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Equation of state of nucleon matter and neutron star structure

A. Akmal,* V. R. Pandharipande,† and D. G. Ravenhall‡

Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, Illinois 61801
~Received 14 April 1998!

Properties of dense nucleon matter and the structure of neutron stars are studied using variational chain
summation methods and the new Argonnev18 two-nucleon interaction, which provides an excellent fit to all of
the nucleon-nucleon scattering data in the Nijmegen database. The neutron star gravitational mass limit ob-
tained with this interaction is 1.67M ( . Boost corrections to the two-nucleon interaction, which give the
leading relativistic effect of order (v/c)2, as well as three-nucleon interactions, are also included in the nuclear
Hamiltonian. Their successive addition increases the mass limit to 1.80 and 2.20M ( . Hamiltonians including
a three-nucleon interaction predict a transition in neutron star matter to a phase with neutral pion condensation
at a baryon number density of;0.2 fm23. Neutron stars predicted by these Hamiltonians have a layer with a
thickness on the order of tens of meters, over which the density changes rapidly from that of the normal to the
condensed phase. The material in this thin layer is a mixture of the two phases. We also investigate the
possibility of dense nucleon matter having an admixture of quark matter, described using the bag model
equation of state. Neutron stars of 1.4M ( do not appear to have quark matter admixtures in their cores.
However, the heaviest stars are predicted to have cores consisting of a quark and nucleon matter mixture.
These admixtures reduce the maximum mass of neutron stars from 2.20 to 2.02~1.91! M ( for bag constant
B5200 (122) MeV/fm3. Stars with pure quark matter in their cores are found to be unstable. We also
consider the possibility that matter is maximally incompressible above an assumed density, and show that
realistic models of nuclear forces limit the maximum mass of neutron stars to be below 2.5M ( . The effects of
the phase transitions on the composition of neutron star matter and its adiabatic indexG are discussed.
@S0556-2813~98!04509-9#

PACS number~s!: 21.65.1f, 26.60.1c, 97.60.Jd
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I. INTRODUCTION

The significant influence of nuclear forces on neutron s
structure is by now firmly established by a large body
theoretical and observational evidence@1#. In the absence o
these forces, the maximum possible mass of neutron s
composed of noninteracting neutrons is;0.7 solar masses
(M () @2#. Since most observed neutron star masses
above 1.3M ( @3#, they must be supported against gravi
tional collapse by pressure originating from nuclear forc
In the present work, we study neutron star structure us
one of the most realistic models of nuclear forces curren
available. A brief outline of previous calculations leading
this work is presented below.

Shortly after the discovery of pulsars, calculations of t
equation of state~EOS! of neutron star matter with realisti
models of the two nucleon interaction~NNI!, obtained by
fitting the nucleon-nucleon~NN! scattering data then avai
able, were carried out using the lowest order constrai
variational method@4,5#. The results demonstrated th
nuclear forces increase the mass limit of stable neutron s
beyond 1.4M ( .

By the late 1970s it had become clear that the NNI alo
could not account for the properties of nuclear matter
few-body nuclei. Variational@6# and Brueckner calculation
@7#, including higher order cluster contributions, establish
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that nuclear matter with realistic NNI saturates at too hig
density. In addition, these interactions were known to u
derbind 3H. Ignoring the latter problem, plausible densi
dependent terms were added to the Urbanav14 ~U14! model
of NNI @8,9# to reproduce the observed equilibrium prope
ties of nuclear matter. The resulting density dependent~U14-
DDI! model of nuclear forces predicted stable neutron s
having masses up to 1.8M ( @10,11#.

Since nucleons are made up of quarks and have inte
degrees of freedom, we can expect interactions among t
~and perhaps four or more! nucleons, in addition to the NNI
The Urbana three nucleon interaction~TNI! models contain
only two terms, with strengths fixed by the saturation dens
of nuclear matter and the binding energy of3H. Wiringa,
Fiks, and Fabrocini~WFF! @12# used the U14 and the subs
quent Argonnev14 ~A14! @13# models of NNI, together with
the Urbana VII~UVII ! model of TNI, to study neutron sta
structure and obtained mass limits of 2.19M ( and 2.13M (

with the U141UVII and A141UVII, respectively. They also
found that pure neutron matter~PNM! undergoes a transition
to a phase having spin-isospin order, attributed to neu
pion condensation, at a density of;0.2 fm23 with the A14
1UVII, but not with the U141UVII. Neither of these mod-
els results in a phase transition in symmetric nuclear ma
~SNM!, which is composed of equal numbers of neutro
and protons.

In the early 1990s the Nijmegen group@14# examined
carefully all NN scattering data at energies below 350 M
published between 1955 and 1992. They extracted 1
proton-proton~pp! and 2514 proton-neutron~np! ‘‘reliable’’
data, and demonstrated that these data determine all
1804 © 1998 The American Physical Society
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PRC 58 1805EQUATION OF STATE OF NUCLEON MATTER AND . . .
phase shifts and mixing parameters quite accurately.
NNI models which fit this Nijmegen database with
x2/Ndata;1 are called ‘‘modern.’’ These include th
Nijmegen models@15#: Nijmegen I, II and Reid-93, the Ar-
gonnev18 @16#, denoted here by A18, and the CD-Bonn@17#.
In order to fit the pp and np data simultaneously and ac
rately, these models include a detailed description of
electromagnetic interactions and terms that break the iso
symmetry of nuclear forces. All include the long range on
pion exchange potential, but follow different treatments
the intermediate and short range parts of the NNI. The
ferences among the predictions of these models for the p
erties of many-body systems are much smaller than th
among the predictions of older models, presumably beca
all modern potentials accurately fit the same scattering d
For example, the3H binding energies predicted by the mo
ern Nijmegen models and A18 are between27.62 to27.72
MeV @18#, while that of CD-Bonn is28.00 MeV @17#. The
difference between these results and the experimental v
of 28.48 MeV is used to fix one of the parameters of Urba
TNI models.

Detailed studies of the energies of dense nucleon ma
were carried out recently by Engviket al. @19# using all the
modern models of NNI and the lowest order Brueckn
~LOB! method. According to these studies, the results w
the modern potentials are all quite similar up to densit
relevant to neutron stars. For example, the energies pred
with the LOB method for neutron matter at 5r0 , wherer0
50.16 fm23 is the equilibrium ~saturation! density of
nuclear matter, range from 80 to 93 MeV per nucleon. T
spread of 13 MeV in these energies is small compared to
possible errors in the LOB method and the expected con
butions of TNI at this density. This model independence
sults from the fact that the mean interparticle distance ar
;5r0 is greater than 1 fm, and the predicted matter energ
therefore not sensitive to the details of the interaction atr i j
,1 fm.

In this paper we study the structure of neutron stars w
the A18 model using variational chain summation~VCS!
methods, which hopefully include all leading many-bo
correlation effects. The Urbana model IX~UIX ! @20# is used
to estimate the effect of TNI. Previous studies of nucle
matter with A18 and UIX interactions have indicated t
possibility of a transition to a neutral pion condensed ph
for both PNM and SNM@21#. The effects of such a transitio
on the structure of neutron stars are studied here in de
The effect of relativistic boost corrections@22# to the A18
interaction is also examined. At high densities, we consi
the possibility of matter becoming maximally incompres
ible, as well as that of a transition to mixed phases of qu
and nucleon matter@23,24#.

The relativistic mean field~RMF! approximation@25# has
been used in many studies of high density matter and neu
stars. There exists a vast amount of literature on this to
some of which has been reviewed by Glendenning@26#.
While the RMF approximation is very elegant and pedago
cally useful, it is not valid in the context of what is know
about nuclear forces, which is the theme of this work. F
example, using the meson parameters of the CD-Bonn
wave potentials in the RMF approximation leads to unbou
SNM. ~In order to accurately fit the NN scattering data, t
e
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phenomenological scalar meson parameters in the CD-B
model are allowed to depend on partial wave quantum nu
bers.! At a density ofr0 , for SNM, the RMF approximation
yields an energy per nucleon of;120 MeV, while the
LOB method gives;218 MeV. In the mean field Hartree
approximation, which is implicit in the RMF calculations
the A18 NNI gives energies per nucleon of;130
(137) MeV atr0 and1155 ~1204! MeV at 5r0 for SNM
~PNM!, while the variational calculations presented he
give ; 218 ~112! and125 ~188! MeV, respectively.

The main problem is that the mean field approximati
for meson fields is only valid form r̄ !1, wherem is the
inverse Compton wavelength of the meson andr̄ is the mean
interparticle spacing. Over the 1-5r0 density range,r̄ esti-
mated using a body centered cubic lattice ranges from 2
1.2 fm. Thusm r̄ is in the range 1.4 to 0.8 for the pion and 7
to 4.7 for vector mesons. The mean field approximation
not applicable, since these values are obviously far from
ing much smaller than one. The RMF approximation can
based on effective values of the coupling constants that
into account the correlation effects. However, these coup
constants then have a density dependence, and a micros
theory is needed to calculate them.

This paper is organized as follows. Section II contain
summary of the nonrelativistic calculations with A18 an
A181UIX models of nuclear forces, while Sec. III describ
the calculations including the relativistic boost interactio
denoted bydv, without and with the TNI model UIX* . The
beta equilibrium of neutron star matter is discussed in S
IV and results for neutron star structure are presented in S
V, where we also discuss the effects of the possible transi
to mixed nucleon and quark matter phases. The adiab
index and sound velocities in neutron star matter are give
Sec. VI, and conclusions are presented in Sec. VII.

II. NONRELATIVISTIC CALCULATIONS

Nonrelativistic calculations of SNM and PNM with th
A18 and UIX interactions were carried out using variation
chain summation~VCS! techniques described in detail i
@21#. Energies are calculated by evaluating the expecta
value of the Urbana-Argonne Hamiltonian with a variation
wave function composed of a product of pair correlation o
erators acting on a Fermi gas wave function. The pair co
lation operators are written as a sum of eight radial corre
tion functions, each multiplied by one of the two-bod
operators:„1,si•sj ,Si j ,(L–S) i j …^ (1,ti•tj ). The wave func-
tion depends on three variational parameters: the range o
tensor correlations,dt , the range of all other correlations,dc,
and a quenching parametera, meant to simulate medium
effects. In this section we discuss results obtained for f
cases, namely SNM and PNM with and without the thre
nucleon interaction, in order to indicate their sensitivity
various terms in the nuclear force, and to extend them
higher densities, beyond the range covered in@21#.

The optimum values of the parametersdt anddc in matter
without and with the three-nucleon interaction are shown
Fig. 1. Some of the noise in the variation of these parame
with matter density is due to the insensitivity of the energy
their values at the variational minimum. The large increa
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1806 PRC 58A. AKMAL, V. R. PANDHARIPANDE, AND D. G. RAVENHALL
in dt of PNM without Vi jk at r;0.5 fm23 is due to a tran-
sition to a phase withp0-condensation as discussed in@21#.
With Vi jk there are sudden changes in thedc anddt of PNM
at r;0.2 fm23, and in thedt of SNM at r;0.32 fm23.
These are associated with the same phase transition. We
that the present variational wave function is not fully a
equate to describe the long range order in thep0-condensed
phases. However, since the change in the energy due to
p0-condensation appears to be small, we expect our e
mates of the energies of matter withp0-condensation to be
useful.

FIG. 1. Central and tensor healing distances (dc and dt), for
SNM and PNM, with A18 interaction alone~upper graph!, and with
A181UIX interaction ~lower graph!.
ote
-

the
ti-

Our nonrelativistic Hamiltonian,HNR , is comprised of
the nonrelativisic kinetic energies and the two-body A18 a
three-body UIX interactions. The NNI includes a stat
long-range one-pion exchange part, with short-range cut
and phenomenological intermediate and short-range p
which depend on the six static two-body operato
(1,si•sj ,Si j ) ^ (1,ti•tj ) and eight momentum-depende
~MD! two-body operators:„(L–S) i j , Li j

2 ,si•sjL i j
2 ,(L–S) i j

2
…

^ (1,ti•tj ). The A18 includes an additional isovector oper
tor, and three isotensor operators, which distinguish betw
pp, np and nn interactions. These isovector and isoten
terms are small, and give zero contribution to the energy
SNM to first order. They are therefore neglected in SN
calculations. In the case of PNM all the isospin operators
be eliminated and the full A18 with isovector and isotens
terms becomes the sum of a static part with opera
(1,si•sj ,Si j ), and a MD part with operators (L–S) i j ,
Li j

2 ,si•sjL i j
2 and (L–S) i j

2 . The UIX model ofVi jk contains
two static terms; the two-pion exchange Fujita-Miyazawa
teraction,Vi jk

2p , and a phenomenological, intermediate ran
repulsionVi jk

R . The strength of theVi jk
2p interaction was de-

termined by reproducing the binding energy of the triton v
Green’s-function Monte Carlo~GFMC! calculations @20#,
while that of Vi jk

R was adjusted to reproduce the saturati
density of SNM.

Expectation values of the various interactions are cal
lated in the VCS framework by summing terms in their clu
ter expansions. The one-body, two-body, and many-b
contributions to the kinetic and NNI energies are listed
Tables I–IV. The one-body cluster contribution includ
only the Fermi gas kinetic energy,TF . The remainder of the
kinetic energy is separated into the contribution from t
two-body cluster̂ T&2B and that coming from the many-bod
clusters,̂ T&MB . The kinetic energy can be calculated usi
different expressions related by integration by parts. If
MB contributions are calculated, these expressions yield
same result. However, they yield different results when o
selected parts of the MB clusters are summed by VCS te
niques. We have calculated the many-body kinetic ene
using expressions due to Pandharipande and Bethe~PB!, and
to Jackson and Feenberg~JF! @27#. The averages of the PB
and JF results appear under the column^T&MB , and the dif-
ferencesTPB2TJF are listed underDT. In studies of atomic
helium liquids the exact energies, calculated via Monte Ca
TABLE I. Cluster contributions to A18 SNME(r) in MeV.

r TF ^T&2B ^T&MB DT ^vs&2B ^vMD&2B ^vs&MB ^vMD&MB dE2B

0.04 8.77 5.33 20.29 0.16 219.46 0.03 1.43 0.17 20.27
0.08 13.93 10.30 21.06 0.47 236.84 0.43 4.44 0.64 20.57
0.16 22.11 19.64 21.79 1.11 266.48 2.04 8.44 2.58 21.13
0.24 28.97 26.95 22.47 1.49 291.46 4.69 12.06 5.39 21.73
0.32 35.09 34.45 23.92 1.63 2115.82 7.89 17.17 9.37 22.37
0.40 40.72 40.55 23.23 1.53 2135.38 11.96 17.57 14.48 23.03
0.48 45.99 46.22 21.95 1.17 2152.83 16.69 16.55 20.76 23.63
0.56 50.96 51.95 21.82 0.46 2170.59 21.72 17.92 28.24 24.17
0.64 55.71 58.03 23.73 20.99 2188.73 26.61 22.56 36.91 24.60
0.80 64.64 68.60 4.47 24.07 2202.42 34.67 8.42 51.76 25.13
0.96 73.00 79.71 20.40 28.27 2236.38 47.43 18.47 80.12 25.43
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TABLE II. Cluster contributions to A18 PNME(r) in MeV.

r TF ^T&2B ^T&MB DT ^vs&2B ^vMD&2B ^vs&MB ^vMD&MB dE2B

0.04 13.92 5.08 21.93 0.14 215.79 0.41 4.90 20.14 20.39
0.08 22.09 8.21 22.49 0.26 226.87 1.34 6.92 20.22 20.46
0.16 35.07 15.00 23.02 0.43 248.10 4.15 9.75 0.28 20.80
0.24 45.95 21.67 22.89 0.20 267.45 7.67 11.01 1.92 21.20
0.32 55.67 28.50 23.65 20.54 286.52 11.95 12.81 5.16 21.73
0.40 64.60 31.71 20.28 21.07 298.77 17.57 6.97 9.95 22.33
0.48 72.95 37.39 4.57 21.23 2113.39 23.89 0.93 15.57 23.00
0.56 80.84 43.86 3.15 7.25 2141.33 35.90 21.98 32.50 23.86
0.64 88.37 56.20 0.99 8.55 2168.18 40.75 0.50 45.53 24.80
0.80 102.54 67.08 2.35 5.72 2201.26 57.99 26.50 73.07 27.00
0.96 115.80 80.44 22.75 2.83 2237.50 74.78 28.05 112.66 210.08
t
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~MC! methods, lie between the PB and JF values evalua
using VCS methods@28#. Although exact MC calculations
are as yet not practical for nucleon matter, we believe
average of the two expressions to be more accurate
either one, and that the difference provides a measure o
uncertainty in the many-body calculation. The^T&MB is quite
small in nucleon matter, due to cancellations between v
ous many-body terms, and therefore the differenceDT is a
better indication of this uncertainty.

The two-body cluster contribution to the static and M
parts of the NNI energy are listed under^vs&2B , and
^vMD&2B . The ^vs&2B is negative and large enough to bin
SNM, though not PNM. ThêvMD&2B increases rapidly with
density, and is proportional torTF at r.2r0 . The many-
body contributions to the static and MD parts of the N
energy are listed separately as^vs&MB and^vMD&MB . Previ-
ously, great efforts were made to improve upon the accur
of the calculation of̂ vs&MB @6,29#; however, at large densi
ties the^vMD&MB grows rapidly, and becomes larger in ma
nitude than̂ vs&MB . The MD contribution is more difficult to
calculate because of the gradients inv i j

MD , which may oper-
ate on the correlations of nucleonsi and j with other nucle-
ons. All the leading terms are calculated as discussed in@21#,
and the corresponding errors should therefore be m
smaller than the reported values. At higher densities
ed

e
an
he

i-

cy

h
e

^vMD&MB becomes proportional tor^T&2B , as expected. An
additional perturbative correction to the two-body energy
listed asdE2b . This small correction is due to an improve
ment in the variational wave function, which occurs wh
correlation functions are calculated separately in eachl ,S,J
channel@21#.

The expectation values ofv i j
p , v i j

R , Vi jk
2p , and Vi jk

R for
SNM and PNM are listed in Table V. Here,v i j

R is the phe-
nomenological part,v i j 2v i j

p , of the NNI. Since the UIXVi jk

is purely static, the error in the calculation of its expectati
value is likely to be small. In SNM, with only the A18 in
teraction, thevp gives more than half of the total NNI en
ergy at all densities considered. The corresponding calc
tion with A181UIX interactions shows a significant increas
in the magnitudes of the negative contribution ofVi jk

2p be-
tweenr50.32 and 0.4 fm23 associated with pion condensa
tion. In PNM these pion exchange interactions make re
tively small contributions at densities below the pha
transition, occurring atr;0.2 (0.5) fm23 with ~without!
UIX. However, at the densities above the transition th
make large negative contributions comparable to those
SNM. At the highest densities the contributions ofVi jk

2p and
Vi jk

R become very large, and the validity of this purely no
relativistic approach becomes questionable. As discusse
TABLE III. Cluster contributions to A181UIX SNM E(r) in MeV.

r TF ^T&2B ^T&MB DT ^vs&2B ^vMD&2B ^vs&MB ^vMD&MB dE2B

0.04 8.77 5.70 20.34 0.19 220.00 20.01 1.60 0.19 20.28
0.08 13.93 10.16 20.97 0.46 236.51 0.44 4.21 0.64 20.60
0.12 18.25 15.27 20.74 0.89 251.63 1.24 5.25 1.60 21.10
0.16 22.11 20.97 20.81 1.21 266.74 2.12 6.52 3.01 21.80
0.20 25.65 25.84 20.46 1.51 280.18 3.47 7.12 4.77 22.54
0.24 28.97 30.51 0.22 1.87 293.16 5.38 7.51 7.10 23.33
0.32 35.09 39.38 1.32 2.46 2117.90 9.41 8.60 12.56 25.21
0.40 40.72 53.32 0.54 6.24 2154.44 15.18 23.65 25.65 26.93
0.48 45.99 61.13 1.08 7.80 2178.46 18.79 27.12 34.34 27.93
0.56 50.96 69.68 2.27 8.51 2201.66 24.75 27.70 45.69 28.67
0.64 55.71 79.46 1.92 10.20 2227.19 28.60 32.93 58.95 29.20
0.80 64.64 93.07 1.71 12.89 2269.82 39.35 39.57 87.26 29.73
0.96 73.00 111.43 26.19 18.52 2321.23 48.48 61.29 128.26 29.93
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TABLE IV. Cluster contributions to A181UIX PNM E(r) in MeV.

r TF ^T&2B ^T&MB DT ^vs&2B ^vMD&2B ^vs&MB ^vMD&MB dE2B

0.02 8.77 3.89 21.66 0.08 210.20 0.11 3.70 20.06 20.23
0.04 13.92 5.15 21.77 0.14 215.60 0.38 4.53 20.14 20.42
0.08 22.09 8.43 22.25 0.30 226.69 1.27 6.37 20.23 20.83
0.12 28.95 11.97 22.70 0.42 237.77 2.51 8.22 20.14 21.13
0.16 35.07 15.90 24.00 0.18 249.36 3.87 11.44 0.04 21.26
0.20 40.69 22.37 0.42 2.78 259.04 10.65 3.40 4.87 21.29
0.24 45.95 25.45 1.15 3.25 269.41 13.03 2.89 6.32 21.65
0.32 55.67 35.82 2.49 4.44 293.04 18.04 2.48 11.04 22.45
0.40 64.60 42.87 4.34 5.38 2113.78 25.07 0.31 16.94 23.20
0.48 72.95 51.57 6.35 6.27 2135.45 32.61 22.18 24.67 24.00
0.56 80.84 61.73 8.57 7.07 2157.94 40.68 24.92 34.25 24.75
0.64 88.37 80.34 12.00 7.62 2185.72 53.35 28.56 47.64 25.45
0.80 102.54 101.95 18.33 7.90 2230.35 77.63 216.19 74.42 26.50
0.96 115.80 120.83 21.91 7.62 2273.05 99.09 222.17 109.75 27.35
n
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the following section, approximately 40% of the contributio
of Vi jk

R is due to relativistic boost corrections to th
NNI , and a more plausible theory is therefore obtained
removing this boost contribution from the UIX interaction

The total energies, calculated in the manner previou
described for SNM and PNM, appear in Tables VI and V
and in Figs. 2 and 3. The pronounced kink in theE(r) of
SNM with Vi jk , at r50.32 fm23, is due to the phase tran
sition; the corresponding feature in PNM is a somew
more subtle change in the slope of the curve atr
50.2 fm23.

It is evident from theE(r) figures for SNM that without
theVi jk , the present calculation cannot explain the empiri
saturation densityr0 , of nuclear matter. As previousl
noted, the strength ofVi jk

R is adjusted to obtain the correc
equilibrium density in calculations withVi jk . However, the
present calculations withVi jk underbind SNM at saturation
density, givingE(r0);212 MeV per nucleon instead o
the empirical value of;216 MeV. This discrepancy is
y

ly
,

t

l

presumably due to the use of imperfect variational wa
functions, which do not include, for example, three- a
higher-body correlations. It is known from comparison of t
results of variational Monte Carlo~VMC! and exact GFMC
calculations@30,31#, that variational wave functions of th
present form underbind the light p-shell nuclei. The var
tional energy of8Be for example, is above the exact GFM
result by ;12%, even after incorporating into the wav
function some of the three-body correlations, which we ha
neglected here.

In LOB calculations of Engviket al. @19# the SNM en-
ergy atr0 obtained from the CD-Bonn interaction model
;2 MeV lower than that obtained from A18. The differenc
between the results obtained with the Nijmegen models
A18 is even smaller. In order to compensate for this diff
ence, the strength ofVi jk

R to be used with CD-Bonn mode
will have to be larger by approximately 30%, neglecting t
difference between SNM wave functions predicted by
two models. An increase of this order of magnitude will al
o the
TABLE V. Contributions of pion-exchange and phenomenological parts of nuclear interactions t
E(r) in MeV.

SNM SNM PNM PNM
A18 A181 UIX A18 A181 UIX

r ^v i j
p& ^v i j

R& ^v i j
p& ^v i j

R& ^Vi jk
2p& ^Vi jk

R & ^v i j
p& ^v i j

R& ^v i j
p& ^v i j

R& ^Vi jk
2p& ^Vi jk

R &

0.04 211.4 26.4 211.8 26.4 20.4 0.3 21.7 29.0 21.8 29.1 0.1 0.1
0.08 219.2 212.1 219.1 212.1 20.8 1.5 22.7 216.1 23.0 216.3 0.3 0.8
0.12 227.5 216.0 22.1 3.4 23.9 223.2 0.6 2.2
0.16 232.6 220.9 235.3 219.8 23.6 6.4 24.6 229.3 24.1 229.9 1.2 4.5
0.20 242.0 222.8 25.5 10.6 217.2 222.9 28.7 10.1
0.24 241.3 228.1 248.5 224.6 28.1 15.9 25.8 241.1 219.1 228.0 210.1 15.2
0.32 247.7 233.7 259.8 227.6 213.3 30.9 26.3 250.4 225.1 236.4 217.4 30.6
0.40 254.7 236.7 272.6 217.4 238.4 53.0 27.4 256.9 230.1 241.4 224.2 50.9
0.48 261.2 237.6 281.4 216.8 250.2 80.3 29.6 263.4 235.7 244.7 234.1 78.0
0.56 265.7 237.0 291.5 212.0 265.2 114.5 233.0 241.9 241.6 246.3 247.2 112.7
0.64 266.9 235.8 299.4 27.3 282.0 155.9 239.2 242.2 252.2 241.1 276.9 160.3
0.80 267.1 240.5 2112.1 8.5 2117.7 260.2 242.3 234.4 263.3 231.2 2116.3 267.9
0.96 270.9 219.5 2121.2 38.0 2169.4 397.7 246.2 211.9 270.9 215.5 2155.0 402.5
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approximately bridge the difference of;0.4 MeV between
the A18 and CD-Bonn triton energies, and give give a sa
ration density nearr0 with the CD-Bonn model. These est
mates are certainly very crude, since the difference betw
the wave functions is probably not entirely negligible. Ne
ertheless it is very likely that results obtained from Hamil
nians containing realistic two- and three-body forces,
justed to reproduce the triton binding energy, the SN
density and other relevant data, will be less model depen
than those obtained with Hamiltonians containing only re
istic two-body forces. The differences between the off sh
behavior of the two-body forces will be partially compe
sated by those in the three-body forces accompanying
two-body force model.

III. RELATIVISTIC BOOST CORRECTION
TO THE NN INTERACTION

In all analyses, the NN scattering data is reduced to
center of mass frame and fitted using phase shifts calcul
from the NNI, v i j , in that frame. Thev i j obtained by this
procedure describes the NN interaction in the frame in wh
the total momentumPi j 5pi1pj is zero. In general, the in

TABLE VI. The E(r) of SNM in MeV.

r A18 A181dv A181UIX A181dv1UIX* corrected

0.04 24.28 24.08 24.39 24.31 26.48
0.08 28.72 28.07 28.06 27.97 212.13
0.12 210.52 210.54 215.04
0.16 214.59 212.54 211.85 212.16 216.00
0.20 211.28 212.21 215.09
0.24 217.61 213.69 28.99 210.89 212.88
0.32 218.13 211.87 0.84 24.21 25.03
0.40 216.37 27.70 12.23 2.42 2.13
0.48 212.21 21.01 32.18 15.56 15.46
0.56 25.79 8.16 59.99 34.42 34.39
0.64 2.76 19.54 95.05 58.36 58.35
0.80 25.01 45.24 188.51 121.25 121.2
0.96 56.51 82.63 313.46 204.02 204.0

TABLE VII. The E(r) of PNM in MeV.

r A18 A181dv A181UIX A181dv1UIX*

0.02 4.35 4.45
0.04 6.06 6.32 6.23 6.45
0.08 8.53 9.26 9.21 9.65
0.12 12.71 13.29
0.16 12.33 14.51 17.38 17.94
0.20 23.47 22.92
0.24 16.69 20.76 28.85 27.49
0.32 22.19 28.59 43.28 38.82
0.40 29.41 38.10 63.79 54.95
0.48 38.91 50.35 90.46 75.13
0.56 49.08 66.00 123.93 99.75
0.64 59.37 81.15 165.40 127.58
0.80 88.27 119.46 273.37 205.34
0.96 125.29 167.02 412.30 305.87
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teraction between particles depends upon their total mom
tum, and can be written as

v~Pi j !5v i j 1dv~Pi j !, ~3.1!

where v i j is the interaction forPi j 50, anddv(Pi j ) is the
boost interaction@22# which is zero whenPi j 50.

It is useful to consider a familiar example. The Coulom
Breit electromagnetic interaction@32# between two particles
of massm and chargeQ, ignoring spin dependent terms fo
brevity, is given by

v~pi ,pj !5
Q2

r i j
S 12

pi•pj

2m2
2

pi•r i j pj•r i j

2m2r i j
2 D , ~3.2!

up to terms quadratic in the velocities of the interacting p
ticles. In our notation it is expressed as

v~pi ,pj !5v i j 1dv~Pi j !, ~3.3!

with

FIG. 2. The energy per nucleon,E(r), of SNM for various
interaction models.

FIG. 3. The energy per nucleon,E(r), of PNM for various
interactions models.
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v i j 5
Q2

r i j
S 11

pi j
2

2m2
1

~pi j •r i j !
2

2m2r i j
2 D , ~3.4!

dv~Pi j !52
Q2

r i j
S Pi j

2

8m2
1

~Pi j •r i j !
2

8m2r i j
2 D , ~3.5!

wherepi j 5(pi2pj )/2 is the relative momentum.
In all realistic models ofv i j , such as the A18, the depen

dence onpi j is included in the momentum-dependent part
the interaction,v i j

MD . However, we have neglected th
dv(Pi j ) in the calculations presented in the previous secti
Even though contributions of the boost interaction to
binding energy of SNM and3H were estimated by Coeste
and co-workers years ago@33,34#, these contributions hav
been neglected in most subsequent studies of dense ma

Following the work of Krajcik and Foldy@35#, Friar @36#
obtained the following equation relating the boost interact
of orderP2 to the interaction in the center of mass frame

dv~P!52
P2

8m2
v1

1

8m2
@P–r P–¹,v#

1
1

8m2
@~si2sj !3P–¹,v#. ~3.6!

The general validity of this equation in relativistic mechan
and field theory was recently discussed@22#. Incorporating
the boost into the interaction yields a nonrelativistic Ham
tonian of the form

HNR* 5(
pi

2

2m
1( „v i j 1dv~Pi j !…1( Vi jk* 1•••,

~3.7!

where the ellipsis denotes the three-body boost, and four
higher body interactions. ThisHNR* contains all terms qua
dratic in the particle velocities, and is therefore suitable
complete studies in the nonrelativistic limit.

Studies of light nuclei using the VMC method@37,38#
find that the contribution of the two-body boost interaction
the energy is repulsive, with a magnitude which is 37%
theVi jk

R contribution. The boost interaction thus accounts
a significant part of theVi jk

R in Hamiltonians which fit
nuclear energies neglectingdv.

In the present calculations we keep only the terms of
boost interaction associated with the static part ofv i j , and
neglect the last term in Eq.~3.6!. That term is responsible fo
Thomas precession and quantum contributions that are
ligibly small here@39#. Our dv is given by

dv~P!52
P2

8m2
vs1

1

8m2
P–r P–¹vs. ~3.8!

The two terms are due to the relativistic energy express
and Lorentz contraction, and are denoteddvRE and dvLC,
respectively. The three-nucleon interaction used in theHNR*
Eq. ~3.7! is denoted byVi jk* . Its parameters are obtained b
fitting the binding energies of3H and 4He, and the equilib-
f

.
e

er.

n

-

nd

r

f
r

e

g-

n

rium density of SNM, includingdv. The strength ofVi jk
R* is

0.63 times that ofVi jk
R in UIX, while that of Vi jk

2p is un-
changed. The resulting model ofVi jk is called UIX* .

The approximate HamiltonianHNR , containing A18 and
UIX interactions withoutdv, and the more correct Hamil
tonian HNR* , containing A18, UIX* and dv interactions,
yield very similar results for light nuclei up to8Be @38# and
for SNM up to equilibrium density. However, the two mod
els differ at higher densities, since the contributions ofdv
andVi jk

R have different density dependences.
One may also consider relativistic nuclear Hamiltonia

of the type

HR5( Api
21m21( „ṽ i j 1dv~Pi j !…1( Ṽi jk1•••,

~3.9!

which require re-fitting the two-nucleon scattering data
determine the two-body interaction,ṽ i j , using relativistic ki-
netic energies@37#. In light nuclei, thedv contribution ac-
counts for most of the difference between the energies
tained withHR and HNR , since the difference between th
contributions of the nonrelativistic and relativistic kinetic e
ergies is largely cancelled by the difference in interact
energy contributions fromv i j and ṽ i j . The results obtained
with HNR* are very close to those fromHR , indicating that
the former represents a significant improvement overHNR.

A. Calculation of boost interaction energy

The relativistic boost contributions are calculated
evaluating terms in the cluster expansion of^dv i j

RE& and
^dv i j

LC&. In addition to the dominant two-body cluster, w
have calculated dressed three-body separable diagrams
central chain diagrams.

In the case of the two-body cluster, the gradients in
center of mass momentum operator,Pi j 52 i (¹ i1¹ j ), can
act only on the Fermi gas part of the wave function, since
correlationsf i j depend only on the relative coordinate. Thu
the two-body cluster contribution tôdv i j

RE& is

C2B
RE~dir !52

kF
2

8m2

3

5
r

3 (
pmp8

E d3r i j ~ f pvmf p8! i j C~Oi j
p Oi j

mOi j
p8!

~3.10!

C2B
RE~ex!5

1

8m2

r

s (
pmp8n

E d3r i j ~ l 822 l¹2l ! i j

3~ f pvmf p8! i j C~Oi j
n Oi j

p Oi j
mOi j

p8!. ~3.11!

The quantitiesC(•••) in the integrand of these expressio
represent the spin-isospin-independent part~or ‘‘C-part’’ ! of
the operator product enclosed by the parentheses. Only
C-part of operator products appear in the cluster integr
since the energy expectation value requires a sum ove
possiblesz and tz @6#, which average to zero in isotropi
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matter. In the case of SNM the indicesp,m,p8 run over the
first six operators, as we boost only the static interactions
consider only static correlations in this calculation. The
dexn51,4 comes from the exchange operator. In the cas
PNM the ti•tj operators are eliminated from the Ham
tonian, thus the indicesp,m,p8 andn can represent only uni
or spin-dependent operators. The exchange operator
contributes a factor of 1/s, wheres is the degeneracy of th
system~4 for SNM, 2 for PNM!.

The C2B
RE(dir ) differs from the corresponding expressio

for the two-body direct contribution tôv i j
s & by a factor

2(1/8m2)(6kF
2/5), which is the expectation value o

2Pi j
2 /(8m2) in the Fermi gas. The exchange part of the clu

ter, C2B
RE(ex), has the same form as the correspond

expression for ^v i j
s &2B(ex), with l 2 replaced by 2(2/

8m2)( l 822 l¹2l ), where l[ l (kFr ) is the Slater function.
This expression results from gradients inPi j

2 acting on the
plane waves

1

AV(
i j

e2 i ~ki•r j 1k j •r i !~2¹ i
22¹ j

222¹ i•¹ j !e
1 i ~ki•r i1k j •r j !

52r@„l 8~kFr i j !…
22 l ~kFr i j !¹

2l ~kFr i j !#. ~3.12!

Here,A is the number of nucleons,V is the normalization
volume, and since we are in the thermodynamic limit,A/V
5r.

The two-body cluster contribution tôdv i j
LC& is
d
-
of

lso

-
g

C2B
LC~dir !5

kF
2

8m2

r

5

3 (
pmp8

E d3r i j S f pr
dvm

dr
f p8D

i j

C~Oi j
p Oi j

mOi j
p8!

~3.13!

C2B
LC~ex!52

1

8m2

r

s (
pmp8n

E d3r i j ~ l 822 l l 9! i j

3S f pr
dvm

dr
f p8D

i j

C~Oi j
n Oi j

p Oi j
mOi j

p8!,

~3.14!

which is simply the cluster contribution of a nonrelativist
potential r dv/dr, with the direct term multiplied by
(2/5)(kF

2/8m2), and with the l 2 in the exchange term re

placed by (2/8m2)( l 822 l l 9). As in thedvRE case, the extra
factors in^dvLC& result from the gradients indvLC acting on
the Fermi gas part of the wave function.

The three-body separable diagrams represent the m
significant many-body cluster contributions to the boost
ergy. The direct term for a boostdvx, wherex5RE or LC,
has the form
m,

as
tter

ly
m
ollowing

ibutions

racting
st
more
1

AV3(i jk (
pmp8qq8

E d3r kd
3r i j d

3Ri j e
2 i ~kk•rk1ki j •r i j 1K i j •Ri j !CS 1

4
$ f i j

p Oi j
p , f ik

q Oik
q %~dv i j

x !mOi j
m$ f i j

p8Oi j
p8 , f ik

q8Oik
q8%

2„f pOp~dvx!mf p8Op8
…i j ~ f qOqf q8Oq8! ikDei ~kk•rk1ki j •r i j 1K i j •Ri j !. ~3.15!

The plane waves are written here in terms of the relative momentum,k i j 5(k i2k j )/2, and the center of mass momentu
K i j 5k i1k j , of the interacting pair. The interacting exchange (i j 2ex) and the passive exchange (ik2ex) expressions are
obtained from the above by inserting the appropriate exchange operators@(1/s)(n51,4Oi j

n or (1/s)(n51,4Oik
n ] to the far left of

each operator product, and replacing the first plane wave product bye2 i (kk•rk2ki j •r i j 1K i j •Ri j ) or e2 i (ki•rk2k jk•r i j 1K jk•Ri j ).
Following the notation used in the calculation of the MD interaction energy@40,21#, separable diagrams are classified

K-diagrams and F-diagrams. The former have gradients indvx acting on the Fermi gas part of the wave function, and the la
have them acting on the correlation operatorsFik . As with the two-body cluster contributionC2B

x , the K-diagrams depend
linearly on the Fermi kinetic energy. WhileC2B

x scales asrTF , like the ^vMD&2B , the K-diagram contributions scale rough
asr2TF . The K-diagrams generally make only small contributions to^dvx&, the major separable contributions coming fro
F-diagrams. The relatively large contribution of the F-diagrams, versus the K-diagrams, can be understood in the f
way. The correlated particlek in the separable diagram modifies the center of mass momentum of the interacting pairi j via
Fik , thus enhancing the boost correction. As the form of the F-diagram integrals suggest, we find that their contr
exhibit the same scaling behavior as^vMD&MB , namely asr^T&2B .

K-diagram contributions tôdv i j
RE& have been evaluated for the direct three-body separable diagram and the inte

exchange diagram. These contributions factorize into an integral overr i j , which is simply the corresponding two-body boo
diagram, and an integral overr ik . The latter integral is a so-called single-loop vertex correction, which is included in the
general vertex correction,Mdd21, to ^v i j

s &, defined in@6#. The direct K-diagram contribution is

Ws
RE~K,dir !52

kF
2

8m2

3

5
r (

pmp8q
E d3r i j ~ f pvmf p8! i j K

pmp8Ap8Aq
r

2E d3r ik~ f ik
q !2~Dpq1Dmq1Dp8q!, ~3.16!
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where theKpmp8, Ap, andDpq matrices, defined in@6#, give the C-parts taking into account the non-commutativity of opera
Oi j

p andOik
q . The corresponding interacting exchange contribution is given by

Ws
RE~K,i j 2ex!5

1

8m2

r

s (
pmp8qm8n

E d3r i j ~ l 822 l¹2l ! i j ~ f pvmf p8! i j

1

2
~Knpm8Kmp8m81Kpmm8Kp8nm8!Am8

3rE d3r ik~ f ik
q !2AqS Dqm81

1

2
Dqm1

1

2
DqnD . ~3.17!

The F-diagram contributions tôdv i j
RE& are evaluated for the direct, interacting exchange and passive exchange terms.

contributions also factor into separate integrals, where ther i j integral has the form of the two-body contribution to^vs&, and
the r ik integral is a new type of vertex correction involving gradients of thef ik . The direct andi j -exchange integrals are

Ws
RE~F,dir !5 (

pmp8q

r

2E d3r i j ~ f pvmf p8! i j K
pmp8Ap8

r

4m2E d3r ik f ik
q S ¹2f q2

6

r 2
f q~dq51dq6!D

ik

3F1

4
~Dpq1Dmq1Dp8q!11GAq, ~3.18!

Ws
RE~F,i j 2ex!5 (

pmp8qm8n
S 2

r

2sD E d3r i j ~ l 2f pvmf p8! i j

1

2
~Knpm8Kmp8m81Kpmm8Kp8nm8!Am8

3
r

4m2E d3r ik f ik
q S ¹2f q2

6

r 2
f q~dq51dq6!D

ik

F1

2
Dqm81

1

4
Dqm1

1

4
Dqn11GAq. ~3.19!

The ik-exchange contribution is evaluated only to leading order, namely for the cases where at least onef ik is a central link.
In this approximation, this contribution takes the form

Ws
RE~F,ik2ex!5 (

pmp8n
S 2

r

2D E d3r i j ~ f pvmf p8! i j K
pmp8Ap8

1

4m2

r

sE d3r ikl ik
2 F ~ f c¹2f c! ik1~ f c¹2f n! ikAnS 11

1

2
Dnp8D

1~ f n¹2f c! ikAnS 11
1

2
DnpD G . ~3.20!

In this equation, the indexn runs from 2 to 4 only.
The K-diagram separable three-body contributions to^dv i j

LC& have the same general structure as the corresponding co
butions to^dv i j

RE&. The direct term and the interacting exchange term have been evaluated and are presented below

Ws
LC~K,dir !5 (

pmp8q

kF
2

8m2

r

5E d3r i j S r f p
dvm

dr
f p8D

i j

Kpmp8Ap8
r

2E d3r ik~ f ik
q !2Aq~Dpq1Dmq1Dp8q!, ~3.21!

Ws
LC~K,i j 2ex!5 (

pmp8qm8n

2
1

8m2

r

sE d3r i j ~ l 822 l l 9! i j S r f p
dvm

dr
f p8D

i j

1

2
~Knpm8Kmp8m81Kpmm8Kp8nm8!Am8

3rE d3r ik~ f ik
q !2AqS Dqm81

1

2
Dqm1

1

2
DqnD . ~3.22!

The separable three-body F-diagrams have a more complicated structure for thedv i j
LC . The direct diagram has the gener

form

(
pmp8qq8

r2

8m2E d3r i j d
3r ikS 2

1

4DC@$ f i j
p Oi j

p , f ik
q Oik

q %„r i j •¹R…~¹~v i j
mOi j

m!•¹R!$ f i j
p8Oi j

p8 , f ik
q8Oik

q8%#. ~3.23!

The integrand can be written as a sum of four terms having the gradients indv i j
LC acting on different parts of the correlation
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2
1

4S r f p
dvm

dr
f p8D

i j

f ik
q S F ~ f q8!92

1

r
~ f q8!8Gcos2u i1

1

r
~ f q8!8D

ik

C@$Oi j
p ,Oik

q %Oi j
m$Oi j

p8 ,Oik
q8%#

2
1

2S f p
dvm

dr
f p8D

i j

„f q~ f q8!8…ikcosu iC@$Oi j
p ,Oik

q %Oi j
m$Oi j

p8 ,r i j •¹Oik
q8%#

2
1

4S f p
1

r

dvm

dr
f p8D

i j

~ f qf q8! ikC@$Oi j
p ,Oik

q %Oi j
m$Oi j

p8 ,~r i j •¹!r i j •¹Oik
q8%#

2
1

4
~ f pvmf p8! i j f ik

q C@$Oi j
p ,Oik

q %~r i j •¹R!¹R•~ f ik
q8¹Oi j

m$Oi j
p8 ,Oik

q8%!#. ~3.24!

The C-parts in the above expressions depend on the cosine of the azimuthal angle,u i , and therefore cannot be express
exclusively in terms of theDpq matrices, which include an implicit average over that angle. The C-parts must the
individually evaluated for each operator product.

The contribution of the direct diagram is dominated by the first term in the above sum. In evaluating the inte
exchange and passive exchange diagrams, only the term corresponding to that dominant part has been included. Fo
the interacting exchange contribution is approximated by

Ws
LC~F,i j 2ex!5 (

pmp8qq8n

1

8m2

r2

s E d3r i j d
3r ikS l 2f p

dvm

dr
f p8r D

i j

f ik
q S F ~ f q8!92

1

r
~ f q8!8Gcos2u i1

1

r
~ f q8!8D

ik

3
1

4
C@Oi j

n $Oi j
p ,Oik

q %Oi j
m$Oi j

p8 ,Oik
q8%#. ~3.25!

TABLE VIII. Contributions of relativistic boost interactions to theE(r) in MeV.

A18 A181UIX
SNM PNM SNM PNM

r ^dv&2B ^dv&MB ^dv&2B ^dv&MB ^dv&2B ^dv&MB ^dv&2B ^dv&MB

0.02 0.08 0.03
0.04 0.15 0.05 0.21 0.05 0.15 0.05 0.21 0.05
0.08 0.45 0.20 0.59 0.14 0.44 0.20 0.58 0.15
0.12 0.85 0.40 1.10 0.29
0.16 1.32 0.74 1.71 0.46 1.33 0.73 1.72 0.49
0.20 1.88 1.09 2.60 0.58
0.24 2.42 1.50 3.16 0.91 2.49 1.50 3.42 0.84
0.32 3.76 2.49 4.92 1.48 3.86 2.51 5.46 1.41
0.40 5.18 3.49 6.64 2.06 6.04 3.75 7.73 2.25
0.48 6.69 4.52 8.67 2.77 7.92 5.17 10.34 3.20
0.56 8.35 5.59 12.28 4.64 9.96 6.81 13.27 4.23
0.64 10.16 6.62 15.81 5.97 12.29 8.69 16.69 4.81
0.80 12.61 7.62 22.12 9.07 17.12 11.90 23.83 7.25
0.96 16.95 9.17 29.62 12.11 23.11 14.61 31.91 10.59
lc
ly

ibu
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o
o
n
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ur
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ns
ns
ted

tion
be-

he
or
The corresponding passive exchange contribution was ca
lated with the additional simplification of considering on
leading term contributions, having at least one centralf ik

c

link.
We have also evaluated central-chain diagram contr

tions, denoted byWcch , to the boost interaction expectatio
values. These diagrams are obtained by dressing two-b
cluster diagrams with hypernetted central chains. Their c
tribution was found to be significantly smaller than the co
tribution from separable three-body terms.

The combined results for the two-body clusters and
u-

-

dy
n-
-

r

the many-body clusters appear in Table VIII. The first fo
columns contain the boost contributions to the energy
SNM and PNM, calculated using the optimal wave functio
for the A18 interaction alone, while the next four colum
contain the corresponding boost contributions, calcula
with the optimal wave functions for the A181UIX. As ex-
pected, the many-body contributions to the boost interac
energy are comparable to the two-body contributions,
causeTF and ^T&2B have similar magnitudes.

Detailed breakdowns of the boost contributions in t
A181UIX* model are presented in Tables IX and X f
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TABLE IX. A181UIX* : Contributions tô dvRE& in MeV.

SNM PNM
r C2B Ws(K) Ws(F) Wcch C2B Ws(K) Ws(F) Wcch

0.02 0.04 0.00 0.02 0.00
0.04 0.09 0.00 0.04 0.00 0.11 0.00 0.04 0.0
0.08 0.24 20.02 0.15 0.00 0.31 20.01 0.12 0.00
0.12 0.46 20.04 0.31 0.00 0.58 20.03 0.23 0.00
0.16 0.73 20.06 0.54 0.00 0.93 20.03 0.39 20.01
0.20 1.03 20.09 0.81 0.00 1.32 20.16 0.50 20.03
0.24 1.36 20.14 1.11 0.00 1.73 20.19 0.68 20.03
0.32 2.11 20.22 1.85 0.00 2.77 20.32 1.14 20.06
0.40 3.25 20.70 3.17 20.04 3.90 20.40 1.69 20.08
0.48 4.26 20.94 4.35 20.04 5.23 20.51 2.34 20.09
0.56 5.36 21.15 5.61 20.05 6.71 20.66 3.05 20.14
0.64 6.63 21.53 7.20 20.05 8.51 21.00 3.68 20.24
0.80 9.02 21.96 9.58 20.05 12.14 21.43 5.41 20.32
0.96 12.44 23.58 13.37 20.16 16.23 21.87 7.65 20.40
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dvRE and dvLC. In all cases the bulk of the contribution
come from the direct terms. Since we can integrate^dvLC&
by parts to obtain̂dvRE& plus additional terms, their expec
tation values should be similar in magnitude. The ratio of
contributions ofdvLC and dvRE in SNM is found to be
;0.7 at all densities, while in PNM it is;0.75 at r
,0.2 fm23, and .1 at higher densities. Results of VMC
calculations@37# have shown that this ratio is;0.5 in 3H
and 4He.

ThedvRE has two factors,P2/8m2 andvs, suggesting the
approximation

^dvRE&'2K P2

8m2L ^vs&,

52
1

2m
^T&^vs&. ~3.26!
e

Our results show that this approximation has errors of o
;10% in SNM, but can be wrong by;50% in PNM. Nev-
ertheless it may be used to estimate the order of magni
of the contribution of relativistic boost interactions.

B. Nucleon matter energies

We evaluate the boost interaction contributions as a fi
order perturbation. Thus the energies of nucleon matter w
the A181dv interactions are obtained by simply adding t
dv contributions listed in Table VIII to the A18 energie
The results are listed in Tables VI and VII, and shown
Figs. 2 and 3.

The three-body interaction, UIX* , to be used with A18
1dv, contains the termVi jk

R* that is 0.63 times theVi jk
R in the

UIX. Since the boost effects are treated only in first ord
the energies for the A181dv1UIX* interaction are ob-
tained by addinĝ @dv i j 20.37 Vi jk

R #& to the energies for
A181UIX interactions. The results are listed in Tables V
0

TABLE X. A181UIX* : Contributions tô dvLC& in MeV.

SNM PNM
r C2B Ws(K) Ws(F) Wcch C2B Ws(K) Ws(F) Wcch

0.02 0.03 0.00 0.01 0.00
0.04 0.07 0.00 0.02 0.00 0.09 0.00 0.03 0.0
0.08 0.20 20.02 0.08 0.00 0.27 20.01 0.06 0.00
0.12 0.39 20.04 0.17 0.00 0.51 20.01 0.11 20.01
0.16 0.59 20.06 0.32 20.01 0.80 20.02 0.18 20.02
0.20 0.85 20.07 0.48 20.02 1.28 20.12 0.42 20.03
0.24 1.13 20.11 0.65 20.03 1.69 20.13 0.55 20.04
0.32 1.76 20.16 1.09 20.06 2.68 20.20 0.92 20.07
0.40 2.79 20.52 1.96 20.14 3.82 20.23 1.37 20.11
0.48 3.66 20.64 2.67 20.23 5.11 20.29 1.93 20.16
0.56 4.60 20.72 3.45 20.31 6.55 20.37 2.55 20.21
0.64 5.66 20.89 4.39 20.43 8.17 20.59 3.19 20.25
0.80 7.79 20.96 5.77 20.78 11.69 20.85 4.81 20.37
0.96 10.67 21.49 7.80 21.34 15.68 21.06 6.82 20.55
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PRC 58 1815EQUATION OF STATE OF NUCLEON MATTER AND . . .
and VII, and shown in Figs. 2 and 3. At low densities t
A181UIX and A181dv1UIX* interactions yield similar
results. However the energies predicted by the latter mo
are lower than those of the former at higher densities, wh
0.37̂ VR& is much larger than̂dv&. The difference between
the energies predicted by A181dv and A181dv1UIX* in-
teractions at higher densities is due to three-body forces;
smaller than that between the energies obtained from
and A181UIX by almost a factor of two.

The results obtained with the Urbana density-depend
interaction~U14-DDI! @10# are also shown in Figs. 2 and
for comparison. Since Skyrme-type interactions based on
U14-DDI E(r) explain nuclear binding energies quite acc
rately, it is likely to provide a reliable representation of ph
nomena atr<r0 .

The variation of the kinetic and interaction energies w
nucleon density in our most realistic model, with A181dv
1UIX* , interactions is shown in Figs. 4 and 5. Due to
large cancellation between the contributions ofV2p and
VR* , the totalVi jk contribution is now smaller than that o
v i j , and thedv contribution is also small. An order of mag
nitude estimate of the boost correction to the three b
interaction is given bŷ T&^Vi jk&/3m, using generalizations

FIG. 4. Kinetic and interaction energies in A181dv1UIX*
model of SNM.

FIG. 5. Kinetic and interaction energies in A181dv1UIX*
model of PNM.
el
re

is
8

nt

he
-
-

y

of Eq. ~3.26!. This estimate is less than 10 MeV at the hig
est density considered. The phase equilibria are calcul
after adding the boost interaction contribution, calculated
first order, separately for the phases with and without p
condensation. However, Figs. 4 and 5 show that thedv con-
tribution is very small, and has a smooth density depende
in the region of the phase transition. Therefore the bo
interactions do not have a noticeable effect on the transi
density.

The most significant remaining problem appears to be
neglect of the boost corrections to thevMD, the unboosted
contribution of which is quite large at high densities. Su
corrections involve terms of order (velocity)4, which are be-
yond the scope of the present work. The kinetic energy a
has corrections of that order, which we cannot include
cause the A18 interaction is fitted to data using nonrelativ
tic kinetic energy. However, the correction to the Fermi g
kinetic energy is 3kF

4/56m3, which is less than 10 MeV in
PNM at the density of 6r0 .

The Dirac-Brueckner approximation provides anoth
way to estimate relativistic effects using realistic models
nuclear forces. The energies of our A181dv1UIX* model
are lower than those of lowest order Dirac-Bruekner cal
lations with the Bonn A potential@41#. For example, at 4r0
we obtain 58 and 128 MeV per nucleon while the Dira
Bruekner calculation gives 76 and 164 MeV per nucleon,
SNM and PNM, respectively. However, the difference b
tween the results of the two methods is significantly sma
than that between either of the two and the uncorrected A
energies of 3 and 59 MeV per nucleon~Tables VI and VII!.

In the last column of Table VI we list SNM energie
obtained by adding a correctiong2r2e2g3r to the A181dv
1UIX* results. The empirical binding energy and density
SNM are reproduced withg252822 MeV fm6, and g3
518.34 fm3. This correction has a maximum value of 4
MeV at 0.11 fm23, and the ‘‘corrected’’E(r) of SNM is a
better representation of known nuclear properties at lo
densities, and is useful to obtain a smooth connection w
the EOS of crustal matter. It becomes identical to theE(r)
obtained using the A181dv1UIX* model at higher densi-
ties.

IV. COLD CATALYZED NUCLEON MATTER

In this section we use the results of the earlier section
calculate the equation of state and composition of cold, c
lyzed matter, i.e., matter at zero temperature in its low
energy state. Here the matter is assumed to be made u
neutrons, protons, and leptons; the possible admixture
quark matter is considered later. Since the boost interac
is clearly an integral part of the two-nucleon interaction, w
regard the models A181dv and A181dv1UIX* as realis-
tic, and discuss their results in detail. The difference betw
the two models demonstrates the effect of the three-nuc
interaction. Some of the results obtained with the less rea
tic models without the boost interaction are also presen
for comparison.

Matter at zero pressure, at the surface of a neutron sta
made up of atoms of56Fe, just as in terrestrial iron. This i
the most stable form of electrically neutral matter compos
of neutrons, protons, and electrons. Below the neutron
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1816 PRC 58A. AKMAL, V. R. PANDHARIPANDE, AND D. G. RAVENHALL
surface, as a result of the increased pressure of the m
caused by the gravitational attraction, the atoms beco
completely ionized and the electrons form a relativis
Fermi gas, whose Fermi energy becomes competitive
magnitude with nuclear energies@42#. Consequently, elec
tron capture by the protons can occur. As a result, with
creasing depth below the stellar surface the nuclei bec
more neutron rich, and cross the neutron-drip line. At t
point the most energetic neutron orbitals have become
bound, and the matter consists of neutron-rich nuclei
mersed in a neutron gas, whose density also increases a
pressure is increased further. The baryon number densi
which this transition occurs is about 231024 fm23. As the
pressure and density continue to increase, the charge nu
Z of the nuclei remains in the range 30240 but the mass
numberA grows steadily, and the distance between nuc
decreases. In the density range above about 0.06 fm23,
where the volumes occupied by nuclei and by the surrou
ing neutron gas become comparable, the matter may und
an inversion to bubbles of neutron gas surrounded by nuc
matter by going through a progression of phases involv
nonspherical shapes, although this aspect of the crustal s
ture is somewhat model dependent@11,43#. At a density
above about 0.1 fm23 there no longer occur nuclei or othe
clumps of proton-containing matter, and cold, catalyzed m
ter becomes a uniform fluid of neutrons with a small fracti
of protons.

A reliable discussion of the properties of matter over
crustal density range requires a nuclear model that can
scribe inhomogeneous matter in the geometries occur
there. The difficulties encountered cause the model dep
dence mentioned. However, for neutron stars with mas
*1.4M ( , the mass fraction contained in the crust of the s
is less than about 2%. We have therefore used result
earlier work @11,43# for matter at densities<0.1 fm23.
Since over that density range our present matter ener
agree well with ones used earlier, this substitution cau
negligible inconsistency in our conclusions about the to
mass of the neutron star.

At densities of 0.1 fm23 and greater, we require prope
ties of charge neutral uniform matter made up of neutro
protons, electrons and muons in beta equilibrium. At a giv
baryon number densityr5rn1rp , the conditions to be sat
isfied by the components are charge neutrality,

rp5re1rm , ~4.1!

and beta equilibrium,

mn5mp1me , mm5me . ~4.2!

Herer i is the number density of the species indicated by
subscripti , and m i is its chemical potential including res
mass. After achieving a solution to these conditions, o
obtains the total pressure

P5PN1Pe1Pm , ~4.3!

and total energy density

«5«N1«e1«m , ~4.4!
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of the matter, and thereby the EOS, in the formP5P( r̃),
wherer̃5«/c2 is the mass-energy density of the matter. T
composition and other thermodynamic variables are also
termined in this process.

The baryonic part of the matter consists of strongly int
acting neutrons and protons with a given proton fractionxp
5rp /r. The minimum processing necessary in order to o
tain an EOS for any of the sets of SNM and PNM energies
earlier sections is to fit the energies to a smooth function
density, so that the derivatives needed to obtain chem
potentials (m i5]«/]r i) and pressure (P5( ir im i2«) can
be calculated. One then needs to interpolate between thxp
50.5 SNM andxp50 PNM results in order to find the valu
of xp required by beta equilibrium.

The fitting procedure used earlier@44#, and which we em-
ploy here, introduces more than the minimum processing
described. It uses a generalized Skyrme interaction cont
ing a momentum and density-dependent delta function in
action. By a well-known procedure@45#, the matrix elements
of this interaction can be written as an energy-density fu
tional in the form

He f f5S \2

2m
1 f ~r,xp! D tp1S \2

2m
1 f ~r,12xp! D tn

1g~r,xp!1Hgradient. ~4.5!

The number and kinetic densitiesrn(p) andtn(p) are defined
in terms of the neutron or proton orbitalsfa,n(p)(r ) by
r i(r )5(ani(a,T)ufa,i(r )u2 and t i(r )
5(ani(a,T)u¹fa,i(r )u2, where the Fermi-statistics densit
of statesni(a,T)5@11exp((ea,i2mi)/T)#21 at T50 become
a step functionQ(ea,i2m i). The function f in Eq. ~4.5!
comes from the assumed momentum dependence of th
teraction, and is parametrized in the form

f ~r,xp!5 f 0~r!1xpf 1~r!. ~4.6!

It produces density- and isospin-dependent effective nucl
massesmi* (r,xp),

\2

2mp* ~r,xp!
5

\2

2m
1 f ~r,xp!,

\2

2mn* ~r,xp!
5

\2

2m
1 f ~r,12xp!. ~4.7!

The termHgradient in Eq. ~4.5! depends on gradients of th
densities, and thus affects finite systems; it is determi
uniquely by the functionsf @43#. The relation betweent i and
r i depends on temperature via the Fermi functions. The
fore knowledge of the matter energies at finite temperatu
as was given in Ref.@10#, permits a determination o
f (r,xp50.5) and f (r,xp50), i.e., f 0(r) and f 1(r) in Eq.
~4.6!. The potential-energy termsg(r,xp50.5) andg(r,xp
50) may then be obtained by comparison with the ze
temperature energies. The functional forms used forf (r,xp
50.5,0) andg(r,xp50.5,0) are chosen to represent wi
appropriate accuracy the calculated energies; it is not s
cient, nor necessary, that they have the extremely sim
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power dependence onr of customary Skyrme interactions
The effective interaction FPS obtained in this manner fr
the SNM and PNM energies calculated with the U14-D
interaction has been described and used elsew
@44,43,11#.

In the present work, we have studied the matter ener
only at zero temperature, and cannot therefore make a
determination of the momentum-dependent (t-containing!
terms in He f f . Rather than omitting them, we have ke
intact thet-dependent terms from the earlier determinat
@44#, and have modified only the potential energy te
g(r,xp). To facilitate handling of the two different phase
we make separate fits to the normal low density phase~LDP!
and the high density phase~HDP! with pion condensation
The analytic forms used for the fitting are given in Append
A. They are chosen solely to provide an economical fit to
calculated energies.

The interpolation betweenxp50.5 andxp50 is carried
out assuming a (122xp)2 dependence of the energy at
given density. It is well known that matter energies, as
function of xp , can be expanded in powers of (122xp)
aboutxp50.5. Previous studies@46#, using cluster expansion
techniques@6#, have found that the quartic terms are sma
and that the quadratic terms determined from results axp
50 and 0.5 are sufficient to obtain few percent accuracy
the interpolation. The potential energy termsg in the effec-
tive interaction Eq.~4.5! obtained by fitting to PNM and
SNM are therefore interpolated by means of the express

g~r,xp!5g~r,xp50.5!„12~122xp!2
…

1g~r,xp50!~122xp!2. ~4.8!

A. The phase transition

In fitting the results of the calculations described in Se
I–III, we find that the SNM and PNM energies coming fro
the models that include a three-nucleon interaction hav
clear discontinuity in slope, associated with the phase tra
tion, so that different analytic forms are needed above
below the critical densities,r t50.20 fm23 for PNM,
0.32 fm23 for SNM. In Fig. 6 the energies and the fits a
shown for the A181dv1UIX* model. ~Here, and for the
rest of the paper, we use for the SNM energies of this mo
the ‘‘corrected’’ values given in the last column of Tab
VI.! The A181dv and A18 models do not show such
discontinuity in any marked way.

An important assumption of our treatment of the tw
phases of nuclear matter and the phase transition, as e
ited in Fig. 6, is that the analytic forms fitted to the PNM a
SNM energies of each phase may be extrapolated beyon
density region in which they are determined. Since the eq
librium is a two-dimensional phenomenon, the energy a
function of r andxp can be represented by a surface abo
the r,xp plane. The interpolation described in the last su
section makes the energy surface of the LDP a valley p
bolic in the xp dimension extending fromxp50 to xp51,
with its minimum at xp50.5. A similar interpolation be-
tween the energies of the HDP produces another parab
Note that because of the charge symmetry breaking term
the A18 interaction only thexp<0.5 side of the parabolas i
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useful, and that the parabolic shape approximation has b
tested only in the LDP@46#.

A transition to a neutral pion condensed phase of PN
was obtained earlier with the older Argonnev14 ~A14! NNI
and Urbana VII~UVII ! TNI interactions by WFF@12#. How-
ever, with those interactions SNM has a normal ground st
WFF estimated the properties of the A141UVII model of
cold catalyzed matter by interpolating between the norm
SNM and the pion condensed PNM. For the A181dv
1UIX* interaction, we find that such a procedure overe
mates the symmetry energy of the HDP by;10 to 20% in
the density range 0.2 to 0.5 fm23. Fortunately we see the
transition for both PNM and SNM, and can avoid that pro
lem.

In Fig. 7 we show for the A181dv1UIX* model the
density at which the LDP and HDPE(r,xp) surfaces inter-
sect, i.e., where the interpolated phases have the same
ergy. The curve obtained is not necessarily a parabola inxp ,

FIG. 6. The PNM and SNM energies for the A181dv1UIX*
model, and the fits to them using an effective interaction. The
lines represent the stable phases, and the dotted lines are the
trapolations.

FIG. 7. On a plot of proton fractionxp vs baryon density, for the
A181dv1UIX* model, the boundary between the LDP and HD
obtained in the manner described in the text. The dashed curv
the proton fraction of beta-stable matter, and the dotted lines m
the boundary of the mixed phase region.
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1818 PRC 58A. AKMAL, V. R. PANDHARIPANDE, AND D. G. RAVENHALL
since the density dependence of the curvature of the par
las is more complicated than quadratic. Also shown is
proton fraction of beta-stable matter in each phase.

The transition of matter from the LDP to the HDP pro
ably occurs via a mixed phase region in which each ph
need not be charge neutral@23#, as discussed in the following
section. Here, for simplicity, we assume that each phase
charge-neutral fluid and make a Maxwell construction to
tain the change in density due to the phase transition.
baryon chemical potentials, which for beta equilibrium a
equal to the neutron chemical potentials, and total press
of the two phases are equated to obtain the densities
proton fractions of the LDP and HDP in equilibrium. The
are (0.204 fm23,0.073) and (0.237 fm23,0.057) respec-
tively. In the region between these two densities the m
stable form of the matter is a mixture of the two phases.

B. Proton fraction and µe

The proton fraction and the related electron chemical
tential of the matter are important in assessing the coo
rates of neutron stars@47# and the possibility of kaon con
densation in neutron star interiors@48,49#. For the models
discussed here we plot in Fig. 8 the proton fractionxp
against baryon density. This figure also shows, for comp
son, results obtained for other models and by other meth
the U141UVII model, a predecessor of the present A
1UIX model, as given by WFF with the VCS method; th
A18 model, results of Engviket al. @19# with lowest order
Brueckner~LOB! calculations; the U14-DDI model@10# us-
ing the FPS effective interaction@11#. Indicated on the plot is
the critical value ofxp , as a function ofr, for the onset of
the direct Urca cooling process in the presence of both e
trons and muons. That process allows energy to be c
ducted from the interior of the star by neutrinos generate
binary thermal collisions, a very efficient process@47#. In the
models containing three-nucleon interactions, the discont
ity in xp at r;0.2 fm23 signals the onset of the HDP. Th
corresponding electron chemical potentials are plotted in
9.

FIG. 8. For beta-stable matter, the proton fractionsxp for the
four models discussed in the text vs baryon density. The das
curve, U14-DDI~FPS!, is from @11#, the dotted line, A18~LOB! is
from @19#, the points are from@12,50# for the U141UVII model,
and the dotted line is the threshold for the direct Urca cool
process, as a function ofr.
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As suggested in Ref.@12#, the determining quantity forxp
is the symmetry energy, given approximately byEsym
'EPNM2ESNM. The LOB and VCS methods yield simila
values forxp with the A18 interaction up tor50.6 fm23.
Beyond this density thexp obtained from VCS calculations
starts to decrease, while that from LOB calculations con
ues to increase with density. The VCS and LOB energies
the A18 model are compared in Fig. 10. They are not
different for PNM. For SNM, however, atr.0.6 fm23 the
LOB energy is much lower than that of the VCS. The VC
Esymsaturates for the A18 model atr;0.6 fm23, while that
of LOB calculations continues to increase with density, ca
ing thexp to do the same. It will be interesting to see if thre
hole-line and higher terms@7,51# neglected in the LOB cal-
culations reduce the difference between LOB and VCS
ergies.

Engvik et al. @19# have calculatedxp in cold matter using
the LOB method with all five modern NN potentials th
provide high precision fits to the Nijmegen NN scatteri

ed

g

FIG. 9. For beta-stable matter, the electron chemical poten
me for the four models discussed in the text vs baryon density. T
dashed curve, U14-DDI~FPS!, is from @11#, and the horizontal line,
at me5mmc2, is the threshold for a muon contribution to the lepto
fraction.

FIG. 10. Comparison of the energies of PNM and SNM o
tained for the A18 model with the VCS method in the present wo
and with LOB calculations by Engviket al. @19#.
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PRC 58 1819EQUATION OF STATE OF NUCLEON MATTER AND . . .
data base. At a density of one nucleon per fm3 the CD-Bonn
model @17# gives the largestxp of 0.15, while the Nijmegen
I model @15# gives the smallest value of 0.10. The spread
these values is comparable with the difference between V
and LOB results for A18 ofxp5 0.09 and 0.14 at this den
sity.

The dv term and the three-nucleon interaction increa
the symmetry energy, and push thexp barely above the Urca
limit at high densities. For the A181dv1UIX* model the
threshold is at a density ofr50.78 fm23, and, as discusse
in the next section, stars must have a mass.2.0M ( to
achieve such a density. However, this density is at the li
of our calculations and of the input physics. For examp
admixtures of quark matter with hadronic matter, conside
in the next section, may affect the Urca process in matte
such densities.

The U14-DDI~FPS! model predicts values forxp that are
much smaller than those predicted by all other models c
sidered here, and in fact go to zero forr;1 fm23. It is
based on the U14 NN interaction, also used in the U
1UVII model. However, instead of adding the UVII thre
nucleon interaction to obtain the empirical saturation den
of nuclear matter, it uses a density dependent modifica
~U14-DDI! of the U14 NN interaction@9# chosen to repro-
duce the energy, density and compressibility of equilibriu
nuclear matter. Unlike the UVII interaction, this modificatio
reduces the symmetry energy, and thus thexp , at high den-
sity. The main advantage of using three-nucleon interactio
instead of density dependent modifications of the tw
nucleon interaction, is that the former can be tested via
curate calculations of the light nuclei. Unfortunately, t
available results@30# indicate that the UIX model may b
overestimating the repulsion between three neutrons,
overestimating thexp ; an improved version of the UIX
model is currently being developed.

V. NEUTRON STARS

Using the methods just described we obtain for ea
model the EOS for cold, catalyzed beta-stable matter. A
baryon number density of 0.1 fm23 they are joined onto an
earlier EOS in which properties of the crust material h
been treated more accurately@11#. The Oppenheimer-
Volkoff general relativistic equations for a spherically sym
metric ~nonrotating! neutron star@1# are

dP

dr
52

~ r̃1P/c2!G„m~r !14pr 3P/c2
…L~r !

r 2
,

m~r !5E
0

r

4pr 2r̃dr, ~5.1!

where L(r )5@122Gm(r )/rc2#21. The corresponding
equations for obtaining the moment of inertia, for a slow
rotating star, are given in Appendix B. Starting from som
central mass-energy densityr̃c , or equivalently from a cen-
tral number densityrc , these equations are integrated o
wards to a radiusr 5R, at which P is zero, thus yielding
the stellar radius,R, the gravitational mass of the sta
M5m(R), and the moment of inertiaI .
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The dependence of the neutron star mass on cen
baryon densityrc for the four models is shown in Fig. 11. I
order to estimate the effect of beta-stability on these resu
we show also the trajectories obtained by using the p
neutron matter EOS for densities greater than 0.1 fm23,
joined to the crust results of Ref.@11#. Earlier results with the
FPS EOS@11# are included for comparison. For the same
of results, the neutron star mass is plotted against the
radius in Fig. 12.

The maximum masses for the five models illustrated
Figs. 11 and 12 are listed in Table XI. While the mode
based on only two-nucleon interactions have maxim
masses at or below 1.8M ( , those for the two models con
taining three-nucleon interactions have maximum mas
well above 2M ( . The model that we believe includes mo
of the necessary physics is A181dv1UIX* , which yields a
maximum mass of 2.2M ( . This model achieves its maxi
mum mass for a central baryon densityrc51.14 fm23,

FIG. 11. Neutron star gravitational mass, in solar masses
central baryon density, for the four models described in the t
The full curves are for beta-stable matter, and the dotted lines
for pure neutron matter. The vertical lines show the density ab
which the matter is superluminal. The dashed curve, FPS, is f
@11#.

FIG. 12. Neutron star gravitational mass, in solar masses
radius, in kilometers, for the four models described in the text. T
full curves are for beta-stable matter, and the dotted ones are
pure neutron matter. The dashed curve, FPS, is from@11#.
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TABLE XI. Maximum gravitational masses, inM ( , and moments of inertiaI , in M ( km2, for stars
with beta-stable matter and with PNM; with incompressible~INC! matter atr.r I(fm

23) for the A181dv
1UIX* model; and with mixed nuclear-quark matter~NM1QM! phase~bag constantB in MeV fm23).

NM Max. mass Max. mass Max.I r I of INC Max. mass Max.I
models beta-stable PNM beta-stable Models beta-stable beta-st

A181dv1UIX* 2.20 2.21 115 0.32 2.92 261
A181UIX 2.38 2.39 143 0.48 2.46 157
A181dv 1.80 1.81 67 0.64 2.26 123
A18 1.67 1.68 55 0.86 2.19 115
FPS 1.80 73

NM1QM B Max. mass Max.I B Max. mass Max.I
models beta-stable beta-stable beta-stable beta-sta

A181dv1UIX* 122 1.91 96 200 2.02 107
A181dv 122 1.74 66 200 1.76 67
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which is not far beyond the calculated VCS energies, so
only slight numerical extrapolation is involved.

The moments of inertia given in Table XI are the ma
mum values for each model. They occur for slightly low
central densities than do the maximum masses. The effe
the three-nucleon interactions on the maximum momen
inertia is in general considerably greater than on the m
mum masses, because TNI tend to increase stellar radii

The relativistic correction to the Fermi energie
23kF

4/56m3, mentioned at the end of Sec. III B, when in
serted~with its attendant contributions to chemical potentia
and pressure! into the EOS of the model A181dv1UIX* ,
produces atr50.1 fm23 a reduction in pressure of 6.9%
but atr51.0 fm23 the reduction is only 1.1%. The effect o
the maximum mass is a 0.2% reduction, smaller than
digits quoted in Table XI.

The mass limits obtained with PNM EOS are with
;0.5% of the values determined from the EOS of matter
beta equilibrium, and the radii are within;5%. Thus the
uncertainties in the proton fraction of matter discussed in
last section do not have a large effect on these aspec
neutron star structure.

A. Superluminality and maximally incompressible matter

Indicated on the curves in Fig. 11 are the densitiesrsl at

which the sound speedcs5A]P/]r̃ becomes greater tha
the speed of light,c. Superluminal behavior would not occu
with a fully relativistic theory, and it is necessary to gau
the magnitude of the effect it introduces at the higher de
ties. Kalogera and Baym@52# provide one method for doing
this. Following Rhoades and Ruffini@53#, they assume tha
the stiffest physically allowable EOS produces matter wit
sound speed equal to the speed of light, i.e.,

]P

]r̃
5cs

2→c2. ~5.2!

Since the matter is at zero temperature, for a single phas
partial derivative becomes a total derivative. Thus for hig
densities than somer̃ I the EOS is replaced by
at

r
of
f

i-
so.
,

e

n

e
of

i-

a

the
r

P~ r̃ !5P~ r̃ I !1~ r̃2 r̃ I !c
2, ~5.3!

and the matter interior tor̃ I is then maximally incompress
ible. Other thermodynamically related quantities may be
tained easily@26#; the corresponding baryon number dens
is

r5r IA r̃1 1
2 ~PI2 r̃ Ic

2!

r̃ I1
1
2 ~PI2 r̃ Ic

2!
. ~5.4!

The relatively small reduction in the energy of the A1
1dv1UIX* model resulting from this replacement forr I
5rsl50.86 fm23 is shown in Fig. 13. In Fig. 14 we show
the effect on the mass vs radius plot. The maximum mas
reduced from 2.20M ( to 2.19M ( , a very small change. In
all models of the present work superluminal behavior occ
in stars only very close to the maximum mass limit, as can

FIG. 13. For beta-stable matter according to the A181dv
1UIX* model, the total energy per baryon vs baryon density~full
curve!. The dashed curves are for the assumption that matte
maximally incompressible for densities greater than the indica
value, and the lower full curve is for the A181dv model.
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seen from Fig. 11. Therefore replacing superluminal ma
with maximally incompressible matter has little effect on t
stellar properties.

It is also possible that due to neglect of four-body a
higher forces, and relativistic corrections of order (velocity4

and higher, the present work underestimates the sound ve
ity at lower densities. The effects of this possibility can
studied by assuming that the EOS of the A181dv1UIX*
model is valid up to a chosen densityr I , beyond which it is
maximally incompressible. The results obtained forr I52, 3,
and 4r0 are shown in Figs. 13 and 14, and Table XI. T
difference between theE(r) of the matter obtained by as
suming thatr I52r0 and theE(r) of the A181dv1UIX*
model is several times the contribution of the UIX* interac-
tion ~see Fig. 14!. It therefore appears unrealistic to assum
that r I can be as small as 2r0 . Results obtained withr I
53r0 provide a better indication of what we can expe
from the hardest EOS consistent with realistic models
nuclear forces.

B. Transition to quark matter

It is also possible that the present EOS is too hard du
the assumption that neutron star matter contains only nu
ons and leptons. Should it also contain other hyperons s
as L, S2,0,1 and D2,0,1,11, the EOS may be softer tha
that obtained with nucleons only@4#. The forces between
hyperons and nucleons and between hyperons are not as
known as nuclear forces, and it is therefore difficult to es
mate whether such exotic species are present in neutron
matter.

The chemical equilibrium in matter containing nucleon
lambdas, sigmas, deltas, and leptons is governed by
equations

mS25mD25mn1me , ~5.5!

mL5mS05mD05mn , ~5.6!

mS15mD15mp5mn2me , ~5.7!

FIG. 14. Neutron star gravitational mass, in solar masses
radius for the A181dv1UIX* model ~upper full curve!, for the
maximally incompressible modifications of this model at densit
beyond chosen values ofr I ~dashed curves!, and for the A181dv
model ~lower full curve!.
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mD115mn22me . ~5.8!

If we neglect the interaction between nucleons and these
perons, then the chemical potential of a hyperon at thresh
density is given by its mass. Under such an assumption,
negatively charged hyperons appear in the ground stat
dense matter whenmn1me reaches their mass, while th
neutral hyperons appear whenmn equals their mass. Sinc
me in dense matter is larger than the mass differences
tween lambdas, sigmas, and deltas, theS2 andD2 will ap-
pear at lower densities than the neutralL, provided the in-
teraction effects are small. The chemical potentials
electons, and of neutrons in beta-stable matter, are show
Fig. 15 for the A181dv1UIX* and A181dv models. The
threshold densities for noninteractingS2, D2, and L are
indicated by horizontal line segments. Given their relative
low values, it is clear that in the absence of interactions th
particles would be present in most neutron stars. Results
tained using crude models of the interactions between hy
ons and nucleons, and between hyperons@4# indicate that the
S2 and D2 have the largest effect of all hyperons on t
EOS; however the magnitude of the effect is very sensit
to the interaction model.

The available hyperon-nucleon scattering data has b
reviewed recently by de Swart, Maessen, and Rijken@54,55#
along with the status of one-boson exchange models of
interactions between hyperons. Additional information
L-nucleon interactions can be obtained from the measu
L-nucleus binding energies. These indicate the presenc
LNN three-body forces that are as strong as the thr
nucleon interaction@56,57#. In view of these uncertainties
particularly concerning the importantS2 and D2 interac-
tions, we do not attempt to estimate the effect of these
perons on the EOS of neutron star matter.

A transition from hadronic to quark matter is expected
high densities. Knowledge of the EOS of both hadronic a
quark matter is necessary to estimate the possible effec
this transition on neutron stars. Here, we use the pre
models of the EOS of hadronic matter, containing on
nucleons and leptons, and the quark bag model withu,d, and

vs

s

FIG. 15. The neutron and electron chemical potentials in b
stable matter according to models A181dv1UIX* ~full line! and
A181dv ~dashed line!. Threshold densities for the appearance
noninteracting hyperons are marked by horizontal line segmen
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s quarks for the quark matter. Theu andd quarks are taken
to be massless, ands quarks to have a mass of 150 MeV.
Fermi gas of quarks of flavori has densityr i5kFi

3 /p2, due
to the three color states. There is no one-gluon excha
interaction energy between quarks of different flavor, wh
that between quarks of flavori is given by (2a/3p)Ei per
quarki @58#. HereEi is the average kinetic energy per quar
anda is the strong interaction coupling constant, assume
have a value of 0.5. The value of the bag constantB is poorly
known, and we present results using two representative
ues ofB5122 MeV @59# andB5200 MeV fm23 @60#.

The beta equilibrium conditions for charge neutral qua
matter are

mu1me5md5ms , mm5me . ~5.9!

The energy densities of charge neutral quark matter
nuclear matter are plotted in Fig. 16. In the interesting reg
of r;1 fm23 the total energy density of quark matter
about 1200 MeV fm23, of which only 122 or 200 MeV
fm23 comes from the bag.

If, during the phase transition from nuclear to quark m
ter, the nuclear and the quark phase are each required
charge-neutral beta-stable fluids whose pressures and ba
chemical potentials are equilibrated, then for the A181dv
1UIX* model the transition is found to extend over t
density range r50.86↔1.57 fm23 for the B
5200 MeV fm23 case. ForB5122 MeV fm23, the range
is 0.79↔1.20 fm23. The matter within this density range
as so treated, is a constant-pressure mixture of that at the
ends of the range. Such a constant-pressure mixed p
does not occur in the neutron star: as can be seen from
~5.1!, since the pressure does not change, the density cha
discontinuously from the lower nuclear matter density to
higher quark matter density.

Since for the nuclear component of the matter atr
;1 fm23 the electron screening length is;7 fm, while
the quark matter component has negligible electron distr
tion, the previous assumption that each fluid retains its e

FIG. 16. For beta-stable matter, the energies per unit volume
the A181dv1UIX* and the A181dv models, and the quark ba
models with B5122 and 200 MeV/fm3 are shown by full and
dashed lines; the dotted lines correspond to neutral mixture
charged nuclear and quark matter.
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tron distribution during the phase-mixing is not a good a
proximation at length scales&7 fm. As described in Ref.
@23,26#, an alternative assumption that the nuclear and
quark matter share a common electron distribution in
mixture is more appropriate. For a given nucleon matter d
sity rN the transition now involves equilibrating the chemic
potentials,

mn5mu12md , mp52mu1md , ~5.10!

and the hadronic pressures of nuclear and quark matte
the process, the proton fraction of the nucleon matter and
densities of the quarks are also determined. The lep
chemical potentials are then given by

me5mm5mn2mp5md2mu , ~5.11!

from which the electron and muon densities are read
found. The fractional volume,f Q , occupied by the quark
component in the mixture is now chosen so that the nucl
quark, and lepton components are in sum charge neutra

re1rm5
1

3
f Q~2ru2rd2rs!1~12 f Q!rp , ~5.12!

after which the macroscopic baryon density of the mixtu
can be calculated:

r5rmix5
1

3
f Q~ru1rd1rs!1~12 f Q!rN . ~5.13!

The procedure is carried out provided that 0< f Q<1. Some
numerical details are given in Appendix C.

The mixture of A181dv1UIX* model nucleon and the
B5200 MeV fm23 quark matter occurs over the densi
range rmix50.74↔1.80 fm23. Over this range, a charg
neutral mixture of quark and nucleon matter is more sta
than the constant-pressure mixture of separately neu
nuclear matter and quark matter. The quark matter frac
f Q , the charge per baryon of the nucleon matter, given

or

of

FIG. 17. For the A181dv1UIX* models and the quark ba
model withB5200 MeV/fm3, the proton fraction of nucleon matte
xp , the charge (xc) and strangeness (xs) per baryon of quark mat-
ter, the volume fractionf Q occupied by quark matter, and th
chargexl per baryon carried by the leptons in the mixture.
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the proton fractionxp , the charge,xc , and strangeness,xs ,
per baryon of the quark matter and the chargexl per baryon
carried by the leptons in the mixed matter are plotted for t
case in Fig. 17.

Over the density range occupied by the mixture
nucleon matter has densitiesrN50.74↔0.96 fm23, while
the quark matter densities are 1.12↔1.82 baryons fm23. The
mixture thus consists of dense negatively charged quark m
ter immersed in somewhat less dense positively char
nucleon matter. The neutralizing charge of the leptons
creases in magnitude from its value in the purely nucle
matter, and tends rapidly to zero by the time the quark fr
tion has reached 50%.

The lower density end of the mixed phase region is m
relevant for neutron stars. Here one expects small drop
dense quark matter withxc;xs;21 appropriate for matte
made up ofS2 hyperons. Ground states of dense matter
have such a form also if matter made ofS2 has a softer EOS
than nucleon matter. Knowledge of the interactions betw
S2 hyperons is necessary to further explore this possibil
In regard to the direct Urca cooling process, the proton fr
tion of the nucleon matter in the mixture increases withf Q ,
but the lepton fraction decreases. The required momen
balance among neutrons, protons, and electrons is
achieved at a baryon density of 0.86 fm23, somewhat larger
than the value 0.78 fm23 needed for the nucleon matte
alone. At densities larger than 0.86 fm23 the momentum
balance remains possible, although the decreasing dens
electrons reduces the rate of the Urca process. Thus th
direct effect of the quarks on the nucleons is to delay the s
of the Urca process somewhat. At a density of 0.86 fm23

the quarks, which are about 7% of the matter, can if beh
ing as free particles contribute to the Urca process direc
Such considerations, however, are complicated by effect
quark matter occurring as droplets.

At the high density end of the mixed phase, the qu
matter has approximately equal number ofu, d, and s
quarks, and nearly symmetric nucleon matter occupie
small fraction of the total volume. Here one expects sm
drops of SNM, i.e., nuclei compressed to a density of;6r0
by the pressure of surrounding quark matter. However,
interesting form of matter at very large densities does
seem to occur in stable neutron stars according to the pre
calculations.

The two-component equilibrium suggested in Ref.@23# is
formally the same as the equilibrium between nuclear ma
and dripped neutrons in crustal neutron-star matter. Exte
ing that similarity, Ref.@24# includes the effects on the phas
transition of the energy of the surface dividing nucleon a
quark matter, as well as the Coulomb energy associated
the difference between the charge densities of nucleon
quark matter. The lowest energy states of matter in the mi
region are then found to contain varying sizes and shape
liquid in one phase surrounded by the liquid in the oth
phase. The presence of a new parameter of unknown ma
tude, the surface energy, complicates the problem, howe
and lacking new information on it, we have not includ
surface and Coulomb effects in results given here.

The energy densities of the mixed region, calculated
glecting its surface and Coulomb contributions, are shown
Fig. 16. As discussed at length in Ref.@23#, the total pressure
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obtained is now not constant over the density range of
mixture, although as can be deduced from Fig. 16, it is
duced from that of the pure nuclear matter. The result
neutron star masses are shown in Fig. 18 as a functio
central baryon density. Maximum masses are given in Ta
XI. For the A181dv model, admixing quark matter ha
small effects on neutron star structure; however, the effe
are noticeable for models containing three-nucleon forc
Note that by neglecting the surface and Coulomb energ
we underestimate the energy density of mixed matter
thus overestimate the effect of the admixture. The maxim
densities in stable neutron stars remain below those for p
quark matter in all the four cases considered.

C. Transition to spin-ordered phase

When each phase is required to be charge neutral,
mixed region between the normal nuclear matter LDP a
the spin-ordered, or neutral pion condensed HDP has c
stant pressure and constant average nucleon chemical p
tial. In the neutron star such a mixed region would not occ
and the density at this pressure would change discont
ously by 0.033 fm23 for the A181dv1UIX* model, a
15% jump. However, we should use the approach descr
in the last subsection for this transition also, and consi
mixtures of charged LDP and HDP in a common lepton s
On applying the equilibrium conditions of nuclear pressu
and neutron and proton chemical potentials between the L
and HDP, one finds that the density limits between whic
mixture occurs is only slightly extended compared to tho
with the charge-neutral-fluid equilibrium quoted earlier, b
the mixture does now have a pressure that changes with
sity. However, due to the similarity in charge character of
two phases the change in pressure in going from pure LD
pure HDP is rather small, and therefore the thickness of
LDP-HDP mixed region in the star is also fairly small.

Selected neutron star density profiles for the A181dv
1UIX* model are shown in Fig. 19. Although it is not de
tectable from the figure, the mixed region associated w
pion condensation now extends over a finite region of

FIG. 18. Neutron star gravitational mass, in solar masses
central baryon density, for the A181dv1UIX* and A181dv
models with~dashed curves! and without~solid lines! quark matter
admixture. The two dashed curves for the A181dv model are for
B5122 and 200, respectively.



si
re

th

a
e
rg
-
su
ti

n

fo
ag
er
flu
s

a
w

O

t
at

-
or

tum

e is
rest

he
tter

s is

vi-
re-
the

the
t
ese

nti-

v-
tion
al
tities

q.

d
ess-
rves

1824 PRC 58A. AKMAL, V. R. PANDHARIPANDE, AND D. G. RAVENHALL
star. Its radial thickness,Dr T , is ;14 m for the 2.10M (

case, and;40 m for the 1.41M ( case. The 2.10 and
2.00M ( stars shown in Fig. 19 have the same central den
of 0.86 fm23; their mass difference is due to the admixtu
of quark matter considered only in the 2.00M ( star. The
1.41 M ( stars cannot have quark matter admixtures in
present models.

It is interesting to know the structure of matter having
mixture of LDP and HDP. One possibility is that suggest
for the nuclear matter-quark matter transition by Heiselbe
Pethick, and Staubo@24#, that there occur in the mixed re
gion varying sizes and shapes of matter in one phase
rounded by liquid in the other phase. If we apply their es
mates to this phase transition, assuming a surface tensio
the interface in the ranges51 to 10 MeV fm22, we find
that the characteristic length scalea of the entities involved
is ;60 to 120 fm. The electron screening length, which
this approximation to be valid needs to be also of this m
nitude, is only;10 fm, however. This indicates that neith
assumption about the mixture, that of two charge-neutral
ids ~which results inDr T50) nor of two nuclear component
with a common electron fluid~which gives theDr T values
given above! is correct, and we need to look at a mixture th
is somewhere in between these extremes. That problem
be pursued elsewhere.

VI. ADIABATIC INDEX G OF NEUTRON STAR MATTER

A measure of the stiffness of matter described by the E
P5P( r̃), is the adiabatic indexG:

G5
r̃

P

]P

]r̃
5

r̃

P
cs

2 . ~6.1!

If G were constant, then the EOS would becomeP}r̃G. In
this form, it is called apolytrope, an idealized EOS on which
many pioneering studies of stellar structure were based@61#.
The values ofG in several limiting cases are well known. A
lower densities, the rest mass of the constituents domin

FIG. 19. Density profiles of 2.1M ( and 1.41M ( stars of beta-
stable matter using the A181dv1UIX* model without quark mat-
ter admixture~solid lines!, and of 2.00M ( star with quark matter
admixture ~dashed line!, assuming a bag constantB
5200 MeV fm23.
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the energy density of matter, i.e.,r̃'rm. In this limit, for
matter without correlations,G5 5/3, 2, or 3 when the pres
sure is provided by Fermi kinetic energy, static two-body
three-body interactions, respectively. Repulsive momen
dependent interactions lead to larger values ofG. In the op-
posite extreme of very high density, the energy per particl
much larger than the particle’s rest mass. Neglecting
mass, it is given bylrn, wheren51/3, 1, or 2 for the above
three cases, andl is a constant. Thusr̃5lrn11, P
5nlrn11, andG51 for all values ofn. This does not con-
tradict the well-known value ofG→4/3 in white dwarfs@61#.
In white dwarf matter the nuclei are nonrelativistic and t
electrons are relativistic. The energy density of this ma
r̃c25rMc2, wherer is the number density of nuclei, andM
is their mass. The pressure given by relativistic electron
proportional tor4/3 or equivalentlyr̃4/3, giving G54/3.

Plots of G and the sound speed for various cases pre
ously described are given in Fig. 20. The two curves cor
sponding to pure nucleons behave as expected from
above limits. From the crust,G rises to ;3: of the two
maxima, the greater value corresponds to the model with
explicit three-body interaction UIX* ; G then decreases a
higher densities. The small peaks followed by cusps in th
curves atr̃/m;0.15 fm23 mark the softening of the EOS
due to the opening of the muon channel. The deep disco
nuity in both G and cs for the A181dv1UIX* model are
due to the LDP-HDP transition. The indicated valuesG
50.075 andcs /c50.045 shown at the bottom of the decle
ity are averages resulting from the treatment of that transi
in Sec. V C.~When treated in terms of a mixture of neutr
fluids, in which case the pressure is constant, these quan
would be zero.!

It is simple to express in terms ofcs
2 , the extent of the

stellar radiusDr T occupied by this phase transition from E
~5.1!:

Dr T'
cs

2

r̃gT

dr̃, gT'
Gm~r T!L~r T!

r T
2

, ~6.2!

FIG. 20. The sound speed and the adiabatic indexG vs r̃/m for
beta-stable matter according to the A181dv1UIX* ~solid curves!
and A181dv ~long dashed curves! models. The short dashe
curves are for the assumption that matter is maximally incompr
ible for densities greater than the indicated value. The dotted cu
are for the nucleon-quark mixed phase.
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wherer̃ is an average quantity for the two phases,m(r T) is
the mass interior to the radiusr T at which the transition
ocurs,L(r T) is the redshift factor there, anddr̃'drm is the
density range of the transition, given earlier. The grav
tional accelerationgT at the transition region is greater fo
the more massive star, and explains the trend of our va
obtained from the star profiles.

The use of maximally incompressible matter beyondr

5rsl , occurring in Fig. 20 atr̃sl /m51.06 fm23, produces
a sharp reduction inG. This modification produces so little
effect on the stellar mass limits~shown in Fig. 13! because it
occurs at a density close to the central density in the star
maximum mass. The curves corresponding to nucleon-qu
mixed phases discussed in Sec.V D reduceG and cs more
gradually: for an ultrarelativistic quark gascs5c/A3, and
the sound velocities of models with quarks are seen to
approaching that value. Note that the partial derivative
volved in the calculation ofG and the sound velocity o
nucleon-quark mixed phases must be carried out holding
quark fractionf Q constant.

VII. CONCLUSIONS

The results obtained with the modern A18 NNI for th
gross properties of neutron stars, such as the mass limit
the radius of 1.4M ( stars, are not very different from thos
obtained from the earlier U14 and A14 models@12#. The
main difference is that with A18 and A14 NNI there is th
indication of the neutral pion condensation phase transit
while there is none with U14. However, the fact that A
provides an exact fit to the NN scattering data while U
does not weighs against the U14 results.

As is well known, the cooling of neutron stars is accel
ated by pion condensation@47#. The detailed mechanism as
sociated with the spin-ordered condensate that we find i
yet unexplored. In addition, we estimate that due to t
phase transition, there may be regions in the star where
matter density changes rapidly over a ten meter dista
scale. The matter in this thin layer of the star can have in
esting structures on a ten Fermi length scale.

We find that inclusion of the relativistic boost correctio
dv, to the NNI increases the mass limit from 1.67M ( to 1.8
M ( without any TNI, while it is reduced from 2.38M ( to
2.20M ( upon inclusion of the Urbana models of TNI. Th
reduction occurs because the TNI needed to fit nuclear
have weaker repulsive parts after includingdv. For the same
reason, the effect of Urbana models of TNI on the mass li
is diminished from 0.71M ( to 0.4M ( when thedv is in-
cluded. Note that these models of TNI have only two term
the long range two-pion exchange term, and a short ra
term with no spin-isospin dependence. Their strengths
determined from the density of SNM and the triton ener
However the triton, which has isospin 1/2, is insensitive
the interaction between three neutrons. Improved model
TNI must consider data such as the binding energy of8He,
which are sensitive to the interaction between three neutr

If the effective value of the bag constant B is larger th
122 MeV/fm3 it appears that only the heaviest neutron st
may have small drops of quark matter in their interior. T
quark composition of these drops is similar to that of agg
-

es

th
rk

e
-

e

nd

n,

-

as
s
he
ce
r-

ta

it

;
ge
re
.

of

s.

s

-

gates ofS2 hyperons. If the interaction ofS2 with dense
nucleon matter is not repulsive, there may existS2 hyperons
in nucleon matter at densities below the threshold for
appearence of quark drops. It is necessary to buildNS2 and
NNS2 interaction models to more fully explore this poss
bility.

Using maximally incompressible matter at high densit
we find that the upper limit for the maximum mass consist
with nuclear data is;2.5M ( ; this is not far from the pre-
diction of 2.21M ( of our A181dv1UIX* model. The
lower limit for the maximum mass is more difficult to esta
lish due to the unknown interactions between hyperons
nucleons. It may be as low as 1.74M ( if the quark bag
constant B has a value of;122 MeV/fm3, and if the three
neutron interaction is not as repulsive as the Urbana mo
IX at high densities, even without admixture of hyperons
matter. Recently several authors@62–64# have argued tha
there are indications of the existence of neutron stars w
M;2M ( . If these are confirmed, then models without TN
will be ruled out. However, such a possibility is still th
subject of active debate@65#.
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APPENDIX A: FORM OF EFFECTIVE HAMILTONIAN

The effective interactions~energy densities! that fit the
models examined in the first part of the paper all have
form

Heff5S \2

2m
1„p31~12xp!p5…re2p4rD tn

1S \2

2m
1~p31xpp5!re2p4rD tp

1g~r,xp50.5!„12~122xp!2
…

1g~r,xp50!~122xp!2, ~A1!

wherer5rn1rp , and at zero temperature

tp5
1

5p2 ~3p2rxp!5/3, tn5
1

5p2 „3p2r~12xp!…5/3.

~A2!

The parameters defining thet-dependent terms are the sam
for all of the models, and are given in the caption of Tab
XII. For the A18 and A181dv models at all densities an
for the LDP of models with TNI, the parametrization is

gL~r,xp50.5!52r2
„p11p2r1p6r2

1~p101p11r!e2p9
2r2

…, ~A3!
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TABLE XII. Parameter values for effective Hamiltonian for different models. The parametersp3

589.8 MeV fm5, p450.457 fm3, andp55259.0 MeV fm5 @see Eq.~A1!# are common to all four models
The dimensions of the parameters, involving MeV and/or powers of fm, can be worked out from Eqs.~A1!,
~A4!, or ~A5!.

Model p1 p2 p6 p7 p8 p9 p10 p11 p12 p13

A181dv1UIX* 337.2 2382 219.1 214.6 2384 6.4 69 233 0.35 0
A181UIX 328.8 2404.6 234 217.5 2385.6 6.35 25.4 0 0.47 20.9
A181dv 281.0 2151.1 210.6 210.1 2158 5.88 58.8 215 20.2 20.9
A18 297.6 2134.6 215.9 215.0 2116.5 6.42 51 235 20.2 0

Model p14 p15 p16 p17 p18 p19 p20 p21

A181dv1UIX* 0 287 21.54 175.0 21.45 0.32 0.195 0
A181UIX 2452 217.1 21.0 100.3 21.19 0.32 0.2 2275
ro

e-
n

,

s

tar
the

ui-

g
ac-
ns.

eft

the
gL~r,xp50!52r2~p12/r1p71p8r1p13e
2p9

2r2
!,

~A4!

while for the HDP of models with TNI,

gH~r,xp50.5!5gL~r,xp50.5!2r2
„p17~r2p19!

1p21~r2p19!
2
…ep18~r2p19!,

gH~r,xp50!5gL~r,xp50!2r2
„p15~r2p20!

1p14~r2p20!
2
…ep16~r2p20!. ~A5!

The values of the parameters are as given in Table XII.

APPENDIX B: MOMENT OF INERTIA OF A SLOWLY
ROTATING STAR

We use the general relativistic equations for a slowly
tating star as described by Hartle@66#. The metric for the
nonrotating star is

ds252en~r !dt21el~r !dr21r 2~du21sin2u df2!.
~B1!

It involves the radial functionsn(r ) and l(r ). The
Oppenheimer-Volkoff equations for the pressureP(r ), mass
function m(r ) and L(r ) are given in Sec. V, andl(r )
5 ln„L(r )…. The functionn(r ) is defined by

dn

dr
5

2G~m14pr 3P/c2!L~r !

r 2
, ~B2!

with the boundary conditionen(R)51/L(R), and there is
also an equation for the rotational drag,v̄(r ),

d

dr
S r 4 j

dv̄

dr
D 524r 3

d j

dr
v̄. ~B3!

Here j (r )5e2„n(r )1l(r )…/2; it has the boundary valuej (R)
51. In the limit of slow rotation, such that the angular v
locity V!GM/R2c, v̄(r ) has the boundary conditio
-

v̄(R)/V5122GI/R3c2. I is the total moment of inertia
given by either of the integrals

I 52
2c2

3GE
0

R

r 3
d j~r !

dr

v̄~r !

V
dr

5
8p

3 E
0

R

r 4S r̃1
P

c2D L~r ! j ~r !
v̄~r !

V
dr. ~B4!

This set of equations, together with Eq.~5.1!, is integrated
from r 50 to the valuer 5R where the pressure become
negligible, with a given equation of stateP5P( r̃), and a
central densityr̃(0) chosen to give the desired neutron s
mass. One then has also the radius and, after satisfying
boundary conditions, the moment of inertia.

FIG. 21. Graphical representation of the strong interaction eq
librium between the A181dv1UIX* model of nucleon matter and
the B5200 MeV quark matter for the density region of the mixin
~see text!. Dashed curves labelled 1 through 10 are strong inter
tion isobars, i.e., without considering charge effects and lepto
They are for pressures from 100 MeV fm23 to 550 MeV fm23 in
intervals of 50 MeV fm23. The upper~lower! set of curves on the
right side show the neutron~proton! chemical potential vs proton
fraction ~right side!, and the quark-matter counterparts on the l
side showmu12md (2mu1md) vs charge per baryonxc . The cor-
ners of the rectangles correspond to the equilibrium values of
chemical potentials and charge fractions.
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APPENDIX C: DETAILS OF THE
NUCLEON-QUARK EQUILIBRIUM

The nuclear matter-quark matter strong interaction eq
librium discussed in Sec.V B is illustrated graphically in F
21. Thexp.0 ~right side! of the plot relates to nucleon ma
ter and the left relates to quarks. Although states of qu
matter can extend toxc52 only thexc&0 part is relevant
here. The chemical potentials of isobars corresponding to
equally spaced pressures are shown as dashed lines. Eq
ria corresponding to Eq.~5.10! and to pressure are repre
sented by the rectangles. The top~bottom! horizontal sides of
the rectangles join states with the samemn (mp) on quark
and nucleon isobars corresponding to the same pres
m

e

C

J

. J

. C

ar

B

v.
i-

rk

en
ilib-

re.

~Only in a few cases do the pressures involved correspon
those of the displayed grid.! The vertical sides ensure that th
chemical potentials,mn and mp on nucleon side, and 2md
1mu and 2mu1md on the quark side, belong to matter wit
the same charge per baryon. Other properties of inter
such as densities, are not represented on the plot. These
libria are a property purely of the strong interactions, irr
spective of leptons and charge neutrality. The latter prope
then determines the quark fractionf Q , defined in Eq.~5.12!.
The rectangles labeledb, c, d, ande have values off Q going
from 0.001 to 0.999 and represent physical states, w
those labelleda andf give f Q520.169 andf Q52.38 corre-
sponding to unphysical states. However, they all corresp
to equilibrium under the strong interactions.
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