq pseudoscalar channel to the longitudinal .

component of thegq axial-vector channel. Singularities of XI1S(=Pl2+K) v, 5], ®)

the T matrix correspond to resonant states of the system. 4K

Following this, we present the results of numerical calcula- _i1AP DY _ J : =

tions. 13, (P)=(=1)nn¢Tr —(277)4 [IS(PI2+K)T,
For the purposes of this work, we consider the Lagrangian XiS(= P2+ K)i ¢] ®)

_ 51,

with SU(2)-flavor symmetry
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wheremP= diag(,md). We use Lorentz-vector confinement Here S(P)=[P—m+ie]™*, with m being the constituent
with quark mass. Further, the number of flavorsijs-2 and the

number of colors i =3. Thels andT', are vertex func-
. . tions of the confinement potential which will be described
LeonfX) = J d*yq(x) y*a(x)Vé(x—y)a(y)»,a(y). (2)  shortly. We also define

P
JPA(P):iJPA(PZ) [ ' (8)
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and

. PP,
3u0(P)==T,,(P) I (P?) — —57= JPA(P?), (10

with §,,=9,,—P,P,/P? Note also that JAP(P?)
=—J"A(P?) andP,g*"'=g*"P,=0.

The separation of transverse and longitudinal parts of th
tensorJﬁ’,f(P) is appropriate since the transverse part may b%

treated separately. Thus, onlyP(P?), JPA(P?), JAP(P?),

and J(P?) will appear in the coupled equations that de-

scriber-a; mixing.
The confining fieldv¢(k—k’) is used to define two vertex

functions. Our treatment of these functions has its origin in
the method used to calculate the vacuum polarization inte?’

grals. These are calculated by using the relation

m AF(P) AC(=P)

S(P)=— - - = 11
E(P) | P°—E(P)+ie P°+E(P)—ie

for each propagator in Eq&4)—(7) and then performing the
integral in the complexk’ plane. The use of Eq(l1) in
Eq. (4),_ with l5=0, shows that onl_y the elements
AMK)T5(P,K)A)(—K) and AC)(—K)Ts(P,k)AT)(K)
appear. Therefore, it is useful to defifig ~(P,k)

APR)TS(PK)A T (—K)

=T¢ " (PROAD K ysA (k) (12)
andl'; *(P,k)
A (=K)T5(P, k) A (K)
=T "(PA (k) ysA k), (13)

wherel's ~(P,k) andI'; *(P,k) are ordinary functions with
no Dirac matrix structure.

We may obtain equations fdrs ~(P,k) andT'g “(P,k)
starting with the equation for the matrbg(P,k)

— rod% —
rs(P,k):ys—uf Gy L7 S(PIZHKTS(P k)
X S(—P2+k') y,VS(k—K')]. (14)

We find that if we neglect coupling betwe&ii ~ andI"' ™+,
we have(for I5=0)

m2—2E(K)E(K")
E(K)E(K')

d3k/

PPk =1- | G

rg (PO k' )VE(k—k)
X = .
PO—2E(k’)

(15

A similar analysis leads to
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m2—2E(K)E(K")
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rs*(POIkN=1+ | 753

s "(P%[k')VE(k—K')
X .

= (16)
PO+ 2E(K")

For example, Eq(15) is obtained if we complete the integral
in the lower complexk, plane and pick upnly the pole

(\évhere the quark is on its positive mass sh8ll The other

ole in the lower-halk; plane corresponds to the antiquark
eing on its negative mass shdllt plays a role when we

obtain Eg. (16).] Note that when P°—2E(k)=0,
' (P°,|k|)=0. This aspect of the confinement model re-
moves the unphysicalq cuts that would otherwise appear in

the vacuum polarization integral§P?). Using these results
e find

d%k |[TE (PO, K|
JPP(P2)=—2n.n f > _
( ) cllf (277)3 PO—ZE(k)
T's “(P°,|k])
—% . (17)
PO+ 2E(K)

Since the second term is small, except at low energy, where

'~ *(PY,|K]) is fairly close to unity, we will use the approxi-
mation

d3k
(2m)*

Fg (POK) 1
PO—2E(k)  P°+2E(K)
(18

JPP(P?)=—2n.n;

in the intermediate energy region. In the absence of confine-
ment (x=0) we putl's ~(P%,|k|)=1 in Eq.(18). [Note that
JPP(P?) is finite for P2=0.]

We also need to introduce a longitudinal axial-vector ver-
tex I}* in the calculation 0BAA(P). We write for P=0

AP KTHP KA (—K)

m
JP?

Now note that from Eq(10) P2J{(P?)= —P#J,,,(P)P" so
that, includingl'{* at one vertex, we have

=—= T (PROADK) YA (=K. (19

L c'f (2m)* e

X S(— P2+ K)Pys]. (20)
Completing the integral in the lowé® plane and picking
up the contribution of both poles of the propagators found

there, we obtain
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dk m |77 (PYK) A o
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Here we have neglected confinement in the second term . . PP, 2 PAP2y_ _ TAP(p2
Eqg. (21). In the absence of a confinement model=0), jgésTf/i)ArET:,zs)er\\;\?s ;?sgedfgﬁ]e (P, TP (P%)

T~ (P%|k|])=m/E(K), so that
2 4E(K) detD(P?)=[1-GgI”P(P?)][1-G\J{A(P?)]

<P°>2—[2E<E)]2('22) + GG [IPAPY, @7

d3k
(2m)®

m

IPAP?)=2n,n; f

E(k)

where we have used the fact thHEt"(P?) = — JPA(P?).
for P°<2m. As noted above, an important feature of our We may solve forT?P(P?), TPA(P?), and TAA(P?) to
confinement vertex functions is that they are zero when thebtain

uark and antiquark both go on thépositive mass shells.
a a g ’ ~ Gd1-GuIt(P?)]

Therefore, expressions such B& ~(P%,|k|)/[P°—2E(K)] TPP(P2)= I , (28
andI', (P9, |k|)/[P°—2E(k)] are finite.
An equation for the longitudinal axial-vector vertex is ob- GyGsIPA(P?)]
tained by starting with TPAP?) = T detD(P?) (29
— P~P d*k’ —
I = — —i EE—} \T & ’ GJ1-G PP PZ
FL(Pyk) P2 Vs If (2,”_)4 Y S(P/2+k )FL(Prk ) TAA(PZ): V[ S] ( )] (30)

detD(P?) ’
X S(—PI2+k')y,VE(k—K’ 23
( V7oV ) 23 with TAP(P?)=—TPA(P?). Note that boundor resonant

and using Eq(19). If we neglect the coupling of | ~ to  states correspond to the zeros of DéP?).
" we find _ Now consider thd matrix of Eq.(28) in the frame where

P=0. We may write

. ) m d3k’ | 2E(K")E(K)—m?
L= +f @m3[  E(REK) ; o[ T (PH IT™(PY) ( s )
E ' T=(i 1
(k) (ivs,7"¥s) iTAP(P2)  TAAP2) || 90y, (31
LETPOIKD L
X ———— VE(k—K). (24)  which may be written a® "T(P?)®. Now we use the ma-
PO—2E(k) trix
Thus, in the absence of confinemeri; ~(P%|k|) cosd ising
=m/E(I2), as noted above. M(9)= ising cosd (32
Proceeding in a fashion analogous to our calculations of
JPP(P?) and JA(P?), we find . _
to bring T(P?) of Eq. (31) to diagonal form:
d®*k m | Tg(P°k) 2
JPA(PZ):—chan’ Py . — MO T(PIM-1( §) = T.(P?) 33
(2m)° E(ky | PO—2E(K) (OTPIMHO)=| T,(P?)/°
n 1 (25) TABLE I. Values of the mixing angle for various bound or
PO~I—2E(IZ) ’ resonant states.

As is well known, the integrals defining the vacuum po- ~ ENeray

larization functions are divergent. Therefore, they are cut off (€Y Channel 6 (rad 0 (deg
by inserting a theta functiom(A3—||Z|). We usedAj 0.138 T, —0.059 —3.39°
=0.622 GeV in our earlier work and we continue to use that  1.18 T, 0.990 53.0°
value here. 1.36 T, -1.61 —92.0°
The resonant states of the coupled pseudoscalar and lon- 1.47 T, -0.55 —-31.8°
gitudinal axial-vector fields may be found by studying the 1.63 T, —0.048 —2.70°
matrix for qq scattering, including channel coupling terms. 1.68 T, 1.08 61.6°

We write
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We put Gg=12.80 GeV'2 and G,=12.50 GeV'? and find  vector state is mixed with the pseudoscalar sts¢e Table)l

that there are zeros of dBx(P?) at P°=1.18, 1.36, 1.47, and the mixed state is at 1.18 GeV, quite close to 1.20 GeV,
1.63, and 1.68 GeV, in addition to the zero &° the original position of the $ states.

=0.138 GeV. The data tables only list th&1300 in the We next consider the  states that were at 1.49 GeV,
energy region considered here. Our results suggest that thghen Gs=Gy=0. With reference to Table I, we see that
7(1300, whose width is given as 200-600 MeV in the datathere is a state &°=1.36 GeV. The nextmixed state is at
tables, may actually be composed of tWar three states. 1.47 GeV, indicating almost no downward movement from

These states appear in eith€f(P?) or in T,(P2). (See the original position at 1.49 GeV. ,
Table 1) In T,(P?) we find resonances &°=0.138, 1.18, Finally, we consider the two S states, which are at 1.69

1.63, and 1.68 GeV, whil&.,(P?) has states &°=1.36 and GeV whenGgs=G,,=0. These states evolve into our states at
while(P") 1.68 and 1.63 GeV. The first state has only moved down
1.47 GeV. bout 10 MeV from the original position at 1.69 GeV. This
There are six states listed in Table I. These have theif-°Y Igina’ posit ) N

origin in the 1S, 2S, and 3S states in the confining field. i\nGa;Iyélesuggests that the(38) is the state we obtained at
There are two sets of such states, corresponding either to the Note tHat the width of ther(1300 is given as 200~600

pseudos+calar verteRs — or to the longitudinal axial-vector \1av/ in Ref. [7]. Taking a value of 400 MeV for that quan-
vertexI';— making for six states in all. .- tity shows that our states at 1360 and 1180 MeV are encom-
We note that iflGs=Gy=0, the potentiaV“(k—k’) acts  passed in the energy region of thé1300, when we include
and provides doublets &°=1.20, 1.49, and 1.69 GeV. One the width of that state in our considerations. Therefore, we
member of the doublet is a pseudoscalar state and the otherdaggest that when we take the coupling to the decay channels
a (longitudina) axial-vector state. When we turn on the NJL into account, the two states at 1360 and 1180 MeV, will
interaction the degeneracy is lifted. In large part, th® 1 obtain significant widths and will overlap such that the re-
pseudoscalar state becomes the pion, moving down over dulting structure may be identified as th€1300. Further
GeV from P°=1.20 GeV to P°=0.138 GeV. The axial- details of the work presented here may be found in FGf.
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