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Analysis of chiral and thermal susceptibilities
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We calculate the chiral and thermal susceptibilities for two confining Dyson-Schwinger equation models of
QCD with two light flavors, a quantitative analysis of which yields the critical expongntnd § that
characterize the second-order chiral symmetry restoration transition. The method itself is of interest, minimiz-
ing the influence of numerical noise in the calculation of the order parameter for chiral symmetry breaking near
the critical temperature. For the more realistic of the two models we estimatd53 MeV and the non-
mean-field value@=0.46+0.04,5=4.3+0.3, and 1/ 6) = 0.54+ 0.05, which we discuss in comparison with
the results of other modelgS0556-281®8)04409-4

PACS numbgs): 11.10.Wx, 12.38.Mh, 24.8%.p, 05.70.Fh

. INTRODUCTION weaker than Coulombicxg(Q?)—0 asQ?—w. The study
of QCD at finite temperature and baryon number density
Phase transitions are characterized by the behavior of afyoceeds via the introduction of the intensive variables tem-
order parametefX), the expectation value of an operator. In peratureT and quark chemical potential. These are addi-
the ordered phase of a syste(X)+0, whereas in the dis- tjonal mass scales, with which the coupling cam and
ordered phas¢X)=0. A phase transition is first order if popce forT> A gep and/or w3 A gep, @s(Q?=0,T, 1) ~0.
(X)—0 discontinuously, whereas it is second orde() ¢ follows that, at finite temperature and/or baryon number
—0 continuously. For a second-order transition, the Iengtmensity, there is a phase of QCD in which quarks and gluons
scale associated with correlations in the system diverges 350 weakly interactingrrespectiveof the momentum trans-
(X)—0 and one can define a range of critical exponents th r [2], i.e., a quark-gluon plasma phase. Such a phase of

characterlze_ _the be_zhawor of certain macroscopic propertlel%atter existed approximately one microsecond after the big
at the transition point. For example, in a system that is fer-ban
romagnetic for temperatures less than some critical value . . L .

the magnetizatioM in the absence of an external magnetic f' Al Tn'f _n?j tgenstrr;)inglln':](?rralctlorr:]:f] (irr\arbarctethzed Sbé) con-
field behaves ao(T,—T)# for T~T , where g is the ineément a ynamical chiral symmetry breakii-SB),

; ; ; 2 2
critical exponent. At the critical temperature the behavior of_effects which are tied to the behavior @§(Q") at smallQ”,

the magnetization in the presence of an external fteld i.e., its long-range behavior. In a phase of QCD in which the
—.0* defines another critical exponeat Mo<h®._ In a coupling is uniformly small for allQ?, these effects are ab-

system that can be described by mean field theory these crif€nt and the nature of the strong interaction spectrum is

cal exponents are qualitatively different.
The path followed in the transition to the plasma is also
BMF=05, MF=3.0. ) important because it determines some observational conse-

guences of the plasma’s existence. For exarf@lethe time

Equilibrium second-order phase transitions can be anascale for the expansion of the early universd0 ° s is
lyzed using the renormalization group, which leads to scalindarge compared with the natural time scale in QCIR dép
laws that reduce the number of independent critical expo-1 fm/c~10 23 s, hence thermal equilibrium is maintained
nents to just 28 and & [1]. It is widely conjectured that the throughout the QCD transition. Therefore if the transition is
values of these exponents are fully determined by the dimersecond-order the rati®: = baryon-number/entropy remains
sion of space and the nature of the order parameter. This isnchanged from that value attained at an earlier stage in the
the notion ofuniversality i.e., that the critical exponents are universe’s evolution. However, a first-order transition would
independentf a theory’s microscopic details and hence allbe accompanied by a large increase in entropy density and
theories can be grouped into a much smaller number of unitherefore a reduction iB after the transition. Hence the
versality classes according to the values of their critical exorder of the QCD transition constrains the mechanism for
ponents. If this is the case, the behavior of a complicatedharyon number generation in models describing the forma-
theory near criticality is completely determined by the be-tion of the universe, since with a second-order transition this
havior of a simpler theory in the same universality class. Somechanism is only required to produce the presently ob-
when presented with an apparently complicated theory, theerved value oB and need not allow for dilution. In the
problem is reduced to only that of establishing its universal-absence of quarks, QCD has a first-order deconfinement tran-
ity class. sition, while with three or four massless quarks a first-order

Quantum chromodynamics is an asymptotically freechiral symmetry restoration transition is expecféfl What
theory, i.e., there is an intrinsic, renormalization-inducedof the realistic case with two light quark flavors?
mass scale\ cp, and for squared momentum transfgf Based on the global chiral symmetry of QCD with two
>Aqcp, the interactions between quarks and gluons ardight quark flavors, it has been argug] that this theory and
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the N=4 Heisenberg magnet are in the same universality Il. TWO MODELS
class. As a field theory, the=4 Heisenberg magnet is char-

acterized by an interaction of the form In order to introduce the DSE models, here we briefly

review necessary elements of the DSE formalism: IR&f.
provides an extensive review and REf3] a heuristic appli-
cation. We employ a Euclidean metric throughout, with
1Yu ¥ =26,, and yLz Yu» in which case the renormal-
ized dressed-quark propagatorTat O takes the form

4
izl {327+ N (0} )

wherepu? is a function of temperaturgt>=0 at or above the

critical temperaturely! but 4?<0 for T<TL . If the inter- S(Pu): =17 PTA(Pu) ~i Ya®kTc(Pu) + Ta(Pa,) -
action strength\ depends smoothly ofi and remains posi- (6)
tive, then forT<T! the classical minimum of this potential .
is at where (Dwk)ZZ(p,a)k) with w,=(2k+1)7T the fermion
Matsubara frequency, anﬂ}(pwk), F=A,B,C are functions
2 >
- K ~0. &) only of |p|? andw? . The propagator is obtained as a solution

SN of the quark DSE

This model is familiar as the nonlinear model, often used ~ S™*(p,, ):=iv-PA(P,,) +i 720 C(P,,) +B(Py,) 7)

to describe low-energy phenomena in QCD. It has been ex-
plored thoroughly and has a second-order phase transition

A ; ,
with critical exponent$§4] =251y P+ Za(i yaoict Mom) + 27 (P ).

8
pB"=0.38+0.01, 6"=4.82+0.05. (4) m,, is the Lagrangian current-quark bare mass, and the regu-
larized self-energy is
One can examine the hypothesis that this model and QCD
with two light quark flavors are in the same universality class — 57(p_ Y=iy-pS (P, ) +i Va3 a(Py )+ 5(Po.),
via numerical simulations. Such studies on ax@& lattice K AP ARSI oy B e )
suggest a second-order chiral phase transition with critical
exponentg5] with
B'?=0.30+0.08 , 5%=4.3+0.5 (5) . A .
2HPo)= | 39°D (P~ 0, 0 @)
but do not decide the questidrThese results were obtained ’1
through an analysis of the chiral and thermal susceptibilities, Xt Pry,S(du)T Ay Pu)] (10)
a technique that can be applied in the study of any theory.
Herein we illustrate the method via an analysis of twowhere F=A,B,C; pA;:_(zfl*/|p*|2)i;,.§, Pai=2Z;, Pc:
Dyson-Schwinger equatiofDSE) models of QCD, which = —(Z4/ )i s and fIK = T3 fxd3q/(277)3 with
_ 1 ’q - =—00 1

also allows us to explore the hypothesis further. n . . . .
Dyson-Schwinger equations provide a renormalizable,f a mnemonic to represent a translationally invariant regu-

nonperturbative, continuum framework for the exploration oflarization of the integral and the regularization mass scale.

strong interaction effects. They have been used extensivel Ed. (10), I',(d,,;p,,) is the renormalized dressed-quark-

[7] at T=0 in the study of confinement and DCSB, and in gjyon vertex andD,,,(p,Q,) is the renormalized dressed-
the calculation of a wide range of hadron observalps  gluon propagator. @, =2k#T is the boson Matsubara fre-
including the electroproduction of vector mes¢@sand the  qyency)

semileptonic transition form factors of heavy mes¢h]. In renormalizing the quark DSE we require that

They have recently11,12 found successful application at
T+0 and it is these two models that we employ as exemplars
herein. In Sec. Il we describe the models and in Sec. Il the
analysis of their chiral and thermal susceptibilities, and the hich entails that the renormalization constants are
evaluation of the associated critical exponents. We summa- ™ ntaifis renormaiizatl stants ar

rize and conclude in Sec. IV.

S Puglipi2+wz=r2=17-PFivawotme,  (11)

Z3(L M) =1-3 0L M), (12
IA review[6] of results from recent simulations on larger lattices Zy(8,A)= 1_Eé(§;0 A, (13
with lighter quarks reports a significant dependence of these critical
exponents on the lattice volume but with their product approxi- Me(&)=Z,m, (X2)+2’(§_ .K) (14)
mately constant. A value of,~1= §—« is obtained, which is " BYSwor

characteristic of a first-order transition. It suggests that more studies _
at weaker coupling or with improved actions are necessary in orde¥here €,
to understand these unexpected results. are

0)2:=§2—w(2), and the renormalized self-energies
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2

FPu )= Ert SHPui M) =S H LG A (19 Ar(Pa,) = Ac(Po) =27 T 508°(B) . (19

f:A,B,C, §A: 1: gc y anng: mR(é’)
So far no approximations or truncations have been madg
but to continue we must know the form ny(qwl;pwk) and

hich is a generalization td+ 0 of the model introduced in
ef. [19], where »~1.06 GeV is a mass-scale parameter
fixed by fitting 7~ and p-meson masses. As an infrared-

D,.(p.Q) in Eq. (10). These Schwinger functions satisfy dominant model Eq(19) does not represent well the behav-
DSEs. However, the study of those equations is rudimentaryyy of D,.(po,) away from p3 =0, and hence there are
14 K K 1

even atT=0 and there are no stuo_lles_, ﬁb#Q. To proceed some model-dependent artifacts. However, as exemplified in

we use theT=9 results as a qualitative gu:de and gmploy Ref.[12], these artifacts are easily identified and, because of

exploratoryAnsazefor I' (q,,;P,,) andD ,,(p.{y). Thisis jts simplicity, the model provides a useful means of elucidat-

where model parameters enter. ing many of the qualitative features of more sophisticated
The structure of the dressed fermion-gauge-boson verte&nsdze

has been much considergt4]. As a connected, irreducible Using Egs.(16) and (19) the quark DSE is ultraviolet

three-point function it should be free of light-cone singulari- finite, the cutoff can be removed, and the renormalization

ties in covariant gauges, i.e., it should be regular gt ( Point taken to infinity, so that Eq8) becomes the algebraic
— )2+ (wp— w;)2=0. A range ofAnsazewith this property ~ €duations
has been proposed and employdd] and it has become

212 _ R4 3 2 2 2\R?2
. X m“=B"+m B°+(4p; —n°—m-)B
clear that the judicious use of the rainbow truncation 7 ( Py ™7 )

—m(27%+m?+4p2 )B, (20)
I'(AwiPw) =7y (16) k
| . . . 2B(p.,)
in Landau gauge provides reliable resylts]. This is the A(p, )=C(p, )= —=—-, (22)
Ansatzemployed in Refs[11,17] and we use it herein. With k K m+B(p,,)

this truncation a mutually consistent constrainZis=Z, and A ) )
zh=27513]. with Z;=1=27, andm=mg=my,,: m=0 defines the chiral
with T',(q,,:p.,.) regular, the analytic properties of the limit. This DSE model of QCD has coincident second-order
ek deconfinement and chiral symmetry restoration phase transi-

kernel in the quark DSE are determined by those Otions at a critical temperatur‘é'cR%O.l&; [12].

Dw(pgk), which in Landau gauge has the general form

B. Ultraviolet-improved model
92D,.,(Po,) = Pk.(Pa)Ar(Pa, )+ PL,(Pa)Ac(Pa,). P

17) An improvement over Eq(19) is obtained by correcting
the Iargepak behavior so as to better represent the interac-
0, u and/or v=4, tion at short distances. The one-parameter model
pT = D 18 A =D ‘mp), 22
wlPa)=) 5 PP i —120, (18) £(Pa,)=D(Pa,;Mp) (22)
p
Ag(Po,)=D(pg,;0), (23)
with Py, (Po,)+PL(Pe)= 8,=PuPy /S0 1 Pabai v ,

=1,...,4. A“Debye mass” for the gluon appears as a oy 162 [T o 3/
T-dependent contribution ta. ConsideringD (k) at T D(pa,im):=g'm™ | =~ M; G0 &"(P)

=0, a perturbative analysis at two-loop order provides a )
quantitatively reliable estimate fok?>1-2 GeV, with 1— el ~ (Pl +QE+m?)/(amd)]
higher-order terms providing corrections of only10%.
However, fork?’<1 Ge\? nonperturbative methods are nec-
essary. Studies of the gluon DSE in axial ga{ige], where
ghost contributions are absent, or in Landau gal4é,

when their contributions are small, indicate thay (k) is a generalization td#0 of the model explored in Ref18]
significantly enhanced in the vicinity &=0 relative to a where the parameten, is a mass scale that marks the bound-
gifsﬂiigi ?Oég&!ogﬁsgtzt%’eagg;22;;22 ?Q\?O?CSSTﬁg;ep%rry between the perturbative and nonperturbative domains.
studies are not quantitatively reliable but this behavior has
been modeled successfully as a distribution located in the
vicinity of k?2=0 [13,18. °The influence of the Debye mass on finftesbservables is quali-
tatively unimportant, even in the vicinity of the chiral symmetry
restoration transition. The ratio of the coefficients in the two terms
in Eq. (24) is such that the long-range effects associated with
A particularly simple and illustratively useful model is 8,ké%(p) are completely canceled at short distances, i.e., for
obtained with |X|?m?<1.

. (29

b+

where m3=(8/3)7?T? is the perturbatively evaluated
Debye-mas$,achieves this. This gluon propagator provides

A. Infrared-dominant model
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(The infrared-dominant model is recovered in the limif i.e., the value in the infrared of the scalar piece of the quark
—o0: in this limit the interaction is strong at all momentum self-energy obtained as timez- and T-dependent solution of
scales. The valuem,=0.69 Ge\=1/0.29 fm is fixed in Ref. Eq. (8).

[18] by requiring a good description of a range #f and

p-meson prop.erties.. In this case 'the DSE yields a pair of A, Critical exponents of the infrared-dominant model
coupled, nonlinear mte.gra! equations that m.l“!St be solved In the chiral limit, Eq.(20) has the Nambu-Goldstone
subject to the renormalization boundary conditions, amd .

= : SR ; - mode solution

=0 defines the chiral limit. This model also has coincident

second-order deconfinement and chiral symmetry restoration 2
n
transitions, with the critical temperaturgy'~0.15 GeV N7 =4pG, P2 <—,
[11]. B(pwk): kK 4 (28)
0, otherwise,
lll. CHIRAL AND THERMAL SUSCEPTIBILITIES
2
In the study of dynamical chiral symmetry breaking an 2, pi <77_,
order parameter often used is the quark conder{sgfk; . In k4
QCD in the chiral limit this order parameter is defined via C(pwk): 2792
the quark propagatdn 3]: 3| 1+ 1+—-1 ., otherwise,
Po,
_ ) — 29
—(qa);: =N, lim Z,(£,R) @9
A—o and hence
f 8 BolPu) M(t,0) =27 | o +T 1/2( 7 T)m (30)
> ) 0)=2m7 | 5= Pyl .
1p|pI?Ag(Pu,)®+ @7 Co(Pu)®+ Bo(Pu,)? 2m 2m

(25 From Eq.(30) we read that

for each massless quark flavor, where the subscript O denotes 1
that the sc_:alar fungtlorgo_, By, Co are_ob.talned as solutions TICR:_%O.159 155; , BIRZE . (31)
of Eq. (8) in the chiral limit, andZ,({,A) is the mass renor-

2
malization constant: Z,({,A) Mr(£)=Z5(£,A) My(A).  To determines we use Eq(20) at T=T, to obtain

The functions have an implicit dependence. From E{5),
and as exemplified in Refd11-13, it follows that an 2 5 4 3, 2 2
equivalent order parameter for the chiral transition is 7°M°=M(0n)"+mM(0h)"+mM(0h)

—m(37°+m?)M(0,h) (32

X:=Bo(p=0,w), 26 :
o(P=0.w0) @0 and suppose that, fan~0, M(0,h)=a m'°. Consistency

which was used in Ref$11,17. Thus the zeroth Matsubara requires
mode determines the character of the chiral phase transition,
a conjecture explored in Ref20].

To accurately characterize the chiral symmetry restoration o e chiral symmetry restoration transition in this model

trlanS||t|otrr1]s mht_hel tw%rPhodels Ilntroduc;?gll_at_bove, éV(tehexamlnl% characterized by mean field critical exponents is not sur-
closely he chiral and thérmal Susceptibiiities and their sca prising because the interaction described by &@9) is a
ing behavior near the critical point. This allows a determina-

" f the critical t ure q ‘ ds constant in configuration space. Mean field critical exponents
on of the critical temperaturé; and exponentg andJ, as are also obtained in chiral random matrix models of QCD

we explain in the Appendix. In the notation of the Appendix, [20,21]
the “magnetization” is To illustrate the evaluation of the critical temperature and
R exponents using the chiral and thermal susceptibilities we
M(t,h):=B(p=0,w¢), (27 use Eqgs(20), (A9), and(A10) to obtain

SR=3. (33

2M(T,h)Tb_[1—M(T,h)b_]—M(T,h)Th,

X == S T b b, [1-M(T,n)b_]—b_b, —M(T.n)b_* (34
B 8m2TM(T,h)?b% —2M(T,h)b_b h[1—M(T,h)b_]—M(T,h)hb?
xi(T.h)= M (T.Mb_b.[1-M(T.mb_]—b_b, —M(T.nb_ : (35
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800.0 T T 300.0 T .
— log,, h=-5.0 — log,, k=-5.0
— [0Q,o h=—43 — [0Q,o h=—43
----log,, h=—40 ---- log,, k=40
600.0 | ——-log,, h=-33 j —— logy h=-33
—_— Iog“, h=-30 _ |°g1° h==30
— log, h=-23 200.0 —— log,, h=-23 .

£ -
S 4000 1 S
:‘; *
100.0
200.0 4
0.0 T 0.0
0.158 0.162 0.164 0.158
T/n T/n
FIG. 1. The chiral susceptibilityy,(T,h) in the infrared- FIG. 2. The thermal susceptibility+(T,h) in the infrared-
dominant model, Eq(34), as a function ofT for various values of dominant model, Eq(35), as a function ofT for various values of
h. h.

whereb.. :=M(T,h)=hT. In Fig. 1 we plot the chiral sus- yalues, one obtaing® andz~ from linear fits to the curves:

Ceptlbl|lt3¥. '_I'he temperature de_pen_denc_e is typical of Fh|s|og10 XEC versus logy h and logg x5 versus log, h, respec-

quantity; with the peak increasing in height and becomlngtive|y_ This yields

narrower ash—0"; i.e., as the external source for chiral

symmetry breaking is removed. To understand this behavior, ZiR=0.666, ;= 0.335, (37

recall that the chiral susceptibility is the derivative of the

order parameter with respect to the explicit chiral symmetryand hences\=0.499 ands|’=2.99, as listed in Table II.

breaking mass. Denote the typical mass scale associated witlhese values are in excellent agreement with the exaean

DCSB byM, . Form=>M ,, explicit chiral symmetry break- field) results, Eqs(31) and(33). With the value of

ing dominates, with the order paramet®r~m and insensi-

tive to T, and hencey,~const. Form~M, , & begins to 1

vary with T because the origin of its magnitude changes (BS)R

from the explicit mass to the DCSB mechanismTapasses

through the pseudocritical temperat(.. This is reflected Te¢: can be obtained in a variational procedure based on Eq.

in xn as the appearance of a peakTgt. For m<M , X (A15): it is that value which minimizes the standard devia-

~m until very nearT. when the scale of DCSB overwhelms tion between logy(The—Te) —1/(85)'® logio h and a con-

m and X~M, . The change in¥ is rapid leading to the stant. This yieldsT'R=0.159 155; again in excellent agree-

behavior observed ify,,. The thermal susceptibility is plot- ment with Eq. (31). The value in Table Il is obtained

ted in Fig. 2 and has qualitatively similar features. with 7=1.06 GeV [19]. Applying the same procedure
In Table | we present the pseudocritical points and peako logi(Tp.—Te) —1/(86)'® logio h, yields T{=0.159

heights obtained foh in the scaling window, defined as the 151 7.

domain ofh for which

=1-277+27=0.670, (38)

B. Critical exponents of the ultraviolet-improved model

2€_ const, (36) Inthis case the quark DSE must be solved numerically, as
in Refs.[11,18. In these calculations we used a three-
. , momentum grid with 96 points and we renormalized{at
ie., the values oh for which Eqs.(AlS} and (A16) are  _g 47 GeV, the value at which the parametey(=0.69
valid. Based on Eqs/Al7) and (A18), using the tabulated

TABLE |. The pseudocritical points and peak heights for the
chiral and thermal susceptibilities in the infrared-dominant model,

3The behavior of the susceptibilities is qualitatively identical to obtained from Eqs(34) and (35), respectively.

that obtained in lattice simulations, where the massive-quark con- h c T c
densate is used as the chiral order parameter instead infEq. l0g10 N Tod 7 XiT 7 Tod 7 X7

(26). Small, quantitative differences remain after allowing for the _g5 g 0.159 21 707.0 0.159 17 248.5
larger quark masses that simulations are limited to. We expectthey _,4 3 0.159 31 241.9 0.159 20 145.4
are due to the different order parameters, e.g., the massive-quark —40 0.159 41 152.9 0.159 23 115.3
conde_nsaée islan intggrate: guadratically di_\;;r_gen_t q_ual_wtity and :jhe 33 0.159 90 5219 0.159 39 67.33
associated volume dependence can magnify its intrinsic mass de- ' ' ’ ' ’
pendence, even after eliminating the simple volume factor. This _jg gigg 22 i’izi 8123 gg :ggi’

effect is absent int.
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TABLE II. Critical exponents and temperature for the models 1000.0
considered herein and a comparison with the results inNtket
Heisenberg magndt], labeled as @), and theresults of lattice ::23:;2:13
simulations of two-light-flavor QCD reported in R¢b]. (We list 800.0 ®log,, h=-34
these lattice results only as a guide to a comparison—they are ng Alog,h=-30
confirmed by more recent simulations and the correct values of the
critical exponents for two-flavor lattice QCD are currently unknown o 6000
[6].) 8
IR dominant UV improved 0(4) Lattice % 400.0 -
S 3.0 4.3t0.3 4.82:0.05 4.3-05
B 0.50 0.46-0.04 0.38:0.01 0.30-0.08 200,0'_
1 0.67 0.54-0.05 0.55-0.02 0.7%0.14 M
B6 O B B ' o S Wy
T (MeV) 168.7 153501 140. .. 160 08 152 0.154 0.156 0158 0.160 0.162

T (GeV)

GeV) was fixed[18]. The chiral and thermal susceptibilites ~ F/G- 3. The chiral susceptibilityy(T,h) in the ultraviolet-

for a range of values df are plotted in Figs. 3 and 4, and the improved model, Sec. Il B, as a function dffor various values of

pseudocritical points and peak heights obtained for values dr

h in the scaling window are presented in Table IIl. [11,12,22 in phenomenological studies of QCD at finite
As observed in Sec. Il A, one obtaizg” andz’¥ from  temperature and density. The method is reliable and should

linear fits to the curves lag xh° versus logy h and log;ox%°  have a wide range of applications because it is more accurate

versus logp h, respectively. The data and fits are presentedn the presence of numerical noise than a straightforward

in Fig. 5 and yield analysis of the chiral symmetfynagnetizatiohorder param-
eter.
uv _ Uv _
7, =0.77£0.02, z'"=0.28+0.04, (39 We established that our finite temperature extension of the

infrared-dominant model of Ref.19] is characterized by
with the corresponding results f@ and § listed in the first  mean field critical exponents, listed in Table Il. It is therefore
column of Table I For this model only, as a check and not in the universality class anticipatd8] for two-light-
demonstration of consistency, the values ®fY and flavor lattice QCD. However, the critical temperature is con-
1/(B8)YY were calculated using a variational proceduresistent with that estimated in lattice simulations. This fits an
based on Egs(Al15) and (A16): the values ongV and emerging pattern that DSE models whose mass-scale param-
1/(B8)Y" were varied in order to minimize the standard de-eters are fixed by requiring a good description of hadron
viation in a linear fit to loge(Tpc— TV —1/(B8)YY logy, h. observables at=0, yield a reliable estimate of the critical
The difference between usin‘gﬁc and Tgc is less than the temperature for chlrel symmetry restoration. It is a quantity
error quoted in the table. that is not too sensitive to deta|I§ of the medel.

In Ref. [11] the values of8 and T, in the ultraviolet- Consstent Wlth this observation, the critical temperature
improved model were calculated directly from the magnetin the ultraviolet improved model of Ref18] also agrees
zation order parameter, i.e., using E46), with the results with that estimated in lattice simulations. For the critical ex-
B£=0.33+0.3 andT.~152 MeV. There is a discrepancy in 70.0
the value of3. We expect that the result obtained herein is

. . ol h=-43

more accurate because our method avoids the numerica ..23:;h=4,0
noise associated with establishing the precise behavior of the eo0.0 ::ggor-gg .

o 2 = =2

order parameter in the vicinity of the critical temperature.

IV. SUMMARY AND CONCLUSIONS seor ]

A primary purpose of this study was an illustration of the %
method by which one can calculate the critical exponents 400 ]
that characterize a chiral symmetry restoration transit®n,
and &, using the chiral and thermal susceptibilities. For this
purpose we chose two Dyson-Schwinger equation models of 3%°
two-light-flavor QCD that have been applied successfully

20.0

1 1 1 1
0.147 0.149 0.153 0.165 0.157 0.159

T (GeV)

1
0.151

4Our quoted error bounds the slope of the linear fit. It is calculated
from the slope of linear fits to the two end-point values when they FIG. 4. The thermal susceptibility+(T,h) in the ultraviolet-
are displaced vertically, in opposite directions, by the standard deimproved model, Sec. Il B, as a function ffor various values of
viation of the fit to all the tabulated results. h.
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TABLE lll. The pseudocritical points and peak heights for the r- - - - v - - - v T ]
chiral and thermal susceptibilities in the ultraviolet-improved 3.0 F 4
model, obtained from the numerical solution of E§) with the r 1
gluon propagator of Eq922)—(24). From the dependence of the I
peak heights on the number of points in ﬁmrray, we estimate a 25 i ]
systematic 1.5% error igp® and 10% iny%°. !

logich  Th.(GeV)  xp°(GeV) T (GeV) x5 ?f [ ]
-4.30 0.154 64 896.3 0.153 79 67.72 ‘_37 20 r 1
—4.00 0.155 15 530.7 0.153 94 55.70 I ]
-3.70 0.15571 303.8 0.154 22 45.70 15l ]
—3.52 0.156 27 224.9 0.154 43 40.65 T ]
—3.40 0.156 77 181.8 0.154 60 37.37 [ ]
—3.30 0.157 29 154.9 0.154 87 35.00 L

—-3.15  0.15795 120.3 0.15508  31.64 W T T e a5 Tao
—3.04 0.158 40 97.21 0.155 34 29.32 109,,(h)

-3.0 0.158 72 90.03 0.155 36 28.39

FIG. 5. The peak heights at the pseudocritical points of the
chiral and thermal susceptibilities in the ultraviolet-improved
ponents,s agrees with that obtained in the simulations of model: x£° (filled circles, x%° (filled squares The solid lines are
two-light-flavor lattice QCD in Ref[5], but g differs, and  straight-line fits, with the slopes z;¥ and—z"¥ given in Eq.(39),
this is unlikely to be due to numerical errors in our study.which verify the scaling laws in Eq$A17) and (A18).

Unfortunately, this discrepancy cannot presently be used ei-

ther as a guide to improving our DSE model or as a check oforation transition in two-light-flavor QCD. Hence it is better
the results of lattice simulations because the critical exposuited to cross checking and improvement by comparison
nents reported in Ref5] are not confirmed by recent studies with lattice simulations, and the extrapolation of the results
using larger lattices and smaller fermion masf@s The  of lattice-QCD studies into that domain which is presently
correct values of the critical exponents for two-light-flavor inaccessible, such as finite chemical potential andTtizad
lattice QCD are currently unknown. A firm conclusion is that ;, dependence of hadron properties. These applications are
the ultraviolet-improved DSE model is not in the same uni-currently being pursued.

versality class as thBl=4 Heisenberg magnet. It therefore
illustrates the fact that there are many theories providing a
good description of low-energy and p observables which

are not in that universality class. _ . D.B.and S.S. acknowledge the hospitality of the Physics
In this and its comparison with the IR-dominant model, it pjyision at Argonne National Laboratory, and C.D.R. that of
suggests that a determination of the critical exponents ofye Department of Physics at the University of Rostock dur-
QCD may require a greater understanding of QCD dynamicgyg visits in which parts of this work were conducted. We are
than has been anticipated. To elucidate, the difference bggso grateful to the faculty and staff at JINR-Dubna for their
tween the infrared-dominant model and the ultraviolet-nogpitality during the workshop obeconfinement at Finite
improved one is the value afy, i.e., the mass scale marking Temperature and Densityn October 1997. This work was
the boundary between strong and weak coupling. Th&ypported in part by Deutscher Akademischer Austauschdi-
ultraviolet-improved model evolves continuously into the gnst the U.S. Department of Energy, Nuclear Physics Divi-
infrared-dominant one as,—, in which limit the interac-  sjon, under Contract No. W-31-109-ENG-38, the National
tion is always strong. The particular manner in which theggjence Foundation under Grant No. INT-9603385, and ben-

theory evolves from weak to strong coupling is characterizeggited from the resources of the National Energy Research
by the magnitude ofn;, and our results suggest that the scientific Computing Center.

critical exponents are sensitive to the details of this evolu-
tion. This is plausible since that evolution is a determining
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characteristic of thg8 function of a renormalizable theory, APPENDIX: CRITICAL EXPONENTS
one which could influence a chiral symmetry restoration FROM SUSCEPTIBILITIES
transition.

Consider the fi f a th , ted b
The largep? behavior of the gluon propagator in the ONSICEr The Tree energy of a theory, represented by

ultraviolet-improved model, although better than that in the
infrared-dominant model, is still inadequate. Its renormaliza-
tion group properties are more similar to those of quenched
QED than QCD because of the absence of the logarithmiwhere t:=T/T.—1 is the reduced temperature ard
suppression of the running coupling characteristic of asymp=m/T is the explicit source of chiral symmetry breaking
totically free theories. This is corrected in the model of Ref.measured in units of the temperature. It is analogous to an
[13], which has more in common with QCD dt=0 and external magnetic field. Since correlation lengths diverge in a
whose finite temperature properties can therefore assist isecond-order transition it follows that farh—0 the free
better understanding the details of the chiral symmetry resenergy is a generalized homogeneous function, i.e.,

f=f(t,h), (A1)
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1 For convenience, we often ugg(T,h):=(1/T.) x:(t,h).

fth=5 f(tbY,hb*h) . (A2) Fort,h—0", alonghb’h=1, one has
— h(1-2yp) _—

This entails the following behavior of the “magnetization” Xn(t,h) =h=" By (th ™Yt 1), (A11)

Mt hy: = 2T (A3) Xe(t,h) =¥ 0y (th Y ). (A12)

n J tfixed, At eachh, yu(t,h) and x.(t,h) are smooth functions df.

. Suppose they have maxima tﬁg and t:)c, respectively, de-
M(t,h) =b¥h" =M (tb¥,hi*h). (A4)  scribed as the pseudocritical points. Consider the chiral sus-

The scaling parametdr is arbitrary and along the trajectory ceptibility. At its maximum

[t|bYt=1 one has 9
0=—xn(t,h) (A13)
M (t,h)=[t| L ¥WSM (sgr(t),hlt| ¥, (A5) )
1-yn - a d
M(t,0)t|?, B:= : (AB) =hE=2Wh — (th=¥e¥n) | — x4 (2,1) :
Y at 9z z=th=Y(¥n | 4h
pc
Alternatively, along the trajectorgh’n=1, (A14)
M (t,h)=hE=YYaM (th=Ye/¥n 1), (A7)  which entails that
Us Yh th.=Kyh¥tYn= K h e | (A15)
M(Oh)och™® | &= . (A8) . ) .
1-yy whereK}, is an undetermined constant. Similarly,
This defines the critical behavior and provides that direct t:;c: K hYtYh=K hED (A16)

means of extracting the critical expone@t employed in
Refs.[11,17. However, because of numerical noise, it canSince 86>0, it follows that the pseudocritical points ap-
be difficult to extract quantitatively accurate results usingproach the critical pointt=0, ash—07. It follows from
this method. Egs.(A15) and (A16) that at the pseudocritical points

The critical exponents can also be determined by studying

. . . 1
the pseudocritical behavior of the chiral and thermal suscep- pe.— o (th hysch~2n N A17
tibilities, defined respectively as Xh 1= Xn(tpe,n)och ™%,z 5 (A
IM(t,h) oc . ., 1
Xh(t!h):zT ’ (Ag) X’[ :=X’[(tpc1h)och l, Zt:ﬁ_ﬁ(l_ﬂ) (A18)
t fixed
IM(t,h) Thus by locating the pseudocritical points and plotting the
xi(t,h)i= ——"= (A10) peak height of the susceptibilities as a functiorhadne can
Jt h fixed obtain values ofl., B, andé.

[1] R. J. Creswick, H. A. Farach, and C. P. Podigroduction to  [11] A. Bender, D. Blaschke, Yu. Kalinovsky, and C. D. Roberts,

Renormalization Group Methods in Physi¢®viley, New Phys. Rev. Lett77, 3724(1996.
York, 1992. [12] D. Blaschke, C. D. Roberts, and S. Schmidt, Phys. Let2B
[2] J. C. Collins and M. J. Perry, Phys. Rev. L&, 1353(1975. 232(1998.

[13] P. Maris and C. D. Roberts, Phys. Rev56, 3369(1997).

[14] A. Bashir, A. Kizilersu, and M. R. Pennington, Phys. Rev. D
57, 1242(1998.

[15] F. T. Hawes, C. D. Roberts, and A. G. Williams, Phys. Rev. D

[3] K. Rajagopal, inQuark-gluon Plasmaedited by R. C. Hwa
(World Scientific, New York, 1995 p. 484.
[4] G. Baker, B. Nickel, and D. Meiron, Phys. Rev.1d, 1365

(1978; University of Guelph report, 197npublished 49, 4683(1994.
[5] F. Karsch and E. Laermann, Phys. Rev5Q) 6954(1994. [16] M. Baker, J. S. Ball, and F. Zachariasen, Nucl. PHy%86,
[6] E. Laermann, hep-lat/9802030. 531 (1981); B186, 560 (1981); D. Atkinson, P. W. Johnson,
[7] C. D. Roberts and A. G. Williams, Prog. Part. Nucl. Ph33. W. J. Schoenmaker, and H. A. Slim, Nuovo Cimento7A
477 (1994. 197 (1983.
[8] P. C. Tandy, Prog. Part. Nucl. Phy&9, 117(1997). [17] N. Brown and M. R. Pennington, Phys. Rev. 39, 2723
[9] M. A. Pichowsky and T.-S. H. Lee, Phys. Rev. 3B, 1644 (1989; M. R. Pennington, hep-ph/9611242.
(1997. [18] M. R. Frank and C. D. Roberts, Phys. Rev58; 390(1996.

[10] M. A. Ivanov, Yu. L. Kalinovsky, P. Maris, and C. D. Roberts, [19] H. J. Munczek and A. M. Nemirovsky, Phys. Rev.28, 181
Phys. Rev. (57, 1991(1998. (1983.



1766 D. BLASCHKE, A. HOLL, C. D. ROBERTS, AND S. SCHMIDT PRC 58

[20] A. D. Jackson and J. J. M. Verbaarschot, Phys. Re\63D Excitations, Hirschegg, Austria, 1997, edited by H. Feldmeier,
7223(1996. J. Knoll, W. Naenberg, and J. Wambach, hep-ph/9701387.

[21] T. Wettig, T. Guhr, A. Scher, and H. A. Weidenmlier, in [22] A. Bender, G. Poulis, C. D. Roberts, S. Schmidt, and A. W.
“QCD Phase Transitions,” Proceedings of the XXVth Inter- Thomas, Phys Lett. B31, 263(1998.

national Workshop on Gross Properties of Nuclei and Nuclear



