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Analysis of chiral and thermal susceptibilities
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We calculate the chiral and thermal susceptibilities for two confining Dyson-Schwinger equation models of
QCD with two light flavors, a quantitative analysis of which yields the critical exponentsb and d that
characterize the second-order chiral symmetry restoration transition. The method itself is of interest, minimiz-
ing the influence of numerical noise in the calculation of the order parameter for chiral symmetry breaking near
the critical temperature. For the more realistic of the two models we estimateTc'153 MeV and the non-
mean-field valuesb50.4660.04,d54.360.3, and 1/(bd)50.5460.05, which we discuss in comparison with
the results of other models.@S0556-2813~98!04409-4#

PACS number~s!: 11.10.Wx, 12.38.Mh, 24.85.1p, 05.70.Fh
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I. INTRODUCTION

Phase transitions are characterized by the behavior o
order parameter̂X&, the expectation value of an operator.
the ordered phase of a system,^X&Þ0, whereas in the dis
ordered phasêX&50. A phase transition is first order i
^X&→0 discontinuously, whereas it is second order if^X&
→0 continuously. For a second-order transition, the len
scale associated with correlations in the system diverge
^X&→0 and one can define a range of critical exponents
characterize the behavior of certain macroscopic prope
at the transition point. For example, in a system that is
romagnetic for temperatures less than some critical valueTc
the magnetizationM in the absence of an external magne
field behaves asM}(Tc2T)b for T;Tc

2 , whereb is the
critical exponent. At the critical temperature the behavior
the magnetization in the presence of an external fieldh
→01 defines another critical exponentd: M}h(1/d). In a
system that can be described by mean field theory these
cal exponents are

bMF50.5 , dMF53.0 . ~1!

Equilibrium second-order phase transitions can be a
lyzed using the renormalization group, which leads to sca
laws that reduce the number of independent critical ex
nents to just 2:b andd @1#. It is widely conjectured that the
values of these exponents are fully determined by the dim
sion of space and the nature of the order parameter. Th
the notion ofuniversality, i.e., that the critical exponents ar
independentof a theory’s microscopic details and hence
theories can be grouped into a much smaller number of
versality classes according to the values of their critical
ponents. If this is the case, the behavior of a complica
theory near criticality is completely determined by the b
havior of a simpler theory in the same universality class.
when presented with an apparently complicated theory,
problem is reduced to only that of establishing its univers
ity class.

Quantum chromodynamics is an asymptotically fr
theory, i.e., there is an intrinsic, renormalization-induc
mass scaleLQCD, and for squared momentum transferQ2

@LQCD, the interactions between quarks and gluons
PRC 580556-2813/98/58~3!/1758~9!/$15.00
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weaker than Coulombic:aS(Q
2)→0 asQ2→`. The study

of QCD at finite temperature and baryon number dens
proceeds via the introduction of the intensive variables te
peratureT and quark chemical potentialm. These are addi-
tional mass scales, with which the coupling canrun and
hence, forT@LQCD and/orm@LQCD, aS(Q

250,T,m);0.
It follows that, at finite temperature and/or baryon numb
density, there is a phase of QCD in which quarks and glu
are weakly interacting,irrespectiveof the momentum trans
fer @2#, i.e., a quark-gluon plasma phase. Such a phase
matter existed approximately one microsecond after the
bang.

At T,m50 the strong interaction is characterized by co
finement and dynamical chiral symmetry breaking~DCSB!,
effects which are tied to the behavior ofaS(Q

2) at smallQ2,
i.e., its long-range behavior. In a phase of QCD in which
coupling is uniformly small for allQ2, these effects are ab
sent and the nature of the strong interaction spectrum
qualitatively different.

The path followed in the transition to the plasma is a
important because it determines some observational co
quences of the plasma’s existence. For example@3#, the time
scale for the expansion of the early universe;1025 s is
large compared with the natural time scale in QCD 1/LQCD
;1 fm/c;10223 s, hence thermal equilibrium is maintaine
throughout the QCD transition. Therefore if the transition
second-order the ratioB:5baryon-number/entropy remain
unchanged from that value attained at an earlier stage in
universe’s evolution. However, a first-order transition wou
be accompanied by a large increase in entropy density
therefore a reduction inB after the transition. Hence th
order of the QCD transition constrains the mechanism
baryon number generation in models describing the form
tion of the universe, since with a second-order transition t
mechanism is only required to produce the presently
served value ofB and need not allow for dilution. In the
absence of quarks, QCD has a first-order deconfinement t
sition, while with three or four massless quarks a first-ord
chiral symmetry restoration transition is expected@3#. What
of the realistic case with two light quark flavors?

Based on the global chiral symmetry of QCD with tw
light quark flavors, it has been argued@3# that this theory and
1758 © 1998 The American Physical Society
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the N54 Heisenberg magnet are in the same universa
class. As a field theory, theN54 Heisenberg magnet is cha
acterized by an interaction of the form

(
i 51

4

$ 1
2 m2f i

2~x!1 1
4 l4f i

4~x!% , ~2!

wherem2 is a function of temperature:m2>0 at or above the
critical temperatureTc

H but m2,0 for T,Tc
H . If the inter-

action strengthl depends smoothly onT and remains posi-
tive, then forT,Tc

H the classical minimum of this potentia
is at

fcl
2 5

2m2

l
.0 . ~3!

This model is familiar as the nonlinears model, often used
to describe low-energy phenomena in QCD. It has been
plored thoroughly and has a second-order phase trans
with critical exponents@4#

bH50.3860.01, dH54.8260.05. ~4!

One can examine the hypothesis that this model and Q
with two light quark flavors are in the same universality cla
via numerical simulations. Such studies on an 8334 lattice
suggest a second-order chiral phase transition with crit
exponents@5#

b lat50.3060.08 , d lat54.360.5 ~5!

but do not decide the question.1 These results were obtaine
through an analysis of the chiral and thermal susceptibilit
a technique that can be applied in the study of any the
Herein we illustrate the method via an analysis of tw
Dyson-Schwinger equation~DSE! models of QCD, which
also allows us to explore the hypothesis further.

Dyson-Schwinger equations provide a renormalizab
nonperturbative, continuum framework for the exploration
strong interaction effects. They have been used extensi
@7# at T50 in the study of confinement and DCSB, and
the calculation of a wide range of hadron observables@8#,
including the electroproduction of vector mesons@9# and the
semileptonic transition form factors of heavy mesons@10#.
They have recently@11,12# found successful application a
TÞ0 and it is these two models that we employ as exemp
herein. In Sec. II we describe the models and in Sec. III
analysis of their chiral and thermal susceptibilities, and
evaluation of the associated critical exponents. We sum
rize and conclude in Sec. IV.

1A review @6# of results from recent simulations on larger lattic
with lighter quarks reports a significant dependence of these cri
exponents on the lattice volume but with their product appro
mately constant. A value ofzh'1⇒d→` is obtained, which is
characteristic of a first-order transition. It suggests that more stu
at weaker coupling or with improved actions are necessary in o
to understand these unexpected results.
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II. TWO MODELS

In order to introduce the DSE models, here we brie
review necessary elements of the DSE formalism: Ref.@7#
provides an extensive review and Ref.@13# a heuristic appli-
cation. We employ a Euclidean metric throughout, w
$gm ,gn%52dmn and gm

† 5gm , in which case the renormal
ized dressed-quark propagator atTÞ0 takes the form

S~pvk
!:52 igW •pW sA~pvk

!2 ig4vksC~pvk
!1sB~pvk

! ,
~6!

where (pvk
):5(pW ,vk) with vk5(2k11)pT the fermion

Matsubara frequency, andsF(pvk
), F5A,B,C are functions

only of upW u2 andvk
2 . The propagator is obtained as a soluti

of the quark DSE

S21~pvk
!:5 igW •pW A~pvk

!1 ig4vkC~pvk
!1B~pvk

! ~7!

5Z2
AigW •pW 1Z2~ ig4vk1mbm!1S8~pvk

!,
~8!

mbm is the Lagrangian current-quark bare mass, and the re
larized self-energy is

S8~pvk
!5 igW •pW SA8 ~pvk

!1 ig4vkSC8 ~pvk
!1SB8 ~pvk

!,
~9!

with

SF8 ~pvk
!5E

l ,q

L̄ 4
3 g2Dmn~pW 2qW ,vk2v l !

3 1
4 tr@PFgmS~qv l

!Gn~qv l
;pvk

!# , ~10!

where F5A,B,C; PA :52(Z1
A/upW u2) igW •pW , PB :5Z1, PC :

52(Z1 /vk) ig4; and * l ,q
L̄ :5 T ( l 52`

` *L̄d3q/(2p)3, with

*L̄ a mnemonic to represent a translationally invariant re
larization of the integral andL̄ the regularization mass scale
In Eq. ~10!, Gn(qv l

;pvk
) is the renormalized dressed-quar

gluon vertex andDmn(pW ,Vk) is the renormalized dressed
gluon propagator. (Vk52kpT is the boson Matsubara fre
quency.!

In renormalizing the quark DSE we require that

S21~pv0
!u upW u21v

0
25z25 igW •pW 1 ig4v01mR, ~11!

which entails that the renormalization constants are

Z2
A~z,L̄ !512SA8 ~zv0

2 ;L̄ !, ~12!

Z2~z,L̄ !512SC8 ~zv0

2 ;L̄ !, ~13!

mR~z!5Z2mbm~L̄2!1SB8 ~zv0

2 ;L̄ !, ~14!

where (zv0

2 )2:5z22v0
2, and the renormalized self-energie

are
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1760 PRC 58D. BLASCHKE, A. HÖLL, C. D. ROBERTS, AND S. SCHMIDT
F~pvk
;z!5jF1SF8 ~pvk

;L̄ !2SF8 ~zv0

2 ;L̄ ! , ~15!

F5A,B,C, jA515jC , andjB5mR(z).
So far no approximations or truncations have been m

but to continue we must know the form ofGn(qv l
;pvk

) and

Dmn(pW ,Vk) in Eq. ~10!. These Schwinger functions satis
DSEs. However, the study of those equations is rudimen
even atT50 and there are no studies forTÞ0. To proceed
we use theT50 results as a qualitative guide and empl
exploratoryAnsätzefor Gn(qv l

;pvk
) andDmn(pW ,Vk). This is

where model parameters enter.
The structure of the dressed fermion-gauge-boson ve

has been much considered@14#. As a connected, irreducibl
three-point function it should be free of light-cone singula
ties in covariant gauges, i.e., it should be regular atpW

2qW )21(vk2v l)
250. A range ofAnsätzewith this property

has been proposed and employed@15# and it has become
clear that the judicious use of the rainbow truncation

Gn~qv l
;pvk

!5gn ~16!

in Landau gauge provides reliable results@13#. This is the
Ansatzemployed in Refs.@11,12# and we use it herein. With
this truncation a mutually consistent constraint isZ15Z2 and
Z1

A5Z2
A @13#.

With Gn(qv l
;pvk

) regular, the analytic properties of th
kernel in the quark DSE are determined by those
Dmn(pVk

), which in Landau gauge has the general form

g2Dmn~pVk
!5Pmn

L ~pVk
!DF~pVk

!1Pmn
T ~pVk

!DG~pVk
!,
~17!

Pmn
T ~pVk

![H 0, m and/or n54,

d i j 2
pipj

p2
, m,n5 i , j 51,2,3,

~18!

with Pmn
T (pVk

)1Pmn
L (pVk

)5dmn2pmpn /(a51
4 papa ; m,n

51, . . . ,4. A ‘‘Debye mass’’ for the gluon appears as
T-dependent contribution toDF . ConsideringDmn(k) at T
50, a perturbative analysis at two-loop order provides
quantitatively reliable estimate fork2.1 – 2 GeV2, with
higher-order terms providing corrections of only;10%.
However, fork2,1 GeV2 nonperturbative methods are ne
essary. Studies of the gluon DSE in axial gauge@16#, where
ghost contributions are absent, or in Landau gauge@17#,
when their contributions are small, indicate thatDmn(k) is
significantly enhanced in the vicinity ofk250 relative to a
free gauge-boson propagator, and that the enhancemen
sists tok2;1 GeV2. Due to the truncations involved thes
studies are not quantitatively reliable but this behavior
been modeled successfully as a distribution located in
vicinity of k250 @13,18#.

A. Infrared-dominant model

A particularly simple and illustratively useful model
obtained with
e

ry

ex

f

a

er-

s
e

DF~pVk
!5DG~pVk

!52p3
h2

T
dk0d3~pW ! , ~19!

which is a generalization toTÞ0 of the model introduced in
Ref. @19#, where h'1.06 GeV is a mass-scale parame
fixed by fitting p- and r-meson masses. As an infrare
dominant model Eq.~19! does not represent well the beha
ior of Dmn(pVk

) away from pVk

2 .0, and hence there ar

some model-dependent artifacts. However, as exemplifie
Ref. @12#, these artifacts are easily identified and, because
its simplicity, the model provides a useful means of elucid
ing many of the qualitative features of more sophistica
Ansätze.

Using Eqs.~16! and ~19! the quark DSE is ultraviolet
finite, the cutoff can be removed, and the renormalizat
point taken to infinity, so that Eq.~8! becomes the algebrai
equations

h2m25B41m B31~4pvk

2 2h22m2!B2

2m~2h21m214pvk

2 !B , ~20!

A~pvk
!5C~pvk

!5
2B~pvk

!

m1B~pvk
!

, ~21!

with Z2
A515Z2 andm5mR5mbm: m50 defines the chiral

limit. This DSE model of QCD has coincident second-ord
deconfinement and chiral symmetry restoration phase tra
tions at a critical temperatureTc

IR'0.16h @12#.

B. Ultraviolet-improved model

An improvement over Eq.~19! is obtained by correcting
the large-pVk

2 behavior so as to better represent the inter

tion at short distances. The one-parameter model

DF~pVk
!5D~pVk

;mD!, ~22!

DG~pVk
!5D~pVk

;0!, ~23!

D~pVk
;m!:5 16

9 p2 F2p

T
mt

2d0 kd
3~pW !

1
12e[ 2~ upW u21Vk

2
1m2!/~4mt

2
!]

upW u21Vk
21m2 G , ~24!

where mD
2 5(8/3)p2T2 is the perturbatively evaluate

Debye-mass,2 achieves this. This gluon propagator provid
a generalization toTÞ0 of the model explored in Ref.@18#
where the parametermt is a mass scale that marks the boun
ary between the perturbative and nonperturbative doma

2The influence of the Debye mass on finite-T observables is quali-
tatively unimportant, even in the vicinity of the chiral symmet
restoration transition. The ratio of the coefficients in the two ter
in Eq. ~24! is such that the long-range effects associated w
d0 kd

3(p) are completely canceled at short distances, i.e.,

uxW u2mt
2!1.
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~The infrared-dominant model is recovered in the limitmt
→`: in this limit the interaction is strong at all momentu
scales.! The valuemt50.69 GeV51/0.29 fm is fixed in Ref.
@18# by requiring a good description of a range ofp- and
r-meson properties. In this case the DSE yields a pair
coupled, nonlinear integral equations that must be sol
subject to the renormalization boundary conditions, andmR
50 defines the chiral limit. This model also has coincide
second-order deconfinement and chiral symmetry restora
transitions, with the critical temperatureTc

UV'0.15 GeV
@11#.

III. CHIRAL AND THERMAL SUSCEPTIBILITIES

In the study of dynamical chiral symmetry breaking
order parameter often used is the quark condensate^q̄q&z . In
QCD in the chiral limit this order parameter is defined v
the quark propagator@13#:

2^q̄q&z :5Nc lim
L̄→`

Z4~z,L̄ !

3E
l ,p

L̄ B0~pv l
!

upW u2A0~pv l
!21v l

2C0~pv l
!21B0~pv l

!2
,

~25!

for each massless quark flavor, where the subscript 0 den
that the scalar functionsA0, B0, C0 are obtained as solution
of Eq. ~8! in the chiral limit, andZ4(z,L̄) is the mass renor
malization constant: Z4(z,L̄) mR(z)5Z2(z,L̄) mbm(L̄).
The functions have an implicitz dependence. From Eq.~25!,
and as exemplified in Refs.@11–13#, it follows that an
equivalent order parameter for the chiral transition is

X:5B0~pW 50,v0!, ~26!

which was used in Refs.@11,12#. Thus the zeroth Matsubar
mode determines the character of the chiral phase transi
a conjecture explored in Ref.@20#.

To accurately characterize the chiral symmetry restora
transitions in the two models introduced above, we exam
closely the chiral and thermal susceptibilities and their sc
ing behavior near the critical point. This allows a determin
tion of the critical temperatureTc and exponentsb andd, as
we explain in the Appendix. In the notation of the Append
the ‘‘magnetization’’ is

M ~ t,h!:5B~pW 50,v0!, ~27!
f
d

t
on

tes

n,

n
e
l-
-

,

i.e., the value in the infrared of the scalar piece of the qu
self-energy obtained as themR- andT-dependent solution o
Eq. ~8!.

A. Critical exponents of the infrared-dominant model

In the chiral limit, Eq. ~20! has the Nambu-Goldston
mode solution

B~pvk
!5H Ah224pvk

2 , pvk

2 ,
h2

4
,

0 , otherwise,

~28!

C~pvk
!55

2 , pvk

2 ,
h2

4
,

1
2 S 11A11

2h2

pvk

2 D , otherwise,

~29!

and hence

M ~ t,0!52p S h

2p
1TD 1/2S h

2p
2TD 1/2

. ~30!

From Eq.~30! we read that

Tc
IR5

h

2p
'0.159 155h , b IR5

1

2
. ~31!

To determined we use Eq.~20! at T5Tc to obtain

h2m25M ~0,h!41mM~0,h!31m2M ~0,h!2

2m~3h21m2!M ~0,h! ~32!

and suppose that, form;0, M (0,h)5a m1/d. Consistency
requires

d IR53. ~33!

That the chiral symmetry restoration transition in this mod
is characterized by mean field critical exponents is not s
prising because the interaction described by Eq.~19! is a
constant in configuration space. Mean field critical expone
are also obtained in chiral random matrix models of QC
@20,21#.

To illustrate the evaluation of the critical temperature a
exponents using the chiral and thermal susceptibilities
use Eqs.~20!, ~A9!, and~A10! to obtain
xh~T,h!52
2M ~T,h!Tb2@12M ~T,h!b2#2M ~T,h!Tb1

2M ~T,h!b2b1@12M ~T,h!b2#2b2b12M ~T,h!b2
, ~34!

xT~T,h!5
8p2TM~T,h!2b2

2 22M ~T,h!b2b1h@12M ~T,h!b2#2M ~T,h!hb1
2

2M ~T,h!b2b1@12M ~T,h!b2#2b2b12M ~T,h!b2
, ~35!
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whereb6 :5M (T,h)6hT. In Fig. 1 we plot the chiral sus
ceptibility. The temperature dependence is typical of t
quantity,3 with the peak increasing in height and becomi
narrower ash→01; i.e., as the external source for chir
symmetry breaking is removed. To understand this behav
recall that the chiral susceptibility is the derivative of t
order parameter with respect to the explicit chiral symme
breaking mass. Denote the typical mass scale associated
DCSB byMx . For m@Mx , explicit chiral symmetry break-
ing dominates, with the order parameterX;m and insensi-
tive to T, and hencexh'const. Form;Mx , X begins to
vary with T because the origin of its magnitude chang
from the explicit mass to the DCSB mechanism asT passes
through the pseudocritical temperatureTpc

h . This is reflected
in xh as the appearance of a peak atTpc

h . For m!Mx , X
;m until very nearTpc

h when the scale of DCSB overwhelm
m and X;Mx . The change inX is rapid leading to the
behavior observed inxh . The thermal susceptibility is plot
ted in Fig. 2 and has qualitatively similar features.

In Table I we present the pseudocritical points and p
heights obtained forh in the scaling window, defined as th
domain ofh for which

tpc
h

tpc
t

5const, ~36!

i.e., the values ofh for which Eqs. ~A15! and ~A16! are
valid. Based on Eqs.~A17! and ~A18!, using the tabulated

3The behavior of the susceptibilities is qualitatively identical
that obtained in lattice simulations, where the massive-quark c
densate is used as the chiral order parameter instead ofX in Eq.
~26!. Small, quantitative differences remain after allowing for t
larger quark masses that simulations are limited to. We expect
are due to the different order parameters, e.g., the massive-q
condensate is an integrated quadratically divergent quantity and
associated volume dependence can magnify its intrinsic mass
pendence, even after eliminating the simple volume factor. T
effect is absent inX.

FIG. 1. The chiral susceptibilityxh(T,h) in the infrared-
dominant model, Eq.~34!, as a function ofT for various values of
h.
s

r,

y
ith

s

k

values, one obtainszh
IR andzt

IR from linear fits to the curves
log10 xh

pc versus log10 h and log10 xT
pc versus log10 h, respec-

tively. This yields

zh
IR50.666, zt

IR50.335, ~37!

and hencebx
IR50.499 anddx

IR52.99, as listed in Table II.
These values are in excellent agreement with the exact~mean
field! results, Eqs.~31! and ~33!. With the value of

1

~bd! IR
512zh

IR1zt
IR50.670, ~38!

Tc
IR can be obtained in a variational procedure based on

~A15!: it is that value which minimizes the standard dev
tion between log10(Tpc

h 2Tc
IR)21/(bd) IR log10 h and a con-

stant. This yieldsTc
IR50.159 155h again in excellent agree

ment with Eq. ~31!. The value in Table II is obtained
with h51.06 GeV @19#. Applying the same procedur
to log10(Tpc

T 2Tc
IR)21/(bd) IR log10 h, yields Tc

IR50.159
151h.

B. Critical exponents of the ultraviolet-improved model

In this case the quark DSE must be solved numerically
in Refs. @11,18#. In these calculations we used a thre
momentum grid with 96 points and we renormalized atz
59.47 GeV, the value at which the parametermt(50.69

n-

ey
ark
he
e-

is

TABLE I. The pseudocritical points and peak heights for t
chiral and thermal susceptibilities in the infrared-dominant mod
obtained from Eqs.~34! and ~35!, respectively.

log10 h Tpc
h /h xh

pc/h Tpc
T /h xT

pc

25.0 0.159 21 707.0 0.159 17 248.5
24.3 0.159 31 241.9 0.159 20 145.4
24.0 0.159 41 152.9 0.159 23 115.3
23.3 0.159 90 52.19 0.159 39 67.33
23.0 0.160 34 32.91 0.159 53 53.34
22.3 0.162 68 11.31 0.160 52 30.91

FIG. 2. The thermal susceptibilityxT(T,h) in the infrared-
dominant model, Eq.~35!, as a function ofT for various values of
h.
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GeV! was fixed@18#. The chiral and thermal susceptibilitie
for a range of values ofh are plotted in Figs. 3 and 4, and th
pseudocritical points and peak heights obtained for value
h in the scaling window are presented in Table III.

As observed in Sec. III A, one obtainszh
UV andzt

UV from
linear fits to the curves log10 xh

pc versus log10 h and log10xT
pc

versus log10 h, respectively. The data and fits are presen
in Fig. 5 and yield

zh
UV50.7760.02, zt

UV50.2860.04, ~39!

with the corresponding results forb andd listed in the first
column of Table II.4 For this model only, as a check an
demonstration of consistency, the values ofTc

UV and
1/(bd)UV were calculated using a variational procedu
based on Eqs.~A15! and ~A16!: the values ofTc

UV and
1/(bd)UV were varied in order to minimize the standard d
viation in a linear fit to log10(Tpc2Tc

UV)21/(bd)UV log10 h.
The difference between usingTpc

h and Tpc
T is less than the

error quoted in the table.
In Ref. @11# the values ofb and Tc in the ultraviolet-

improved model were calculated directly from the magne
zation order parameter, i.e., using Eq.~A6!, with the results
b50.3360.3 andTc'152 MeV. There is a discrepancy i
the value ofb. We expect that the result obtained herein
more accurate because our method avoids the nume
noise associated with establishing the precise behavior o
order parameter in the vicinity of the critical temperature

IV. SUMMARY AND CONCLUSIONS

A primary purpose of this study was an illustration of t
method by which one can calculate the critical expone
that characterize a chiral symmetry restoration transitionb
andd, using the chiral and thermal susceptibilities. For t
purpose we chose two Dyson-Schwinger equation model
two-light-flavor QCD that have been applied successfu

4Our quoted error bounds the slope of the linear fit. It is calcula
from the slope of linear fits to the two end-point values when th
are displaced vertically, in opposite directions, by the standard
viation of the fit to all the tabulated results.

TABLE II. Critical exponents and temperature for the mode
considered herein and a comparison with the results in theN54
Heisenberg magnet@4#, labeled as O(4), and theresults of lattice
simulations of two-light-flavor QCD reported in Ref.@5#. ~We list
these lattice results only as a guide to a comparison—they are
confirmed by more recent simulations and the correct values of
critical exponents for two-flavor lattice QCD are currently unknow
@6#.!

IR dominant UV improved O(4) Lattice

d 3.0 4.360.3 4.8260.05 4.360.5
b 0.50 0.4660.04 0.3860.01 0.3060.08
1

bd
0.67 0.5460.05 0.5560.02 0.7760.14

Tc ~MeV! 168.7 153.560.1 140 . . . 160
of

d
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@11,12,22# in phenomenological studies of QCD at fini
temperature and density. The method is reliable and sho
have a wide range of applications because it is more accu
in the presence of numerical noise than a straightforw
analysis of the chiral symmetry~magnetization! order param-
eter.

We established that our finite temperature extension of
infrared-dominant model of Ref.@19# is characterized by
mean field critical exponents, listed in Table II. It is therefo
not in the universality class anticipated@3# for two-light-
flavor lattice QCD. However, the critical temperature is co
sistent with that estimated in lattice simulations. This fits
emerging pattern that DSE models whose mass-scale pa
eters are fixed by requiring a good description of had
observables atT50, yield a reliable estimate of the critica
temperature for chiral symmetry restoration. It is a quan
that is not too sensitive to details of the model.

Consistent with this observation, the critical temperatu
in the ultraviolet improved model of Ref.@18# also agrees
with that estimated in lattice simulations. For the critical e

d
y
e-

ot
e

FIG. 3. The chiral susceptibilityxh(T,h) in the ultraviolet-
improved model, Sec. II B, as a function ofT for various values of
h.

FIG. 4. The thermal susceptibilityxT(T,h) in the ultraviolet-
improved model, Sec. II B, as a function ofT for various values of
h.
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ponents,d agrees with that obtained in the simulations
two-light-flavor lattice QCD in Ref.@5#, but b differs, and
this is unlikely to be due to numerical errors in our stud
Unfortunately, this discrepancy cannot presently be used
ther as a guide to improving our DSE model or as a chec
the results of lattice simulations because the critical ex
nents reported in Ref.@5# are not confirmed by recent studie
using larger lattices and smaller fermion masses@6#. The
correct values of the critical exponents for two-light-flav
lattice QCD are currently unknown. A firm conclusion is th
the ultraviolet-improved DSE model is not in the same u
versality class as theN54 Heisenberg magnet. It therefor
illustrates the fact that there are many theories providin
good description of low-energyp andr observables which
are not in that universality class.

In this and its comparison with the IR-dominant model
suggests that a determination of the critical exponents
QCD may require a greater understanding of QCD dynam
than has been anticipated. To elucidate, the difference
tween the infrared-dominant model and the ultraviol
improved one is the value ofmt , i.e., the mass scale markin
the boundary between strong and weak coupling. T
ultraviolet-improved model evolves continuously into t
infrared-dominant one asmt→`, in which limit the interac-
tion is always strong. The particular manner in which t
theory evolves from weak to strong coupling is characteri
by the magnitude ofmt , and our results suggest that th
critical exponents are sensitive to the details of this evo
tion. This is plausible since that evolution is a determini
characteristic of theb function of a renormalizable theory
one which could influence a chiral symmetry restorat
transition.

The large-p2 behavior of the gluon propagator in th
ultraviolet-improved model, although better than that in t
infrared-dominant model, is still inadequate. Its renormali
tion group properties are more similar to those of quenc
QED than QCD because of the absence of the logarith
suppression of the running coupling characteristic of asym
totically free theories. This is corrected in the model of R
@13#, which has more in common with QCD atT50 and
whose finite temperature properties can therefore assis
better understanding the details of the chiral symmetry

TABLE III. The pseudocritical points and peak heights for t
chiral and thermal susceptibilities in the ultraviolet-improv
model, obtained from the numerical solution of Eq.~8! with the
gluon propagator of Eqs.~22!–~24!. From the dependence of th

peak heights on the number of points in thepW array, we estimate a
systematic 1.5% error inxh

pc and 10% inxT
pc.

log10h Tpc
h ~GeV! xh

pc ~GeV! Tpc
T ~GeV! xT

pc

24.30 0.154 64 896.3 0.153 79 67.72
24.00 0.155 15 530.7 0.153 94 55.70
23.70 0.155 71 303.8 0.154 22 45.70
23.52 0.156 27 224.9 0.154 43 40.65
23.40 0.156 77 181.8 0.154 60 37.37
23.30 0.157 29 154.9 0.154 87 35.00
23.15 0.157 95 120.3 0.155 08 31.64
23.04 0.158 40 97.21 0.155 34 29.32
23.0 0.158 72 90.03 0.155 36 28.39
f
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toration transition in two-light-flavor QCD. Hence it is bette
suited to cross checking and improvement by compari
with lattice simulations, and the extrapolation of the resu
of lattice-QCD studies into that domain which is presen
inaccessible, such as finite chemical potential and theT and
m dependence of hadron properties. These applications
currently being pursued.

ACKNOWLEDGMENTS

D.B. and S.S. acknowledge the hospitality of the Phys
Division at Argonne National Laboratory, and C.D.R. that
the Department of Physics at the University of Rostock d
ing visits in which parts of this work were conducted. We a
also grateful to the faculty and staff at JINR-Dubna for th
hospitality during the workshop onDeconfinement at Finite
Temperature and Densityin October 1997. This work was
supported in part by Deutscher Akademischer Austausc
enst, the U.S. Department of Energy, Nuclear Physics D
sion, under Contract No. W-31-109-ENG-38, the Nation
Science Foundation under Grant No. INT-9603385, and b
efited from the resources of the National Energy Resea
Scientific Computing Center.

APPENDIX: CRITICAL EXPONENTS
FROM SUSCEPTIBILITIES

Consider the free energy of a theory, represented by

f 5 f ~ t,h!, ~A1!

where t:5T/Tc21 is the reduced temperature andh:
5m/T is the explicit source of chiral symmetry breakin
measured in units of the temperature. It is analogous to
external magnetic field. Since correlation lengths diverge
second-order transition it follows that fort,h→0 the free
energy is a generalized homogeneous function, i.e.,

FIG. 5. The peak heights at the pseudocritical points of
chiral and thermal susceptibilities in the ultraviolet-improv
model: xh

pc ~filled circles!, xT
pc ~filled squares!. The solid lines are

straight-line fits, with the slopes2zh
UV and2zt

UV given in Eq.~39!,
which verify the scaling laws in Eqs.~A17! and ~A18!.
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f ~ t,h!5
1

b
f ~ tbyt,hbyh! . ~A2!

This entails the following behavior of the ‘‘magnetization

M ~ t,h!:5
] f ~ t,h!

]h U
t fixed

, ~A3!

M ~ t,h!5byh21M ~ tbyt,hbyh!. ~A4!

The scaling parameterb is arbitrary and along the trajector
utubyt51 one has

M ~ t,h!5utu~12yh!/ytM „sgn~ t !,hutu2yh /yt
… , ~A5!

M ~ t,0!}utub , b:5
12yh

yt
. ~A6!

Alternatively, along the trajectoryhbyh51,

M ~ t,h!5h~12yh!/yhM ~ th2yt /yh,1!, ~A7!

M ~0,h!}h1/d , d:5
yh

12yh
. ~A8!

This defines the critical behavior and provides that dir
means of extracting the critical exponentb employed in
Refs. @11,12#. However, because of numerical noise, it c
be difficult to extract quantitatively accurate results us
this method.

The critical exponents can also be determined by study
the pseudocritical behavior of the chiral and thermal susc
tibilities, defined respectively as

xh~ t,h!:5
]M ~ t,h!

]h U
t fixed

, ~A9!

x t~ t,h!:5
]M ~ t,h!

]t U
h fixed

. ~A10!
s,
t

g
p-

For convenience, we often usexT(T,h):5(1/Tc)x t(t,h).
For t,h→01, alonghbyh51, one has

xh~ t,h!5h~122yh!/yhxh~ th2yt /yh,1!, ~A11!

x t~ t,h!5h~12yh2yt!/yhx t~ th2yt /yh,1!. ~A12!

At eachh, xh(t,h) and x t(t,h) are smooth functions oft.
Suppose they have maxima attpc

h and tpc
t , respectively, de-

scribed as the pseudocritical points. Consider the chiral s
ceptibility. At its maximum

05
]

]t
xh~ t,h!U

t
pc
h

~A13!

5h~122yh!/yh
]

]t
~ th2yt /yh! F ]

]z
xh~z,1!G

z5th2yt /yh

U
t
pc
h

,

~A14!

which entails that

tpc
h 5Khhyt /yh5Khh1/~bd! , ~A15!

whereKh is an undetermined constant. Similarly,

tpc
t 5Kth

yt /yh5Kth
1/~bd! . ~A16!

Since bd.0, it follows that the pseudocritical points ap
proach the critical point,t50, ash→01. It follows from
Eqs.~A15! and ~A16! that at the pseudocritical points

xh
pc:5xh~ tpc

h ,h!}h2zh, zh :512
1

d
, ~A17!

x t
pc:5x t~ tpc

t ,h!}h2zt, zt :5
1

bd
~12b!. ~A18!

Thus by locating the pseudocritical points and plotting t
peak height of the susceptibilities as a function ofh one can
obtain values ofTc , b, andd.
ts,
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