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Equation of state of nucleon matter and neutron star structure
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Properties of dense nucleon matter and the structure of neutron stars are studied using variational chain
summation methods and the new Argonng two-nucleon interaction, which provides an excellent fit to all of
the nucleon-nucleon scattering data in the Nijmegen database. The neutron star gravitational mass limit ob-
tained with this interaction is 1.87,. Boost corrections to the two-nucleon interaction, which give the
leading relativistic effect of ordew(c)?, as well as three-nucleon interactions, are also included in the nuclear
Hamiltonian. Their successive addition increases the mass limit to 1.80 ant2,2@amiltonians including
a three-nucleon interaction predict a transition in neutron star matter to a phase with neutral pion condensation
at a baryon number density 6f0.2 fm~3. Neutron stars predicted by these Hamiltonians have a layer with a
thickness on the order of tens of meters, over which the density changes rapidly from that of the normal to the
condensed phase. The material in this thin layer is a mixture of the two phases. We also investigate the
possibility of dense nucleon matter having an admixture of quark matter, described using the bag model
equation of state. Neutron stars of M4 do not appear to have quark matter admixtures in their cores.
However, the heaviest stars are predicted to have cores consisting of a quark and nucleon matter mixture.
These admixtures reduce the maximum mass of neutron stars from 2.20 tAL202M , for bag constant
B=200 (122) MeV/fni. Stars with pure quark matter in their cores are found to be unstable. We also
consider the possibility that matter is maximally incompressible above an assumed density, and show that
realistic models of nuclear forces limit the maximum mass of neutron stars to be belgwy, 2. bhe effects of
the phase transitions on the composition of neutron star matter and its adiabaticlinaex discussed.
[S0556-28188)04509-9

PACS numbsgs): 21.65:+f, 26.60+c, 97.60.Jd

I. INTRODUCTION that nuclear matter with realistic NNI saturates at too high a
density. In addition, these interactions were known to un-
The significant influence of nuclear forces on neutron staderbind *H. Ignoring the latter problem, plausible density
structure is by now firmly established by a large body ofdependent terms were added to the UrbapaU14) model
theoretical and observational evideridg. In the absence of of NNI [8,9] to reproduce the observed equilibrium proper-
these forces, the maximum possible mass of neutron staties of nuclear matter. The resulting density depen@dtt-
composed of noninteracting neutrons~€.7 solar masses DDI) model of nuclear forces predicted stable neutron stars
(Mg) [2]. Since most observed neutron star masses ark@aving masses up to Mg, [10,11].
above 1.8/, [3], they must be supported against gravita- Since nucleons are made up of quarks and have internal
tional collapse by pressure originating from nuclear forcesdegrees of freedom, we can expect interactions among three
In the present work, we study neutron star structure usingand perhaps four or mor@ucleons, in addition to the NNI.
one of the most realistic models of nuclear forces currentlyThe Urbana three nucleon interacti6fiNl) models contain
available. A brief outline of previous calculations leading to only two terms, with strengths fixed by the saturation density
this work is presented below. of nuclear matter and the binding energy . Wiringa,
Shortly after the discovery of pulsars, calculations of theFiks, and FabrociniWFF) [12] used the U14 and the subse-
equation of statédEOS of neutron star matter with realistic quent Argonnev 4 (A14) [13] models of NNI, together with
models of the two nucleon interactigiNNI), obtained by the Urbana VII(UVII) model of TNI, to study neutron star
fitting the nucleon-nucleokNN) scattering data then avail- structure and obtained mass limits of 29 and 2.131
able, were carried out using the lowest order constrainediith the U14+UVII and A14+UVII, respectively. They also
variational method[4,5]. The results demonstrated that found that pure neutron matt&?NM) undergoes a transition
nuclear forces increase the mass limit of stable neutron stats a phase having spin-isospin order, attributed to neutral
beyond 1.M. pion condensation, at a density ©f0.2 fm 2 with the A14
By the late 1970s it had become clear that the NNI alone+UVII, but not with the U14+UVII. Neither of these mod-
could not account for the properties of nuclear matter ofels results in a phase transition in symmetric nuclear matter
few-body nuclei. Variationa]6] and Brueckner calculations (SNM), which is composed of equal numbers of neutrons
[7], including higher order cluster contributions, establishedand protons.
In the early 1990s the Nijmegen grojf4] examined
carefully all NN scattering data at energies below 350 MeV
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phase shifts and mixing parameters quite accurately. Thphenomenological scalar meson parameters in the CD-Bonn
NNI models which fit this Nijmegen database with a model are allowed to depend on partial wave quantum num-
x?INgaa~1 are called “modern.” These include the bers) At a density ofpg, for SNM, the RMF approximation
Nijmegen model§15]: Nijmegen |, Il and Reid-93, the Ar- Yields an energy per nucleon of +20 MeV, while the
gonnev 14 [16], denoted here by A18, and the CD-BdH]. LOB method gives~—18 MeV. In the mean field Hartree

In order to fit the pp and np data simultaneously and accu@Pproximation, which is implicit in the RMF calculations,
rately, these models include a detailed description of théhe A18 NNI gives energies per nucleon of +30
electromagnetic interactions and terms that break the isospkit 37) MeV atpo and +155(+204 MeV at 5p, for SNM
symmetry of nuclear forces. All include the long range one-(PNM), while the variational calculations presented here
pion exchange potential, but follow different treatments ofgive ~ —18 (+12) and +25 (+88) MeV, respectively.

the intermediate and short range parts of the NNI. The dif- The main problem is that the mean field approximation
ferences among the predictions of these models for the profger meson fields is only valid four<1, whereu is the
erties of many-body systems are much smaller than thosgverse Compton wavelength of the meson arislthe mean
among the predictions of older models, presumably becausiﬁterparticle spacing. Over the 14 density ranger_esti-

all modern potegtials. agcurately f.it the same scattering datg, taq using a body centered cubic lattice ranges from 2 to
For example, the'H binding energies predicted by the mod- 1.2 fm. Thusur is in the range 1.4 to 0.8 for the pion and 7.8

rn Nijmegen model Al A.62 t0o—7.72 ! Lo
© jimegen models and A18 are between.62 to to 4.7 for vector mesons. The mean field approximation is

MeV [18], while that of CD-Bonn is—8.00 MeV[17]. The i licable. si h | bviously far f b

difference between these results and the experimental vali' app ;]ca e,”smtche ese v_?hue;&rg obviously tfir rom be-

of —8.48 MeV is used to fix one of the parameters of Urbanag]g much smaler than one. 1he approximation can be
ased on effective values of the coupling constants that take

TNI models. int tth lati ffects. H th li
Detailed studies of the energies of dense nucleon mattdp 0 account the correfation etiects. However, these coupling

were carried out recently by Engvét al. [19] using all the constants then have a density dependence, and a microscopic

modern models of NNI and the lowest order Bruecknertheory IS need_ed to ca_lculate them. . .
This paper is organized as follows. Section Il contains a

(LOB) method. According to these studies, the results with £ th lativisti lculati ith A18 and

the modern potentials are all quite similar up to densitiessurginslrg/( 0 d? nc;nre?lwsfm ca cur?lmgs WIIII d .zn

relevant to neutron stars. For example, the energies predict Models of nuclear forces, while Sec. 1l describes
e calculations including the relativistic boost interaction,

with the LOB method for neutron matter ap®, wherep . :
=0.16 fm 2 is the equilibrium (saturation density of denoted byéu, without and with the TNI model UIX. The
eta equilibrium of neutron star matter is discussed in Sec.

nuclear matter, range from 80 to 93 MeV per nucleon. Th :

spread of 13 MeV in these energies is small compared to theV and results for ngutron star structure are presented n S_ec.
possible errors in the LOB method and the expected contriY» Where we also discuss the effects of the possible transition
butions of TNI at this density. This model independence re—f[0 mixed nucleon anq .q“?fk matter phases. The ad_laba'_uc
sults from the fact that the mean interparticle distance at index and sound velocities in neutron star matter are given in

~5pg is greater than 1 fm, and the predicted matter energy i?ec. VI, and conclusions are presented in Sec. VII.
therefore not sensitive to the details of the interaction;at

<1 fm,‘ . Il. NONRELATIVISTIC CALCULATIONS
In this paper we study the structure of neutron stars with
the A18 model using variational chain summatitviCS) Nonrelativistic calculations of SNM and PNM with the

methods, which hopefully include all leading many-body A18 and UIX interactions were carried out using variational
correlation effects. The Urbana model (¥IX) [20] is used ~ chain summationVCS) techniques described in detail in
to estimate the effect of TNI. Previous studies of nucleo{21]. Energies are calculated by evaluating the expectation
matter with A18 and UIX interactions have indicated thevalue of the Urbana-Argonne Hamiltonian with a variational
possibility of a transition to a neutral pion condensed phasaave function composed of a product of pair correlation op-
for both PNM and SNM21]. The effects of such a transition erators acting on a Fermi gas wave function. The pair corre-
on the structure of neutron stars are studied here in detailation operators are written as a sum of eight radial correla-
The effect of relativistic boost correction22] to the A18 tion functions, each multiplied by one of the two-body
interaction is also examined. At high densities, we considepperators(1,0;- oy,S;,(L-S);;)® (1,7 7). The wave func-
the possibility of matter becoming maximally incompress-tion depends on three variational parameters: the range of the
ible, as well as that of a transition to mixed phases of quarkkensor correlationg];, the range of all other correlatiord,
and nucleon mattd23,24. and a quenching parameter; meant to simulate medium
The relativistic mean fieldRMF) approximation25] has  effects. In this section we discuss results obtained for four
been used in many studies of high density matter and neutratases, namely SNM and PNM with and without the three-
stars. There exists a vast amount of literature on this topidyucleon interaction, in order to indicate their sensitivity to
some of which has been reviewed by Glendenni@g]. various terms in the nuclear force, and to extend them to
While the RMF approximation is very elegant and pedagogihigher densities, beyond the range coverefRiti.
cally useful, it is not valid in the context of what is known  The optimum values of the parameteksandd,. in matter
about nuclear forces, which is the theme of this work. Fowithout and with the three-nucleon interaction are shown in
example, using the meson parameters of the CD-Bonn S~ig. 1. Some of the noise in the variation of these parameters
wave potentials in the RMF approximation leads to unboundvith matter density is due to the insensitivity of the energy to
SNM. (In order to accurately fit the NN scattering data, thetheir values at the variational minimum. The large increase



1806

A. AKMAL, V. R. PANDHARIPANDE, AND D. G. RAVENHALL PRC 58

8.00

6.00

4.00

d,d, [fm]

2.00

0.00

6.00

4.00

d,.d, [fm]

2.00

0.00

FIG. 1. Central and tensor healing distancds é&nd d,), for
SNM and PNM, with A18 interaction alon@pper graph and with

plm™

A18+UIX interaction (lower graph.

in d; of PNM without V;;c at p~0.5 fm 3 is due to a tran-

sition to a phase withr’-condensation as discussed 1.
With Vj;, there are sudden changes in theandd; of PNM

at p~0.2fm 3, and in thed, of SNM at p~0.32 fm 3
These are associated with the same phase transition. We natelected parts of the MB clusters are summed by VCS tech-
that the present variational wave function is not fully ad-niques. We have calculated the many-body kinetic energy

equate to describe the long range order in#fecondensed

Our nonrelativistic HamiltonianHyg, is comprised of
the nonrelativisic kinetic energies and the two-body A18 and
three-body UIX interactions. The NNI includes a static,
long-range one-pion exchange part, with short-range cutoff,
and phenomenological intermediate and short-range parts,
which depend on the six static two-body operators
(L,0y-0y,5j)®(1,7-7) and elght momentum dependent
(MD) two- body operators{(L -S);; , ” , 0 oL 2 (L- S),J)
®(1,7- 7). The Al8 includes an additional isovector opera-
tor, and three isotensor operators, which distinguish between
pp, np and nn interactions. These isovector and isotensor
terms are small, and give zero contribution to the energy of
SNM to first order. They are therefore neglected in SNM
calculations. In the case of PNM all the isospin operators can
be eliminated and the full A18 with isovector and isotensor
terms becomes the sum of a static part with operators
(1 0;-0;,Sj), and a MD part with operatorsL(S);;,

LIl ,oi-ojLj; and (- S)I The UIX model ofVj;, contains
two static terms; the two pion exchange Fujita-Miyazawa in-
teraction, V|$k ,and a phenomenological, intermediate range
repulsionVy;, . The strength of the/IJk interaction was de-
termined by reproducing the binding energy of the triton via
Green’s-function Monte CarldGFMC) calculations[20],
while that ofV,Jk was adjusted to reproduce the saturation
density of SNM.

Expectation values of the various interactions are calcu-
lated in the VCS framework by summing terms in their clus-
ter expansions. The one-body, two-body, and many-body
contributions to the kinetic and NNI energies are listed in
Tables I-IV. The one-body cluster contribution includes
only the Fermi gas kinetic energy:. The remainder of the
kinetic energy is separated into the contribution from the
two-body clustefT),g and that coming from the many-body
clusters{T)ug . The kinetic energy can be calculated using
different expressions related by integration by parts. If all
MB contributions are calculated, these expressions yield the
same result. However, they yield different results when only

using expressions due to Pandharipande and B&Bg and

phases However, since the change in the energy due to the Jackson and Feenbe(@ [27]. The averages of the PB
m°-condensation appears to be small, we expect our estand JF results appear under the coluffilg, and the dif-
mates of the energies of matter wittP-condensation to be ferencesTpg— T, are listed undeAT. In studies of atomic

useful.

helium liquids the exact energies, calculated via Monte Carlo

TABLE I. Cluster contributions to A18 SNME(p) in MeV.

p Te (T)2s (Mwus AT (v°)28 <UMD>2B (v5)mB <UMD>MB OE2s
0.04 8.77 533 -0.29 0.16 —19.46 0.03 1.43 0.17 —-0.27
0.08 13.93 10.30 -—1.06 0.47 —36.84 0.43 4.44 0.64 —-0.57
0.16 22.11 19.64 -—-1.79 1.11 —66.48 2.04 8.44 2.58 -1.13
0.24 28.97 26.95 —2.47 1.49 —91.46 4.69 12.06 5.39 -1.73
0.32 35.09 3445 —-3.92 1.63 —115.82 7.89 17.17 9.37 —-2.37
0.40 40.72 40.55 -3.23 1.53 —135.38 11.96 17.57 14.48 -3.03
0.48 45.99 46.22 —1.95 1.17 —152.83 16.69 16.55 20.76  —3.63
0.56 50.96 5195 —-1.82 0.46 —170.59 21.72 17.92 2824 —4.17
0.64 55.71 58.03 —-3.73 —-0.99 —188.73 26.61 22.56 36.91 —4.60
0.80 64.64 68.60 447 —-4.07 —202.42 34.67 8.42 51.76 —5.13
0.96 73.00 79.71 -—-0.40 -—-8.27 —236.38 47.43 18.47 80.12 —-543
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TABLE Il. Cluster contributions to A18 PNME(p) in MeV.

p Te <T>ZB <T>MB AT <US>ZB (UMD>2B <US>MB (UMD>MB oEzp

0.04 13.92 508 —-1.93 0.14 —15.79 0.41 4.90 -0.14 —0.39
0.08 22.09 821 —249 0.26 —26.87 1.34 6.92 —-0.22 —0.46
0.16 35.07 15.00 -3.02 0.43 —48.10 4.15 9.75 0.28 —0.80
0.24 45,95 21.67 —-2.89 0.20 —67.45 7.67 11.01 1.92 -1.20
0.32 55.67 2850 —-365 —-0.54 —86.52 11.95 12.81 5.16 -1.73
0.40 64.60 31.71 —-0.28 —1.07 —98.77 17.57 6.97 9.95 —2.33
0.48 72.95 37.39 457 —123 —113.39 23.89 0.93 15.57 —-3.00
0.56 80.84 43.86 3.15 7.25 —141.33 35.90 —1.98 32.50 —3.86
0.64 88.37 56.20 0.99 855 —-168.18 40.75 0.50 45.53 —4.80
0.80 102.54 67.08 2.35 572 —201.26 57.99 —6.50 73.07 —7.00

0.96 11580 80.44 -—-2.75 283 —237.50 74.78 —8.05 112.66 —10.08

(MC) methods, lie between the PB and JF values evaluatethMP),,z becomes proportional to(T),g, as expected. An

using VCS method$28]. Although exact MC calculations additional perturbative correction to the two-body energy is

are as yet not practical for nucleon matter, we believe théisted asSE,,. This small correction is due to an improve-

average of the two expressions to be more accurate thafent in the variational wave function, which occurs when

either one, and that the difference provides a measure of theyrelation functions are calculated separately in daghJ

uncertainty in the many-body calculation. T{®)yg is quite  channel[21].

small in nucleon matter, due to cancellations between vari- ; 7 R 27 R

ous many-body terms, and therefore the differeAdeis a The expectation Yalueg ofij, vij» Vi F?r-]d Vij for
A > . SNM and PNM are listed in Table V. Here;; is the phe-

better indication of this uncertainty. .

The two-body cluster contribution to the static and MD "°Menological part;; —vjj, of the NNI. Since the ULV
parts of the NNI energy are listed undéoS),s, and IS purely static, the error in the calculation of its expectation

(MDY, . The(v%),z is negative and large enough to bind value_is likely to pe small. In SNM, with only the A18 in-
SNM, though not PNM. Thév™P),g increases rapidly with ~ teraction, thev™ gives more than half of the totall NNI en-
density, and is proportional tpT¢ at p>2p,. The many- ergy at all densities considered. The corresponding calcula-
body contributions to the static and MD parts of the NNI tion with A18+UIX interactions shows a Significant increase
energy are listed separately @)z and(v“P)yg. Previ-  in the magnitudes of the negative contribution\q"ﬁ(T be-
ously, great efforts were made to improve upon the accuraciweenp=0.32 and 0.4 fm? associated with pion condensa-
of the calculation ofv®) g [6,29]; however, at large densi- tion. In PNM these pion exchange interactions make rela-
ties the(v™P)\5 grows rapidly, and becomes larger in mag- tively small contributions at densities below the phase
nitude than(v®)ys . The MD contribution is more difficult to  transition, occurring ap~0.2 (0.5) fm 3 with (without)
calculate because of the gradienta{i° , which may oper- UIX. However, at the densities above the transition they
ate on the correlations of nucleohsndj with other nucle- make large negative contributions comparable to those in
ons. All the leading terms are calculated as discussg2lin ~ SNM. At the highest densities the contributions\{f and

and the corresponding errors should therefore be mucl&iﬁk become very large, and the validity of this purely non-
smaller than the reported values. At higher densities theelativistic approach becomes questionable. As discussed in

TABLE lll. Cluster contributions to A18UIX SNM E(p) in MeV.

p Te (T)zs <T>MB AT <US>ZB <UMD>ZB <US>MB <UMD>MB oE2g

0.04 8.77 5.70 -0.34 0.19 —20.00 —0.01 1.60 0.19 —0.28
0.08 13.93 10.16 —0.97 0.46 —36.51 0.44 4.21 0.64 —0.60
0.12 18.25 15.27 —-0.74 0.89 —51.63 1.24 5.25 1.60 -1.10
0.16 2211 2097 -0.81 1.21 —66.74 212 6.52 3.01 -1.80
0.20 25.65 25.84 —0.46 1.51 —80.18 3.47 7.12 4.77 —2.54
0.24 28.97 30.51 0.22 1.87 -—93.16 5.38 7.51 7.10 -3.33
0.32 35.09 39.38 1.32 246 —117.90 9.41 8.60 12.56 —-5.21
0.40 40.72 53.32 0.54 6.24 —154.44 15.18 23.65 25.65 —6.93
0.48 45.99 61.13 1.08 7.80 —178.46 18.79 27.12 3434 —7.93
0.56 50.96 69.68 2.27 851 -201.66 24.75 27.70 4569 —8.67
0.64 55.71 79.46 1.92 10.20 —227.19 28.60 32.93 58.95 —9.20
0.80 64.64 93.07 1.71 12.89 —269.82 39.35 39.57 87.26 —9.73

0.96 73.00 111.43 -6.19 18.52 —321.23 48.48 61.29 128.26 —9.93
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TABLE IV. Cluster contributions to A18UIX PNM E(p) in MeV.

p Te <T>ZB <T>MB AT <US>ZB <UMD>28 <US>MB <UMD>MB OE2s
0.02 8.77 3.89 —1.66 0.08 —10.20 0.11 3.70 —0.06 —-0.23
0.04 13.92 5.15 =177 0.14 —15.60 0.38 4.53 —-0.14 —-0.42
0.08 22.09 8.43 —2.25 0.30 —26.69 1.27 6.37 —0.23 —0.83
0.12 28.95 1197 -2.70 0.42 =-37.77 251 8.22 -0.14 -1.13
0.16 35.07 1590 —-4.00 0.18 —49.36 3.87 11.44 0.04 -1.26
0.20 40.69 22.37 0.42 2.78 —59.04 10.65 3.40 4.87 —-1.29
0.24 45.95 25.45 1.15 3.25 —-69.41 13.03 2.89 6.32 —1.65
0.32 55.67 35.82 2.49 4.44 —93.04 18.04 2.48 11.04 -—-2.45
0.40 64.60 42.87 4.34 5.38 —113.78 25.07 0.31 16.94 —-3.20
0.48 72.95 51.57 6.35 6.27 —135.45 32.61 —2.18 24.67 —4.00
0.56 80.84 61.73 8.57 7.07 —157.94 40.68 —4.92 34.25 —4.75
0.64 88.37 80.34 12.00 7.62 —185.72 53.35 —8.56 47.64 —5.45
0.80 102.54 101.95 18.33 7.90 —230.35 77.63 —-16.19 74.42 —-6.50

0.96 115.80 120.83 21.91 7.62 —273.05 99.09 —22.17 109.75 -7.35

the following section, approximately 40% of the contribution presumably due to the use of imperfect variational wave
of Vika is due to relativistic boost corrections to the functions, which do not include, for example, three- and
NNI , and a more plausible theory is therefore obtained byhigher-body correlations. It is known from comparison of the
removing this boost contribution from the UIX interaction. results of variational Monte Carl®/MC) and exact GFMC

The total energies, calculated in the manner previouslyalculations[30,31], that variational wave functions of the
described for SNM and PNM, appear in Tables VI and VII, present form underbind the light p-shell nuclei. The varia-
and in Figs. 2 and 3. The pronounced kink in ) of tional energy of°Be for example, is above the exact GFMC
SNM with V., atp=0.32 fr 3, is due to the phase tran- result by ~12%, even after incorporating into the wave
sition; the corresponding feature in PNM is a somewhafunction some of the three-body correlations, which we have
more subtle change in the slope of the curve @t neglected here.
=0.2 fm 3. In LOB calculations of Engviket al. [19] the SNM en-

It is evident from theE(p) figures for SNM that without ergy atp, obtained from the CD-Bonn interaction model is
the V., the present calculation cannot explain the empirical~2 MeV lower than that obtained from A18. The difference
saturation densitypy, of nuclear matter. As previously between the results obtained with the Nijmegen models and
noted, the strength o\f’ﬁk is adjusted to obtain the correct A18 is even smaller. In order to compensate for this differ-
equilibrium density in calculations witk';;, . However, the ence, the strength diﬁk to be used with CD-Bonn model
present calculations with;;, underbind SNM at saturation will have to be larger by approximately 30%, neglecting the
density, givingE(pg)~—12 MeV per nucleon instead of difference between SNM wave functions predicted by the
the empirical value of~—16 MeV. This discrepancy is two models. An increase of this order of magnitude will also

TABLE V. Contributions of pion-exchange and phenomenological parts of nuclear interactions to the

E(p) in MeV.
SNM SNM PNM PNM
Al8 Al8+ UIX Al8 Al18+ UIX

po (of) @l D D (VED (Vi D ef) @f @l (VD (Vi

0.04 -114 -64 -118 -64 -04 03 —-17 -90 -18 -91 0.1 0.1
0.08 —19.2 —121 -191 -12.1 -038 15 -27 -161 —-3.0 —-163 0.3 0.8

0.12 —-275 —-16.0 -21 3.4 -39 —-232 06 2.2
0.16 —32.6 —209 —353 —-198 -—3.6 64 —46 —-293 —41 -299 12 4.5
0.20 —420 —228 -—-55 106 —-172 -229 -87 101

024 —41.3 —28.1 —485 —-246 -81 159 -58 -—-41.1 -19.1 —-28.0 —10.1 15.2
032 —47.7 —-33.7 —-59.8 —-276 —-13.3 309 -6.3 —-504 —-251 —-364 —-174 306
040 —-54.7 —36.7 —726 —174 —-384 530 —-74 —-56.9 —30.1 —414 —-242 509
048 —-61.2 —376 —-814 —-16.8 —50.2 80.3 —-9.6 —63.4 —357 —447 —-341 78.0
0.56 —65.7 —37.0 —-915 —-12.0 —-65.2 1145 —33.0 —41.9 —41.6 —46.3 —47.2 1127
0.64 —66.9 —358 —994 -—-73 —82.0 1559 —39.2 —422 —-52.2 —411 —-769 160.3
0.80 —67.1 —40.5 —112.1 85 -—117.7 260.2 —42.3 —34.4 —63.3 —31.2 —116.3 267.9
096 —709 —-195 —121.2 380 -—169.4 397.7 —46.2 —11.9 —70.9 —15.5 —155.0 402.5
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TABLE VI. The E(p) of SNM in MeV. 3000

SNM

p A18 Al8+8u A18+UIX Al8+dv+UIX* corrected 2500 ATBAUIX
0.04 —4.28 —408 —4.39 —4.31 ~6.48 2000 | ]
008 —8.72 —807 —8.06 -7.97 -12.13 AT8+vUIX
0.12 ~10.52 —10.54 —-15.04 = 1s00|
0.16 —14.59 —12.54 —11.85 -12.16 -1600 £ Y
0.20 —-11.28 -12.21 —15.09 01000 | 7 D141 (9|
0.24 —17.61 —13.69 —8.99 -10.89 —-12.88 Fermigas e
032 —18.13 —11.87 084 —4.21 -5.03 500 I
0.40 —16.37 —7.70  12.23 2.42 2.13 AT T .
0.48 —12.21 —1.01  32.18 15.56 15.46 Bl S —— EEee
056 —579  8.16 59.99 34.42 34.39 oo | , e .
0.64 276  19.54 95.05 58.36 58.35 00 02 04 oe 08 10
0.80 2501 4524 18851 121.25 121.25 Pt
0.96 56.51 82.63 313.46 204.02 204.02 FIG. 2. The energy per nucleoik(p), of SNM for various

interaction models.

approximately bridge the difference 6f0.4 MeV between taraction between particles depends upon their total momen-
the A18 and CD-Bonn triton energies, and give give a satuyym and can be written as

ration density neapy with the CD-Bonn model. These esti-
mates are certainly very crude, since the difference between
the wave functions is probably not entirely negligible. Nev-
ertheless it is very likely that results obtained from Hamilto- ) _ ) )
nians containing realistic two- and three-body forces, adWherevj; is the interaction forP;;=0, and év(P;;) is the
justed to reproduce the triton binding energy, the SNMPoOst interactiof22] which is zero wherP;;=0.

density and other relevant data, will be less model dependent It is useful to consider a familiar example. The Coulomb-
than those obtained with Hamiltonians containing only real-Breit electromagnetic interactidi32] between two particles
istic two-body forces. The differences between the off shellof massm and chargeQ, ignoring spin dependent terms for
behavior of the two-body forces will be partially compen- brevity, is given by

sated by those in the three-body forces accompanying the
two-body force model.

U(Pij):Uij+5U(Pij)v (31)

Q° Pi-Pj  PiTij Pj-Tij
Fij 2m? 2m2rij

v(pi,pj) = . 32
ll. RELATIVISTIC BOOST CORRECTION

TO THE NN INTERACTION

up to terms quadratic in the velocities of the interacting par-

In all analyses, the NN Scattering data is reduced to th@icles. In our notation it is expressed as
center of mass frame and fitted using phase shifts calculated
from the NNI, v;;, in that frame. They;; obtained by this
procedure describes the NN interaction in the frame in which
the total momentuni;; =p;+p; is zero. In general, the in-

v(p;,pj)=vij+ ov(Py),

(3.3

with
TABLE VII. The E(p) of PNM in MeV.

400.0
) A18 Al8+6v  A18+UIX  Al8+ Su+UIX* PNM ATBUIX
0.02 4.35 4.45 00
0.04 6.06 6.32 6.23 6.45 ' A18+Bv+UIX
0.08 8.53 9.26 9.21 9.65
0.12 12.71 13.29 3 014001 (P)
0.16  12.33 14.51 17.38 17.94 < 0
0.20 23.47 22.92 *
0.24  16.69 20.76 28.85 27.49
032 2219 28.59 43.28 38.82 1000 |
0.40  29.41 38.10 63.79 54.95 Formi gas e SN
0.48  38.91 50.35 90.46 75.13 - e At8
0.56  49.08 66.00 123.93 99.75 00 = = . ‘ ‘
064  59.37 81.15 165.40 127.58 o0 °2 o o8 "o
0.80  88.27 119.46 273.37 205.34
0.96 125.29 167.02 412.30 305.87 FIG. 3. The energy per nucleoi(p), of PNM for various

interactions models.
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Q? pizj (pij_rij)z rium d.ensity of SNMR, includingﬁv. The strength2 of\(ﬁ: is
vij = St = (3.4  0.63 times that ofVjj, in UIX, while that of Vi is un-
1 2m® - 2merj changed. The resulting model ¥f; is called UIX*.

The approximate Hamiltoniahlyg, containing A18 and
@ Pi (P12 UIX interactions withoutdv, and the more correct Hamil-
5U(Pii)__ﬁ Q”L gmer? | @5 tonian HNr, containing A18, UIX and év interactions,

yield very similar results for light nuclei up t8Be [38] and
Wherepij :(pl_ pJ)/Z is the relative momentum. for SNM up to equ”ibrium denSity. HOWeVer, the two mod-

In all realistic models ob;; , such as the A18, the depen- els differ at higher densities, since the contributionssof

dence orp; is included in the momentum-dependent part ofand Vi have different density dependences.

the interaction,vi'\j"D. However, we have neglected the One may also consider relativistic nuclear Hamiltonians

ov(Pjj) in the calculations presented in the previous sectionof the type

Even though contributions of the boost interaction to the

binding energy of SNM andH were estimatgd b_y Coester HR=2 /—pi2+m2+2 (i;ij +5U(Pij))+2 vijk+ .

and co-workers years ad83,34), these contributions have

been neglected in most subsequent studies of dense matter. (3.9
Following the work of Krajcik and Foldy35], Friar[36] hich ) fitt h | ing d

obtained the following equation relating the boost interactionVNich require re-fitting the two-nucleon scattering data to

of order P? to the interaction in the center of mass frame: determine the two-body interactiom, , using relativistic ki-
netic energie$37]. In light nuclei, thedv contribution ac-

2 1 counts for most of the difference between the energies ob-
ov(P)=— ——ut —Z[P-r P-Vu] tained withHg and Hyr, since the difference between the
8m 8m contributions of the nonrelativistic and relativistic kinetic en-

ergies is largely cancelled by the difference in interaction

1 ~
+ —2[(0'i—0'j)>< P-V,u]. (3.6 energy contributions frona;; andv;; . The results obtained
8m with H{r are very close to those from, indicating that

- . L L . _the former represents a significant improvement d¥gg.
The general validity of this equation in relativistic mechanics P 9 P RR

and field theory was recently discussg®]. Incorporating
the boost into the interaction yields a nonrelativistic Hamil-
tonian of the form The relativistic boost contributions are calculated by
evaluating terms in the cluster expansion ((ﬁvﬁE) and
(6v;;%). In addition to the dominant two-body cluster, we
have calculated dressed three-body separable diagrams and
(3.7 central chain diagrams.

In the case of the two-body cluster, the gradients in the
where the ellipsis denotes the three-body boost, and four argbnter of mass momentum operatBy;=—i(V;+V,), can
higher body interactions. Thisl{; contains all terms qua- act only on the Fermi gas part of the wave function, since the
dratic in the particle velocities, and is therefore suitable f0fcorre|ationsfij depend only on the relative coordinate. Thus,

A. Calculation of boost interaction energy

2
* Pi *
NR= 2 %ﬂLE @ij+ v (Py))+ 2 Vit

complete studies in the nonrelativistic limit. the two-body cluster contribution t@ﬁvﬁ% is

Studies of light nuclei using the VMC methd®7,3§
find that the contribution of the two-body boost interaction to k2 3
the energy is repulsive, with a magnitude which is 37% of ~ C5g(dir)=— — P
thevﬁk contribution. The boost interaction thus accounts for 8m
a significant part of theViF}k in Hamiltonians which fit ) ,
nuclear energies neglectingy. x 2 f d3r;;(fPu™MfP"); C(OF OfOF )

In the present calculations we keep only the terms of the pmp’
boost interaction associated with the static parbgf and (3.10
neglect the last term in E§3.6). That term is responsible for
Thomas precession and quantum contributions that are neg- 1 p ,
ligibly small here[39]. Our v is given by Chfen=—= > J d3rij (1 2=1V21);;

8m Spmp’n
2 ’ ’
S0P =— st PPV (38 X (fPu™P'); C(O10POTOR). (3.1
8m? 8m?

The quantitieC(- - -) in the integrand of these expressions
The two terms are due to the relativistic energy expressiofepresent the spin-isospin-independent part‘C-part”) of
and Lorentz contraction, and are denot®e®® and 6v"°,  the operator product enclosed by the parentheses. Only the
respectively. The three-nucleon interaction used inHlifg, ~ C-part of operator products appear in the cluster integrals,
Eq. (3.7) is denoted bWﬁk- Its parameters are obtained by since the energy expectation value requires a sum over all
fitting the binding energies ofH and “He, and the equilib- possibleo, and 7, [6], which average to zero in isotropic
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matter. In the case of SNM the indicpsm,p’ run over the K2 p
first six operators, as we boost only the static interactions and C5S(dir) = —F 75
consider only static correlations in this calculation. The in-
dexn=1,4 comes from the exchange operator. In the case of do™
PNM the 7- 7; operators are eliminated from the Hamil- X > fd3rij(fpr_fpl> C(Oﬂ-O{‘j‘Oﬁ’)
tonian, thus the indicgs,m,p’ andn can represent only unit m dr ij
or spin-dependent operators. The exchange operator also (3.13
contributes a factor of &/ wheres is the degeneracy of the
system(4 for SNM, 2 for PNM.
TheC (dir) differs from the corresponding expression p
for the two-body direct contribution tcévU) by a factor C ( __5 2 de rij (1 2_|Ir,)Il
—(1/8m2)(6k2/5) which is the expectation value of 8m? Spmpn
- PZJ/(SmZ) in the Fermi gas. The exchange part of the clus- do™
ter, CiE(ex), has the same form as the corresponding X fprwfp) c(ojofofor),
expression for(vjj),s(€X), with 12 replaced by —(2/

8m?)(1'2-1V2l), where |=I(ker) is the Slater function. (3.19
This expression results from gradientsFPrﬁ acting on the
plane waves which is simply the cluster contribution of a nonrelativistic
potential rdv/dr, with the direct term multiplied by
AQE e 1Ttk T~ y2—v2-27,. Ve itk ) (2/5)(k2/8m?), and with thel? in the exchange term re-
placed by (2/&2)(1'2—11"). As in the 5vRE case, the extra
= 2p[ (1" (Ker )2 =1 (Ker ) V2 (Ker i) . (3.12  factorsin(6v"©) result from the gradients iv-© acting on
the Fermi gas part of the wave function.
Here, A is the number of nucleong) is the normalization The three-body separable diagrams represent the most
volume, and since we are in the thermodynamic lirAit{) significant many-body cluster contributions to the boost en-
=p. ergy. The direct term for a boo$v*, wherex=RE or LC,
The two-body cluster contribution t@Sv,f) is has the form

Jd3rkd 1y o3Ry e (ki Tk rij K- Ru>c( ~{fPOP ,f00} (v} )mO R OF L O%
AQ Ilk pmp qq’

—(fPOP( 6vX>mfp’op’>i,-<fqoqfq’oq'»k)e“kk'fk*ku-fiﬁKu'Rin. (3.19

The plane waves are written here in terms of the relative momerkym(k;—k;)/2, and the center of mass momentum,

=kit+k;, of the interacting pair. The interacting exchange{ex) and the passive exchange {-ex) expressions are
obtamed from the above by inserting the appropriate exchange ope[r@fltsﬁn 140 or (15)=,,-140] to the far left of
each operator product, and replacing the first plane wave produet 1 "« kij i FKiRi) o @10k Fi- klk Mij *KjieRip),

Following the notation used in the calculation of the MD interaction eng4@y21], separable diagrams are classified as
K-diagrams and F-diagrams. The former have gradien&®inacting on the Fermi gas part of the wave function, and the latter
have them acting on the correlation operaters. As with the two-body cluster contributioB’g, the K-diagrams depend
linearly on the Fermi kinetic energy. Whilg}g scales apTg, like the(vMP),g5, the K-diagram contributions scale roughly
asp?Te. The K-diagrams generally make only small contributiongdo*), the major separable contributions coming from
F-diagrams. The relatively large contribution of the F-diagrams, versus the K-diagrams, can be understood in the following
way. The correlated particle in the separable diagram modifies the center of mass momentum of the interactinjg\pair
Fic, thus enhancing the boost correction. As the form of the F-diagram integrals suggest, we find that their contributions
exhibit the same scaling behavior@é\"DNB, namely asp({T)g -

K-diagram contributions tq 5v ) have been evaluated for the direct three-body separable diagram and the interacting
exchange diagram. These contrlbutlons factorize into an integralrguewhich is simply the corresponding two-body boost
diagram, and an integral oveg, . The latter integral is a so-called single-loop vertex correction, which is included in the more
general vertex correctioM 44— 1, to(vf}), defined in[6]. The direct K-diagram contribution is

k2 3
WRE(K, dir)= —ng > fdr (FPu™fP"), KPP AP’ AT fds Fik(F)2(Dpg+ Dimg+ Dpr),s (3.16
pmp'q
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where thekP™P' | AP, andD 4 matrices, defined if6], give the C-parts taking into account the non-commutativity of operators
Oﬁ andOj,. The corresponding interacting exchange contribution is given by

1
WSE(K,ij—ex)z—ZB fd:"r”(l 2-1V21);;(fPo™P"); -—(K"Pm KMP'M’ 4 g pm’ g pnm’y Am’
8M* Spmp qm'n
. ) 1 1
Xp | d I'k(f A% D qm/+Equ+ Ean . (3.19

The F-diagram contributions t(oﬁv ) are evaluated for the direct, interacting exchange and passive exchange terms. These
contributions also factor into separate integrals, where thimtegral has the form of the two-body contribution(to®), and
ther;, integral is a new type of vertex correction involving gradients of fthe The direct andj-exchange integrals are

6
WRE(F dir)= 2, fd3 (fPu™FP"); KPP AP —f d3r;, £ (szq—r—zfq(5q5+5q6))

pmp'q ik
1
X|7(Dpgt DmgtDprg) +1 Af (3.1
! 1 / U ’ ! !’ !
WSE(Fij —ex) = ( )fd3 I2£PpMEP") 5 = (KNPIKMP' P ) AT
pmp gm'n
p 3. q| v2eq 6 a 1 1 1 a
Xm dorifil Vef _r_zf (5q5+ 5q5) Equ,+ Zqu+ Zan+l A, (3.19

ik

The ik-exchange contribution is evaluated only to leading order, hamely for the cases where at Ifasioaeentral link.
In this approximation, this contribution takes the form

1 1
WRE(F,ik—ex)= 2, ( 2)jd3r (fPu™fP");; KPP AP m—f d3r ,kl,k[(fCVZfC)lkaCsz )kA”(1+§an,)
pmp'n

+ (V20 A" (3.20

1
1+ Ean .

In this equation, the inder runs from 2 to 4 only.
The K- diagram separable three-body contributionsamLc> have the same general structure as the corresponding contri-
butions to( 5v ) The direct term and the interacting exchange term have been evaluated and are presented below:

. kE do™
WEC(K,din)= X ﬁsj dr, (rprfp) KPmP' AP —f ABri(f3)?AYD g+ Dimg+ Do), (3.21
pmp'q ij
LC i 3 "2 do™ ) 1 npm’ e mp’'m’ mn' e p’'nm’y Am’
W™ (K, ij —ex)= ——— = d°;; (1 =1");; f—fp — (KNP KMPM K PMMT PNy A
pmpqmn i

ij
3 2Aq 1 1
d°r; k(f ) A m’+ Equ+ Ean . (322
The separable three-body F-diagrams have a more complicated structure r, ﬁ1eThe direct diagram has the general
form

2
L], ( )C[{fpop f80%3(r; - VRI(V (v 7O - V) {fP OF' £ O% 1. (3.23

ij 1] ’
pmp aq’ 8M°

The integrand can be written as a sum of four terms having the gradieﬁté:j%acting on different parts of the correlations:
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TABLE VIII. Contributions of relativistic boost interactions to tfgp) in MeV.

Al18 A18+UIX
SNM PNM SNM PNM
P (dv)28 CIVE (v)2m (ov)me (0v)28 CIVE (v)2m (ov)ms
0.02 0.08 0.03
0.04 0.15 0.05 0.21 0.05 0.15 0.05 0.21 0.05
0.08 0.45 0.20 0.59 0.14 0.44 0.20 0.58 0.15
0.12 0.85 0.40 1.10 0.29
0.16 1.32 0.74 1.71 0.46 1.33 0.73 1.72 0.49
0.20 1.88 1.09 2.60 0.58
0.24 2.42 1.50 3.16 0.91 2.49 1.50 3.42 0.84
0.32 3.76 2.49 4.92 1.48 3.86 251 5.46 141
0.40 5.18 3.49 6.64 2.06 6.04 3.75 7.73 2.25
0.48 6.69 4.52 8.67 2.77 7.92 5.17 10.34 3.20
0.56 8.35 5.59 12.28 4.64 9.96 6.81 13.27 4.23
0.64 10.16 6.62 15.81 5.97 12.29 8.69 16.69 481
0.80 12.61 7.62 22.12 9.07 17.12 11.90 23.83 7.25
0.96 16.95 9.17 29.62 12.11 23.11 14.61 31.91 10.59
1 dv™ , q . 1 ., , 1 ., o4
_Z<rprfp )”fik“(fq ) —F(fq ) CO§0i+F(fq ) ) kC[{OIJ ,O{} O] {Ou O}
ij i
1 Pdvm p’ acfa’
- E f Wf (f (f ) )lkcc'89 C[{OI] ' {Ou ,I’” VO }]
ij
1 fp1 do™ p aeq’ q
— 2T (f )i Cl{Of . Ofl}Oj] {OIJ (rij-V)ri;- VO 1]
——(fpumfp )i fACI{OF 0%} (ri;- VR) Ve (f VOT{OR" 0% 1. (3.24

The C-parts in the above expressions depend on the cosine of the azimuthaléangled therefore cannot be expressed
exclusively in terms of theD,, matrices, which include an implicit average over that angle. The C-parts must then be
individually evaluated for each operator product.

The contribution of the direct diagram is dominated by the first term in the above sum. In evaluating the interacting
exchange and passive exchange diagrams, only the term corresponding to that dominant part has been included. For example
the interacting exchange contribution is approximated by

2 m
WS jj—ex= 3 izp— o3r o, (|2fpdifp’r) fﬁk([(fqy"—}(fqv'
pmp'qa’n 8M° S dr ij r

co§6i+£(fq')’)
r ik

X7 C[o H{Of .OfJON (O}, O }1. (3.29

The corresponding passive exchange contribution was calcthe many-body clusters appear in Table VIII. The first four
lated with the additional simplification of considering only columns contain the boost contributions to the energy of
leading term contributions, having at least one centfal SNM and PNM, calculated using the optimal wave functions
link. for the A18 interaction alone, while the next four columns
We have also evaluated central-chain diagram contribueontain the corresponding boost contributions, calculated
tions, denoted b, .,,, to the boost interaction expectation with the optimal wave functions for the A¥8JIX. As ex-
values. These diagrams are obtained by dressing two-bodyected, the many-body contributions to the boost interaction
cluster diagrams with hypernetted central chains. Their conenergy are comparable to the two-body contributions, be-
tribution was found to be significantly smaller than the con-causeTy and{T),g have similar magnitudes.
tribution from separable three-body terms. Detailed breakdowns of the boost contributions in the
The combined results for the two-body clusters and forA18+UIX* model are presented in Tables IX and X for
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TABLE IX. A18+UIX*: Contributions to{ svRE) in MeV.

SNM PNM

p Cap Wq(K) W(F) Ween Cap We(K) Wq(F) Ween
0.02 0.04 0.00 0.02 0.00
0.04 0.09 0.00 0.04 0.00 0.11 0.00 0.04 0.00
0.08 0.24 -0.02 0.15 0.00 0.31 -0.01 0.12 0.00
0.12 0.46 —-0.04 0.31 0.00 0.58 —-0.03 0.23 0.00
0.16 0.73 —0.06 0.54 0.00 0.93 —-0.03 0.39 -0.01
0.20 1.03 —-0.09 0.81 0.00 1.32 —-0.16 0.50 —-0.03
0.24 1.36 -0.14 1.11 0.00 1.73 -0.19 0.68 —0.03
0.32 211 —-0.22 1.85 0.00 2.77 —-0.32 1.14 —0.06
0.40 3.25 —-0.70 3.17 —0.04 3.90 —0.40 1.69 —0.08
0.48 4.26 —0.94 4.35 —0.04 5.23 —0.51 2.34 —0.09
0.56 5.36 —-1.15 5.61 -0.05 6.71 —0.66 3.05 -0.14
0.64 6.63 —-1.53 7.20 —-0.05 8.51 —-1.00 3.68 -0.24
0.80 9.02 —-1.96 9.58 —0.05 12.14 —-1.43 541 —-0.32
0.96 12.44 —3.58 13.37 —-0.16 16.23 —-1.87 7.65 —-0.40

5vRE and 6v'C. In all cases the bulk of the contributions Our results show that this approximation has errors of only
come from the direct terms. Since we can integate-) ~10% in SNM, but can be wrong by 50% in PNM. Nev-
by parts to obtai{ 6vRF) plus additional terms, their expec- ertheless it may be used to estimate the order of magnitude
tation values should be similar in magnitude. The ratio of theof the contribution of relativistic boost interactions.
contributions of sv-¢ and svRE in SNM is found to be
~0.7 at all densities, while in PNM it is~0.75 atp
<0.2 fm 3, and=1 at higher densities. Results of VMC
calculations[37] have shown that this ratio is'0.5 in 3H
and “He.

The 6vRE has two factorsP?/8m? andv*®, suggesting the
approximation

B. Nucleon matter energies

We evaluate the boost interaction contributions as a first
order perturbation. Thus the energies of nucleon matter with
the A18+ v interactions are obtained by simply adding the
év contributions listed in Table VIII to the A18 energies.
The results are listed in Tables VI and VII, and shown in
Figs. 2 and 3.

The three-body interaction, UfX to be used with A18
+ v, contains the terivx that is 0.63 times th¥/f}, in the
UIX. Since the boost effects are treated only in first order,
the energies for the A18dv+UIX* interaction are ob-
tained by adding([ év;;—0.37 Vﬁk]) to the energies for
A18+UIX interactions. The results are listed in Tables VI

P2
<5URE>% - < R> <US>,
1 s
== 5 (THv?). (3.26

TABLE X. A18+UIX*: Contributions to{ 5v-%) in MeV.

SNM PNM

p Cap Wq(K) W,(F) Ween Cap W(K) Wq(F) Ween
0.02 0.03 0.00 0.01 0.00
0.04 0.07 0.00 0.02 0.00 0.09 0.00 0.03 0.00
0.08 0.20 —0.02 0.08 0.00 0.27 —0.01 0.06 0.00
0.12 0.39 —-0.04 0.17 0.00 0.51 -0.01 0.11 -0.01
0.16 0.59 —-0.06 0.32 -0.01 0.80 —-0.02 0.18 -0.02
0.20 0.85 -0.07 0.48 —0.02 1.28 —-0.12 0.42 —0.03
0.24 1.13 -0.11 0.65 —0.03 1.69 -0.13 0.55 —-0.04
0.32 1.76 —0.16 1.09 —0.06 2.68 —-0.20 0.92 —0.07
0.40 2.79 —-0.52 1.96 —-0.14 3.82 —-0.23 1.37 -0.11
0.48 3.66 —0.64 2.67 —0.23 511 —-0.29 1.93 —-0.16
0.56 4.60 —-0.72 3.45 —-0.31 6.55 —-0.37 2.55 —-0.21
0.64 5.66 -0.89 4.39 -0.43 8.17 -0.59 3.19 -0.25
0.80 7.79 —-0.96 5.77 —-0.78 11.69 —-0.85 4.81 -0.37
0.96 10.67 -1.49 7.80 -1.34 15.68 —1.06 6.82 —0.55
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FIG. 4. Kinetic and interaction energies in At&v +UIX*

model of SNM.

and VII, and shown in Figs. 2 and 3. At low densities the
A18+UIX and A18+ v+ UIX* interactions yield similar
results. However the energies predicted by the latter mod
are lower than those of the former at higher densities, wher
0.3%VR) is much larger thasv). The difference between

the energies predicted by A18v and A18+ sv + UIX* in

teractions at higher densities is due to three-body forces iti
smaller than that between the energies obtained from Al

and A18+UIX by almost a factor of two.

The results obtained with the Urbana density-depende
interaction(U14-DDI) [10] are also shown in Figs. 2 and 3
for comparison. Since Skyrme-type interactions based on th
U14-DDI E(p) explain nuclear binding energies quite accu-
rately, it is likely to provide a reliable representation of phe-

nomena ap<p.

The variation of the kinetic and interaction energies with _
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of Eq. (3.26). This estimate is less than 10 MeV at the high-

est density considered. The phase equilibria are calculated

after adding the boost interaction contribution, calculated in
first order, separately for the phases with and without pion
condensation. However, Figs. 4 and 5 show thatdheon-
tribution is very small, and has a smooth density dependence
in the region of the phase transition. Therefore the boost
interactions do not have a noticeable effect on the transition
density.

The most significant remaining problem appears to be our
neglect of the boost corrections to th&P, the unboosted
contribution of which is quite large at high densities. Such
corrections involve terms of order (velocify)which are be-
yond the scope of the present work. The kinetic energy also
has corrections of that order, which we cannot include be-
cause the Al8 interaction is fitted to data using nonrelativis-
tic kinetic energy. However, the correction to the Fermi gas
kinetic energy is R§/56m3, which is less than 10 MeV in
PNM at the density of .

The Dirac-Brueckner approximation provides another
ay to estimate relativistic effects using realistic models of
uclear forces. The energies of our Al8v + UIX* model

Sre lower than those of lowest order Dirac-Bruekner calcu-

lations with the Bonn A potentigl1]. For example, at 4,

\we obtain 58 and 128 MeV per nucleon while the Dirac-
ruekner calculation gives 76 and 164 MeV per nucleon, for
NM and PNM, respectively. However, the difference be-

tween the results of the two methods is significantly smaller

n[han that between either of the two and the uncorrected A18

energies of 3 and 59 MeV per nucle6hables VI and VI).

€ In the last column of Table VI we list SNM energies

obtained by adding a correctiopp?e” ¥3" to the A18+ dv

+UIX* results. The empirical binding energy and density of

SNM are reproduced withy,=2822 MeV fnf, and y;
=18.34 fnr. ThIS correction has a maximum value of 4.5

nucleon density in our most realistic model, with Ad8v

! . . - MeV at 0.11 fmi 3, and the “corrected”E(p) of SNM is a
+UIX*, interactions is shown in Figs. 4 and 5. Due to a (p)

| lation b h buti W™ and better representation of known nuclear properties at lower
\7,296 ﬁance K}'on e‘WS‘eF‘ the contrl ut:?nsh ﬁn ¢ densities, and is useful to obtain a smooth connection with
» the totalVi;, contribution is now smaller than that of ¢ £os of crustal matter. It becomes identical to (%)

vij , and thedv contribution is also small. An order of mag- obtained using the A%8 v+ UIX* model at higher densi-
nitude estimate of the boost correction to the three body:

interaction is given by(T)(V;;)/3m, using generalizations
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FIG. 5. Kinetic and interaction energies in At&v +UIX*

model of PNM.

IV. COLD CATALYZED NUCLEON MATTER

In this section we use the results of the earlier sections to
calculate the equation of state and composition of cold, cata-
lyzed matter, i.e., matter at zero temperature in its lowest
energy state. Here the matter is assumed to be made up of
neutrons, protons, and leptons; the possible admixture of
quark matter is considered later. Since the boost interaction
is clearly an integral part of the two-nucleon interaction, we
regard the models A186v and Al8+ Sv +UIX* as realis-
tic, and discuss their results in detail. The difference between
the two models demonstrates the effect of the three-nucleon
interaction. Some of the results obtained with the less realis-
tic models without the boost interaction are also presented
for comparison.

Matter at zero pressure, at the surface of a neutron star, is
made up of atoms of®Fe, just as in terrestrial iron. This is
the most stable form of electrically neutral matter composed
of neutrons, protons, and electrons. Below the neutron star
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surface, as a result of the increased pressure of the mattgf the matter, and thereby the EOS, in the folrw P(p),
caused by the gravitational attraction, the atoms becomﬁ/heref):s/cz is the mass-energy density of the matter. The

complletely lonized and _the electrons form a re"”‘JF'\./'St'(?’composition and other thermodynamic variables are also de-
Fermi gas, whose Fermi energy becomes competitive i, &' this process

{nagmtuc;le wgh tr;]ucleart energi¢42]. Cogsequentlyl/t, el_‘:ﬁ'_ The baryonic part of the matter consists of strongly inter-
ron cap L(ere tﬁ/ b T pr(ihonstc:ﬁn occm;r. Stha resul " Vg' In'acting neutrons and protons with a given proton fractign
creasing deptn below the steflar surtace the nuclel eComgpp/p. The minimum processing necessary in order to ob-

more neutron rich, and. cross the nel_Jtron-drip line. At thistzlin an EOS for any of the sets of SNM and PNM energies of
point the most energetic neutron orbitals have become Ukarlier sections is to fit the energies to a smooth function of

bound, and the matter consists of n_eutron-r_|ch nuclei im- ensity, so that the derivatives needed to obtain chemical
mersed in a neutron gas, whose density also increases as S entials (.= deldp;)) and pressureR=S.p.ui—¢) can
pressure is increased further. The baryon number density t calculateél One ttlwen needs to inter olété llaetween the
which this transition occurs is about2l0~* fm~3. As the —0.5 SNM an'dx —0 PNM results in Ordper to find the vaplue
pressure and density continue to increase, the charge numbgrrx' required praeta equilibrium

Z of the nuclei remains in the range 3@0 but the mass p ed y d '

numberA grows steadily, and the distance between nuclei The fitting procedure used earligt4], and which we em-
decreases. In the density range above about 0.06%fm bloy here, introduces more than the minimum processing just

where the volum ied by nuclei and by th " nddescribed. It uses a generalized Skyrme interaction contain-
where the volumes occupied by nuciel a y the surrou ing a momentum and density-dependent delta function inter-
ing neutron gas become comparable, the matter may under

. , tion. By a well-known pr the matrix element
an inversion to bubbles of neutron gas surrounded by nucle%% on. By a we own procedufd5], the matrix elements

. . . "€& this interaction can be written as an energy-density func-
matter by going through a progression of phases involvin oy v

. ) Yional in the form
nonspherical shapes, although this aspect of the crustal struc-

ture is somewhat model dependditl,43. At a density 52 72

above about 0.1 fir there no longer occur nuclei or other Hets= ﬁJrf(p,xp) Tpt %-Ff(p,l—xp)) Th
clumps of proton-containing matter, and cold, catalyzed mat-

ter becomes a uniform fluid of neutrons with a small fraction +9(p,Xp) + Hgradient- (4.5
of protons.

A reliable discussion of the properties of matter over theThe number and kinetic densitipg,, and 7, are defined
crustal density range requires a nuclear model that can dén terms of the neutron or proton orbitals, ) (r) by
scribe inhomogeneous matter in the geometries occurring;(r)== ni(a,T)|¢q.i(r)]? and 7i(r)
there. The difficulties encountered cause the model depen=3 n;(e,T)|Vé,i(r)|% where the Fermi-statistics density
dence mentioned. However, for neutron stars with massesf statesn;(a,T) =[1+exp(,i—w)/T)] * at T=0 become
=1.4M¢ , the mass fraction contained in the crust of the star step function® (e, ;— ;). The functionf in Eq. (4.5
is less than about 2%. We have therefore used results @omes from the assumed momentum dependence of the in-

earlier work [11,43 for matter at densities<0.1 fm™ 2. teraction, and is parametrized in the form

Since over that density range our present matter energies

agree well with ones used earlier, this substitution causes f(p.,Xp) =Tfo(p) +Xpf1(p). (4.6)
negligible inconsistency in our conclusions about the total
mass of the neutron star. It produces density- and isospin-dependent effective nucleon

At densities of 0.1 fm® and greater, we require proper- massesn’ (p,Xp),
ties of charge neutral uniform matter made up of neutrons,
protons, electrons and muons in beta equilibrium. At a given h?
baryon number density=p,+ p,, the conditions to be sat- 2 (k) =5m 1%,
isfied by the components are charge neutrality, pRrETp

2

_ h? h?
Pp=Pet Py (4. = f(p1—xy). 4.7
Zm:(PaXp) 2m P
and beta equilibrium,
The termHg,agient in EQ. (4.5 depends on gradients of the
Mn=tpt e, M= He. (4.2 densities, and thus affects finite systems; it is determined
uniquely by the function$ [43]. The relation betweern, and
Herep; is the number density of the species indicated by they; depends on temperature via the Fermi functions. There-
subscripti, and u; is its chemical potential including rest fore knowledge of the matter energies at finite temperatures,
mass. After achieving a solution to these conditions, oneas was given in Ref[10], permits a determination of

obtains the total pressure f(p,xp=0.5) andf(p,x,=0), i.e., fo(p) and f,(p) in Eq.
(4.6). The potential-energy termg(p,x,=0.5) andg(p,x,

P=Py+Pet+P,, (4.3  =0) may then be obtained by comparison with the zero-
temperature energies. The functional forms usedf {prx,

and total energy density =0.5,0) andg(p,x,=0.5,0) are chosen to represent with

appropriate accuracy the calculated energies; it is not suffi-
e=enteete,, (4.4  cient, nor necessary, that they have the extremely simple
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power dependence om of customary Skyrme interactions. 400
The effective interaction FPS obtained in this manner from ., |
the SNM and PNM energies calculated with the U14-DDI
interaction has been described and used elsewhere 3007
[44,43,11. 50 |
In the present work, we have studied the matter energies
only at zero temperature, and cannot therefore make a news 2% 1
determination of the momentum-dependenrtcpntaining
terms in Hq¢;. Rather than omitting them, we have kept
intact the r-dependent terms from the earlier determination '
[44], and have modified only the potential energy term 50l
g(p,Xp). To facilitate handling of the two different phases,

A18+8v+UIX e l

]

E/A M

we make separate fits to the normal low density ptiaBé) e ———

and the high density phagélDP) with pion condensation. 50 ‘ . . ,

The analytic forms used for the fitting are given in Appendix 00 020 0 % 080 1.00
A. They are chosen solely to provide an economical fit to the

calculated energies. FIG. 6. The PNM and SNM energies for the AL&v + UIX*

The interpolation betweenp=0.5 andxpzo is carried model, and the fits to them using an effective interaction. The full
out assuming a (% 2xp)2 dependence of the energy at a lines represent the stable phases, and the dotted lines are their ex-
given density. It is well known that matter energies, as drapolations.
function of x,, can be expanded in powers of {Px;)
aboutx,=0.5. Previous studiggl6], using cluster expansion useful, and that the parabolic shape approximation has been
techniqueg 6], have found that the quartic terms are small,tested only in the LDF46].
and that the quadratic terms determined from results,at A transition to a neutral pion condensed phase of PNM
=0 and 0.5 are sufficient to obtain few percent accuracy irwas obtained earlier with the older Argonneg, (A14) NNI
the interpolation. The potential energy tergsn the effec- and Urbana VI(UVII) TNI interactions by WFF12]. How-
tive interaction Eq.(4.5 obtained by fitting to PNM and ever, with those interactions SNM has a normal ground state.
SNM are therefore interpolated by means of the expression€WFF estimated the properties of the A1@VIlI model of

cold catalyzed matter by interpolating between the normal

X)= Xo=0.5)(1— (1—2x,)2 SNM and the pion condensed PNM. For the Al&
9(pXp)=0(pxp=0.9(1=( P +UIX* interaction, we find that such a procedure overesti-
+g(p,xp=0)(1—2xp)2. (4.8  mates the symmetry energy of the HDP 10 to 20% in

the density range 0.2 to 0.5 fm. Fortunately we see the
transition for both PNM and SNM, and can avoid that prob-
lem.

In fitting the results of the calculations described in Secs. In Fig. 7 we show for the A18 év +UIX* model the
I-11I, we find that the SNM and PNM energies coming from density at which the LDP and HDE(p,x,) surfaces inter-
the models that include a three-nucleon interaction have aect, i.e., where the interpolated phases have the same en-
clear discontinuity in slope, associated with the phase transergy. The curve obtained is not necessarily a parabokg in
tion, so that different analytic forms are needed above and
below the critical densities,p,=0.20 fm 3 for PNM, 0.0
0.32 fm 2 for SNM. In Fig. 6 the energies and the fits are -
shown for the A18- Sv+ UIX* model. (Here, and for the -
rest of the paper, we use for the SNM energies of this model o'y
the “corrected” values given in the last column of Table
VI.) The Al8+ Sv and Al18 models do not show such a
discontinuity in any marked way.

An important assumption of our treatment of the two =
phases of nuclear matter and the phase transition, as exhib- 51|
ited in Fig. 6, is that the analytic forms fitted to the PNM and
SNM energies of each phase may be extrapolated beyond the
density region in which they are determined. Since the equi- o4
librium is a two-dimensional phenomenon, the energy as a
function of p andx, can be represented by a surface above
the p,x, plane. The interpolation described in the last sub- %%
section makes the energy surface of the LDP a valley para-
bolic in the x, dimension extending from,=0 to x,=1, FIG. 7. On a plot of proton fractior, vs baryon density, for the
with its minimum atx,=0.5. A similar interpolation be-  A18+ sy + UIX* model, the boundary between the LDP and HDP,
tween the energies of the HDP produces another parabolgptained in the manner described in the text. The dashed curve is
Note that because of the charge symmetry breaking terms e proton fraction of beta-stable matter, and the dotted lines mark
the A18 interaction only the,=<0.5 side of the parabolas is the boundary of the mixed phase region.

A. The phase transition

LDP

0.2 -

A18+3v+UIX

0.4

p [fm™]



1818 A. AKMAL, V. R. PANDHARIPANDE, AND D. G. RAVENHALL PRC 58

0.20 T T T T T 300.0 T
A18+UIX
0.18 A18+UIX 1
0.16
014 Urealimit o [ A18+3vAUIX 18
’ 200.0
- ¥ A18+0v
012 ¢ A18+5v+UIX 1
5
& 040 U14+UVII %
=
008 f A18 (VCS)
100.0 [~
0.06
N
N
0.04 \
N\
N
002 [ S 1 AN
~ U14-DDI (FPS) \
000 L L L T L 00 L L L L L
0.1 0.3 05 0.7 09 11 1.3 0.0 0.2 0.4 0.6 0.8 1.0 1.2
p [fm] p [im™)
FIG. 8. For beta-stable matter, the proton fractiopsfor the FIG. 9. For beta-stable matter, the electron chemical potentials

four models discussed in the text vs baryon density. The dashed, for the four models discussed in the text vs baryon density. The
curve, U14-DDI(FPS, is from [11], the dotted line, A18.OB) is dashed curve, U14-DOFPS, is from[11], and the horizontal line,
from [19], the points are fronj12,50 for the U14+UVII model, at pe= mMcz, is the threshold for a muon contribution to the lepton
and the dotted line is the threshold for the direct Urca coolingfraction.

process, as a function @f

since the density dependence of the curvature of the parabo- AS suggested in Ref12], the determining quantity fox,
las is more complicated than quadratic. Also shown is thds the symmetry energy, given approximately &g,
proton fraction of beta-stable matter in each phase. ~Epyu—Esnm- The LOB and VCS methods yield similar
The transition of matter from the LDP to the HDP prob- values forx, with the A18 interaction up tp=0.6 fm 3.
ably occurs via a mixed phase region in which each phasBeyond this density th&, obtained from VCS calculations
need not be charge neutfaB], as discussed in the following starts to decrease, while that from LOB calculations contin-
section. Here, for simplicity, we assume that each phase is @es to increase with density. The VCS and LOB energies for
charge-neutral fluid and make a Maxwell construction to obthe A18 model are compared in Fig. 10. They are not too
tain the change in density due to the phase transition. Thgifferent for PNM. For SNM, however, gt>0.6 fm 2 the
baryon chemical potentials, which for beta equilibrium are_ o energy is much lower than that of the VCS. The VCS
equal to the neutron chemical potentials,_ and total pressurgs ymSaturates for the A18 model at-0.6 fm~3, while that
of the two phases are equated to obtain the densities ansf | OB calculations continues to increase with density, caus-
proton fracUon_ss of the LDP and HDP in equilibrium. They thex, to do the same. It will be interesting to see if three
are (0.204 fm ',0'073) and (0.237 fn13,0.05?) reSPeC-  hole-line and higher terml&/,51] neglected in the LOB cal-
tively. In the region between these two densities the most, ations reduce the difference between LOB and VCS en-
stable form of the matter is a mixture of the two phases. ergies.
) Engvik et al.[19] have calculated, in cold matter using
B. Proton fraction and K the LOB method with all five modern NN potentials that
The proton fraction and the related electron chemical poProvide high precision fits to the Nijmegen NN scattering
tential of the matter are important in assessing the cooling
rates of neutron stargl7] and the possibility of kaon con- 1400
densation in neutron star interiof48,49. For the models
discussed here we plot in Fig. 8 the proton fractign
against baryon density. This figure also shows, for compari- 5,1
son, results obtained for other models and by other methods
the U14+UVIlI model, a predecessor of the present A18 80.0 |
+UIX model, as given by WFF with the VCS method; the
A18 model, results of Engvilet al. [19] with lowest order
Brueckner(LOB) calculations; the U14-DDI mod¢ll0] us-

120.0

" A18(LOB)

60.0 |

E/A [MeV]

40.0 A18 (VCS)
ing the FPS effective interactigd 1]. Indicated on the plot is
the critical value ofx,, as a function of, for the onset of 200 | B
the direct Urca cooling process in the presence of both elec- -~ Atg(LOB)

trons and muons. That process allows energy to be con-  °° B
ducted from the interior of the star by neutrinos generated in - ‘ ‘
binary thermal collisions, a very efficient procg43]. In the 0.0 02 04 o) 08 08 10
models containing three-nucleon interactions, the discontinu- P

ity in x, at p~0.2 fm 3 signals the onset of the HDP. The  FIG. 10. Comparison of the energies of PNM and SNM ob-
corresponding electron chemical potentials are plotted in Figtained for the A18 model with the VCS method in the present work,
9. and with LOB calculations by Engvikt al. [19].
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data base. At a density of one nucleon pef fire CD-Bonn
model[17] gives the largesk, of 0.15, while the Nijmegen 24 v
| model[15] gives the smallest value of 0.10. The spread in  22[
these values is comparable with the difference between VCS 20}
and LOB results for A18 ok,= 0.09 and 0.14 at this den- 187
sity. 187
The 6v term and the three-nucleon interaction increase g'4
the symmetry energy, and push thgbarely above the Urca Sz
limit at high densities. For the A1846v +UIX* model the 10 ¢
threshold is at a density ¢f=0.78 fm 3, and, as discussed 08
in the next section, stars must have a masa.0M; to o8 /s
achieve such a density. However, this density is at the limit  oa /7~
of our calculations and of the input physics. For example, o2 /72~
admixtures of quark matter with hadronic matter, considered oo

AlgeUIX b

A18+8v+UIX

A18+8v

. . . . . . . .
04 0.6 0.8 1.0 1.2 1.4 1.6 1.8

in the next section, may affect the Urca process in matter at o2 o, [fm™]
such densities.
The U14-DDI(FPS model predicts values fo, that are FIG. 11. Neutron star gravitational mass, in solar masses, vs

much smaller than those predicted by all other models concentral baryon density, for the four models described in the text.

sidered here, and in fact go to zero for-1 fm=3. It is The full curves are for beta-stable matter, and the dotted lines are

based on the U14 NN interaction. also used in the Ulzgr‘or_pure neutron matter. The yertical lines show the density_above
+UVII model. However, instead of7adding the UVII three which the matter is superluminal. The dashed curve, FPS, is from
nucleon interaction to obtain the empirical saturation densit;Lll]'

of nuclear matter, it uses a density dependent modification
(U14-DDI) of the U14 NN interactiorf9] chosen to repro-
duce the energy, density and compressibility of equilibrium
nuclear matter. Unlike the UVII interaction, this modification

reduces the symmetry energy, and thusstpeat high den- neutron matter EOS for densities greater than 0.1 %m

sity. The main advantage of using three-nucleon InteraCtlonSjoined to the crust results of Réfl1]. Earlier results with the

instead .Of denslty _dependent modifications of the .tWO'FPS EOJ11] are included for comparison. For the same set
nucleon interaction, is that the former can be tested via ac-

. . . of results, the neutron star mass is plotted against the star
curate calculations of the light nuclei. Unfortunately, theradius in Fig. 12.

The maximum masses for the five models illustrated in

The dependence of the neutron star mass on central
baryon density, for the four models is shown in Fig. 11. In

order to estimate the effect of beta-stability on these results,
we show also the trajectories obtained by using the pure

overestimating thex,; an improved version of the UIX

) : based on only two-nucleon interactions have maximum
model is currently being developed.

masses at or below IMB,, those for the two models con-
taining three-nucleon interactions have maximum masses
V. NEUTRON STARS well above M. The model that we believe includes most
Using the methods just described we obtain for eactPf the necessary physics is AX&v +UIX*, which yields a
model the EOS for cold, catalyzed beta-stable matter. At &aximum mass of 2M . This model achieves its maxi-
baryon number density of 0.1 fr they are joined onto an Mum mass for a central baryon density=1.14 fm 2,
earlier EOS in which properties of the crust material has

been treated more accuratefjll]. The Oppenheimer- 24 ¢ .
Volkoff general relativistic equations for a spherically sym- 22| - AU
metric (nonrotating neutron staf1] are 20 f 18U
1.8
dpP (p+PIc®)G(M(r)+4mr3P/c?)A(r) 16|
W T r2 ! REN
5 12+
=
r 10 -
m(r)zfo47-rrzf)dr, (5.1) 0s |

where A(r)=[1-2Gm(r)/rc?]"t. The corresponding
equations for obtaining the moment of inertia, for a slowly %27
rotating star, are given in Appendix B. Starting from some %% o0 0.0 o 0 3.0
central mass-energy densjiy, or equivalently from a cen- radius len]

tral number density, these equations are integrated out-  FiG, 12. Neutron star gravitational mass, in solar masses, vs
wards to a rad_|U$ =R, at Whl(fhp_ is zero, thus yielding radius, in kilometers, for the four models described in the text. The
the stellar radiusR, the gravitational mass of the star, full curves are for beta-stable matter, and the dotted ones are for
M=m(R), and the moment of inertib pure neutron matter. The dashed curve, FPS, is fibth




1820 A. AKMAL, V. R. PANDHARIPANDE, AND D. G. RAVENHALL PRC 58

TABLE XI. Maximum gravitational masses, iM, and moments of inertif, in My km?, for stars
with beta-stable matter and with PNM; with incompressiiéC) matter atp>p,(fm~23) for the A18+ sv
+UIX* model; and with mixed nuclear-quark matt&tM +QM) phase(bag constanB in MeV fm™3).

NM Max. mass  Max. mass Max. p, of INC  Max. mass Max|
models beta-stable PNM beta-stable Models beta-stable  beta-stable
A18+ v +UIX* 2.20 2.21 115 0.32 2.92 261
A18+UIX 2.38 2.39 143 0.48 2.46 157
Al18+ v 1.80 1.81 67 0.64 2.26 123
Al18 1.67 1.68 55 0.86 2.19 115
FPS 1.80 73
NM+QM B Max. mass MaxI B Max. mass Max]
models beta-stable  beta-stable beta-stable  beta-stable
A18+ v +UIX* 122 1.91 96 200 2.02 107
Al18+ 6v 122 1.74 66 200 1.76 67
which is not far beyond the calculated VCS energies, so that P(p)=P(p))+(p—p,)c?, (5.3

only slight numerical extrapolation is involved.

The moments of inertia given in Table XI are the maxi-
mum values for each model. They occur for slightly lowerand the matter interior tp, is then maximally incompress-
central densities than do the maximum masses. The effect ghle. Other thermodynamically related quantities may be ob-

the three-nucleon interactions on the maximum moment ofained easily{26]; the corresponding baryon number density
inertia is in general considerably greater than on the maxiis

mum masses, because TNI tend to increase stellar radii also.
The relativistic correction to the Fermi energies,
—3k¢/56m®, mentioned at the end of Sec. Ill B, when in- p+3(P,—pc?)
serted(with its attendant contributions to chemical potentials P=pPi\/ = 1. ~ o (5.4
and pressupeinto the EOS of the model A186v + UIX*, pitz(Pi=pic)
produces ap=0.1 fm 2 a reduction in pressure of 6.9%,
butatp=1.0 fm™* the reduction is only 1.1%. The effecton The relatively small reduction in the energy of the Al8
the maximum mass is a 0.2% reduction, smaller than the. 5, + UIx* model resulting from this replacement fpr
digits quoted in Table XI. _ . =pg=0.86 fm 3 is shown in Fig. 13. In Fig. 14 we show
The mass limits obtained with PNM EOS are within the effect on the mass vs radius plot. The maximum mass is
~0.5% of the values determined from the EOS of matter inequced from 220 to 2.10M,, a very small change. In

beta equilibrium, and the radii are withir5%. Thus the g)| models of the present work superluminal behavior occurs

last section do not have a large effect on these aspects of

neutron star structure. 8000

A. Superluminality and maximally incompressible matter P20,

Indicated on the curves in Fig. 11 are the densitigsat 8000 ocop, ]

which the sound speed,=/dP/dp becomes greater than
the speed of lights. Superluminal behavior would not occur
with a fully relativistic theory, and it is necessary to gauge
the magnitude of the effect it introduces at the higher densi-
ties. Kalogera and Bayifb2] provide one method for doing
this. Following Rhoades and Ruffifb3], they assume that 2000 |
the stiffest physically allowable EOS produces matter with a
sound speed equal to the speed of light, i.e.,

e p=4p,/,,f
400.0 '/}7 e

E/A [MeV]

* y=p,=0.86 fm™

A8 IVAUIX

A18+5v

0P 5 ) 002 0.4 06 08 10
—= =Cg—C". (5.2 p Iim™]
ap
FIG. 13. For beta-stable matter according to the AL®

. . . +UIX* model, the total energy per baryon vs baryon denditlf
que the mat_ter IS at zero temperature, f,or asingle pha_se tr&ﬁrve). The dashed curves are for the assumption that matter is
partial derivative becomes a total derivative. Thus for highety ayimally incompressible for densities greater than the indicated

densities than somg, the EOS is replaced by value, and the lower full curve is for the A385v model.
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FIG. 14. Neutron star gravitational mass, in solar masses, vs FIG. 15. The neutron and electron chemical potentials in beta
radius for the A18 v +UIX* model (upper full curve, for the  stable matter according to models Ad8v +UIX* (full line) and
maximally incompressible modifications of this model at densitiesA18+ sv (dashed ling Threshold densities for the appearance of

beyond chosen values pf (dashed curvgsand for the A18 Sv noninteracting hyperons are marked by horizontal line segments.
model (lower full curve.

seen from Fig. 11. Therefore replacing superluminal matter N 68
with maximally incompressible matter has little effect on the
stellar properties.

It is also possible that due to neglect of four-body and
higher forces, and relativistic corrections of order (velodity)
and higher, the present work underestimates the sound velo
ity at lower densities. The effects of this possibility can be
studied by assuming that the EOS of the Al& +UIX*
model is valid up to a chosen denspy, beyond which it is
maximally incompressible. The results obtaineddp+ 2, 3,
and 4o, are shown in Figs. 13 and 14, and Table XI. The

If we neglect the interaction between nucleons and these hy-
perons, then the chemical potential of a hyperon at threshold
density is given by its mass. Under such an assumption, the
negatively charged hyperons appear in the ground state of
Gense matter whem,+ ue reaches their mass, while the
neutral hyperons appear wher, equals their mass. Since
Me In dense matter is larger than the mass differences be-
tween lambdas, sigmas, and deltas, Yheand A~ will ap-

pear at lower densities than the neutfal provided the in-

i betw thE £ th it btained b teraction effects are small. The chemical potentials of
Inerence between (p) of the matter obtained by as- electons, and of neutrons in beta-stable matter, are shown in

suming thatp, =2p and theE(p) of the AL8+dv +UIX* 0 "15 o1 the A18 6y + UIX* and A18+ sy models. The

r_nodel is ?:e_verlal tlimﬁs thfe contribution of thle_ ljl)hterac- threshold densities for noninteractityy , A~, and A are
tion (see Fig. 14 It therefore appears unrea |§t|c to assumengicated by horizontal line segments. Given their relatively
that p, can be as small aspg. Results obtained witlp,

. [Aore low values, it is clear that in the absence of interactions these
=3po provide a better |nd|c§t|on of_what we can expect,icles would be present in most neutron stars. Results ob-
from the hardest EOS consistent with realistic models Okyineq ysing crude models of the interactions between hyper-
nuclear forces. ons and nucleons, and between hypefa@jsndicate that the
>~ and A~ have the largest effect of all hyperons on the
B. Transition to quark matter EOS; however the magnitude of the effect is very sensitive

It is also possible that the present EOS is too hard due t& the interaction model.
the assumption that neutron star matter contains only nucle- The available hyperon-nucleon scattering data has been
ons and leptons. Should it also contain other hyperons sudi§viewed recently by de Swart, Maessen, and Rijkeh55)
asA, 3 %" and A~ %" "* the EOS may be softer than along with the status of one-boson exchange models of the
that obtained with nucleons onf@]. The forces between interactions between hyperons. Additional information on
hyperons and nucleons and between hyperons are not as wdlrnucleon interactions can be obtained from the measured
known as nuclear forces, and it is therefore difficult to esti-A-nucleus binding energies. These indicate the presence of
mate whether such exotic species are present in neutron stANN three-body forces that are as strong as the three-
matter. nucleon interactiof56,57. In view of these uncertainties,

The chemical equilibrium in matter containing nucleons,particularly concerning the importa¥™ and A~ interac-
lambdas, sigmas, deltas, and leptons is governed by tHéons, we do not attempt to estimate the effect of these hy-

equations perons on the EOS of neutron star matter.
A transition from hadronic to quark matter is expected at
My -=paA-=pMnt Me, (5.5 high densities. Knowledge of the EOS of both hadronic and
quark matter is necessary to estimate the possible effects of
MA= Us0= tA0= Up, (5.6)  this transition on neutron stars. Here, we use the present

models of the EOS of hadronic matter, containing only
My +=a+= MUp= Mn~ Me, (5.7 nucleons and leptons, and the quark bag model wjth and
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FIG. 16. For beta-stable matter, the energies per unit volume for FIG. 17. For the Al18 v +UIX* models and the quark bag
the A18+ v +UIX* and the A18 Sv models, and the quark bag model withB=200 MeV/fn?, the proton fraction of nucleon matter
models withB=122 and 200 MeV/fm are shown by full and Xp, the chargeX;) and strangenesx{) per baryon of quark mat-
dashed lines; the dotted lines correspond to neutral mixtures dkr, the volume fractionf occupied by quark matter, and the
charged nuclear and quark matter. chargex, per baryon carried by the leptons in the mixture.

s quarks for the quark matter. Theandd quarks are taken tron distribution during the phase-mixing is not a good ap-
to be massless, arglquarks to have a mass of 150 MeV. A proximation at length scales7 fm. As described in Ref.
Fermi gas of quarks of flavdrhas density; =k2,/7?, due  [23,26, an alternative assumption that the nuclear and the
to the three color states. There is no one-gluon exchang@Jark matter share a common electron distribution in the
interaction energy between quarks of different flavor, whilemixture is more appropriate. For a given nucleon matter den-
that between quarks of flavaris given by (2v/3w)E; per sity py the transition now involves equilibrating the chemical
quarki [58]. HereE; is the average kinetic energy per quark, Potentials,

and« is the strong interaction coupling constant, assumed to

have a value of 0.5. The value of the bag consBais poorly Mn=Hut 21, Hp= 2t K, (5.10

known, and we present results using two representative val- .
ues ofB=122 MeV[59] andB=200 MeV fn 3 [60]. and the hadronic pressures of nuclear and quark matter. In

The beta equilibrium conditions for charge neutral uarkthe process, the proton fraction of the nucleon matter and the
matter are 9 9 q densities of the quarks are also determined. The lepton

chemical potentials are then given by
But Me=Ha=HMss  Mp=Me- (5.9 Me= [u= fin— fp=fd~ My (5.12)

The energy densities of charge neutral quark matter anffom which the electron and muon densities are readily
nuclear matter are plotted in Fig. 16. In the interesting regiorfound. The fractional volumefq, occupied by the quark
of p~1 fm~2 the total energy density of quark matter is component in the mixture is now chosen so that the nuclear,
about 1200 MeV fm?3, of which only 122 or 200 MeV quark, and lepton components are in sum charge neutral:
fm~3 comes from the bag.

If, during the phase transition from nuclear to quark mat- _
ter, the nuclear and the quark phase are each required to be petru=3T0(2pu=pa=ps) +(1=To)pp, (512
charge-neutral beta-stable fluids whose pressures and baryon
chemical potentials are equilibrated, then for the Al® after which the macroscopic baryon density of the mixture
+UIX* model the transition is found to extend over the can be calculated:
density range p=0.86-1.57 fm 3 for3 the B .
=200 MeV fm * case. FoB=122 MeV fm °, the range _ _ .
is 0.79-1.20 fm 3. The matter within this density range, p_pmix_§fQ(p“+pd+p5)+(l folon. (513
as so treated, is a constant-pressure mixture of that at the two
ends of the range. Such a constant-pressure mixed phasée procedure is carried out provided that 0,<1. Some
does not occur in the neutron star: as can be seen from Equmerical details are given in Appendix C.
(5.1), since the pressure does not change, the density changesThe mixture of A18+ év + UIX* model nucleon and the
discontinuously from the lower nuclear matter density to theB=200 MeV fm 3 quark matter occurs over the density
higher quark matter density. range pmix="0.74-1.80 fm 3. Over this range, a charge

Since for the nuclear component of the matter pat neutral mixture of quark and nucleon matter is more stable
~1 fm 3 the electron screening length is7 fm, while  than the constant-pressure mixture of separately neutral
the quark matter component has negligible electron distribunuclear matter and quark matter. The quark matter fraction
tion, the previous assumption that each fluid retains its elecfq, the charge per baryon of the nucleon matter, given by
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the proton fractiorx,, the chargex., and strangeness,, 24
per baryon of the quark matter and the chaxgeper baryon
carried by the leptons in the mixed matter are plotted for this 2ot
case in Fig. 17.
Over the density range occupied by the mixture the 16}
nucleon matter has densitigg=0.74-0.96 fri 3, while
the quark matter densities are 1:32.82 baryons fm?. The ol
mixture thus consists of dense negatively charged quark mat- £
ter immersed in somewhat less dense positively charged
nucleon matter. The neutralizing charge of the leptons de-
creases in magnitude from its value in the purely nucleon
matter, and tends rapidly to zero by the time the quark frac- %4
tion has reached 50%.
The lower density end of the mixed phase region is more 00> o - o - - - s
relevant for neutron stars. Here one expects small drops of ' ' ' oot ' ' '
dense quark matter witk,~xs~ —1 appropriate for matter
made up off,~ hyperons. Ground states of dense matter can FIG. 18. Neutron star gravitational mass, in solar masses, vs
have such a form also if matter madeXf has a softer EOS central baryon density, for the A%85v+UIX* and A18+ dv
than nucleon matter. Knowledge of the interactions betweef'0d€!s with(dashed curvesand without(solid lines quark matter
3~ hyperons is necessary to further explore this pOSSib”i,[yadmlxture. The two dashed curves for the Al& model are for

In regard to the direct Urca cooling process, the proton fraclg:122 and 200, respectively.

Eﬁ? &fetk;s Tgﬁliglt:gittgéé?e?:e?')_(Ifﬁge rlgctrj?raeséle?nvgrg]entu obtained is now not constant over the density range of the
P ) q . r|I|11ixture, although as can be deduced from Fig. 16, it is re-
balance among neutrons, protons, and electrons is onl

i ) duced from that of the pure nuclear matter. The resulting
achieved at a baryon d§n3|ty of 0.86 fh somewhat larger neutron star masses are shown in Fig. 18 as a function of
than the value 0.78 fa? needed for the nucleon matter

. central baryon density. Maximum masses are given in Table
alone. At densities larger than 0.86 frhthe momentum XJ. For the A18+ sy model, admixing quark matter has

balance remains possible, although the decreasing density_g all effects on neutron star structure; however, the effects

e!ectrons reduces the rate of the Urca Process. Thus the 'Bre noticeable for models containing three-nucleon forces.
direct effect of the quarks on the nucleons is to delay the sta te that by neglecting the surface and Coulomb energies
'?r: the Ulr(ca pLQCﬁss sork;1ev¥f17%}. Afttﬁ denstlty of O'Sﬁ?rﬁ we underestimate the energy density of mixed matter and

€ quarks, which are about 77 of the matler, can It behavy, ,q o erestimate the effect of the admixture. The maximum

ing as free_ partic_:les contribute to the Urc_a process directly ensities in stable neutron stars remain below those for pure
Such considerations, however, are complicated by effects ‘guark matter in all the four cases considered

qguark matter occurring as droplets.

At the high density end of the mixed phase, the quark
matter has approximately equal number wf d, and s
guarks, and nearly symmetric nucleon matter occupies a When each phase is required to be charge neutral, the
small fraction of the total volume. Here one expects smalimixed region between the normal nuclear matter LDP and
drops of SNM, i.e., nuclei compressed to a density-&p, the spin-ordered, or neutral pion condensed HDP has con-
by the pressure of surrounding quark matter. However, thistant pressure and constant average nucleon chemical poten-
interesting form of matter at very large densities does notial. In the neutron star such a mixed region would not occur,
seem to occur in stable neutron stars according to the preseand the density at this pressure would change discontinu-
calculations. ously by 0.033 fm? for the A18+ dv+UIX* model, a

The two-component equilibrium suggested in RéB]is  15% jump. However, we should use the approach described
formally the same as the equilibrium between nuclear mattein the last subsection for this transition also, and consider
and dripped neutrons in crustal neutron-star matter. Extendnixtures of charged LDP and HDP in a common lepton sea.
ing that similarity, Ref[24] includes the effects on the phase On applying the equilibrium conditions of nuclear pressure
transition of the energy of the surface dividing nucleon andand neutron and proton chemical potentials between the LDP
guark matter, as well as the Coulomb energy associated witand HDP, one finds that the density limits between which a
the difference between the charge densities of nucleon anaixture occurs is only slightly extended compared to those
guark matter. The lowest energy states of matter in the mixewith the charge-neutral-fluid equilibrium quoted earlier, but
region are then found to contain varying sizes and shapes dfie mixture does now have a pressure that changes with den-
liguid in one phase surrounded by the liquid in the othersity. However, due to the similarity in charge character of the
phase. The presence of a new parameter of unknown magrivo phases the change in pressure in going from pure LDP to
tude, the surface energy, complicates the problem, howevepure HDP is rather small, and therefore the thickness of the
and lacking new information on it, we have not included LDP-HDP mixed region in the star is also fairly small.
surface and Coulomb effects in results given here. Selected neutron star density profiles for the Al®

The energy densities of the mixed region, calculated ne-+ UIX* model are shown in Fig. 19. Although it is not de-
glecting its surface and Coulomb contributions, are shown iriectable from the figure, the mixed region associated with
Fig. 16. As discussed at length in RE23], the total pressure pion condensation now extends over a finite region of the

M (B=200 MeV fm™)

AsedvUIX 7T T T e

08 -

C. Transition to spin-ordered phase
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FIG. 19. Density profiles of 2. and 1.4M, stars of beta- FIG. 20. The sound speed and the adiabatic irldes p/m for

stable matter using the A385v +UIX* model without quark mat-  peta-stable matter according to the A8y +UIX* (solid curves

ter admixture(solid lineg, and of 2.00 star with quark matter gng A18+ sv (long dashed curvésmodels. The short dashed
admixture (dashed ling assuming a bag constanB  cyryves are for the assumption that matter is maximally incompress-
=200 MeV fm?. ible for densities greater than the indicated value. The dotted curves

] ) ] are for the nucleon-quark mixed phase.
star. Its radial thicknessAry, is ~14 m for the 2.1

case, and~40 m for the 1.4M, case. The 2.10 and the energy density of matter, i.ea~pm. In this limit, for
2.00M ,, stars shown in Fig. 19 have the same central densitynatter without correlationd, = 5/3, 2, or 3 when the pres-
of 0.86 fm 3; their mass difference is due to the admixturesure is provided by Fermi kinetic energy, static two-body or
of quark matter considered only in the 2.00. star. The three-body interactions, respectively. Repulsive momentum
1.41 M, stars cannot have quark matter admixtures in thélependent interactions lead to larger value$ ofn the op-
present models. posite extreme of very high_density, the energy per pa_lrticle is
It is interesting to know the structure of matter having amuch larger than thﬁ particle’s rest mass. Neglecting rest
mixture of LDP and HDP. One possibility is that suggested™aSS, it is given by.p", wheren=1/3, 1, or 2 for the above
for the nuclear matter-quark matter transition by Heiselbergthree cases, and. is a constant. Thusp=\p"**, P
Pethick, and Staubf24], that there occur in the mixed re- =nAp""*, and['=1 for all values ofn. This does not con-
gion varying sizes and shapes of matter in one phase suftadict the well-known value df —4/3 in white dwarf{61].
rounded by liquid in the other phase. If we apply their estj-In white dwarf matter ;he nuclei are nonrellatlwstlc'and the
mates to this phase transition, assuming a surface tension fgfectrons are relativistic. The energy density of this matter
the interface in the range=1 to 10 MeV fm 2, we find  pc*=pMc?, wherep is the number density of nuclei, and
that the characteristic length scaleof the entities involved IS their mass. The pressure given by relativistic electrons is
is ~60 to 120 fm. The electron screening length, which forproportional top*® or equivalentlyp®®, giving I'=4/3.
this approximation to be valid needs to be also of this mag- Plots ofI" and the sound speed for various cases previ-
nitude, is only~10 fm, however. This indicates that neither ously described are given in Fig. 20. The two curves corre-
assumption about the mixture, that of two charge-neutral flusponding to pure nucleons behave as expected from the
ids (which results inArt=0) nor of two nuclear components above limits. From the crusf,’ rises to~3: of the two
with a common electron fluidwhich gives theAr; values =~ Maxima, the greater_ value gorresponds to the model with the
given abovgis correct, and we need to look at a mixture that€XPlicit three-body interaction UIX I' then decreases at

is somewhere in between these extremes. That problem willigner densities. The small peaks followed by cusps in these
be pursued elsewhere. curves atp/m~0.15 fmi 2 mark the softening of the EOS

due to the opening of the muon channel. The deep disconti-

V1. ADIABATIC INDEX T OF NEUTRON STAR MATTER nuity in bothI" and c, for the A18+ v +UIX* model are
due to the LDP-HDP transition. The indicated valuEs

A measure of the stiffness of matter described by the EOS-0.075 andc,/c=0.045 shown at the bottom of the declev-
P= P(E), is the adiabatic indeX': ity are averages resulting from the treatment of that transition
in Sec. V C.(When treated in terms of a mixture of neutral
fluids, in which case the pressure is constant, these quantities
(6.)  would be zero.
It is simple to express in terms mﬁ the extent of the
stellar radiusAr 1 occupied by this phase transition from Eqg.

—
Il
Tl
|
B
Il
Tl
3]
N

If T' were constant, then the EOS would becoRrep’. In

this form, it is called golytrope an idealized EOS on which (5.2):
many pioneering studies of stellar structure were b&séH 2 Gm(r)A(ry)
The values of” in several limiting cases are well known. At Ary~=—58p, g~ (6.2

.. . . 2 !
lower densities, the rest mass of the constituents dominates pOT rs
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Where; is an average quantity for the two phaMrT) is gates of3 ™~ hyperons. If the interaction @7W|th dense
the mass interior to the radius; at which the transition Nhucleon matter is not repulsive, there may eXisthyperons

ocurs,A(r+) is the redshift factor there, anih~ Spm is the in nucleon matter at densities below the threshold for the
density range of the transition, given earlier. The gravita-2PPearence of quark drops. Itis necessary to bulid” and
NNZ, ™ interaction models to more fully explore this possi-

tional acceleratiorgy at the transition region is greater for

the more massive star, and explains the trend of our valuet%'“ty'. . . . . o
obtained from the star profiles. Using maximally incompressible matter at high densities

The use of maximally incompressible matter beygnd we find that the upper limit for the maximum mass consistent
- ~ 3 with nuclear data is~2.5M ; this is not far from the pre-
=pg, Occurring in Fig. 20 apg/m=1.06 fm *, produces

0 ; i . icti f 2.2Mg of A18+ v + UIX* l. Th
a sharp reduction i". This modification produces so little diction 0 o Of our Al8+ov+U mode ©

ttect on the stell imitsh i Fia. 13b i lower limit for the maximum mass is more difficult to estab-
effect on the stellar mass imi{shown in 9. 3_ €Cause Il jish due to the unknown interactions between hyperons and
occurs at a density close to the central density in the star witl

ucleons. It may be as low as 1. Mg if the quark bag

maximum mass. The curves corresponding to nucleon—quargOnstant B has a value of122 MeV/i?. and if the three
mixed ph.ases discussed n ,SE_EC'V D redﬁcejnd\(;s_more neutron interaction is not as repulsive as the Urbana model
gradually: for an _ultrarelatlwstlc q_uark gas=c/y3, and | 4 high densities, even without admixture of hyperons in
the sound velocities of models with quarks are seen to bg ,er. Recently several authdi82—64 have argued that
approaching that value. Note that the partial derivative inyhere gre indications of the existence of neutron stars with

volved in the calculation of" and the sound velocity of M~2M,, . If these are confirmed, then models without TNI
nucleon-quark mixed phases must be carried out holding thg pe ryled out. However, such a possibility is still the

quark fractionf constant. subject of active debafi5].
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As is well known, the cooling of neutron stars is acceler- The effective interactiongsenergy densitigsthat fit the
ated by pion condensatig#7]. The detailed mechanism as- models examined in the first part of the paper all have the
sociated with the spin-ordered condensate that we find is d8rm
yet unexplored. In addition, we estimate that due to this

phase transition, there may be regions in the star where the h? -
matter density changes rapidly over a ten meter distance Hei=| 5+ (Ps+ (1= Xp)ps)pe P47 | 7,
scale. The matter in this thin layer of the star can have inter-
esting structures on a ten Fermi length scale. _2 —pap
We find that inclusion of the relativistic boost correction, | 2m T (PsTXpPs)pe ™
év, to the NNI increases the mass limit from 164 to 1.8 5
Mo without any TNI, while it is reduced from 2.838; to +9(p,Xp=0.9(1~(1-2xp)°)
2.20M 5 upon inclusion of the Urbana models of TNI. The +g(p,xp=0)(1—2xp)2, (A1)

reduction occurs because the TNI needed to fit nuclear data
have weaker repulsive parts after includifig. For the same wherep= p.+ and at zero temperature
reason, the effect of Urbana models of TNI on the mass limit P=PnT Pp: P
is diminished from 0.7M to 0.4M when theéduv is in-
cluded. Note that these models of TNI have only two terms;
the long range two-pion exchange term, and a short range
term with no spin-isospin dependence. Their strengths are (A2)
determined from the density of SNM and the triton energy.
However the triton, which has isospin 1/2, is insensitive toThe parameters defining thedependent terms are the same
the interaction between three neutrons. Improved models dbr all of the models, and are given in the caption of Table
TNI must consider data such as the binding energ§téé,  XII. For the A18 and A18 v models at all densities and
which are sensitive to the interaction between three neutron§r the LDP of models with TNI, the parametrization is

If the effective value of the bag constant B is larger than
122 MeV/fm?® it appears that only the heaviest neutron stars 9L(p.Xp=0.5=—p?(p1+ Pop+ Pep?
may have small drops of quark matter in their interior. The -
qguark composition of these drops is similar to that of aggre- +(p1ot+ p1p)e Po), (A3)

1 1
TpZW(SWZpo)SB, =52 Bm%p(1— Xp))5/3.
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TABLE XIl. Parameter values for effective Hamiltonian for different models. The paramegtgrs
=89.8 MeV fn?, p,=0.457 fnt, andps=—59.0 MeV fn? [see Eq(A1)] are common to all four models.
The dimensions of the parameters, involving MeV and/or powers of fm, can be worked out frofAEgs.

(A4), or (A5).

Model P1 P2 Ps p7

Ps Py P1o P11 P12 P13

Al8+6v+UIX* 3372 —382 —19.1 2146 -384 64 69 -33 0.35 0

A18+UIX 328.8 —4046 —34 2175 —385.6 6.35 254 0 0.47 —0.9
Al18+ v 281.0 —151.1 -10.6 210.1 -—158 588 588 —-15 -0.2 -0.9
Al8 2976 —1346 —-159 2150 —-116.5 6.42 51 -35 -0.2 0
Model P1a Pis P1s P17 P1s P P20 P21

A18+ Sv + UIX* 0 287 —-154 1750 —-145 0.32 0.195 0

A18+UIX —452 217.1 -1.0 1003 -1.19 0.32 0.2 -—-275

_ 12,2
gL(p:Xp:o):_Pz(plzlp‘f' p7+ p8p+ p13e Pgp )’

(A4)
while for the HDP of models with TNI,
In(p.Xp=0.5 =g (p,X,=0.5— p?(p17(p— P1o)
+Pos(p— Pro)?)ePr8P P19,
In(p.Xp=0)=0 (p.X,=0)— p(P15(p— P20)
+ P14 p— Pag)?)eP16 P P20, (A5)

The values of the parameters are as given in Table XII.

APPENDIX B: MOMENT OF INERTIA OF A SLOWLY
ROTATING STAR

We use the general relativistic equations for a slowly ro- '

tating star as described by Har{lé6]. The metric for the
nonrotating star is

ds?=—e’Vdt?+erdr2+r?(d 6%+ sirf 0 d?).
(B1)

It involves the radial functionsyv(r) and A(r). The
Oppenheimer-Volkoff equations for the pressi@), mass
function m(r) and A(r) are given in Sec. V, and(r)
=In(A(r)). The functiony(r) is defined by

dv  2G(m+4nr3P/c?)A(r)
-—= , (B2)
dr rz

with the boundary conditiore”®=1/A(R), and there is
also an equation for the rotational dragyr),

d do dj—
—|r4i—|=—4gr3—=
dr(r ]d:) 4r are (B3)

Here j(r)=e @ +MN)2 it has the boundary valug(R)

»(R)/Q=1-2GI/R3c2. | is the total moment of inertia,
given by either of the integrals

2¢? (R .dj(r) w(r)
3G, dr O

_871' R
=3,

4

-~ P )
p+? A(r)J(r)Tdr. (B4)

This set of equations, together with E®.1), is integrated
from r=0 to the valuer =R where the pressure becomes
negligible, with a given equation of sta=P(p), and a
central density(0) chosen to give the desired neutron star
mass. One then has also the radius and, after satisfying the
boundary conditions, the moment of inertia.
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FIG. 21. Graphical representation of the strong interaction equi-
librium between the A18 Sv + UIX* model of nucleon matter and
the B=200 MeV quark matter for the density region of the mixing
(see text Dashed curves labelled 1 through 10 are strong interac-
tion isobars, i.e., without considering charge effects and leptons.
They are for pressures from 100 MeV frhto 550 MeV fri 2 in
intervals of 50 MeV fm 3. The upperlower) set of curves on the
right side show the neutrofprotor) chemical potential vs proton
fraction (right side, and the quark-matter counterparts on the left
side showu,+2uy (2u,+ pq) Vs charge per baryox. . The cor-

=1. In the limit of slow rotation, such that the angular ve- hers of the rectangles correspond to the equilibrium values of the
locity Q<GM/R?c, w(r) has the boundary condition chemical potentials and charge fractions.
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APPENDIX C: DETAILS OF THE (Only in a few cases do the pressures involved correspond to
NUCLEON-QUARK EQUILIBRIUM those of the displayed gridThe vertical sides ensure that the
) . .Chemical potentialsy,, and u, on nucleon side, and /2
The nuclear matter-quark matter strong interaction equi- ,, and 2u,+ 4 On the quark side, belong to matter with

librium discussed in Sec.V B is illustrated graphically in Fig. the same charge per baryon. Other properties of interest,
21. Thex,>0 (right side of the plot relates to nucleon mat- sych as densities, are not represented on the plot. These equi-
ter and the left relates to quarks. Although states of quarlipria are a property purely of the strong interactions, irre-
matter can extend t8.=2 only thex,=<0 part is relevant gpective of leptons and charge neutrality. The latter property
here. The chemical potentials of isobars corresponding to tefhen determines the quark fractiog , defined in Eq(5.12).
equally spaced pressures are shown as dashed lines. Equilipso rectangles labeldal ¢, d ande have values of , going

ria corresponding to Ec(5.10 and to pressure are repre- from 0.001 to 0.999 and represent physical states, while
sented by the rectangles. The fdttom horizontal sides of  those labellech andf give fo=—0.169 andf,=2.38 corre-

the rectangles join states with the sapg (u,) on quark  sponding to unphysical states. However, they all correspond
and nucleon isobars corresponding to the same pressur®. equilibrium under the strong interactions.
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