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Systematics of the excitation energy of the 11 scissors mode and its empirical dependence
on the nuclear deformation parameter
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From the data on dipole excitations obtained in photon scattering experiments we extract and tabulate the
mean values of the excitation energy of the 11 scissors mode in nuclei of the mass region 130,A,200. The
centers of gravity of the observedM1 strength distributions are always close to 3 MeV including several
moderately deformed transitional nuclei. In particular, the data exhibit a weak dependence of the scissors mode
energy on the deformation parameter. Including roughly the deformation dependence of pairing effects we
could modify an earlier estimate based on a schematic random phase approximation and get a simple formula
which yields qualitative agreement with the data.@S0556-2813~98!01207-2#

PACS number~s!: 21.10.Re, 21.60.Ev, 23.20.Lv, 27.70.1q
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I. INTRODUCTION

One of the most exciting findings in nuclear structure
the last decade is the observation of strong low-lying m
netic dipole excitations in deformed nuclei, which are fr
quently referred to as ascissors mode. In a geometrical pic-
ture @1# the scissors mode is visualized as a counterrotatio
oscillation of the deformed proton body against the deform
neutron body in the intrinsic frame of reference. The sciss
mode is, thus, expected to be collective and of orbital ch
acter. For a recent review on this topic see Ref.@2#. In even-
even nuclei the total magnetic dipole excitation strength
the scissors mode closely correlates to the collectiveE2 ex-
citation strength of the 21

1 state @3–5# and, thus, depend
quadratically on the nuclear deformation parameter@6–8#.
We focus here on the systematics and, in particular, on
deformation dependence of the excitation energy of the s
sors mode in nuclei of the rare-earth region.

Since the prediction of the scissors mode@1# in the late
1970’s and its discovery in 1984 in a high-resolution elect
scattering experiment@9# on 156Gd in Darmstadt, many nu
clei in the rare-earth region have been systematically inv
tigated by electron scattering@10# and by photon scattering
experiments. Photon scattering, frequently called nuc
resonance fluorescence~NRF!, is particularly well suited to
study dipole excitations with high-energy resolutiong spec-
troscopy@11#. Recent NRF experiments with enhanced s
sitivity have provided data on the scissors mode for nuc
for which only a small strength is expected. They inclu
weakly deformed nuclei@12# and transitional nuclei with de
formations that are considered to be not axially symme
@13–19#.

*E-mail: pietrall@ikp.uni-koeln.de
†Present address: Oliver Lodge Laboratory, University of Liv
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The wealth of data which has been accumulated dur
the last decade allows the systematical analysis of the p
erties of the scissors mode as a function of other nuc
characteristics, e.g., the mass numberA or the nuclear defor-
mation. The established phenomenological correlations
tween the properties of the scissors mode and other nuc
attributes can serve as important tools to judge the predic
power of different models for the description of the sciss
mode and can lead to their further improvement.

The experimental systematics of the totalM1 excitation
strength obtained from photon scattering on even-even r
earth nuclei has been discussed, for instance, in Ref.@5#.
Figure 1 shows the data for the totalM1 strength~left! and
the low-lyingE2 strength~right! versus the mass numberA.
One observes a clear correlation between the totalM1
strength and the low-lying collectiveE2 strength. This cor-
relation also holds true for transitional nuclei without ax
symmetry@18# and it proves the collective origin of theM1
strength which is fragmented among several 11 states.

Besides the excitation strength, another basic propert

-

FIG. 1. Total low-lying M1 strength~left! and low-lying E2
strength~right! plotted versus the mass number. Both quantit
exhibit collective behavior: the strengths are small near shell
sures, maximum at midshell, and vary smoothly in between.
184 © 1998 The American Physical Society
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a nuclear excitation is the excitation energy. It is the aim
this paper to extract the excitation energies of the scis
mode from the photon scattering data on heavy even-e
nuclei with masses 130,A,200 and to compare the da
with theoretical predictions.

II. SURVEY OF THE CENTERS OF GRAVITY
OF THE EXPERIMENTALLY OBSERVED M1

STRENGTH DISTRIBUTIONS

From NRF experiments on heavy nuclei@7,12–28# it is
known that the scissors mode is fragmented into severa1

states. We define the mean excitation energy of the scis
mode as the center of gravity of theM1 strength distributed
among the low-lyingJp511 states

Esc[
( iEiB~M1! i

( iB~M1! i
. ~1!

The sums are evaluated in the energy intervals aroun
MeV given in Table I, which have been chosen according
Ref. @5#. The observed 11 states are considered as the fra
ments of the scissors mode. The selection of states for w
no parity was measured was done in accordance with
@5#. The definition of the mean excitation energy of the sc
sors mode from Eq.~1! has already been used in previo
papers@6,29# for Sm nuclei~where slightly different energy
ranges have been used!. It is appropriate for a comparison o
the data to microscopically calculated 11 energies@29#.

The data for the mean excitation energy of the sciss
mode in the even-A nuclei of theZ550282 major shell are
presented in Table I. The errors are of the order of 1%. T
are calculated by standard error propagation from the er
of the experimentalB(M1)i values. More than 66% of the
data lie between 2.9 and 3.2 MeV. The mean excitation
ergies from Table I are shown in Fig. 2 where they are p
ted versus the mass numberA.

In analogy to the well-known collective isovectorE1
mode, the giant dipole resonance~GDR!, it has been pro-
posed that the excitation energy of theM1 scissors mode
should roughly be proportional to the reciprocal nuclear

FIG. 2. Mean excitation energy of the scissors modeEsc plotted
versus the nuclear mass number.Esc has been calculated from th
data according to Eq.~1!.
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dius, which would result in a mass dependence ofA21/3 @30–
35#. The solid curve in Fig. 2 corresponds to this simp
proportionality. This curve roughly describes the mass
pendence of the scissors mode energy in the large mas
gion A51302200. A fit to the data using the functionEsc
5aA2b actually yields an exponentb'0.3. However, due
to the scatter of the data, thex2 value for that least squares fi
is very large (x red

2 '33102), which may hint at a depen
dence of theM1 mode energy on an additional quantity b
sides the mass and at the failure of the use of collective
average properties on this level of accuracy.

III. EMPIRICAL DEFORMATION DEPENDENCE

Apart from the mass dependence, the excitation energ
the scissors mode can be expected to be also a function o
nuclear deformation. For well deformed, axially symmet

TABLE I. For the nuclei in the mass region 130,A,200,
where photon scattering data on low-lying 11 states are available
we give the following quantities: the deformation parameterd cal-
culated from theB(E2;01

1→21
1) value @38#, the excitation energy

of the scissors mode defined in Eq.~1! as the center of gravity of
the M1 strength distribution, which was observed in the ene
range given in the fourth row. For a discussion on the identificat
of the fragments of the scissors mode see Ref.@5#.

Nucleus d
Esc

@MeV#
Energy range

@MeV# Ref.

134Ba 0.139 2.989~15! ,3.5 @15#
144Nd 0.114 3.213~1! 2.7–3.7 @12#
146Nd 0.131 3.469~10! 2.7–3.7 @7#
148Nd 0.168 3.367~17! 2.7–3.72 @7#
150Nd 0.223 3.037~7! 2.68–3.7 @7#
148Sm 0.123 3.069~6! 2.7–3.7 @23#
150Sm 0.161 3.132~14! 2.7–3.7 @23#
152Sm 0.236 2.993~4! 2.7–3.7 @23#
154Sm 0.257 3.200~14! 2.7–3.7 @23#
156Gd 0.256 3.060~7! 2.7–3.7 @26#
158Gd 0.262 3.143~8! 2.7–3.7 @26#
160Gd 0.265 3.176~10! 2.7–3.7 @48#
160Dy 0.255 2.870~5! 2.7–3.7 @27#
162Dy 0.257 2.956~4! 2.7–3.7 @49#
164Dy 0.262 3.143~2! 2.7–3.7 @21,50#
164Er 0.253 2.901~34! 2.4–3.7 @20#
166Er 0.258 2.961~26! 2.4–3.7 @20#
168Er 0.256 3.206~10! 2.4–3.7 @20#
170Er 0.255 3.220~17! 2.4–3.7 @20#
172Yb 0.251 3.031~47! 2.4–3.7 @24#
174Yb 0.248 3.146~48! 2.4–3.7 @24#
176Yb 0.238 2.960~57! 2.4–3.7 @24#
178Hf 0.220 3.110~14! 2.4–3.7 @19#
180Hf 0.216 2.952~15! 2.4–3.7 @19#
182W 0.200 3.103~25! 2.4–3.7 @22#
184W 0.190 3.308~54! 2.4–3.7 @22#
186W 0.183 3.195~29! 2.4–3.5 @22#
190Os 0.148 2.897~17! 2.4–3.7 @17#
192Os 0.140 3.011~30! 2.4–3.7 @16#
196Pt 0.114 2.680~18! ,3.7 @13,14#
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nuclei the excitation energy of a low-lying, scissorlikeM1
mode has been predicted in different theoretical approac
to be in leading order proportional to the deformation para
eter@1,30–35#. This linear deformation dependence has be
used earlier for a comparison to the data on strongly
formed nuclei@2,10,11,36#. In the literature the nuclear de
formation is frequently parametrized by the Nilsson def
mation parameterd, defined@37# by the relations

v'
2 5v0

2S 11
2

3
d D , ~2!

vz
25v0

2S 12
4

3
d D ~3!

for the oscillator frequencies perpendicular and paralle
the deformation axis, respectively. In order to compare
experimental data to the model predictions formulated
terms of d, we determine values ofd from the measured
B(E2;01

1→21
1) values@38,39#.

Several theoretical works predict the excitation energy
the scissors mode to be proportional to the deformation
rameterd. In the following we will focus on the formula
derived by Bes and Broglia@32#, which we will use for a
comparison to our data. Within the framework of a sch
matic random phase approximation~RPA! Bes and Broglia
derived the expression

Esc5
E

e
~2e!A11beff, ~4!

where 2e5d\v0541d A21/3 MeV is the energy of a
particle-hole excitation in the schematic RPA a
E5Ae21D2 is the one-quasi-particle energy with the pa
ing gap parameterD. The parameterbeff'0.6 has been de
duced from the inclusion of a quadrupole-quadrupole in
action and from a coupling to the isovector quadrupole gi
resonance@31,32,40#. The rescaling factorE/e accounts for
pairing effects. The cranking formula yields for the mome
of inertia

J5S e

ED 3

Jrig , ~5!

whereJrig5(2/5)AMR0
2(11d/3) is the moment of inertia o

an axially symmetric rigid rotor@40#. This expression, al-
ready derived in Refs.@32,41#, coincides with the one ob
tained when the deformed field is generated self-consiste
so as to avoid spurious rotational admixtures@42#. One may
identify the moment of inertia calculated within the sch
matic QRPA with the experimental moment of inert
J5Jexpt, where the latter may be taken as the effective m
ment of inertia of the ground-state bandJexpt53\2/E(21

1).
The rescaling factorE/e may, thus, be obtained empiricall
through the expression

~e/E!35Jexpt/Jrig . ~6!

A zeroth-order~in the deformation parameter! effect of
the pairing interaction was taken into account by Bes a
Broglia in estimating the rescaling factorE/e by the value
es
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(1/2)21/3 from the moment of inertia ratioJexpt/Jrig'1/2 for
strongly deformed nuclei. Starting from Eq.~4! they ob-
tained the expression

Esc566d A21/3 MeV, ~7!

yielding a linear deformation dependence for the energy
the scissors mode@32#. We emphasize that a deformatio
dependence of the rescaling factorE/e has been neglected i
this derivation. An analysis of the deformation dependen
of the rescaling factorE/e will lead us below to a modified
formula. Inserting a typical value ofd'0.26 for strongly
deformed nuclei~e.g., for 156Gd, 164Dy, 168Er! into Eq. ~7!,
one obtains good agreement with the data. Figure 3 sh
the deformation dependence of the energy of the scis
mode. However Eq.~7! does not account for the data from
moderately deformed transitional nuclei, where the deform
tion parameter is smaller, because the rescaling factorE/e
was not considered to be a function of the deformation in
derivation of Eq.~7!.

In order to analyze a deformation dependence of the
caling factorE/e we make the ansatz

E

e
5

1

ad
A11~bd!2. ~8!

We considera andb as free parameters and we will fix the
by a fit to the experimental moments of inertia using Eq.~6!.
The expression from Eq.~8! is motivated by the definition of
the single particle energye5d\v0/2 and the quasiparticle
energyE5Ae21D2 in the schematic QRPA and by the a
sumption that the strong deformation dependence ofe domi-
nates the deformation dependence of the ratioE/e. If the
pairing gap parameterD would be completely independent o
the deformation and if the schematic QRPA would be exa
we would expectb5a.

FIG. 3. Deformation dependence of the excitation energy of
scissors mode in the rare earth region. The product of the cubic
of the mass number and the mean excitation energies from Ta
are plotted versus the deformation parameterd calculated from the
B(E2;01

1→21
1) values@38#. The dashed straight line correspon

to a proportionality between the energy and the deformation par
eter. The solid curve is obtained by inclusion of the deformat
dependence of pairing effects~see text!. The parameter-free error
weightedx2 value reduces from 1.13105 for the dashed curve by
an order of magnitude to 0.93104 for the solid curve.
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In Fig. 4 we show the deformation dependence of
moment of inertia for all nuclei from Table I. On the abscis
we plot the parameterd extracted from theB(E2;01

1→21
1)

value. For strongly deformed nuclei one observesJexpt/Jrig
'0.5. However, the ratioJexpt/Jrig shows a considerabl
deformation dependence@43#, as can be seen from Fig. 4.
is obvious that the strong deformation dependence
Jexpt/Jrig makes the zeroth-order approximation for we
deformed nucleiJexpt/Jrig51/2 used in the derivation of Eq
~7!, not accurate enough to describe weakly deformed nu
as well. The rescaling factorE/e5(Jexpt/Jrig)

21/3 itself de-
pends on the deformation. Consequently, the strong defor
tion dependence of the prediction for the energy of the s
sors mode will be weakened, as is necessary for a cor
description of the data.

In order to compare these data to theoretical estimates
use Eq.~4!, derived by Bes and Broglia, but now with th
inclusion of a deformation dependence of the rescaling fa
E/e. This should phenomenologically take into account
deformation dependence of pairing effects in moderately
formed nuclei. To obtain the rescaling factorE/e as a func-
tion of deformation from experimental data, we fit the qua
tity Jexpt/Jrig as a function ofd. Employing Eqs.~6! and~8!
we obtain the fit function

SJexpt

Jrig
D ~d!5S ad

A11~bd!2D 3

, ~9!

which depends only on two parameters. From a least squ
fit to the data with ax2 value 731024, we obtain the pa-
rameter values

a53.9~1! and b53.0~2!. ~10!

As we see from Fig. 4 this two parameter fit works very w
for the nuclei considered here which have widely varyi
deformation parameters 0.12,d,0.3.

If the energy of the scissors mode from Eq.~4! is rescaled
by the factorE/e5A11(3d)2/(3.9d), one obtains the ex
pression

FIG. 4. Deformation dependence of the moment of inertia re
tive to the prediction of the axially symmetric rigid rotor for th
nuclei listed in Table I. The curve is a two parameter fit to the da
The fit function is suggested from a schematic QRPA.
e
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l

Esc513.4A11~3d!2 A21/3 MeV. ~11!

This formula for the excitation energy of the scissors mode
included in Fig. 3. Of course, it describes the data fro
strongly deformed nuclei as well as Eq.~7!. Additionally, it
accounts for the data of weakly deformed nuclei. Con
quently, using the schematic QRPA approach of Bes
Broglia, we find that the deformation dependence of the
citation energy of the scissors mode is no longer predicte
be linear. Just the opposite, the deformation dependenc
the scissors mode energy is expected to be very weak
agreement with the data.

IV. FINAL REMARKS

We note that, strictly speaking, all formulas adopted
this study are only approximately valid for well-deforme
nuclei, because a Nilsson asymptotic basis, which neglec
spin-orbit term, has been adopted. The procedure, by wh
the rescaling factor has been obtained from the momen
inertia, is~only approximately! justified for deformed nuclei.
It is remarkable that the fit formula for the moment of inert
when extrapolated to weakly deformed nuclei, works for t
nuclei considered in this paper as well as it does.

In the fit function of Eq.~9! we have considereda andb
as free parameters. This consideration is equivalent to
simple ansatzD25D0

2(12cd2) for a possible deformation
dependence of the pairing gap parameter with the free
rametersD05\v0/2a and c5a22b2. We emphasize tha
the constraintb5a or equivalentlyc50 does not allow for
such a good fit of the data forJexpt/Jrig . Thex2 value of the
fit would be three times larger. The freedom ofbÞa allows
for enough flexibility of the fit function~9! to provide a
satisfactory fit of the moment of inertia. Within the fram
work of the schematic QRPA the differencec56.2(14)
could be interpreted as a small correction term caused b
deformation dependence of the pairing gap parameterD.
From the fitted valuec.0 one may conclude a hint at
decrease of the pairing gap parameterD as a function of
deformation in transitional nuclei. Such a tendency can
observed in microscopic calculations where the pairing g
are calculated@29,44,45#. In rough agreement to these calc
lations our ansatz results in reasonable values for the pa
gap parameterD ranging from 1.1 to 0.6 MeV for nuclei with
masses 130,A,200 and deformation paramete
0.1,d,0.3. However, different values ofa and b, which
we obtain by the fitting procedure by Eq.~9! do not neces-
sarily mean a decrease of the pairing gap with increas
deformation. This is because Eq.~9! is an approximation,
which has been obtained in the framework of a schem
QRPA, and which can hardly be used for judging the def
mation dependence or the mass dependence of the pa
gap parameter. We were interested in a simple paramet
tion of the rescaling factorE/e. The deformation depen
dence of the rescaling factorE/e5Ae21D2/e is dominated
by the linear deformation dependence ofe5d\v0/2. Con-
sequently, the least squares fit to the moment of inertia is
very sensitive to the detailed deformation dependence oD,
leading to a rather large error bar of about 20% for the
rameterc, as compared to the errors for the fit parametera
andb of less than 7%. Of course,D may be a more compli-

-

.
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cated function of the deformation or of other quantities, su
as the mass, and must be expected to depend on the deta
the shell structure. These may be considerations for fu
studies. We choose our simple ansatz forE/e, because it led
us to a simple two-parameter fit formula for the moment
inertia, which works well and is sufficient for our goals.

The improvement of the estimate for the scissors m
energy results from the consideration of the deformation
pendence of the rescaling factorE/e responsible for the in-
clusion of pairing effects. We note that the importance of t
deformation dependence in predicting the excitation ene
and excitation strength of the scissors mode has already
pointed out by Hamamoto and Magnusson@29#. In addition,
microscopic calculations for the scissors mode have b
carried out for some nuclei with smaller deformations wh
can be compared to similar results for well deformed rot
in the rare-earth region~see, e.g., Refs.@46,47#!. In these
calculations, pairing was included and the scissors m
turned out to lie at about 3 MeV excitation energy. This is
agreement with the relation from Eq.~11!, which has been
obtained in the framework of the schematic approach by
and Broglia and basically assumes a scissors mode as
fundamental excitation responsible for the observed col
tive M1 excitations.

Finally, we wish to point out the consistency of th
present results with thed2 law known for the deformation
dependence of the totalM1 strength. By obtaining the res
caling factorE/e as a function of deformation from a fit t
Jexpt/Jrig , we have produced a parametrization of the m
ment of inertiaJexpt. The same schematic QRPA which pr
vides the basic formulas for our approach predicts~in leading
order! the totalM1 strength of the scissors mode in terms
the moment of inertia of the ground-state and of the exc
tion energy of the scissors mode, namely,

B~M1;01
1→1sc

1!5
3

16p
JEscgeff

2 mN
2 . ~12!

As the B(M1) values found experimentally scale withd2,
we must answer the following question: Are the parame
zations of the moment of inertia and of the scissors m
energy used in our analysis consistent with thed2 law? In-
sertingEsc from Eq. ~11! andJ/Jrig from Eqs.~9! and ~10!
and usingJrig'(2/5)AMR0

2'0.014A5/3\2/MeV, we find

B~M1;01
1→1sc

1!50.66
d3

11~3d!2 A4/3geff
2 mN

2 . ~13!

This expression has the same mass dependence as the
empirical formula derived in Eq.~9! of Ref. @4#, if the A21/3

mass dependence of the excitation energy of the scis
mode is taken into account there. We note that thed2 law
follows from that semiempirical formula only through th
~correct! assumption of a constancy of the scissors mo
energy. We use, furthermore, for theg factor
geff5cggp5cg2gR , wheregR5Z/A is the rigid body value,
obtaining

B~M1;01
1→1sc

1!52.6cg
2 d3

11~3d!2

Z2

A2/3 mN
2 . ~14!
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The deformation dependence of the expressions Eqs.~13!
and ~14! is practically indistinguishable from ad2 depen-
dence. This fact is shown in Fig. 5, where we compare
expression from Eq.~14! with a pured2 dependence and
with the data on the totalM1 strengths from Fig. 1. In orde
to describe on an absolute scale theB(M1) values found
experimentally, we must use the scaling factorcg50.8 in the
effective g factor. The difference between the pured2 law
and Eq.~14! is of the order of the experimental error ba
and it is smaller than the overall scatter of the data point

Consequently, using the approach of a schematic QR
for the description of a scissors mode, one can derive b
main features for the strong low-lyingM1 excitations in de-
formed nuclei: a nearlyd2 dependence of theM1 strength
and an approximate constancy of its center of gravity, cl
to 3 MeV.

V. SUMMARY

From the photon scattering data on nuclei in the m
region 130,A,200 we have extracted and tabulated me
values for the excitation energy of the scissors mode. T
mean excitation energy is calculated as the centers of gra
of the observed low-lyingM1 strength distributions. The
mass dependence of the scissors mode energy is in ro
agreement with anA21/3-mass dependence. For a wide ran
of deformation parameters 0.12,d,0.3, for which experi-
mental data are available, a deformation dependence o
scissors mode energy cannot be observed. The inclusio
the deformation dependence of pairing effects in a formu
derived earlier by Bes and Broglia within a schema
QRPA, improves their estimate of the scissors mode ene
for moderately deformed nuclei. The schematic approa
which results in the nearly constancy of the scissors m
energy is consistent with thed2 law for theM1 strength.
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versità Federico II di Napoli for its kind hospitality and
the Istituto Nazionale di Fisica Nucleare for support. Add
tionally, this work was supported by the Deutsche Fo
chungsgemeinschaft under Contract Nos. Br 799/9-1
Kn 154/30.
n-
A.
s-

.
R.
H.

.
th,

a-
e,

U.
R.

l.

.

H.
nn,

.

ias,

r.,

k.
@1# N. Lo Iudice and F. Palumbo, Phys. Rev. Lett.41, 1532
~1978!.

@2# A. Richter, Prog. Part. Nucl. Phys.34, 261 ~1995!.
@3# C. Rangacharyulu, A. Richter, H. J. Wo¨rtche, W. Ziegler, and

R. F. Casten, Phys. Rev. C43, R949~1991!.
@4# N. Lo Iudice and A. Richter, Phys. Lett. B304, 193 ~1993!.
@5# N. Pietralla, P. von Brentano, R.-D. Herzberg, U. Kneissl,

Margraf, H. Maser, H. H. Pitz, and A. Zilges, Phys. Rev. C52,
R2317~1995!.

@6# W. Ziegler, C. Rangacharyulu, A. Richter, and C. Spiel
Phys. Rev. Lett.65, 2515~1990!.

@7# J. Margraf, R. D. Heil, U. Kneissl, U. Maier, H. H. Pitz, H
Friedrichs, S. Lindenstruth, B. Schlitt, C. Wesselborg, P. v
Brentano, R.-D. Herzberg, and A. Zilges, Phys. Rev. C47,
1474 ~1993!.

@8# P. von Neumann-Cosel, J. N. Ginocchio, H. Bauer, and
Richter, Phys. Rev. Lett.75, 4178~1995!.

@9# D. Bohle, A. Richter, W. Steffen, A. E. L. Dieperink, N. Lo
Iudice, F. Palumbo, and O. Scholten, Phys. Lett.137B, 27
~1984!.

@10# U. Hartmann, D. Bohle, T. Guhr, K.-D. Hummel, G. Kilgus
U. Milkau, and A. Richter, Nucl. Phys.A465, 25 ~1987!.

@11# U. Kneissl, H. H. Pitz, and A. Zilges, Prog. Part. Nucl. Phy
37, 349 ~1996!.

@12# T. Eckert, O. Beck, J. Besserer, P. von Brentano, R. Fisc
R.-D. Herzberg, D. Ja¨ger, U. Kneissl, J. Margraf, H. Maser, A
Nord, N. Pietralla, H. H. Pitz, M. Rittner, A. Schiller, S. W
Yates, and A. Zilges, Phys. Rev. C56, 1256~1997!; 57, 1007
~1998!.

@13# P. von Brentano, J. Eberth, J. Enders, L. Esser, R
Herzberg, N. Huxel, H. Meise, P. von Neumann-Cosel,
Nicolay, N. Pietralla, H. Prade, J. Reif, A. Richter, C. Sch
gel, R. Schwengner, S. Skoda, H. G. Thomas, I. Wiedenho¨ver,
G. Winter, and A. Zilges, Phys. Rev. Lett.76, 2029~1996!.

@14# N. Pietralla, Ph.D. thesis, Universita¨t zu Köln, 1996.
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