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From the data on dipole excitations obtained in photon scattering experiments we extract and tabulate the
mean values of the excitation energy of the dcissors mode in nuclei of the mass region <20<200. The
centers of gravity of the observdd1 strength distributions are always close to 3 MeV including several
moderately deformed transitional nuclei. In particular, the data exhibit a weak dependence of the scissors mode
energy on the deformation parameter. Including roughly the deformation dependence of pairing effects we
could modify an earlier estimate based on a schematic random phase approximation and get a simple formula
which yields qualitative agreement with the ddt80556-28138)01207-3

PACS numbgs): 21.10.Re, 21.60.Ev, 23.20.Lv, 27.#Q

I. INTRODUCTION The wealth of data which has been accumulated during
the last decade allows the systematical analysis of the prop-
One of the most exciting findings in nuclear structure inerties of the scissors mode as a function of other nuclear
the last decade is the observation of strong low-lying magcharacteristics, e.g., the mass numAaear the nuclear defor-
netic dipole excitations in deformed nuclei, which are fre-mation. The established phenomenological correlations be-
quently referred to as scissors modein a geometrical pic- tween the properties of the scissors mode and other nuclear
ture[1] the scissors mode is visualized as a counterrotationddttributes can serve as important tools to judge the predictive
oscillation of the deformed proton body against the deformedOwer of different models for the description of the scissors
neutron body in the intrinsic frame of reference. The scissor§0de and can lead to their further improvement.
mode is, thus, expected to be collective and of orbital char- 1€ experimental systematics of the tokdll excitation
acter. For a recent review on this topic see R2F. In even- strength obtained from photon scattering on even-even rare-

even nuclei the total magnetic dipole excitation strength ofagrth nuclei has been discussed, for instance, in FEf.
i Figure 1 shows the data for the totdll strength(left) and
the scissors mode closely correlates to the colledfi2eex-

-~ the low-lying E2 strength(right) versus the mass numbaAr
citation _strength of the p state[3-5] a_nd, thus, depends One observes a clear correlation between the ttdl
quadratically on the nuclear deformation parame®+8].  gyangth and the low-lying collectivE2 strength. This cor-
We focus here on the systematics and, in particular, on thg|ation also holds true for transitional nuclei without axial
deformation dependence of the excitation energy of the SCiSsymmetry[18] and it proves the collective origin of thd 1

sors mode in nuclei of the rare-earth region. - strength which is fragmented among severalstates.

Since the prediction of the scissors mddg in the late Besides the excitation strength, another basic property of
1970’s and its discovery in 1984 in a high-resolution electron
scattering experimeri®] on **Gd in Darmstadt, many nu- S ‘ N ‘ e

clei in the rare-earth region have been systematically inves-
tigated by electron scatterifqd0] and by photon scattering  _

2

resonance fluorescen¢dRF), is particularly well suited to .

] o
experiments. Photon scattering, frequently called nuclear's 3¢ f;'}:& T r ’6=§
study dipole excitations with high-energy resolutigrspec- 5 5l +. il f ‘l 14 +“}7
troscopy[11]. Recent NRF experiments with enhanced sen- = . @ L] 1 %)
sitivity have provided data on the scissors mode for nuclei, 2 . " % a
for which only a small strength is expected. They include L 7 2*. I - a | =
weakly deformed nucldil2] and transitional nuclei with de- " " ‘-

E;mzitéons that are considered to be not axially symmetric =~ 0" 2 —m— 5650 55 50 500

Mass Number A Mass Number A

FIG. 1. Total low-lyingM1 strength(left) and low-lying E2

*E-mail: pietrall@ikp.uni-koeln.de strength (right) plotted versus the mass number. Both quantities
"Present address: Oliver Lodge Laboratory, University of Liver-exhibit collective behavior: the strengths are small near shell clo-
pool, Liverpool L69 7ZE, UK. sures, maximum at midshell, and vary smoothly in between.
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a nuclear excitation is the excitation energy. It is the aim of TABLE I. For the nuclei in the mass region 13@&<200,
this paper to extract the excitation energies of the scissorghere photon scattering data on low-lying btates are available,
mode from the photon scattering data on heavy even-evetie give the following quantities: the deformation parameteal-

nuclei with masses 130A<200 and to compare the data culated from theB(E2;0; —2;) value[38], the excitation energy
with theoretical predictions. of the scissors mode defined in E@) as the center of gravity of

the M1 strength distribution, which was observed in the energy
range given in the fourth row. For a discussion on the identification

Il. SURVEY OF THE CENTERS OF GRAVITY of the fragments of the scissors mode see Rf.
OF THE EXPERIMENTALLY OBSERVED M1
STRENGTH DISTRIBUTIONS Esc Energy range
From NRF experiments on heavy nucl[,12-2§ it is Nucleus 0 [MeV] [MeV] Ref.
known that the scissors mode is fragmented into sevefal 11344 0.139  2.98d5) <35 [15]
states. We define the mean excitation energy of the scissorsing 0.114 3.2180) 2.7-37 [12]
mode as the center of gravity of tid1 strength distributed 146yg 0.131 3.46010) 2.7-3.7 (7]
among the low-lying)"=1" states 148\d 0.168  3.367L7) 2.7-3.72 [7]
150Nd 0.223  3.037) 2.68-3.7 [7]
_ZEB(MD); 0 1485y 0.123  3.06%) 2.7-3.7 [23]
¢ 3B(M1); 1505m 0.161  3.1314) 2.7-3.7 (23]
1525m 0.236  2.99@) 2.7-3.7 [23]
The sums are evaluated in the energy intervals around 34sm 0.257 3.2014) 2.7-3.7 [23]
MeV given in Table I, which have been chosen according t6**%Gd 0.256 3.06(1) 2.7-3.7 [26]
Ref.[5]. The observed 1 states are considered as the frag-158gd 0.262  3.14®) 2.7-3.7 [26]
ments of the scissors mode. The selection of states for whickogg 0.265 3.176.0) 2.7-3.7 [48]
no parity was measured was done in accordance with Refsopy 0.255 2.87(6) 2.7-3.7 [27]
[5]. The definition of the mean excitation energy of the Scis-162p, 0.257  2.95¢4) 27.37 [49]
sors mode from Eq(l) has already been used in previous ie,, 0262  3.14®) 27-37 [21,50
papers[ 6,29 for Sm nuclei(where slightly different energy 164, 0.253 2.90134) 24-3.7 [20]
ranges have been ugett is appropriate for a comparison of 166, 0.258 2.96(126) 24-37 [20]
the data to microscopically calculated Energied29]. 168, 0256  3.2060) 24-37 [20]

The data for the mean excitation energy of the scissors;

mode in the everk nuclei of theZ=50—82 major shell are 172y, gsgf :'(2)2017) 2:4-3.7 [20]
) ) .03147) 2.4-3.7 [24]
presented in Table I. The errors are of the order of 1%. The)(74Yb 0.248 3.14648) 24-3.7 [24]
are calculated by standard error propagation from the error§GYb 0.238 2.96(137) 2'4_3'7 [24]
of the experimentaB(M1); values. More than 66% of the o 0'220 3'11‘014) 2'4 3'7 [19]
data lie between 2.9 and 3.2 MeV. The mean excitation en, : . e
ergies from Table | are shown in Fig. 2 where they are pIot—lSZ\N 0.216 2.95819 24-37 [19]
ted versus the mass numbfer s 0.200 3.10829 24-3.7 [22]

In analogy to the well-known collective isovect@l 184W 0.190  3.3084) 2.4-3.7 [22]
mode, the giant dipole resonan6@8DR), it has been pro- W 0.183  3.19®9 2.4-35 [22]
posed that the excitation energy of tMl scissors mode °°Os 0.148  2.89@7) 2.4-3.7 [17]
should roughly be proportional to the reciprocal nuclear ra-"-0s 0.140  3.01B0) 2.4-3.7 [16]

196pt 0.114  2.68(18) <37 [13,14
* 3 dius, which would result in a mass dependenca ot [30—
3 oy 1 35]. The solid curve in Fig. 2 corresponds to this simple
3f W E proportionality. This curve roughly describes the mass de-
%‘ ' "X Ba % ] pendence of the scissors mode energy in the large mass re-
= | ® N4 ] gion A=130-200. A fit to the data using the functidfs,
\; 2F : <S;f1° 3 =aA P actually yields an exponertit~0.3. However, due
= f|® Dy f to the scatter of the data, th@ value for that least squares fit
i : 5‘{, E.. 5 A—1/3 ] is very large §(,26de>< 10%), which may hint at a depen-
1E M scissor ] dence of theM1 mode energy on an additional quantity be-
‘| @ os ] sides the mass and at the failure of the use of collective or
?; X Pt T average properties on this level of accuracy.
20 140 160 180 200
Mass Number A Ill. EMPIRICAL DEFORMATION DEPENDENCE
FIG. 2. Mean excitation energy of the scissors maggplotted Apart from the mass dependence, the excitation energy of

versus the nuclear mass numbEg, has been calculated from the the scissors mode can be expected to be also a function of the
data according to Eq1). nuclear deformation. For well deformed, axially symmetric
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nuclei the excitation energy of a low-lying, scissorlikiél 30 - ' ' '
mode has been predicted in different theoretical approaches ‘: gg — B 13AVITOE A Mo ]
to be in leading order proportional to the deformation param- [| & Sm ]
eter[1,30—35. This linear deformation dependence has been  © -
used earlier for a comparison to the data on strongly de- < 20| @ Er . g -
formed nuclei[2,10,11,36. In the literature the nuclear de- = _—M
formation is frequently parametrized by the Nilsson defor- 2 e
mation paramete#, defined[37] by the relations = 1of -7 ]
o - A Yb
2 - ; %f
2_ 2 < 3 ~ Ee= 66 6 A7V/° MeV
@L= %o 1+35 ' (2) /// I/Ig = 1/2 § g’f
4 %o ' 0.1 ' 0.2 ' 0.3
wgzwg(l— 55) ) 0

FIG. 3. Deformation dependence of the excitation energy of the
for the oscillator frequencies perpendicular and parallel tascissors mode in the rare earth region. The product of the cubic root
the deformation axis, respectively. In order to compare thef the mass number and the mean excitation energies from Table |
experimental data to the model predictions formulated irare plotted versus the deformation paramétealculated from the
terms of 5, we determine values o from the measured B(E2;0; —2;) values[38]. The dashed straight line corresponds
B(Ez;ofﬂzf) values[38,39. toa proportio_nality bet\_Neen tk_le energy and_the deformation param-

Several theoretical works predict the excitation energy oftter. The solid curve is obtained by inclusion of the deformation
the scissors mode to be proportional to the deformation paqepe”de“‘;e of pairing effectsee text The parameter-free error-
rameters. In the following we will focus on the formula Weightedy” value reduces from 1410’ for the dashed curve by
derived by Bes and Brogli&82], which we will use for a an order of magnitude to 0:910* for the solid curve.
comparison to our data. Within the framework of a sche- A . ) i
matic random phase approximati0RPA) Bes and Broglia (1/2)" ™ from the moment of inertia ratiQeypi/ Jrig~ 1/2 for

derived the expression strongly deformed nuclei. Starting from E¢4) they ob-
tained the expression
E
Esc=5 (2€) V1+Der, (4) Es=66 5A~ 3 MeV, 7

where 2= ohw,=415A"*3MeV is the energy of a yielding a linear deformation dependence for the energy of
particle-hole excitation in the schematic RPA andthe scissors modg32]. We emphasize that a deformation
E=eZ+AZ is the one-quasi-particle energy with the pair- dependence of the rescaling fackfe has been neglected in
ing gap parameteA. The parameteb~0.6 has been de- this denvatlo_n. An analy3|s_ of the deformation dependence
duced from the inclusion of a quadrupole-quadrupole interOf the rescaling factok/e will lead us below to a modified
action and from a coupling to the isovector quadrupole gianformula. Inserting a typllc5al Va'fse 03*1826 for strongly
resonancé31,32,4Q. The rescaling factoE/e accounts for deformed nucleie.g., for Gd, **Dy, ***€r) into Eq. (7),

pairing effects. The cranking formula yields for the momentOne obtains good agreement with the data. Figure 3 shows
of inertia the deformation dependence of the energy of the scissors

mode. However Eq(7) does not account for the data from
3 moderately deformed transitional nuclei, where the deforma-
j:(E) Trig» ) tion parameter is smaller, because the rescaling fdeter
was not considered to be a function of the deformation in the

where 7;,= (2/5)AMR3(1+ 8/3) is the moment of inertia of derivation of Eq.(7). ,

an axially symmetric rigid rotof40]. This expression, al- In order to analyze a deformation dependence of the res-
ready derived in Refg32,41, coincides with the one ob- Caling factore/e we make the ansatz

tained when the deformed field is generated self-consistently, E 1

so as to avoid spurious rotational admixtufég]. One may —=_— J1+(bd)>2 (8)
identify the moment of inertia calculated within the sche- e ad

matic QRPA with the experimental moment of inertia . o

j: jexpta Where the |atter may be taken as the effective mo_VVe CQHSIdea andb.as fl’ee pal’ametel’s and We W|” fix them
ment of inertia of the ground-state balﬂxpt:%Z/E(zf)- by a fit to the experimental moments of inertia using &)-

The rescaling factoE/e may, thus, be obtained empirically |"€ expression from E8) '_S motivated by the definition of
through the expression the single particle energg= 6% wy/2 and the quasiparticle

energyE= e+ A? in the schematic QRPA and by the as-
(e/lE)3= Texpt! Trig - (6) sumption that the strong deformation dependence admi-
nates the deformation dependence of the ré&ife. If the
A zeroth-order(in the deformation paramedeeffect of  pairing gap parametek would be completely independent of
the pairing interaction was taken into account by Bes andhe deformation and if the schematic QRPA would be exact,
Broglia in estimating the rescaling fact&’e by the value we would expecb=a.
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0.7 Eo=13.4/1+(38)2 A~ 3 MeV. (12)
06 T Trig=1/2 This formula for the excitation energy of the scissors mode is
R ity - included in Fig. 3. Of course, it describes the data from
) strongly deformed nuclei as well as ET). Additionally, it
p— 04r accounts for the data of weakly deformed nuclei. Conse-
> 03l quent_ly, usir!g the schematic QRPA approach of Bes and
Broglia, we find that the deformation dependence of the ex-
0.2r 5] citation energy of the scissors mode is no longer predicted to
0.1l ..J/J-w _ ( 3.9 ) | be linear. Just the opposite, the deformation dependence of
‘ V14 (36)? the scissors mode energy is expected to be very weak, in

agreement with the data.

0.0 0.1 0.2 0.3 0.4

o IV. FINAL REMARKS

FIG. 4. Deformation dependence of the moment of inertia rela- We note that, strictly speaking, all formulas adopted in
tive to the prediction of the axially symmetric rigid rotor for the this study are only approximately valid for well-deformed
nuclei listed in Table I. The curve is a two parameter fit to the datanuclei, because a Nilsson asymptotic basis, which neglects a
The fit function is suggested from a schematic QRPA. spin-orbit term, has been adopted. The procedure, by which

the rescaling factor has been obtained from the moment of

In Fig. 4 we show the deformation dependence of thenertia, is(only approximatelyjustified for deformed nuclei.
moment of inertia for all nuclei from Table I. On the abscissalt is remarkable that the fit formula for the moment of inertia,
we plot the parametes extracted from thé8(E2;0; —2,)  when extrapolated to weakly deformed nuclei, works for the
value. For strongly deformed nuclei one observgs,/J;;  nuclei considered in this paper as well as it does.
~0.5. However, the ratiQ7q,/Jig Shows a considerable In the fit function of Eq.(9) we have considered andb
deformation dependen¢d3], as can be seen from Fig. 4. It as free parameters. This consideration is equivalent to the
is obvious that the strong deformation dependence o$imple ansatzAzzAg(l—céz) for a possible deformation
Jexptl Trig makes the zeroth-order approximation for well- dependence of the pairing gap parameter with the free pa-
deformed nuclefey/ Jiig=1/2 used in the derivation of Eq. rametersA =% wq/2a and c=a’—b? We emphasize that
(7), not accurate enough to describe weakly deformed nucleghe constrainb=a or equivalentlyc=0 does not allow for
as well. The rescaling factdt/e= (Jexptljrig)*l’3 itself de-  such a good fit of the data fQfex/Jrig- The x? value of the
pends on the deformation. Consequently, the strong deformdit would be three times larger. The freedomln# a allows
tion dependence of the prediction for the energy of the scisfor enough flexibility of the fit function(9) to provide a
sors mode will be weakened, as is necessary for a correetatisfactory fit of the moment of inertia. Within the frame-
description of the data. work of the schematic QRPA the differenae=6.2(14)

In order to compare these data to theoretical estimates, weould be interpreted as a small correction term caused by a
use Eq.(4), derived by Bes and Broglia, but now with the deformation dependence of the pairing gap paramater
inclusion of a deformation dependence of the rescaling factoFrom the fitted valuec>0 one may conclude a hint at a
E/e. This should phenomenologically take into account thedecrease of the pairing gap parameteras a function of
deformation dependence of pairing effects in moderately dedeformation in transitional nuclei. Such a tendency can be
formed nuclei. To obtain the rescaling factfe as a func-  observed in microscopic calculations where the pairing gaps
tion of deformation from experimental data, we fit the quan-are calculated29,44,43. In rough agreement to these calcu-
tity Jexpt! Trig @S @ function ofs. Employing Eqs(6) and(8)  lations our ansatz results in reasonable values for the pairing
we obtain the fit function gap parameteh ranging from 1.1 to 0.6 MeV for nuclei with

masses 138A<200 and deformation parameters

(jexpt) 3 0.1<6<0.3. However, different values @ and b, which
—|(6)= AR (9  we obtain by the fitting procedure by E() do not neces-
Jrig V1+(bd) sarily mean a decrease of the pairing gap with increasing

. deformation. This is because E(®) is an approximation,
which depends only on two parameters. From a least squarggich has been obtained in the framework of a schematic
fit to the data with ay“ value 7<10™", we obtain the pa- QRPA, and which can hardly be used for judging the defor-

rameter values mation dependence or the mass dependence of the pairing
gap parameter. We were interested in a simple parametriza-
a=3.91) and b=3.02). (100 tion of the rescaling factoE/e. The deformation depen-

dence of the rescaling fact@/e= \e’+ A?/e is dominated
As we see from Fig. 4 this two parameter fit works very wellby the linear deformation dependenceesf 5% wy/2. Con-
for the nuclei considered here which have widely varyingsequently, the least squares fit to the moment of inertia is not
deformation parameters 0.£42<0.3. very sensitive to the detailed deformation dependencs, of
If the energy of the scissors mode from E4). is rescaled leading to a rather large error bar of about 20% for the pa-
by the factorE/e= 1+ (35)?%/(3.95), one obtains the ex- rameterc, as compared to the errors for the fit paramegers
pression andb of less than 7%. Of cours& may be a more compli-
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cated function of the deformation or of other quantities, such 0.03 y . ' . " .
as the mass, and must be expected to depend on the details of
the shell structure. These may be considerations for future
studies. We choose our simple ansatzEébe, because it led

us to a simple two-parameter fit formula for the moment of
inertia, which works well and is sufficient for our goals.

The improvement of the estimate for the scissors mode
energy results from the consideration of the deformation de-
pendence of the rescaling factBfe responsible for the in-
clusion of pairing effects. We note that the importance of this
deformation dependence in predicting the excitation energy L e
and excitation strength of the scissors mode has already been 0.00  0.02 0.04 0.06 0.08
pointed out by Hamamoto and Magnusg$@8]. In addition, 52
microscopic calculations for the scissors mode have been
carried out for some nuclei with smaller deformations which  FIG. 5. Check of the consistency of the schematic approach with
can be compared to similar results for well deformed rotorghe 62 law. The expression from E¢14) is plotted with the solid
in the rare-earth regioiisee, e.g., Refd46,47)). In these line versus the square of the deformation paramététor the ef-
calculations, pairing was included and the scissors modéectiveg factor a scaling factoc,=0.8 has been used. The dashed
turned out to lie at about 3 MeV excitation energy. This is inline indicates a pure?® law with a scaling factor 0.27. Superim-
agreement with the relation from E¢L1), which has been Posed are the experimental data from Fig. 1.
obtained in the framework of the schematic approach by Bes _ )
and Broglia and basically assumes a scissors mode as tH&'€ deformation dependence of the expressions B,
fundamental excitation responsible for the observed collec@nd (14) is practically indistinguishable from a° depen-
tive M1 excitations. dence. This fact is shown in Fig. 5, where we compare the

Finally, we wish to point out the consistency of the €xpression from Eq(14) with a pure & dependence and
present results with thé? law known for the deformation with the _data on the totall 1 strengths from Fig. 1. In order
dependence of the totdl 1 strength. By obtaining the res- [0 describe on an absolute scale #gV1) values found
caling factorE/e as a function of deformation from a fit to €xperimentally, we must use the scaling faag# 0.8 in the
Jexpil Tiig» We have produced a parametrization of the mo-effective g faptor. The difference betwee_n the pusé law
ment of inertiaZs,y. The same schematic QRPA which pro- and _Eq.(14) is of the order of the experimental error pars
vides the basic formulas for our approach preditseading and it is smaller than the overall scatter of the data'pomts.
orde the totalM 1 strength of the scissors mode in terms of  Consequently, using the approach of a schematic QRPA
the moment of inertia of the ground-state and of the excitaf0r the description of a scissors mode, one can derive both

tion energy of the scissors mode, namely, main features for the strgng low-lying 1 excitations in de-
formed nuclei: a nearlyp= dependence of th& 1 strength

3 and an approximate constancy of its center of gravity, close
B(M1;0{ —14)= 10— JEe@2md:- (12 to3 MeV.

0.02

oOXMNA>ORSLON )

0.01

SB(M1)T(ud) * A%/3/7?

As the B(M1) values found experimentally scale witl, V. SUMMARY

we must answer the following question: Are the parametri- From the photon scattering data on nuclei in the mass
zations of the moment of inertia and of the scissors modeegion 136<A<200 we have extracted and tabulated mean
energy used in our analysis consistent with #ifelaw? In-  values for the excitation energy of the scissors mode. The
sertingEg from Eq. (11) and J/ J;iq from Egs.(9) and(10)  mean excitation energy is calculated as the centers of gravity
and usingJ,;~ (2/5)AMR§~0.014A°%:%/MeV, we find of the observed low-lyingM1 strength distributions. The
mass dependence of the scissors mode energy is in rough
L 53 wa2 2 agreement with aA~*>-mass dependence. For a wide range
B(M1;0, H1sc):0-66m1°~ Getun-  (13) of deformation parameters 0.45<0.3, for which experi-
mental data are available, a deformation dependence of the

This expression has the same mass dependence as the Seﬁqj_ssors mode energy cannot be qpserved. Thg inclusion of
empirical formula derived in Eq9) of Ref.[4], if the A~ 13 the deformation dependence of pairing effects in a formula,

mass dependence of the excitation energy of the scisso rlved_earher by Bes _and Broglia w_|th|n a schematic
mode is taken into account there. We note that dhdaw RPA, improves their estimate .Of the scissors mode energy
follows from that semiempirical formula only through the for moderately deformed nuclei. The schematic approach,

(correcy) assumption of a constancy of the scissors modé’"hiCh r(_asults i_n the n(_aarly constancy of the scissors mode
energy. We use, furthermore, for theg factor energy is consistent with th&” law for theM 1 strength.

=C,0,=C,29r, Wheregr=Z/A is the rigid body value,
gg{ain?gpg ¥R o J Y ACKNOWLEDGMENTS
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